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Abstract

This work presents state of the art re-
sults in reconstruction of surface realiza-
tions from obfuscated text. We identify
the lack of sufficient training data as the
major obstacle to training high-performing
models, and solve this issue by gener-
ating large amounts of synthetic training
data. We also propose preprocessing tech-
niques which make the structure contained
in the input features more accessible to se-
quence models. Our models were ranked
first on all evaluation metrics in the En-
glish portion of the 2018 Surface Realiza-
tion shared task.

1 Introduction

Contextualized Natural Language Generation
(NLG) is a long-standing goal of Natural Lan-
guage Processing (NLP) research. The task of
generating text, conditioned on knowledge about
the world, is applicable to almost any domain.
However, despite recent advances on some tasks,
NLG models still produce relatively low quality
outputs in many settings. Representing the context
in a consistent manner is still a challenge: how can
we condition output on a stateful structure such as
a graph or a tree?

Several shared tasks have recently explored
NLG from inputs with graph-like structures; RDF
triples (Colin et al., 2016), dialogue act-based
meaning representations (Novikova et al., 2017)
and abstract meaning representations (May and
Priyadarshi, 2017). In each of these challenges,
the input has structure beyond simple linear se-
quences; however, to date, the top results in these
tasks have consistently been achieved using rela-
tively standard sequence-to-sequence models.

The surface realization task (Mille et al., 2018)
is a conceptually simple challenge: given shuffled
input, where tokens are represented by their lem-
mas, parts of speech, and dependency features, can
we train a model to reconstruct the original text?
A model that performs well at this task is likely
to be a good starting point for solving more com-
plex tasks, such as NLG from Resource Descrip-
tion Framework (RDF) graphs or Abstract Mean-
ing Representation (AMR) structures. In addition,
training data for the surface realization task can
also be generated in a fully-automated manner.

In this work, we show that training dataset
size may be the major obstacle preventing current
sequence-to-sequence models from doing well at
NLG from structured inputs. Although inputting
the structures themselves is theoretically appeal-
ing (Tai et al., 2015), for some tasks it may be
enough to use sequential inputs by flattening struc-
tures, and providing structural information via in-
put factors, as long as the training dataset is suffi-
ciently large. By augmenting training data using a
large corpus of unannotated data, we obtain a new
state of the art in the surface realization task using
off-the-shelf sequence to sequence models.

In addition, we show that information about
the output word order, implicitly available in the
universal dependency fields, provides essential in-
formation about the word order of correct output
sequences, confirming that structural information
cannot be discarded without a large drop in perfor-
mance.

The main contributions of this work are:

1. We show how training datasets can be aug-
mented with synthetic data

2. We apply preprocessing steps to simplify the
universal dependency structures, making the
structure more explicit
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3. We evaluate copy attention models for the
surface realization task

2 The Surface Realization Shared Task

In the shallow track of the 2018 surface realization
(SR) shared task, inputs consist of tokens from a
universal dependency (UD) tree provided in the
form of lemmas. The original order of the se-
quence is obfuscated by random shuffling1.

Models are evaluated on their ability to recon-
struct the original, unshuffled input which gener-
ated the features. In order to do this, models must
make use of structural information in order to re-
order the tokens correctly as well as part-of-speech
and/or dependency parse labels in order to restore
the correct surface realization of lemmas. Note
that we focus upon the English sub-task, where
word order is critical because of the typologically
analytic nature of English, however, for other lan-
guages, restoring word order may be less impor-
tant, while deriving surface realizations from lem-
mas may be much more challenging.

3 Datasets

3.1 Augmenting Training with Synthetic
Datasets

To augment the SR training data, we used sen-
tences from the WikiText corpus (Merity et al.,
2016). Each of these sentences was parsed us-
ing UDPipe (Straka and Straková, 2017) to ob-
tain the same features provided by the SR organiz-
ers. We then filtered this data, keeping only sen-
tences with at least 95% vocabulary overlap with
the in-domain SR training data. Note that the in-
put vocabulary for this task is word lemmas, so at
least 95% of the tokens in each instance in our ad-
ditional training data are lemmas which are also
found in the in-domain data. The order of tokens
in each instance of this additional dataset is then
randomly shuffled to simulate the random input
order in the SR data.

We thus obtain 642,960 additional training in-
stances, which are added to the 12,375 instances
supplied by the SR shared task organizers.

1The task organizers also introduced a deep task, but since
ours was the only submission to the deep task, we save our
discussion of this task for future work.

4 Features

4.1 Leveraging Structured Features

Because we have the dependency parse features
for each input, some (noisy) information about
word order is implicitly available from the parse
information; however, discovering the structural
relationship between the dependency parse fea-
tures and the order of words in the output se-
quence is likely to be challenging for our sequence
to sequence model. Therefore, we re-construct
the original parse tree from the dependency fea-
tures, and perform a depth-first search to sort and
reorder the lemmas. This is similar to the lin-
earization step performed by Konstas et al. (2017),
the main difference being we randomly choose
between child nodes instead of using a predeter-
mined order based on edge types.

In order to further augment the available con-
text, we experiment with adding potential delem-
matized forms for each input lemma. The possible
forms for each lemma were found by creating a
map from (lemma,xpos) → form, using the
WikiText dataset. For each input lemma and xpos,
we then check for the pair in the map – if it ex-
ists, the corresponding form is appended to the se-
quence. This makes forms available to the model
for copying.

For some (lemma,xpos) pairs there are mul-
tiple potential forms. When this occurs we add all
potential forms to the input sequence. The map-
ping was found to cover 98.9% of cases in the de-
velopment set.

4.2 Factored Inputs

Factored models were introduced by Alexan-
drescu et al. (2006) as a means of including ad-
ditional features beyond word tokens into neural
language models. The key idea is to create a sep-
arate embedding representation for each feature
type, and to concatenate the embeddings for each
input token to create its dense representation. Sen-
nrich et al. (2016) showed that this technique is
quite effective for neural machine translation, and
some recent work, such as Hokamp (2017) has
successfully applied this technique to related se-
quence generation tasks.

The embedding ej for each input token xj with
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FEATURE DESCRIPTION VOCABULARY

SIZE

EMBEDDING

SIZE

lemma the lemma of the surface word 30004 300
XPOS the English part-of-speech label 53 16
position the position in the sequence 103 25
UPOS the universal part-of-speech label 20 8
head position the position of the head word according to the

dependency parser
100 25

deprel the dependency relation label according to the
dependency parser

51 15

Table 1: The features used in the factored models, along with the number of possible values the feature
may take, and the respective embedding size.

POSITION LEMMA XPOS UPOS HEAD POSITION DEPREL

1 learn VERB VB 2 acl
2 lot NOUN NN 4 nsubj
3 there PRON EX 4 expl
4 be VERB VBZ 0 root
5 about ADP IN 8 case
6 a DET DT 2 det
7 . PUNCT . 4 punct
8 Chernobyl PROPN NNP 1 obl
9 to PART TO 1 mark

Table 2: An example from the training data, containing all features we use as input factors.

factors F is created as in Eq. 1:

ej =

|F |n

k=1

Ekxjk (1)

where
f

indicates vector concatenation, Ek is the
embedding matrix of factor k, and xjk is a one
hot vector for the k-th input factor. Table 1 lists
each of the factors used in our models, along with
its corresponding embedding size. The embedding
size of 300 for the lemma is set in configuration,
while the embedding sizes of the other features
are set heuristically by OpenNMT-py, using the
heuristic |embeddingk| = |Vk|0.7, where |Vk| is
the vocabulary size of feature k. Table 2 gives an
example from the training data with actual instan-
tiations of each of the features.

5 Model

Models were trained using the OpenNMT-py
toolkit (Klein et al., 2017). The model archi-
tecture is a 1 layer bidirectional recurrent neu-
ral network (RNN) with long short-term memory

(LSTM) cells (Hochreiter and Urgen Schmidhu-
ber, 1997) and attention (Luong et al., 2015). The
model has 450 hidden units in the encoder and de-
coder layers, and 300 hidden units in the word
embeddings which are learned jointly across the
whole model. Dropout of 0.3 is applied between
the LSTM stacks. We use a coverage attention
layer (Tu et al., 2016) with lambda value of 1.

The models are trained using stochastic gradi-
ent descent with learning rate 1. A learning rate
decay of 0.5 is applied at each epoch once perplex-
ity does not decrease on the validation set. Models
were trained for 20 epochs. Output was decoded
using beam search with beam size 5. Unknown to-
kens were replaced with the input token that had
the highest attention value at that time step. The
approach of copying input tokens using attention
is commonly known as a pointer network (Vinyals
et al., 2015). Output from the epoch checkpoint
which performed best on the development set was
chosen for test set submission.

The exploration and choice of hyperparameters
was aided by the use of Bayesian hyperparameter
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optimization platform SigOpt2.

6 Experiments

We experiment with many different combinations
of input features and training data, in order to
understand which elements of the representation
have the largest impact upon performance.

We limit vocabulary size during training to en-
able the network to generalize to unknown tokens
at test time. When using just the SR training data
we train word embeddings for the 15,000 most
frequent tokens from a possible 23,650 unique to-
kens. When using the combined SR training data
and filtered WikiText dataset we use the 30,000
most frequent tokens from a possible 106,367
unique tokens.

We trained on a single Tesla K40 GPU. Training
time was approximately 1 minute per epoch for the
SR data and 1 hour per epoch for the combined SR
data and filtered WikiText.

7 Results

We report results using automated evaluation met-
ric BLEU (Papineni et al., 2002). On the test
set we additionally report the NIST (Przybocki
et al., 2009) score and the normalized edit distance
(DIST).

SYSTEM BLEU

SR Baseline 21.27
SR + delemma suggestions 23.75
SR + delemma suggestions +
linearization

43.11

SR + delemma suggestions +
linearization + additional data

68.86

Table 3: Ablation study with BLEU scores for dif-
ferent configurations on the shallow task develop-
ment set

Table 3 presents the results of the surface real-
ization experiments. We observe three main com-
ponents that drastically improve performance over
the baseline model:

1. augmenting the training set with more data

2. reordering the input using the dependency
parse features

2https://sigopt.com/

3. providing potential forms via the delemmati-
zation map

Table 4 gives the official SR 2018 results from
task organizers. Our system, which corresponds
to the best configuration from Table 3 was ranked
first across all metrics.

TEAM ID BLEU DIST NIST

1 (Ours) 69.14 80.42 12.02
2 28.09 70.01 9.51
3 8.04 47.63 7.71
4 66.33 70.22 12.02
5 50.74 77.56 10.62
6 55.29 79.29 10.86
7 23.2 51.87 8.86
8 29.6 65.9 9.58

AVG 41.3 67.86 10.15

Table 4: Official results of the surface realization
shared task using BLEU, DIST and NIST as eval-
uation metrics.

8 Related Work

The surface realization task bears the closest re-
semblance to the SemEval 2017 shared task AMR-
to-text (May and Priyadarshi, 2017). Our ap-
proach to data augmentation and preprocessing
uses many insights from Neural AMR (Konstas
et al., 2017). Traditional data-to-text systems use
a rule based approach (Reiter and Dale, 2000).

9 Conclusion

The main takeaway from this work is that data
augmentation improves performance on the sur-
face realization task. Although unsurprising, this
result confirms that sufficient data is needed to
achieve reasonable performance, and that flattened
structural information such as dependency parse
features is insufficient without additional prepro-
cessing to reduce the complexity of the input. The
surface realization task is ostensibly quite simple,
thus it is surprising that baseline sequence to se-
quence models, which perform well in other tasks
such as machine translation, cannot solve this task.
We hypothesize that the lemmatization and shuf-
fling of the input does not provide sufficient in-
formation to reconstruct the input. In sequences
longer than a few words, there is likely to be sig-
nificant ambiguity without additional structural in-

https://sigopt.com/
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formation such as parse features. However, recon-
structing the original sequence from unprocessed,
flattened parse information alone is unrealistic us-
ing standard encoder-decoder models.

In future work, we plan to explore more chal-
lenging variants of this task, while also experi-
menting with models that do not require feature-
specific preprocessing to make use of rich struc-
tural information in the input.
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