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Abstract

Multimodal sentiment classification in
practical applications may have to rely on
erroneous and imperfect views, namely (a)
language transcription from a speech rec-
ognizer and (b) under-performing acoustic
views. This work focuses on improving
the representations of these views by per-
forming a deep canonical correlation anal-
ysis with the representations of the bet-
ter performing manual transcription view.
Enhanced representations of the imper-
fect views can be obtained even in ab-
sence of the perfect views and give an
improved performance during test condi-
tions. Evaluations on the CMU-MOSI and
CMU-MOSEI datasets demonstrate the ef-
fectiveness of the proposed approach.

1 Introduction

Use of multimodal cues is especially useful for
analyzing sentiment in audio-visual data like opin-
ion videos on social media websites, call-center
audio recordings etc. The different modalities, viz.
language (spoken words), acoustic (speech) and
visual (facial and gestures), can carry a different
view of the same information like for example,
sentiment. While the representations/features ex-
tracted from these individual different views add
richness to the sentiment classification, the in-
tra and inter view-interactions play an important
role in better sentiment classification (Zadeh et al.,
2017; Chen et al., 2018; Rajagopalan et al., 2016;
Nojavanasghari et al., 2016; Xu et al., 2013).

Although fusion of multi-view information is
being extensively explored, the challenges asso-
ciated with the presence of noise and irregulari-
ties in a view has received very less attention. For
instance, multimodal sentiment classification sys-

tems have typically used manual, and hence, error
free language transcriptions and exploited the in-
teraction of other views with this noise free lan-
guage view (Zadeh et al., 2018, 2017). However,
a practical system will have to rely on a language
transcription from an Automatic Speech Recogni-
tion (ASR) engine, which is inherently prone to er-
rors due to ambient/channel noises in acoustic en-
vironments (Gong, 1995; Li et al., 2014), language
domain mismatch, emotion in speech (Athanaselis
et al., 2005), etc. Similarly, existing and pop-
ularly used representations of the acoustic view
have generally under-performed compared to the
language view (Poria et al., 2017; Zadeh et al.,
2018; Pérez-Rosas et al., 2013), indicating that
the acoustic view or its representations, by them-
selves, may not be discriminative enough for ro-
bust sentiment classification.

Assuming the ASR (language transcription) and
acoustic views as imperfect views, the focus of this
work is on improving the representations of these
noisy views, riding on the representations of the
better performing view. We show that the repre-
sentations obtained from automatic transcriptions
of spoken language and those from the acoustic
views can be enhanced using corresponding rep-
resentations from manual transcriptions of spoken
language. Enhanced representations of the imper-
fect views can be obtained even in absence of the
perfect views during test conditions. Deep canon-
ical correlation analysis (DCCA) (Andrew et al.,
2013) is used to improve the representations of
the imperfect views. The rest of the paper is or-
ganized as follows. Section 2 describes a method
to improve imperfect or erroneous views. Section
3 presents the different components in our mul-
timodal sentiment classification system. Exper-
iments are discussed in Section 4 followed by a
discussion on results and conclusion in Section 5.
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2 Improving representations of spoken
language and acoustic views

Multimodal sentiment classification works have
mainly relied on the manual transcription of the
spoken utterances. In a practical and real life sce-
nario, the text transcriptions are not readily avail-
able and are required to be obtained from an ASR
engine. While ASR systems have seen large im-
provements with the use of deep learning methods,
their performance is impacted by mismatched
train-test conditions. As a result, practical mul-
timodal sentiment classification systems will have
to rely on imperfect spoken language views.

On the other hand, acoustic views used by
multimodal sentiment classification systems have
shown poor performance compared to that of the
language view. This might indicate that either the
acoustic view or its utterance level audio repre-
sentations are not discriminative enough for senti-
ment classification. Recent classification models
capture interactions across view/modality and pro-
duce better sentiment classification results (Zadeh
et al., 2018, 2017). In contrast to this, our work
focuses on improving representations of the im-
perfect views using representations of the better
performing view. Utterance level representations
obtained from ASR view and the acoustic view
are improved using the representations extracted
from manual transcriptions of spoken language.
These representation improvements are achieved
using DCCA (Andrew et al., 2013).

2.1 Deep canonical correlation analysis

Given the representations of two different views
of the same signal, DCCA learns a pair of non-
linear transformations such that the transformed
representations for the two views are maximally
correlated. The individual transformed represen-
tations from a DCCA model have been shown to
capture information from both the views and as a
result outperform the original individual represen-
tations (Andrew et al., 2013; Wang et al., 2015;
Shao et al., 2015). Figure 1 shows a high level
block representation of DCCA. (fv1, fv2) are
representations of two views of the same input
data, nonlinear transformations are carried out
using DNNs and canonical correlations are com-
puted on the DNN transformed representations
(f̂v1, f̂v2). During training, representations for the
two views are extracted from the train set and
used to train the DNN’s such that canonical corre-

Figure 1: Improving views using DCCA.

lation between the transformed representations is
maximized. Thus, the goal is to learn parameters
W ∗1 ,W

∗
2 for DNNV iew1, DNNV iew2, such that:

(W ∗1 ,W
∗
2 ) = argmax

W1,W2

corr(g1(fv1;W1),

g2(fv2;W2))

f̂v1 = g1(fv1;W1) , f̂v2 = g2(fv2;W2)

where, g1, g2 denote the nonlinear transforma-
tions of DNNV iew1 and DNNV iew2 respectively.
Once the DNNs are trained they are used to obtain
the transformed or enhanced representations.

3 Sentiment classification using language
and acoustic views

This section describes our complete system for
sentiment classification which uses language and
acoustic views. We first discuss the views and
their representations and then describe the method
adopted to fuse and classify these representations.

3.1 Spoken language views & representations

3.1.1 Manual and ASR views
A typical view of the spoken language modality is
the word level manual transcription of the spoken
utterances. However, in a realistic scenario man-
ual transcriptions are not available and the system
has to rely on automatic transcriptions of the spo-
ken language. Therefore, we consider the auto-
matic transcriptions from a general purpose ASR
engine as a practical spoken language view.

To obtain the ASR view, we use the public do-
main Kaldi ASR toolkit (Povey et. al., 2011) along
with the ASpIRE Chain acoustic models (Peddinti
et al., 2015; Povey, 2017). The accompanying pre-
trained language model is used as it is. When eval-
uated on the 2199 speech utterances in the CMU-
MOSI dataset (Zadeh et al., 2016), this ASR setup
gives a mean word error rate of 49.2% (with a
standard deviation of 32.0). Its performance in
terms of correctly recognized words is 66.8%.
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3.1.2 CNN based representation
Representations for the spoken language views are
obtained using a text convolutional neural network
(CNN) (Kim, 2014). Each utterance is represented
as the concatenation of 300-dimensional GloVe
embeddings (Pennington et al., 2014). Then 1-
dimensional convolution kernels are applied to the
concatenated word embeddings. The CNN has
two convolutional layers, with the first layer hav-
ing two kernels of size 3 and 4 with 50 feature
maps each and the second layer having a kernel of
size 2 with 100 feature maps. Each convolutional
layer was followed by a 2 × 2 max pooling layer.
A fully connected layer transforms the CNN ex-
tracted features into a 300-dimensional vector.

3.2 Representation of acoustic view

As a representation of the acoustic view, we ex-
tract a large set of high level descriptors (HLDs)
from low level audio descriptors (LLDs) like voice
probability, MFCCs, pitch, RMS energies and
their delta regression coefficients. Since the HLDs
are (up to fourth order) statistics of LLDs extracted
over smaller (20 ms) frames, the dimension of the
acoustic features remain same (i.e. 384) for all ut-
terances. We used the IS09 configuration from
the openSMILE toolkit (Eyben et al., 2009).

3.3 Fusion and sentiment classification

Bi-modal representations for utterance level senti-
ment classification are obtained by first extracting
the representations of (manually transcribed and
ASR) spoken language views and those for the
acoustic view, as discussed in Section 3.1. Then
representations of automatically transcribed spo-
ken language view and those for the acoustic view
are improved using DCCA, as discussed in Sec-
tion 2.1. Finally the improved representations are
concatenated to obtain a bi-modal representation.

We use a bi-directional LSTM-RNN to label
utterance level sentiments based on the bi-modal
representations. Sequence labeling with LSTM-
RNNs can account for contextual information
from adjacent inputs as well as the overall input
sequence and has been shown to perform better
on several tasks (Graves and Schmidhuber, 2005;
Graves et al., 2008; Poria et al., 2017; Sheikh et al.,
2017). Let us denote the bi-modal representations
as (x1, ...xt−1, xt, xt+1..., xN ), where xt repre-
sents the current utterance and N is the number of
utterances in a video. We followed the hierarchical

training discussed in (Poria et al., 2017). Each bi-
modal representation (xt) is input to the forward
and backward LSTM-RNNs to obtain the hidden
layer activations hFt and hBt . These concatenated
activations (ct) are fed to softmax classifier,

pt(i) =
exp(cti.WC + bC)∑
j
exp(ctj .WC + bC)

(1)

where pt(i) denotes the posterior probability of
output class i for utterance at t; WC and bC are
weight and bias parameters of the softmax layer.

4 Experiments and results

4.1 Datasets
We present our results and analysis on two
datasets, namely, (a) CMU-MOSI (Zadeh et al.,
2016) and (b) CMU-MOSEI (Zadeh, 2018a).
CMU-MOSI consists of 93 movie related opin-
ion videos from YouTube, segmented into 2199
clips/utterances. CMU-MOSEI consists of
about 2500 multi-domain monologue videos from
YouTube, segmented into 23, 500 clips/utterances.

Both CMU-MOSI and CMU-MOSEI datasets
are annotated with utterance level sentiment la-
bels in the range [−3, 3]. We focus on binary sen-
timent classification in which labels [−3, 0] are
considered as negative and [1, 3] are considered
as positive sentiments. For CMU-MOSI, we used
the train, validation and test split provided by the
CMU Multimodal Data SDK (Zadeh, 2018b). The
SDK also provides a train, validation and test split
for CMU-MOSEI. However, as the test set labels
were not available at the time of submission of
this paper, we treated 200 videos from the original
validation set as our test set. The remaining 100
videos from the original validation set and an ad-
ditional 150 videos from the original train set are
considered as our validation set.

4.2 Experiment setup
We evaluate the performance of the spoken lan-
guage and acoustic views, individually and in
combination. The manual and ASR transcrip-
tions of the language view are denoted as MT and
AT, respectively. The acoustic view is denoted as
AU. Enhanced (representations of) ASR view and
acoustic view are denoted as AT↑ and AU↑, respec-
tively. They were enhanced using (representations
of) the manual transcription view, using the DCCA
model described in Section 2.1. Our DCCA mod-
els use DNNs with 3 hidden layers and sigmoids.
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4.3 Sentiment classification results
Table 1 presents the % accuracy (Acc.) and F-
score (F1) for binary sentiment classification on
the CMU-MOSI and CMU-MOSEI datasets. The
results are divided into four sections, viz. (I) the
‘ideal’ baseline results achieved by the LSTM-
RNN classifier on the manual transcription and
acoustic views, (II) the ‘practical’ baseline results
achieved with the imperfect ASR view, (III) the
results obtained, for the practical scenario, by the
proposed approach with DCCA enhanced views
and (IV) the improvement on using DCCA en-
hanced acoustic view with manual transcriptions.

Table 1: Sentiment classification performance us-
ing a bi-directional LSTM-RNN classifier.

MOSI MOSEI
Acc. F1 Acc. F1

I
AU 50.6 50.0 59.4 58.0
MT 73.5 73.1 68.7 68.6

MT+AU 71.4 71.0 68.7 68.7

II
AT 69.1 68.6 68.0 67.5

AT+AU 69.4 69.2 68.1 67.9

III
AU↑ 51.6 51.1 58.9 59.3
AT↑ 70.2 69.7 68.8 68.7

AT↑+AU↑ 70.9 70.7 69.1 69.0
IV MT+AU↑ 74.6 74.1 69.4 69.3

5 Discussion
5.1 Performance of ASR view (AT)
Comparison of MT and AT views in sections I and
II of Table 1 shows that the AT view degrades the
classification performance Accuracy and F-score
reduce by 4.4% and 4.5% absolute for CMU-
MOSI and by 0.6% and 0.8% absolute for CMU-
MOSEI1. Similarly, degradations are also present
in the bimodal setup (MT+AU vs AT+AU).

5.2 Performance of acoustic view (AU)
The acoustic view (AU) in itself gives a poor per-
formance for CMU-MOSI and a relatively better
performance for CMU-MOSEI. However, when
fused along with the language views (MT or AT),
it results in small or no improvement and some-
times a degradation. This indicates that the raw
acoustic views or its existing representations may
not always contribute for sentiment classification,
due to the existence of encoded and decoded sen-
timents as discussed in (Chakraborty et al., 2018).

1We found that manual transcriptions of several utterances
in the CMU-MOSEI dataset are unreliable and hence its per-
formance of MT would be higher than that obtained.

5.3 Improvements with DCCA
As discussed above, the ASR and acoustic views
(AT and AU) reduced the classification scores.
Section III of Table 1 shows that our approach
to enhance the imperfect views using DCCA can
lead to significant improvements. ASR view (AT
vs AT↑) F-scores improve by 1.1% (CMU-MOSI)
and 1.2% (CMU-MOSEI) absolute. Acoustic
view (AU vs AU↑) F-scores improve by 1.1%
(CMU-MOSI) and 1.3% (CMU-MOSEI) abso-
lute. F-scores for the bimodal system with ASR
view (AT+AU vs AT↑+AU↑) improve by 1.5%
(CMU-MOSI) and 1.1% (CMU-MOSEI) abso-
lute. Bimodal system with manual transcription
and DCCA enhanced acoustic view (MT+AU vs
MT+AU↑) also shows F-score improvements, of
3.1% (CMU-MOSI) and 0.6% (CMU-MOSEI).

5.4 ASR view improvements with non
contextual classifier

As discussed in (Poria et al., 2017), the bi-
directional LSTM-RNN exploits contextual infor-
mation from the adjacent utterances and the entire
video. In order to obtain the improvements due
to DCCA alone we evaluated the performances of
MT, AT and AT↑ with a non contextual classifier.
We trained logistic regression models which clas-
sify the utterance level CNN representations inde-
pendently into positive and negative sentiments.
Table 2 reports the resulting % accuracies. ASR
view (AT vs AT↑) accuracies improve by 1.4% and
1.9% absolute due to DCCA.

Table 2: Improvement in ASR view accuracy us-
ing a non contextual classifier.

MOSI MOSEI
MT 71.1 67.5
AT 63.7 63.8
AT↑ 65.1 65.7

6 Conclusion

Erroneous ASR views and weak acoustic views of
videos can degrade sentiment classification perfor-
mance in practical scenarios. We observed degra-
dations (up to 4.5% absolute) in F-score on stan-
dard CMU-MOSI dataset, using a popular ASR
setup and an utterance level contextual LSTM-
RNN classifier The effect could be more severe on
multimodal systems relying on word level fusion.
Our approach to improve the imperfect views us-
ing canonical correlation analysis shows signifi-
cant improvements (up to 3.1% absolute).



39

References
Galen Andrew, Raman Arora, Jeff Bilmes, and Karen

Livescu. 2013. Deep canonical correlation analysis.
In Proceedings of the International Conference on
Machine Learning, volume 28, pages 1247–1255.

T. Athanaselis, S. Bakamidis, I. Dologlou, R. Cowie,
E. Douglas-Cowie, and C. Cox. 2005. Asr for emo-
tional speech: Clarifying the issues and enhancing
performance. Neural Netw., 18(4):437–444.

Rupayan Chakraborty, Meghna Pandharipande, and
Sunil Kumar Kopparapu. 2018. Analyzing Emotion
in Spontaneous Speech, 1st edition. Springer Pub-
lishing Company, Incorporated.

Minghai Chen, Sen Wang, Paul Pu Liang, Tadas Bal-
trusaitis, Amir Zadeh, and Louis-Philippe Morency.
2018. Multimodal sentiment analysis with word-
level fusion and reinforcement learning. CoRR,
abs/1802.00924.

Florian Eyben, Felix Weninger, Martin Woellmer,
and Bjoern Schuller. 2009. openSMILE.
http://www.audeering.com/research/
opensmile. Accessed: 2017.

Yifan Gong. 1995. Speech recognition in noisy envi-
ronments: A survey. Speech Commun., 16(3):261–
291.

A. Graves and J. Schmidhuber. 2005. Framewise
phoneme classification with bidirectional lstm net-
works. In Proceedings of International Joint Con-
ference on Neural Networks, pages 2047–2052.

Alex Graves, Marcus Liwicki, Horst Bunke, Jürgen
Schmidhuber, and Santiago Fernández. 2008. Un-
constrained on-line handwriting recognition with re-
current neural networks. In Advances in Neural In-
formation Processing Systems 20, pages 577–584.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP, pages 1746–
1751.

J. Li, L. Deng, Y. Gong, and R. Haeb-Umbach.
2014. An overview of noise-robust automatic
speech recognition. IEEE Transactions on Audio,
Speech, and Language Processing, 22(4):745–777.

Behnaz Nojavanasghari, Deepak Gopinath, Jayanth
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