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Abstract 

When learning Chinese as a foreign lan-
guage, the learners may have some gram-
matical errors due to negative migration of 
their native languages. However, few 
grammar checking applications have been 
developed to support the learners. The goal 
of this paper is to develop a tool to auto-
matically diagnose four types of grammat-
ical errors which are redundant words (R), 
missing words (M), bad word selection (S) 
and disordered words (W) in Chinese sen-
tences written by those foreign learners. In 
this paper, a conventional linear CRF 
model with specific feature engineering 
and a LSTM-CRF model are used to solve 
the CGED (Chinese Grammatical Error 
Diagnosis) task. We make some improve-
ment on both models and the submitted re-
sults have better performance on false pos-
itive rate and accuracy than the average of 
all runs from CGED2018 for all three 
evaluation levels. 

1 Introduction 

Nowadays, more and more foreigners take Chi-
nese as their second language. Unlike English, 
Chinese has no verb tenses or pluralities, and 
meanwhile there are various ways to express the 
same meaning in Chinese, so Chinese has been 
considered as one of the most difficult languages 
in the world(Bo Zheng et al., 2016). Chinese as a 
Foreign Language(CFL) learners often make 
grammatical errors such as redundant words (R), 
missing words (M), word selection errors (S), and 
word ordering errors (W), due to language nega-
tive migration, over-generalization, teaching 
methods, learning strategies and other reasons.  
Natural Language Processing System(NLPS) 
which can detect and correct grammatical errors 

are important and invaluable to language learners. 
(Leacock et al., 2010). However, few grammar 
checking applications have been developed to 
support CFL learners. The goal of the CGED 
(Chinese Grammatical Error Diagnosis) task is to 
develop NLP (Natural Language Processing) 
techniques to automatically diagnose grammati-
cal errors in Chinese sentences written by CFL 
learners. 

In this paper, we use both a conventional linear 
CRF model (Lafferty et al., 2001) with specific 
feature engineering and a LSTM-CRF model to 
solve CGED task. Many researchers have already 
used these two models in the past few years, but 
our team make some improvement on both mod-
els. For CRF model, we integrate the syntactic 
feature into the CRF model. Character itself, POS 
feature and syntactic feature are used to generate 
50 combinatorial features by template technology. 
As for LSTM-CRF model, most researchers use 
tag transition features only in CRF layer. The ma-
jor improvement of our work is that more conven-
tional sparse CRF features are incorporated into 
the CRF layer such as bag of POS n-grams fea-
tures, words features, tag transition features, etc. 

The rest of the paper is organized as follows: 
Section 2 gives the definition of the CEGD task. 
Section 3 introduces two methods we use to solve 
the CGED task. Section 4 describes the dataset we 
use, the evaluation results on the validation set 
and the test set. Section 5 discusses conclusion 
and future work. 

2 Task Definition 

The task of CGED is defined as follows: given a 
Chinese sentence, the goal of CGED tool is to di-
agnose four types of grammatical errors, including 
redundant words (R), missing words (M), words 
selection errors (S) and word ordering errors (W). 
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 The input sentence may contain one or more such 
errors. The developed tool should indicate each 
error type and its position in the given sentence. 
To be specific, if an input sentence contains the 
grammatical errors, the output of each error 
should include four items: the id of the sentence, 
the positions of starting and ending character at 
which the grammatical error occurs, and the error 
type which should be one of the defined errors: 
“R”, “M”, “S”, and “W”. Example sentences and 
corresponding notes are shown in Table 1 and Ta-
ble 2. 

3 Methodology  

We use two different models to solve the CGED 
task. One is the traditional model based on Condi-
tional Random Field (CRF) with specific feature 
engineering. Many researchers have chosen CRF 
based models to solve CGED2016 and 
CGED2017 task. From previous research, we 
know that the CRF model with carefully designed 
feature templates could maintain the performance 
with neural networks at the same level (Lung-Hao 
Lee et al., 2016), especially when the training data 
is not big enough. Another is LSTM-CRF model 
with conventional sparse CRF features. The 
LSTM-CRF model is also used by some research-
ers before (Bo Zheng et al., 2016). The research 
proved that LSTM is effective in various applica-
tions that involves sequence modeling. This time, 

we make some improvements on both CRF model 
and LSTM-CRF model.  

3.1 CRF model with feature engineering 

Conditional random fields (CRF), an extension of 
both Maximum Entropy Model (MEMS) and 
Hidden Markov Models (HMMs), has been used 
to solve some natural language processing prob-
lems such as word segmentation, information ex-
traction and parsing. The CGED task can be con-
sidered as a sequence labeling problem which as-
signs each Chinese character in a sentence with a 
tag including the error types (R, M, S, W). CRF is 
a sequence labelling model with flexible feature 
space. Therefore, with given feature set and la-
beled training data, the CRF model can be used to 
solve the CGED task. The model can be defined 
as: 

! " # =
1

&(#)
exp	(Σ./.0.) 

where Z(x) is the normalization factor, 0.  is the 
feature sets and /. is the corresponding weight of 
the features. x is the sequence of the training sen-
tences (the first column of Table 3), and y is the 
error type label (the forth column of Table 3) 
which includes O(Correct), R(Redundant words), 
M(Missing Words), S(Selection errors) and 
W(Word ordering errors). Tag ‘O’ indicates cor-
rect characters, ‘B-X’ indicates the beginning po-
sitions for errors of type ‘X’ and ‘I-X’ shows the 
middle or ending positions for errors of type ‘X’. 
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Table 1:  Two errors are found in the sentence above, one is word ordering error (W) from 
position 3 to 5, the other  is word selection error (R)  from position 16 to 17.. 
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Table 2:  Two errors are found in the sentence above, one is redundant word (R) error at posi-
tion 6, the other is missing word (M) error at position 19. 
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For example, the label ‘B-S’ indicates this 
character is the beginning of a words selection er-
ror. The CRF model can generate the correspond-
ing label sequence y according to the sequence da-
ta x. The second column of Table 3 is the 
POS(Part-of-speech) feature.  The task is being 
solved at the character level. The POS tag was 
split of a word to character level by attaching po-
sition indicators (‘B-’ and ‘I-’) to the POS of a 
word. We use LTP Segmenter and Postagger 
which is a Chinese Language Technology Plat-
form (Wanxiang Che et al., 2010) to tag the 
training sentences. 

The third column of Table3 is syntactic feature 
of the character. Syntactic feature is the depend-
ency parsing results of a sentence. Dependency 
parsing provides a representation of grammatical 
relations between words in a sentence. To be spe-
cific, dependency parsing can be used to identify 
the grammatical components of the subject in the 
sentence and analyze the relationship between the 
components. Figure 1 and Figure 2 shows the ex-
ample of the dependency parsing. LTP is also used 
to parse the sentence. The output of the parsing of 
the sample sentence is “2:SBV 0:HED 5:ADV 
5:ATT 2:VOB”. Table 4 describe the meaning of 
these tags. The number means which word in the 
sentence is related to the current word. For exam-
ple, 2:SBV means the 2th word 4.5and the 
current word 4��5 are the subject-predicate 
relationships . We can find out the grammatical re-
lations of the sentence more clearly from the fig-
ures below. Figure 1 is the sentence with gram-
matical errors and Figure 2 is the correction. The 
number of the output is used as the syntactic fea-
ture. 

Character POS Parsing Error 

�� �2� �� ��

�� ��2� �� ��

.� �3�  � �-�

8� ��� �� ��-�

 � ���� �� ��-�

-� �2� �� ��

O� �1� �� ��

0� ��1� �� ��

Table 3:  A snapshot of a sample sentence 

��
Figure 1: Dependency parsing of the sen-

tence with grammatical errors 

�� �

Figure 2: Dependency parsing of the correct 
sentence 

Tag Description 

SBV subject-verb 
VOB verb-object 
IOB indirect-object 
FOB fronting-object 
DBL double 
ATT attribute 
ADV adverbial 
CMP complement 
COO coordinate 
POB preposition-object 
LAD left adjunct 
RAD right adjunct 

IS independent structure 
HED head 

Table 4: Description of syntactic features tag 

Feature Templates 

00-04: 1ℎ343567489. (k=-2,-1,0,1,2) 
05-09: !:;89. (k=-2,-1,0,1,2) 
10-14: !34<=>?89. (k=-2,-1,0,1,2) 
15-18: 1ℎ34356748/1ℎ343567489.  (k=-2,-1,1,2) 
19-23: 1ℎ34356748/	!:;89.   (k=-2,-1,0,1,2) 
24-28: 1ℎ34356748/!34<=>?89. (k=-2,-1,0,1,2) 
29-32: !:;8/!:;89. (k=-2,-1,1,2) 
33-37: !:;8/!34<=>?89. (k=-2,-1,0,1,2) 
38-41: !:;8/1ℎ343567489. (k=-2,-1,1,2) 
42-45:1ℎ34356748/1ℎ343567489./!:;89.  (k=-
2,-1,1,2) 
46-49: !:;8/1ℎ343567489./!:;89. (k=-2,-
1,1,2) 

Table 5: Feature templates 
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CRF++ (Kudo et al.,2007), a linear-chain CRF 
model software tool, is used to built the CRF 
model. To train a model with CRF++, we need to 
build some templates first. We use 50 templates to 
generate 50 combinatorial features which is listed 
in Table 5. The format of each template 
is %X[row, col], in which row is the number of 
row in a sentence and column is the number of 
column. The template %x[0,0]/%x[0,1] means the 
feature combining the current character and the 
next POS tag. Take the character “.” in sample 
sentence in Table 3 as an exam-
ple, %x[0,0]/%x[0,1] represents “./B-v”. 

3.2 LSTM-CRF model 

LSTM-CRF model is currently a strong baseline 
in the task of sequence labeling. Compared with 
the conventional Bi-LSTM neural network, 
LSTM-CRF model can directly model probability 
distribution of the the label sequence by a CRF 
layer, and achieve better performance on several 
datasets (Z.Huang et al., 2015; X.Ma et al., 2016). 
An illustrative graph is shown in Figure 3. Under 
this framework, neural network (i.e. LSTM) is 
used to compute the features score in CRF, which 
are called neural features. These neural features 
are similar to the conventional sparse CRF fea-
tures, which are directly used to compute the 
score of a given label sequence. 

A LSTM-CRF model can efficiently capture 
past input features via a LSTM layer and other 
user specified sparse features (e.g. transition fea-
ture, n-gram feature.) via a CRF layer. In our 
case, plenty of features are considered, here we 
only take tag transition feature as an example for 
simplicity. Denoting a tag transition matrix [A], 
where each [A]D,F models the transition score from  
iHI tag to JHI tag for a pair of consecutive time 
step. Note that this transition matrix is position 

independent. De-noting the matrix of scores 
0K[x]i

T	are output by the network. The element 
[fƟ][D]O of the matrix is the score output by the net-
work with parameters θ, for the sentence [x]DP	and 
for the iHI tag, at the 6HI word. The score of a sen-
tence [x]DP along with a path of tags [i]DP is then 
given by the sum of transition scores and net-work 
scores: 

s([x]D
P, [i]D

P, Ɵ) = (wS A D OTU, D O + wW[fƟ][D]O,X)
P

XYS

 

Here we modified the objective function to at-
tend differentially to neural features and conven-
tional CRF sparse features. It is worth noting that 
the dynamic programming can be used efficiently 
to compute [A]D,F and optimal tag sequences for 
inference. Then, the modified CRF layer models 
the conditional probability of possible output se-
quence s over input sequence x as: 

p s x = 	
1

Z(x)
	exp	{s([x]D

P, [i]D
P, Ɵ)} 

s([x]D
P, [i]D

P, Ɵ) is the score of a sentence 
[x]D

P	along with a path of tags [i]DP. Z(x) is the 
normalization factor of all the possible paths of 
tags [i] over input sequence x. For our LSTM 
CRF training, we use the maximum conditional 
likelihood estimation. For a training set{(xD, iD)}, 
the log-likelihood is given as: 

ℒ^ W = log p i|x
Dd^

 

Maximum likelihood training chooses parame-
ters W such that the log-likelihood ℒ^ W 	is max-
imized. 

The training algorithm is giving as follows: 

In most LSTM-CRF based models (Z.Huang et 
al., 2015;  X.Ma et al., 2016; M.Rei et al., 2016; 

��

Figure 3: LSTM-CRF model 

 

Algorithm 1 LSTM CRF training procedure 
for each epoch do 
    for each batch do 

1) neural network forward pass 

                          forward pass for LSTM state 
2) CRF layer forward and backward 

pass 
3) neural network backward pass: 

                          backward pass for LSTM 
4) update parameters 

����01���

01���

�Table 6: the LSTM-CRF training procedure 
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L.Kong et al., 2016; G. Lample et al., 2016), only 
tag transition features are considered in CRF layer. 
In our case, more conventional sparse CRF features 
are incorporated into the CRF layer. Specifically, we 
consider the following features defined over the in-
puts: 

• Words features. Words that appear around the 
current position with a window of size 3. 

• POS tags features. POS tags that appear around 
the current position with a window of size 3. 

• Word n-grams features. Word n-grams that con-
tain the current position, for n = 2, 3, 4. 

• POS n-grams features. POS tags that contain 
the current position, for n = 2, 3, 4. 

• Bag of words features. Bag of words that con-
tains the current word, with a window of size 5. 

• Tag transition features. Tag n-grams that contain 
the current position, for n = 2.  

4 Experiments 

4.1 Dataset 

We collect datasets from CGED-HSK-2016, 
CGED-2017 and CGED-2018 as our training set 
and validation set. Table 7 shows the distributions 
of error types in both the training set and valida-
tion set. The ratio of training set size to validation 
set size is about 8:1. Besides the sentences with 
grammatical errors, 1539 correct sentences are 
added into the validation set. 

4.2 Validation 

We use the validation set to evaluate the results of 
the CRF models with and without syntactic fea-
ture. CRF-1 refers to the model with syntactic fea-
ture and CRF-2 refers to the model without syn-
tactic feature. According to the results in Table 8, 
we can find out that syntactic feature does help to 
improve the performance of the CRF model. 
Therefore, CRF model with both Part-Of-
Speech(POS) feature and syntactic feature is used 
in our final run. 

We also thoroughly study the effectiveness of 
the handcraft features in our LSTM-CRF model. 
Experiment results are shown in Table 9. LSTM-
CRF-1 refers to the LSTM-CRF model with 
handcraft features defined in section 3.2. LSTM-
CRF2 refers to the LSTM-CRF model with no 
handcraft features (i.e. only tag transition feature 
is considered).  As the experiment results shown 
that the feature engineering in CRF part can im-
prove the performance (i.e. F1 value) about 2%, 
thus we use the LSTM-CRF1 model as our final 
model. 

4.3 Evaluation Results 

In the CGED2018 shared task, there are 12 teams 
submitted the results, totally 32 runs. Among 
them, our team submitted three runs. Run1 and 
Run2 are based on the CRF model with different 
size of training set while Run3 is based on the 
LSTM-CRF model. The average of all runs is cal-
culated from 32 runs of the 12 teams. 

Table 10 shows the false positive rate of the 3 
runs of our team and the average of all runs. FP 
(False Positive) is the number of sentences in 
which non-existent grammatical errors are identi-
fied as errors, so the lower the better. The best 
false positive rate of our team is 0.1255 (Run3) 
which is much lower than the average rate of all 
runs.  

Table 11 Table 12 and Table 13 shows the eval-
uation result for detection level, identification lev-
el and position level. The submitted results of our 

 Training Set Validation Set 
Error 52313 6773 

R 11598(22.17%) 3880(57.29%) 
M 13931(26.63%) 991(14.63%) 
S 23014(43.99%) 1620(23.82%) 
W 3769(7.20%) 282(4.16%) 

Table 7: The distributions of error types 

 CRF-1 CRF-2 
Accuracy 96.98% 96.34% 
Precision 35.32% 31.53% 

Recall 13.46% 12.28% 
F1 19.49% 17.68% 

Table 8: Evaluation results of CRF model on 
validation set for position level 

 LSTM- 
CRF-1 

LSTM- 
CRF-2 

Accuracy 97.28% 96.63% 
Precision 33.10% 29.60% 

Recall 15.76% 14.22% 
F1 21.35% 19.21% 

Table 9: Evaluation results of LSTM-CRF 
model on validation set for position level 
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team have better performance on accuracy than 
the average of all runs from CGED2018 for all 
three evaluation levels, but all three runs do not 
perform well on recall rate. Table 13 indicates that 
Run 3 achieved the accuracy of 0.3745 for posi-
tion level which is the most difficult level and it 

leads to the final F1 score of 0.1397 although the 
recall rate is still not above the average. 

5 Conclusion and Future Work 

In this paper, we thoroughly study the task of Chi-
nese grammatical error diagnosis and propose two 
models to handle this issue. We use a conventional 
linear CRF with specific feature engineering and a 
LSTM-CRF model to solve this task. We make 
some improvements on these two models based 
on the previous research and get better perfor-
mance on False Positive Rate and Accuracy than 
the average of all runs from CGED2018 for all 
three evaluation levels including detection level, 
identification level and position level, but all three 
runs do not perform well on recall rate which 
should be improved in the future . Future work in-
cludes explorations of semi-CRFs and neural 
semi-CRFs for the CGED shared task and explor-
ing more task specific features such as phonology 
feature and grapheme feature. 
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