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Abstract

Automatically learnt word sense embeddings are developed as an attempt to refine the capabilities
of coarse word embeddings. The word sense representations obtained this way are, however,
sensitive to underlying corpora and parameterizations, and they might be difficult to relate to
word senses as formally defined by linguists. We propose to tackle this problem by devising a
mechanism to establish links between word sense embeddings and lexical resources created by
experts. We evaluate the applicability of these links in a task to retrieve instances of Swedish
word senses not present in the lexicon.

1 Introduction

Word embeddings have boosted performance in many Natural Language Processing applications in re-
cent years (Collobert et al., 2011; Socher et al., 2011). By providing an effective way of representing
the meaning of words, embeddings facilitate computations in models and pipelines that need to analyze
semantic aspects of language.

Based on their success, an effort has been concentrated in improving embedding models, from devising
more computationally effective models to extending them to cover other semantic units beyond words,
such as multi-word expressions (Yu and Dredze, 2015) or word senses (Neelakantan et al., 2014). Being
able to represent word senses solves the problem of conflating several meanings of one polysemic word
into a single embedding (Li and Jurafsky, 2015). Furthermore, having complete and accurate word sense
representations brings embedding models closer to a range of existing, expert-curated resources such as
lexica. Bridging the gap between these two worlds arguably opens a road to new methods that could
benefit well-established, widely used resources (Faruqui et al., 2015; Speer et al., 2017).

This is the focus of the work we present in this article. We propose an automatic way of creating a
mapping between entries in a lexicon and word sense representations learned from a corpus. By having
an identification between a manual inventory of word senses and word sense embeddings, the lexicon
obtains capabilities by which its entries can be manipulated as mathematical objects (vectors), while the
vector space model receives support from a linguistic resource. Furthermore, by analyzing the disagree-
ments between the lexicon and the embedding model, we can acquire insight into the shortcomings of
their respective coverage. For instance, unlinked lexicon entries evidence those instances that the vector
model is unable to learn, while unlinked word sense embeddings may suggest new usages of words found
in the corpora. Being able to locate these cases opens the way towards improving lexica and embedding
models. Automatic discovery of novel senses has been shown as a feasible and productive endeavor
(Lau et al., 2012). In our evaluation we provide some insight into these situations: we use a mapping to
calculate the probability that a word in a sentence from a corpus is an instance of an unlisted sense (i.e.,
not present in the lexicon.)

This mapping process, and some of its potential applications, are explained in detail in the following
sections. Section 2 contains a description of the mapping mechanism Section 3 goes on to evaluate the
performance of this mapping on finding instances of unlisted senses. We present our conclusions in
Section 4.
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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2 Model

2.1 Lexicon
A lexicon which lists word senses and provides relations between them is required; for instance, a re-
source that encodes these relations in a graph architecture, such as WordNet (Fellbaum, 1998).

We need to retrieve word senses related to any given target word sense in order to obtain a set of
neighbors which put the target sense in context. This context will be used to compare it with sets of
neighbors extracted from a word sense vector space for senses of the same lemma, and thus find the best
match to establish a link.

In our experiments on Swedish data we use SALDO (Borin et al., 2013) as our lexicon. It is encoded
as a network: nodes encode word senses, which are connected by edges defined by semantic descriptors:
the meaning of a sense is defined by one or more senses, its descriptors. Among others, each sense
has one primary descriptor (PD) and, in turn, it may be the primary descriptor of one or more senses.
E.g., the PD of the musical sense of rock would be music, which would be the PD of hard rock. The
PD network of SALDO traces back to a root node (which does not have a PD) and, thus, it has a tree
topology. In general, senses with more abstract meanings are closer to the root, while more concrete
ones are located closer to the leaves.

2.2 Word Sense Embeddings
Word sense embeddings allow us to create an analogy between semantic relatedness among words and
geometric distance between their representations in a vector space. In particular, a word sense embedding
model assigns multiple representations to any given word, each of which is related to a distinct word
sense. For our purposes, we make use of Adaptive Skip-gram (Bartunov et al., 2016), an adaptation of
the hierarchical softmax Skip-gram (Mikolov et al., 2013).

The hierarchical softmax model is described by its training objective: to maximize the probability of
context words v given a target word w and the model’s parameters θ:

p(v|w, θ) =
∏

n∈path(v)

1

1− e−ch(n)x>
wyn

, (1)

where xw are the input representations of the target words w, and the original output representations of
context words yn are associated with nodes in a binary tree which has all possible vocabulary words v as
leaves; θ is the set of these representations as weights of the vector model. In this context, path(v) are
the nodes n in the path from the tree’s root to the leaf v, identified by ch(n) being -1 or 1 depending on
whether n is a right or left child.

The Adaptive Skip-gram (AdaGram) model expands this objective to account for multiple word senses
to be represented in the input vocabulary X . It does so by introducing a latent variable z that determines
a concrete sense k of word w. The output vocabulary Y remains unchanged. This model uses a Dirichlet
process (stick-breaking representation) to automatically determine the number of senses per word. They
define a prior over the multiple senses of a word as follows:

p(z = k|w,β) = βwk

k−1∏
r=1

(1− βwr),

p(βwk|α) = Beta(βwk|1, α),

where β is a set of samples β from the Beta distribution and α is a hyperparameter. By combining this
prior with a pre-specified maximum number of prototypes and a threshold probability, the model is able
to automatically determine the number of word senses any given word is expected to have. The objective
function that defines the AdaGram model is defined as follows:

p(Y,Z,β|X,α, θ) =
V∏

w=1

∞∏
k=1

p(βwk|α)
N∏
i=1

p(zi|xi,β) C∏
j=1

p(yij |zi, xi, θ)

 , (2)
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Lexicon Vector space
rock-1 ‘jacket’ rock-b (clothing)
rock-2 ‘rock music’ rock-a, rock-c,

rock-d, rock-e (music)

Table 1: Example mapping for rock.

where V is the word vocabulary size, N is the size of the training corpus, C is the size of the context
window, and p(βwk|α) is the prior over multiple senses obtained via the Dirichlet process described
above. The granularity in the distinction between word senses is controlled by α. A trained model
produces representations for word senses in a D-dimensional vector space where those with similar
meanings are closer together than those with dissimilar ones.

For the purposes of this work, we trained a word sense embedding model on a Swedish corpus (cf.
Section 3.1) using the default parameterization of AdaGram: 100-dimension vectors, maximum 5 pro-
totypes per word, α = 0.1, and one training epoch. (See AdaGram’s documentation for a complete
list.)

2.3 Lexicon-Embedding mapping

Our goal is to establish a mapping between lexicographic word senses and embeddings that represent the
same meanings. The approach we take is to generate a set of related word senses for each sense of any
given word, both from the lexicon (via relations encoded in its graph’s edges) and from the vector space
(via cosine distance), to measure their relatedness and define mappings.

To obtain sets of neighbors from the lexicon, given any target word sense, any senses directly con-
nected by an edge to the target’s node is selected as a neighbor. In the vector space, nearest neighbors
based on cosine distance are selected.

In order to measure relatedness using geometric operations we need to assign provisional embeddings
to lexicographic neighbors in order to measure their distance to vector space neighbors. We do this by
using AdaGram’s disambiguation tool: given a target word and a set of context words, it calculates the
posterior probability of each sense of the target word given the context words according to the hierarchi-
cal softmax model (Equation 1). The word in context is disambiguated by selecting the its sense with the
highest posterior probability. (In our case, for any given sense, the rest of senses in the set act as context.)

We expect some lexicon-defined senses to not be present in the vector space and some word senses
captured by the embedding model to not be listed in the lexicon. Additionally, the AdaGram model may
create two or more senses for one word which relate to the same lexicographic sense. We address this
by making the mapping 1-to-N to allow a lexicon sense to be linked to more than one sense embedding
if necessary. Additionally, in order to make it possible for lexicon senses to be left unlinked, we propose
to use a false sense embedding that acts as an attractor for those lexicon senses with weak links to real
embeddings.

The mapping mechanism is shown in Algorithm 1. For each word in the vocabulary, a set of neighbors
is generated for each of its senses in the lexicon and in the vector space. The vector representations
of these neighbors are averaged, since averaging embeddings has been proven an efficient approach to
representing multi-word semantic units (Mikolov et al., 2013; Kenter et al., 2016). A probability matrix
p ∈ [0, 1]n×m is calculated by applying the softmax function to pairs of vectors. An extra column is
added with scores generated by the softmax on zero-valued vectors to account for the false sense. A row
in p represents the probability that each sense in the vector model corresponds to that row’s lexicon sense,
from which the maximum is obtained to establish a link. (A threshold ρ exists to avoid low-probability
links.)

An example of the linking performed by this mechanism is shown on Table 1. According to the lexicon
SALDO, the noun rock has two senses in Swedish: (1) ‘jacket’ and (2) ‘rock music’. The word sense
embedding model finds five different meanings for rock; upon inspection of their nearest neighbors,
which give an indication of the closest senses to any particular meaning, four of them relate to the music
sense (linked to rock-2) and one to items of clothing (linked to rock-1). As can be seen in Table 1, the
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Algorithm 1 Mapping algorithm.

1: for all words w do
2: /* Lexicon neighbors */
3: n← #lexical senses of w
4: si← ith lexical sense of w, i ∈ [1, n]
5: for all si do
6: ai← set of neighbors of si
7: for all neighbor k in ai do
8: v(aik)← embedding for aik
9: end for

10: end for
11: /* Vector space neighbors */
12: T ← max #senses per word
13: m← #nearest neighbors (NN) per sense
14: zj← jth sense embedding ofw, j ∈ [1, T ]
15: for all zj do
16: bjl ← lth NN of bj , l ∈ [1,m]
17: end for
18: /* Average neighbors */
19: for all i, j do
20: v(ai)← avg. vector over k

21: end for
22: for all j do
23: v(bj)← avg. vector over l
24: end for
25: /* Mapping probabilities */
26: for all i, j do
27: pij ← softmax(v(ai) · v(bj))
28: piN+1← softmax(

−→
0 )

29: end for
30: /* Mapping */
31: for j ∈ [1, T ] do
32: if prior(sj) > ρ then
33: r← indmaxi(pij)
34: if r 6= N + 1 then
35: map sr to zj
36: end if
37: end if
38: end for
39: end for

clothing-related meaning is linked to the sense meaning ‘jacket’, while the four music-related ones is
linked to the sense meaning ‘rock music’.

3 Evaluation

3.1 Training Corpus

For training the AdaGram model, we created a mixed-genre corpus of approximately 1 billion words of
contemporary Swedish downloaded from Språkbanken, the Swedish language bank.1 The texts were pro-
cessed using a standard preprocessing chain including tokenization, part-of-speech-tagging and lemma-
tization. Compounds were segmented automatically and when the lemma of a compound word was not
listed in SALDO, we used the lemmas of the compound parts instead. For instance, golfboll ‘golf ball’
would occur as a single lemma in the corpus, while pingisboll ‘ping-pong ball’ would be split into two
separate lemmas.

3.2 Benchmark Dataset

For evaluation, we annotated a benchmark dataset. We selected five target lemmas for which we knew
that the corpus contains occurrences of word senses that are unlisted in the lexicon. In addition, we
selected four target lemmas that do not strictly have new word senses, but that tend to be confused with
tokenization artifacts, named entities, or foreign words. Table 2 shows the selected lemma, an overview
of the senses that are listed in the lexicon, as well as the most important unlisted senses.

For each of these nine target lemmas, we selected 1,000 occurrences randomly from the corpus. Two
annotators went through the selected occurrences and determined which of them are instances of the
senses present in the lexicon, and which of them are unlisted senses. A small number of occurrences
were discarded because they were difficult for the annotators to understand.

1http://spraakbanken.gu.se
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Lemma Listed Main unlisted
fet ‘fat’; ‘thick’ ‘cool’; emphasis
klient ‘client’ (customer) ‘client’ (application)
klubb ‘club’ (night) ‘club’
pirat ‘pirate’ ‘pirate’ (e.g. music)
sida ‘side’; ‘page’ ‘web page’
fil ‘file’; ‘row’; ‘lane’; ‘yogurt’ e.g. in fil. dr. ‘PhD’
get ‘goat’ foreign words
mus ‘mouse’; ‘pussy’ a cosmetic brand
sur ‘sour’; ‘grumpy’; ‘soaked’ foreign words

Table 2: Selected target lemmas.

3.3 Experimental Settings

Given a mapping between lexicographic word senses and automatically discovered senses in a corpus,
sentences from the benchmark dataset can be scored by their probability of containing an out-of-lexicon
instance. A score is calculated using the linking probability between lexicographic sense yj and vector
model sense xi, P (yj |xi), and the probability of the AdaGram sense xi in the context of the sentence
ctx, P (xi|ctx):

P (yj |ctx) =
T∑
i=1

P (yj |xi)P (xi|ctx),

thus obtaining the probability of a particular lexicographic sense yj given context ctx. The sum of all
p(yj |ctx), j ∈ [1, T ], yields the probability that an instance contains one of the listed word senses. Our
score, then, is calculated as the inverse probability:

score = 1−
n∑

j=1

P (yj |ctx). (3)

The human annotations of the sentences are interpreted as the gold standard, and the scores as our model’s
classification output that can be used to rank the sentences from most to least probably containing an out-
of-lexicon instance of a target word. We evaluate this classification using the Area Under the Receiver
Operating Characteristic Curve (AUC). For reference, recall that the expected AUC of a random ranking
is 0.5.

The potential of the automated mapping between a lexicon and an embedding model to help retrieve
instances of word senses unlisted in the lexicon gives us a certain measure of the quality of this mapping.
The recovery of instances of unlisted senses can only succeed if the mapping has successfully identi-
fied listed lexicon senses in the embedding model, leaving unlisted ones unlinked. On the other hand,
failure to recover instances of unlisted senses can expose weaknesses in the automated mapping. (See
Section 3.4 for an analysis of unsuccessful cases.)

3.4 Results

We apply the scoring and evaluation process explained above on the sets of sentences for each of the
words selected for the benchmark dataset. Table 3 summarizes the results obtained. We observe a clear

Word n AUC
fet 976 0.76
klient 959 0.02
klubb 985 0.74
pirat 907 0.53
sida 985 0.69
Sub-avg. 0.55

(a) Unlisted senses.

Word n AUC
fil 982 0.87
get 954 0.98
mus 972 0.83
sur 967 0.96
Sub-avg. 0.91
Total avg. 0.73

(b) Spurious senses.

Table 3: AUC scores.
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difference between the two types of lemmas: the model’s performance is notably higher when the lemmas
may be confused with tokenization artifacts, named entities or foreign words (Table 3b) than when the
lemmas have meanings not listed in the lexicon (Table 3a). This is arguably due to the ability of the word
sense embedding model to isolate spurious meanings in the vector space since these occurrences tend to
be distributionally quite distinct from the standard uses. However, note that also for the case of unlisted
meanings, the model generally improves over a random baseline.

The exception to this is the case of klient, where the listed sense is ‘customer’ and the new sense is
‘client application’. Here, the ranking is upside down, as can be seen from the very low AUC value. The
cause of this issue can be traced to the inability of the mapping algorithm to successfully link the only
lexicographic sense to its corresponding vector space embedding. The neighbors of the AdaGram sense
corresponding to the ‘customer’ sense tend to be legal terms, which are not connected to this sense in the
lexicon. (Arguably, the legal use of ‘client’ could be seen as a separate sense.) Compare this to the case
of pirat, which performs roughly at random (AUC ≈ 0.5), suggesting simply that the AdaGram model
has not picked up the distinction between the senses, which makes it hard to solve the problem by simply
changing the link, as would be the case with klient.

A straightforward way to address those cases in which the mapping fails to correctly establish a link
would be to refine the way in which the word senses are represented at the time of linking. Our approach
is to do this by averaging the embeddings of nearest neighbors, due to the simplicity and usual robustness
of this operation. However, more complex approaches to combining embeddings have been demonstrated
using, for example, weighted averaging (Arora et al., 2017), which could be adapted for our needs in this
work.

4 Conclusion

We have presented an approach to automatically link lexicographic word senses with word sense em-
beddings by retrieving sets of senses related to the different meanings of a lemma and measuring the
similarity between their vector representations. We argue that potential applications of such a system
resides on those embeddings that cannot be linked to a lexicographic sense, as this could serve to sug-
gest potential new entries to the lexicon, or to filter unlisted instances from a corpus. To illustrate this
point, the evaluation of our system has been focused on its ability to retrieve instances assumed to belong
to unlisted senses. Our system is able to identify such instances in many cases, as its performance in
terms of AUC is above that of a random baseline. The performance is specially high in cases where
the target lemma can be confused in the corpus with spurious meanings such as foreign words. In sum-
mary, our results indicate that establishing links between existing resources and embedding models has
potential applications in NLP tasks which require formal lexicographic knowledge. In the future, we
propose to examine ways to improve the current mapping system with improved neighbor representation
approaches, as well as to investigate further possible uses, such as improving existing resources with data
obtained from corpora.
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