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Abstract 

This paper presents a neural net approach to determine Semantic Textual Similarity (STS) using 
attention-based bidirectional Long Short-Term Memory Networks (Bi-LSTM). To this date, 
most of the traditional STS systems were rule-based that built on top of excessive use of linguis-
tic features and resources. In this paper, we present an end-to-end attention-based Bi-LSTM 
neural network system that solely takes word-level features, without expensive, feature engi-
neering work or the usage of external resources. By comparing its performance with traditional 
rule-based systems against the SemEval 2012 benchmark, we make an assessment on the limi-
tations and strengths of neural net systems as opposed to rule-based systems on STS. 

1 Introduction     

Semantic Textual Similarity (STS) is the task of determining the resemblance of the meanings between 
two sentences (Agirre et al., 2012; Agirre et al., 2013; Agirre et al., 2014; Agirre et al., 2015; Agirre et 
al., 2016; Cer et al., 2017). For the sentence pairs below, on a scale from 0 to 5, (1) is very similar [5.0], 
(2) is somewhat similar [3.0] and (3) is not similar [0.2]: 

1. Someone is removing the scales from the fish. 

A person is descaling a fish. 

2. A woman is chopping an herb. 

A man is finely chopping a green substance. 

3. The woman is smoking. 

The man is walking. 

In STS tasks, the performance of traditional models relies highly on the usage of linguistic resources 
and hand-crafted features. For example, in SemEval 2012 Task 06: A Pilot on Semantic Textual Simi-
larity (Agirre et al., 2012), the top three performers (Šarić et al., 2012; B�� r et al., 2012; Banea et al., 
2012) all derived knowledge from WordNet, Wikipedia and other large corpora. In particular, Banea et 
al. built the models from 6 million Wikipedia articles and more than 9.5 million hyperlinks; B�� r et al. 
used Wiktionary, which contains over 3 million entries; and Šarić et al. used The New York Times An-
notated Corpus that contains over 1.8 million news articles. Blanco and Moldovan (2013) proposed a 
model with semantic representation of sentences, which was considered to use the smallest external 
resources and features in 2015. However, their model still required WordNet with approximately 
120,000 synsets and a semantic parser. 

Complex neural network architectures are being increasingly used for learning to compute the seman-
tic resemblances among natural language texts. To this date, there are two end-to-end neural network 
models proposed for STS tasks (Shao, 2017; Prijatelj et al., 2017), and both of them followed a standard 
sentence pair modeling neural network architecture that contains three components: a word embedding 
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component that transforms words into word vectors, a sentence embedding component that takes word 
vectors as input and encodes the sentence into a single vector that represents the semantic meanings of 
the original sentence, and a comparator component that evaluates the similarity between sentence vec-
tors and generates a similarity score. 

In this paper, we modified and improved the modals proposed by Prijatelj et al. (2017) and Shao 
(2017), and proposed a Bi-LSTM neural network model as the representative of the neural net approach 
and evaluated it on the SemEval 2012 dataset. In the experimental section, we compared our system 
with the top three performers in SemEval 2012 using traditional rule-based models. Because neither 
Shao nor Prijatelj et al. considered attention mechanisms (Yang et al., 2016) in their systems, we specif-
ically applied attention mechanisms to improve the performance of our system. 

The goal of the paper is to illustrate that with well-designed neural network models, we can achieve 
competitive results (compared to traditional rule-based models) without expensive feature engineering 
work and external resources. We also make an assessment on the limitations of neural net systems as 
opposed to rule-based systems on STS. 

2 Related Work 

Determining textual similarity is relatively new as a stand-alone task since SemEval-2012, but it is often 
a component of NLP applications such as information retrieval, paraphrase recognition, grading answers 
to questions and many other tasks. In this section, we only list the works that are involved in our evalu-
ation systems: the top performers in SemEval 2012 and recent neural network-based approaches in 
SemEval 2017. 

The performance of the rule-based models (Šarić et al., 2012; B�� r et al., 2012; Banea et al.,  2012)  
mostly rely on word pairings and knowledge derived from large corpora, e.g., Wikipedia. Regardless of 
details, each word in sent1 is paired with the word in sent2 that is most similar according to some simi-
larity measure. Then, all similarities are added and normalized by the length of sent1 to obtain the simi-
larity score from sent1 to sent2. The process is repeated to obtain the similarity score from sent2 to sent1, 
and both scores are then averaged to determine the overall textual similarity. Several word to word 
similarity measures are often combined with other shallow features (e.g. n-gram overlap, syntactic de-
pendencies) to obtain the final similarity score. 

Shao (2017) proposed a simple convolutional neural network (CNN) models for STS. He used a CNN 
as the sentence embedding component to encode the original sentences into sentence-level vectors and 
generated a semantic difference vector by concatenating the element-wise absolute difference and the 
element-wise multiplication of the corresponding sentence vectors. He then passed the semantic differ-
ence vector into a fully connected neural network to perform regression to generate the similarity score 
on a continuous inclusive scale from 0 to 5. His model ranked 3rd on the primary track of SemEval 
2017. 

Prijatelj et al. (2017) wrote a survey on neural networks for semantic textual similarity. The frame-
work of their model is similar to Shao’s, but they explored various neural network architectures, from 
simple to complex, and reported the results of applying the combination of these neural network models 
within this framework. 

3 System Description 

Figure 1 provides an overview of our neural network-based model. The sentence pairs first pass through 
a pre-processing step described in subsection 3.1 to generate word embeddings. The attention-based Bi-
LSTM models transform the word embeddings into sentence-level vectors described in subsection 3.2. 
In subsection 3.3, we use the same semantic difference vector as Shao to represent the semantic differ-
ence between the sentence-level vectors. Lastly, we pass the semantic difference vector into fully con-
nected neural networks to generate the similarity score between the original sentence pairs. 

3.1 Pre-processing 

We first applied a simple NLP pipeline to the input sentences to tokenize them, remove punctuations 
and lower-case all the tokens. Second, we looked up the word embeddings from the pretrained 50-di-
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mension GloVe vectors, and set non-existing words to zero vector. Third, we enhanced the word embed-
dings by adding a true/false (1/0) flag to them if the corresponding word appears in both sentences. 
Lastly, we unified the length of the inputs by padding the sentences. 

 

Figure 1: The structure of attention-based Bi-LSTM network for Semantic Textual Similarity. 

3.2 Attention-based LSTM 

Since sentences are sequences of words, and the order of the words matters, it is natural to use LSTMs 
(Hochreiter and Schmidhuber, 1997) to encode sentences into vectors. However, sometimes the back-
ward sequence contains useful information as well, especially for long and unstructured sentences. Be-
cause of this, Irsoy and Cardie (2014) proposed Deep Bidirectional RNNs that can make predictions 
based on future words by having the RNN model read through the sentence backwards. In this section, 
we will first introduce a regular LSTM network and then extend it into a Bi-LSTM. At the end of this 
section, we will apply attention mechanisms to improve the performance of the system. 

The traditional LSTM unit is defined by 5 components: an input gate, a forget gate, an output gate, a 
new memory generation cell and a final memory cell. 

The input gate is to decide if the input xt is worth being preserved based on the input word xt and the 
past hidden state ht−1. 

 
 �� = �(�(	)�� +  �(	)ℎ���) (1) 

 
The forget gate ft makes an assessment on whether the past memory cell is useful to compute the 

current memory cell. 
 
 �� = �(�(�)�� + �(�)ℎ���) (2) 

 
The output gate is to separate the final memory ct from the hidden state ht. 
 
 �� = �(�(�)�� +  �(�)ℎ���) (3) 

 
The new memory generation cell is used to generate a new memory �̃�  by input work xt and the past 

hidden state ht−1. 
 �̃�  = tanh (�(�)�� + �(�)ℎ���) (4) 

 
The final memory cell produces the final memory ct by summing the advice of the forget gate ft and 

input gate it. 
 
 �� =  ��  ∙  ���� +  ��  ∙  �̃� (5) 
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 ℎ� =  ��  ∙  �� ℎ(��) (6) 
A Bi-LSTM could be viewed as a network that maintains two hidden LSTM layers together, at each 

time-step t, one for the forward propagation and another for the backward propagation. The final classi-
fication results are generated through the combination of the score results produced by both hidden 
layers. The mathematical representation of a simplified Bi-LSTM is shown as follows: 

 
 ℎ!"� = �(�!!!"�� + #!"ℎ!"��� + $!") (7) 

 ℎ%!� = �(�%!!!�� + #%!ℎ%!��� + $%!) (8) 

 &'� = ((�ℎ� + �) = ((�)ℎ!"���; ℎ%!���+ + �) (9) 
 

where &'� is the final predication. The symbols → and ← are indicating directions. The rest of the terms 
are defined the same as in regular LSTM neural networks. W, U are weight matrices that are associated 
with input xt and hidden states ht. U is used to combine the two hidden LSTM layers together, b and c 
are bias term. g(x) and f(x) are activation functions. 

Not all words contribute equally to the representation of the sentence meaning; thus, we extract words 
that are more informative to the sentence and aggregate these words to the sentence-level vector by 
applying the attention mechanism. Specifically: 

First, we feed the hidden state ht through a one-layer MLP to get ut, and ut could be viewed as a hidden 
representation of ht. 

 
 ,� = �� ℎ (�ℎ� + $) (10) 

 
Second, we multiply ut with a context vector uw, and normalized the results through a softmax function 

to get the importance weight at of each hidden state ht. The context vector could be seen as a high-level 
vector to select informative word in the sentence (Sukhbaatar et al., 2015) and it will be jointly learned 
during the training process. 

 

 �� =  -./ (01 
203)

∑ -./ (01
203)1

 (11) 

 
Lastly, the final state S is a sum over of the hidden states and its the importance weights. 
 
 5 =  ∑ ��ℎ��  (12) 

 

3.3 Semantic Difference of Sentences 

We used the same semantic difference vector as Shao, by concatenating the element-wise absolute dif-
ference and the element-wise multiplication of the corresponding sentence-level embedding pairs.  

The generated semantic difference vector is passed through a two-layer fully connected neural net-
works with a softmax function as the output layer and generated a probabilistic distribution over the six 
similarity labels used in the SemEval 2012 task. We multiplied it with a constant matrix with integers 
from 0 to 5 to transfer the probabilistic distribution into a float number as the final semantic similarity 
score between the original sentence pairs. 

4 Experiment 

4.1 Corpus 

We evaluated our system on the corpora used in SemEval 2012 Task 06: A Pilot on Semantic Textual 
Similarity. It contains five corpora: (1) MSRvid, short sentences for video descriptions; (2) MSRpar, 
long sentences of paraphrases; (3) SMTeuroparl, output of machine translation systems and reference 
translations; (4) OnWN, OntoNotes and WordNet glosses; and (5) SMTnews, output of machine trans-
lation systems in the news domain and gold translations. In corpus (1) to (3), both training and testing 
data are provided, and corpus (4) and (5) are surprise data (new domain data) and only testing data are 
provided. For more details about the corpus, please refer to Agirre et al. (2012). 
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We followed the training and testing splits of the original corpus. Since corpus (4) and (5) do not have 
corresponding training data, we used the training data of corpus (2) as the training data for corpus (4) 
since both corpus contains long and hard to parse sentences, and we used the training data of corpus (3) 
as the training data for corpus (5), since both corpus contains ungrammatical sentences. 

4.2 Experiment Results 

We used the Pearson correlation coefficient to evaluate the performance. We introduced two neural net-
work models: a regular LSTM model and a Bi-LSTM model and, for each model, we also demonstrated 
their performance with attention mechanisms. Table 1 shows the results of the neural network-based 
systems and the traditional rule-based systems on in-domain data (corpus 1 to 3) and out-of-domain data 
(corpus 4 and 5). 
 

System MSRvid MSRpar SMTeuroparl OnWN SMTnews 

LSTM Basic 0.7774 0.5278 0.2787 0.4519 0.2071 
+attention 0.7851 0.5891 0.3492 0.4773 0.2635 

Bi-LSTM Basic 0.7661 0.5258 0.3993 0.4591 0.3298 
+attention 0.7762 0.6210 0.4368 0.5607 0.3976 

B�� r et al., 2012 0.8739 0.6830 0.5280 0.6641 0.4937 
Šarić et al., 2012 0.8620 0.6985 0.3612 0.7049 0.4683 
Banea et al., 2012 0.8750 0.5353 0.4203 0.6715 0.4033 

Table 1: The Person correlation coefficient of our system and the top three performers  
in SemEval 2012 benchmark. 

4.3 Results Analysis 

From the results, we could observe that: (1) The overall performance of the rule-based model is still 
slightly better than the neural network-based approach. However, we must note that the neural network 
models are end-to-end models that do not use complicated linguistic features and resources. (2) The 
neural network-based approaches are better at handling long sentences, whereas the rule-based systems 
are good at handling short sentences. The reason is that the performance of the traditional rule-based 
models greatly relies on the extraction of features, however, long sentences are usually hard to parse. 
The errors that occur in the feature extraction step will propagate until the end and decrease the perfor-
mance of the system. Whereas the neural network models only take word-level features and do end-to-
end training, so they do not have this “error propagation” issue. Besides, since we add attention mecha-
nisms, the system could aggregate the influence of the informative words and ignore the unimportant 
words in long sentences. From the results we observe that our system beats the third-ranked performer 
on the MSRpar corpus, and the second- and third-ranked performers on the SMTeuroparl corpus, which 
contains mainly long sentences. (3) The regular LSTM model performs poorly on the SMTeuroparl 
corpus, but the Bi-LSTM dramatically increases the performance (ranking just after the top performer 
with rule-based systems). The reason is that in the SMTeuroparl corpus, one sentence in the sentence 
pair is usually ungrammatical. Regular LSTM can only capture the forward sequential information of 
sentences, so it will miss some information if the sentences are unstructured. However, the Bi-LSTM 
model can compensate for this missing information by capturing the backward sequential information 
as well, and this makes the system more robust when handling ungrammatical sentences. (4) The tradi-
tional rule-based models show a huge advantage over neural network-based models on new domain 
datasets. The reason is that the neural-network models are supervised models that mostly depend on the 
training data, and when transferred to new domains lacking training data, the performance of the system 
drops dramatically. On the other hand, rule-based systems rely mostly on word pairings and linguistic 
resources that are not as dependent on training data. 
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