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Abstract

We present our system description of input-level
multimodal fusion of audio, video, and text for
recognition of emotions and their intensities for
the 2018 First Grand Challenge on Computational
Modeling of Human Multimodal Language. Our
proposed approach is based on input-level feature
fusion with sequence learning from Bidirectional
Long-Short Term Memory (BLSTM) deep neural
networks (DNNs). We show that our fusion ap-
proach outperforms unimodal predictors. Our sys-
tem performs 6-way simultaneous classification
and regression, allowing for overlapping emotion
labels in a video segment. This leads to an over-
all binary accuracy of 90%, overall 4-class accu-
racy of 89.2% and an overall mean-absolute-error
(MAE) of 0.12. Our work shows that an early fu-
sion technique can effectively predict the presence
of multi-label emotions as well as their coarse-
grained intensities. The presented multimodal ap-
proach creates a simple and robust baseline on this
new Grand Challenge dataset. Furthermore, we
provide a detailed analysis of emotion intensity
distributions as output from our DNN, as well as
a related discussion concerning the inherent diffi-
culty of this task.

1 Introduction

Automatic emotion detection is a longstanding
and challenging problem in the field of artificial
intelligence and machine learning. One reason
why emotion analysis is so difficult is due to the
fact that emotions are somewhat subjective, which
affects how emotions are perceived and subse-
quently labeled by human annotators. To com-
pound this even further, the expressed emotions
may change, in particular for video data. In ad-
dition, multiple emotions can be expressed simul-

taneously and also as a sequence over time. Emo-
tions provide a type of para-linguistic information
that is crucial for many applications in artificial in-
telligence including: affective speech generation,
bio-medical diagnostics, machine translation and
human-computer interaction.

Multimodal machine learning has been recently
attracting interest, with the abundance of multime-
dia data available on the internet making it easy for
researchers to integrate data of multiple modali-
ties. It is a dynamic research field which aims to
integrate and model multiple sources of input, usu-
ally acoustic, visual and text.

In order to produce major advances in emotion
analysis, there must be adequate techniques for
combining and analyzing complex signals. While
this notion is applicable across many fields and
tasks, in this work we focus on emotion analysis
from video data — a very active research area that
is beaming with interesting results and method-
ologies (Pérez-Rosas et al., 2013; Wöllmer et al.,
2013; Poria et al., 2015; Brady et al., 2016; Zadeh
et al., 2016b). A survey by Baltrušaitis et al.
(2018) motivates some of the uses of multimodal
analysis, together with five main components:

• Representation: Representing and summa-
rizing multimodal data

• Translation: Mapping data from one modal-
ity to another

• Alignment: Identifying relationships be-
tween modalities: for example, transcribed
text of a video

• Fusion: Joining information for different
modalities in order to perform a prediction

• Co-learning: Exchanging knowledge be-
tween modalities
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Our work touches on representation, alignment,
and co-learning issues, but it is mostly focused on
fusion. Specifically, we are interested in finding a
way to predict emotions from video data by fusing
together three modalities: verbal content, acoustic
features and sequences of images. In this work we
provide the experimental framework for develop-
ing a system for 6-class (multi-label) emotion clas-
sification and regression for the First Workshop
and Grand Challenge on Computational Model-
ing of Human Multimodal Language at Associa-
tion for Computational Linguistics (ACL) 2018. 1

This paper is organized as follows: in Section
2, we present some relevant work on multimodal
emotion recognition. In Section 3 we provide an
overview of the CMU-MOSEI dataset and a de-
scription of our task. In Section 4, we present our
methodology and multimodal fusion technique. In
Section 5, we show our experiments and results.
In Section 6 we show some analysis of our ex-
periments and in Section 7 we finally discuss and
make suggestions for future work.

2 Related Work

In light of recent successes with deep learning
approaches to multimodal classification problems
(Zadeh et al., 2017), emotion analysis remains
truly challenging. Both emotion and sentiment
analysis have become increasingly important in re-
cent years. However, it remains a difficult task
due to the ambiguity of language and the use of
slang and sarcasm (Baltrušaitis et al., 2018; Po-
ria et al., 2017; Soleymani et al., 2017). A persis-
tent idea is that information from other modalities
helps to resolve ambiguities, such as adding infor-
mation about facial features. From the first time
that convolutional neural networks (CNNs) were
employed for face recognition (Lawrence et al.,
1997) to the present times when sentiment analysis
revolves around using CNNs (Tripathi et al., 2017;
Xu et al., 2014; Pereira et al., November 2016),
CNNs appear promising for multimodal sentiment
analysis and emotion recognition.

One way to encourage innovation in the area
of multimodal emotion analysis is through annual
shared tasks. One such task is the Audio Video
Emotion Challenge (AVEC) which encourages
creative and robust approaches to multi-signal
emotion recognition. In 2016, the top-performing
emotion recognition system utilized sparse cod-

1http://multicomp.cs.cmu.edu/acl2018multimodalchallenge/

ing as well as a state space estimation approach
to multimodal fusion (Brady et al., 2016). Sim-
ilar to our approach, they used both convolu-
tional networks (CNNs) and recurrent neural net-
works (RNNs). Their system competed interna-
tionally and achieved the top scores for valence
and arousal. However, their work was slightly
different from ours in that they were working
with a different set of signal modalities (audio,
video and electro-cardiogram (EEG)) and predict-
ing emotion continuously over time. In addition,
the AVEC 2016 Challenge relied on a very small
pool of subjects. Our work is based on more than
80 different speakers and our prediction task for
videos is conducted on a per-segment basis.

Previous work has shown that there are partic-
ular elements of the speech signal which are most
indicative of emotional state of the speaker (Chang
et al., 2011; Zeng et al., 2009). The features of
speech which are most predictive of speaker affect
are called low-level descriptors. These low-level
descriptors can be extracted from the audio signal
using a standard speech toolbox such as the CO-
VAREP software (Degottex et al., 2014).

Speech data is often considered sequentially
informative. For example, the rise and fall of
prosody can form meaningful patterns. Many ap-
proaches to detecting emotion in speech use re-
current neural network (RNN) approaches to se-
quential learning, such as Long-Short Term Mem-
ory (LSTM) (Lim et al., 2016). There has been
work on emotion recognition using Bidirectional
LSTMs, which we also use for developing our best
system (e.g. Ghosh et al., 2016; Lee and Tashev,
2015; Han et al., 2014; Chernykh et al., 2017).

There is also considerable work in the area of
multi-label emotion recognition for music where
the multi-label task has been transformed into sets
of one-vs-all (Trohidis et al., 2008). While that ap-
proach can be very useful for similar multi-label
tasks, we show that our algorithmic approach us-
ing DNNs overcomes the need to transform the
problem into one-vs-all. Furthermore, we note
that there are many ways to evaluate multi-label
recognition tasks; in this work however, we fol-
lowed the metrics set forth by the organizers.

One dataset in particular, called IEMOCAP, is
commonly employed for emotion recognition re-
search. It was developed by eliciting specific emo-
tions from subjects while they were being moni-
tored. For example, their facial expressions and
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hand movements were recorded while they spoke.
The subjects functioned as emotional actors and
were asked to perform scripts that were designed
to elicit specific emotions: happy, angry, sad, frus-
trated and neutral (Busso et al., 2008). How-
ever, our work uses a slightly broader set of emo-
tions and multiple emotion labels can be activated
simultaneously. More importantly, our data is
from speakers who have exhibited emotions spon-
taneously and, according to their own inclination,
similar to real-world contexts.

3 Data and Task

In this section we describe the data that we
used for developing our Grand Challenge emotion
recognition system and more details related to our
prediction task.

3.1 Data Description

In an effort to overcome the challenge of consis-
tent emotion labeling, and to allow for meaning-
ful comparison across systems, our work is based
on a standardized emotion dataset, called CMU-
MOSEI (Zadeh et al., 2018), from the CMU-
MultimodalDataSDK toolbox.2 This dataset con-
tains video segments that were collected ’in the
wild’ from YouTube wherein the speaker is pro-
viding their review of a movie that they have seen.
The segments have been labeled by humans for 6
different emotions, including the null case. These
labels are: Anger, Disgust, Fear, Happy, Sad,
and Surprise. Each segment can have any com-
bination of emotion labels, or no labels at all. In
addition, for each emotion label there is a corre-
sponding regression value in the range of [0, 3] in
9 steps, making step sizes of approximately 0.33
or 1/3. This means that every video segment can
be characterized with an emotion as well as the in-
tensity of that emotion.

The CMU-MOSEI dataset (Zadeh et al., 2018)
provides pre-processed features and a way to align
features; we aligned the data to text throughout
all experiments. We chose this because the code
for this alignment method was already provided
by the CMU-MultimodalSDK toolbox.

Text features consist of word vectors obtained
from the Global Vectors for Word Representation
(GloVe) software (Pennington et al., 2014) as well
as one-hot word representations.

2https://github.com/A2Zadeh/CMU-
MultimodalDataSDK

Audio features were extracted using the soft-
ware COVAREP: 12 Mel-frequency cepstral coef-
ficients, pitch tracking and voiced/unvoiced seg-
menting features, glottal source parameters, peak
slope parameters and maxima dispersion quo-
tients. The sampling rate of these features is 100
Hz from the original audio (Degottex et al., 2014)

Video features were extracted using the Emo-
tient FACET software (Littlewort et al., 2011).
According to Zadeh et al. (2016a), the visual fea-
tures include 16 Facial Action Units, 68 Facial
Landmarks, Head Pose and Orientation, 6 Basic
Emotions and Eye Gaze (Wood et al., 2015; Bal-
trusaitis et al., 2014). FACET provides frame-by-
frame tracking of facial action units. These fea-
tures are sampled at 30 Hz.

The most common target emotion in our train-
ing data is the singleton Happy, followed by the
null class and the Sad class. The emotion labels
can be combined in various ways. For example,
the tuples: (Happy, Sad) and (Anger,Happy)
both occur with relatively high frequency and are
more frequent than the singleton Fear.

3.2 Task Description

Using the CMU-MOSEI dataset, we identified our
best-performing early fusion prediction system for
the emotion recognition Grand Challenge. While
the challenge dataset contains emotion labels as
well as sentiment labels, our present work is fo-
cused entirely on emotion recognition.

Overall our task was to simultaneously predict
emotion label (none, one, or many) as well as the
corresponding emotion intensity for each video
segment using a fusion of modalities. The exem-
plar targets can be visualized as follows:
target = [0., 0., 0.33, 0.66, 0., 0.]

where the array indexes correspond to the set
of 6 emotion labels and the continuous values (in
steps of 0.33) correspond to intensity. In the above
example there are two emotions present simultane-
ously for this video segment (Happy, Sad), and
the two emotions differ in their intensity.

First, we created our own custom data split from
the CMU-MOSEI challenge data so that we could
utilize a held-out test set. This custom split al-
lowed us to train, validate, and test various ab-
lation groups, compare our models, and identify
the best-performing system to use for the emotion
recognition Grand Challenge. Otherwise our sub-
mission for the Grand Challenge would have re-
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lied solely on the performance of a validation set,
which may have led to unintentional overfitting
when comparing several models.

With our custom split, we had the following
distribution of examples: Training: 9400, Valida-
tion: 1800, and Testing: 1100, for an approximate
split of 76/14/10. To this end, we used our cus-
tom data split to experiment with unimodal sys-
tems, bimodal systems, and trimodal systems, be-
fore submitting our final best-performing model
to the Grand Challenge. We used overall mean-
absolute error (MAE) as a metric for determining
the best model. Finally, our actual system submis-
sion to the emotion recognition Grand Challenge
was trained, validated, and tested on the standard-
ized data split as provided by the organizers.

4 Methodology

In this section we outline our methodology. First,
we describe each of the DNNs that we considered,
followed by an explanation of how our system de-
sign for input-level multimodal fusion (i.e. early
fusion) works. Finally, we provide details regard-
ing feature alignment and DNN hyper-parameters.

4.1 DNN Architectures

CNN: Convolutional Neural Networks are often
used in NLP for various prediction tasks, includ-
ing sentiment analysis (Kim, 2014). The interpre-
tation is not as straightforward as for images, but
we can still argue that semantically related vectors
will be close to each other within a context win-
dow. As outlined later in the methodology, we use
one-dimensional Convolutional layers.

LSTM: Recurrent Neural Networks (RNNs)
and variants have been proven very successful
for many tasks including sentiment analysis on
text and are known for their ability to model in-
variances across time. Recent advancements pro-
pose variants of RNNs that do not suffer from
the problem of vanishing gradients: Long Short
Term Memory (LSTM). The goal of LSTMs is to
capture long distance dependencies in a sequence,
such as the context words.

Bidirectional LSTM: Bidirectional LSTMs
(BLSTMs) increase the amount of available con-
textual information. The principle is to use both
a forward pass and a backward pass through, for
instance, a video segment, while treating the fea-
tures as meaningfully sequential.

4.2 Early Fusion

In the early fusion approach, features from each
of the 3 modalities are concatenated at the input-
level and together they become the input vector
to a DNN — this approach is shown in Figure 1.
Since sequences have different lengths, all modali-
ties are processed with a maximum cutoff, in order
for the concatenation to be possible. We chose the
optimal value for the maximum cutoff by explor-
ing a range of values during the hyper-parameter
search. The concatenated features are then fed into
a DNN.

Figure 1: Input-level feature fusion architecture.

4.3 Feature alignment

For our bimodal and trimodal experiments, we
align the modalities, because different features
in multimodal datasets are in different temporal
frequencies. The CMU-MultimodalSDK toolbox
aligns data using weighted averaging. The overlap
of each modality with a reference one is the weight
of each modality. An average is taken with these
weights to align them to the reference.

4.4 DNN Hyper-parameters

All of our experiments were trained using the
Keras Library (Chollet et al., 2015) which is based
on Tensorflow (Abadi et al., 2016). Across all
of our experiments, we used the ReLU (Nair
and Hinton, 2010) activation function to intro-
duce non-linearity. The learning rule was Adam
(Kingma and Ba, 2014) with default Tensorflow
parameters. For 1D convolution layers the kernel
size was 3 and for max pooling layers the win-
dow size was 2. We explored the number of layers
in steps of 1, 2 and 3, for both fully connected
layers and convolutional layers. For LSTMs and
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Bi-directional LSTMs we set the number of units
to 64 and for all fully connected layers we set the
number of units to 100.

We added dropout (Srivastava et al., 2014) be-
tween fully connected layers with dropout rate in
{0.1, 0.2}. We varied the maximum length set-
ting for the video segments in our dataset, known
as maxlen, in {15, 20, 25, 30}. We chose these
values for maximum length cutoff based on the
average segment length reported in Zadeh et al.
(2016b), which was indicated as maxlen = 12.

In all experiments we used early stopping with
the stopping criteria set to identify minimum vali-
dation loss and patience was set to 10. The exper-
iments employed batch normalization with batch
sizes set to 64 (Ioffe and Szegedy, 2015). The
final output layer contained 6 neurons, followed
by a linear activation function that bounded values
between 0 and 3.

The loss was measured via the mean-absolute
error (MAE), where smaller values are better and
zero is considered perfect. Our interpretation of
MAE is that a value below 0.166 or 1/6 is consid-
erably good performance, based on the intensity
range of [0, 3] and the step size of 0.33. Later, we
shall describe additional evaluation metrics that
were used with our Grand Challenge submission.

5 Experiments

In this section we present the results of our ex-
periments on a random prediction baseline, fol-
lowed by unimodal, bimodal and trimodal input-
level feature fusion. We used the outcome of these
experiments to evaluate and compare each model
perfomance. Finally, we provide the results for the
Grand Challenge from our best-performing sys-
tem: the trimodal BLSTM.

5.1 Random Baseline

Developing a baseline was motivated by the fact
that this is the first shared-task on the CMU-
MOSEI dataset, and therefore no existing sys-
tems are available for a direct comparison. There
are several different ways of developing a base-
line on this task: (1) fully-randomized, (2) pre-
serving label-category distributions from train-
ing data or (3) preserving label-quantity distribu-
tions from training data. We developed a fully-
randomized baseline because it is the most trivial
model. Our random baseline methodology can be
easily adapted to other metrics used by the shared-

Emotion MAE
Anger 0.70
Disgust 0.68
Fear 0.62
Happy 0.80
Sad 0.72
Surprise 0.05
Overall 0.60

Table 1: Baseline MAE based on randomized pre-
dictions of quantity of labels, label category, and
intensity.

task organizers, such as 4-class accuracy.
First, we generated a random number n for

the quantity of labels present in a given video
segment from the domain n = {0, 1, 2, 3, 4, 5, 6}
so that none or all emotion labels could po-
tentially be predicted. Given this quantity,
we predicted the identity of the labels by ran-
domly choosing n labels from the domain
[Anger,Disgust, Fear,Happy, Sad, Surprised].
Finally, we randomly predicted an intensity for
each label based on the 9-step regression values in
the range of [0, 3], with step size 0.33. The result
was an array for each video segment which we
used to compare with the truth labels in our small,
held-out test set. Table 1 displays our per-label
prediction values in terms of MAE. Therefore
we can say that if a system performs better than
overall MAE of 0.60 (lower values are better)
then it is performing better than pure chance.

5.2 Unimodal

To begin with, we experimented with unimodal
approaches to set another performance baseline
and to find out if any particular modality seemed
to contribute significantly more, or if performance
was skewed. The results for unimodal perfor-
mances of each DNN can be found in Table 2. We
used our custom training/validation/test split of the
available data to obtain this performance, where
the overall MAE is only reported on a small held-
out test set (but not the official Grand Challenge
test set). The performance metric MAE has been
averaged over all of the 6 emotion label classes.

The audio modality performed best with a
CNN. On the other hand, both text and video per-
formed better with LSTMs. This suggests that
text and video provide learnable structures that are
captured with sequence modeling.
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Modality DNN Overall MAE
Audio LSTM 0.150

BLSTM 0.150
CNN 0.146

Video LSTM 0.146
BLSTM 0.147

CNN 0.149
Text LSTM 0.156

BLSTM 0.157
CNN 0.158

Table 2: Unimodal prediction results, overall
mean-absolute error (MAE) for each DNN.

Modality DNN Overall MAE
Audio+Video LSTM 0.137

BLSTM 0.135
CNN 0.138

Audio+Text LSTM 0.140
BLSTM 0.142

CNN 0.146
Text+Video LSTM 0.149

BLSTM 0.145
CNN 0.149

Table 3: Bimodal prediction results, overall mean-
absolute error (MAE) for each DNN and ablation.

5.3 Bimodal

For each bimodal ablation group model, we com-
bined two of the three modalities with a DNN. We
report the results in Table 3. We used our cus-
tom train/valid/test split of the available data to
obtain this performance. We observe that over-
all, the bimodal ablations performed slightly bet-
ter than single modalities in terms of overall MAE.
The audio+video ablation group performed better
than other modality pairs. This could be related to
the ambiguity of spoken language. Emotions that
embody sarcasm, irony, and typical spoken disflu-
encies may be better captured without the noise
of the text. Text can be particularly misleading in
cases of sarcasm, where the truth-value of a sen-
tence is reverse from its literal interpretation.

5.4 Trimodal

We present the results of our trimodal fusion in
Table 4. Once again, we used our custom train-
ing/validation/test split of the available data to ob-
tain this performance. It is interesting to note
that all of these systems performed similarly well,

and all performed better than the bimodal ablation
groups. Based on the results from our trimodal
experiments, we selected the BLSTM to submit as
our system to the Grand Challenge.

DNN Modality Overall MAE
LSTM A,V,T 0.133
BLSTM A,V,T 0.132
CNN A,V,T 0.134

Table 4: Trimodal prediction results, overall MAE
for each DNN. Note A=Audio, V=Video, and
T=Text.

5.5 Grand Challenge Results

To obtain the official Grand Challenge results, we
trained our BLSTM using the original dataset split
as provided by the organizers for training and val-
idation. We then applied our system model to an
unseen test set and submitted our predictions. The
evaluation results were returned to us by the chal-
lenge organizers.

Our system performance is displayed in Table 5.
It shows the performance on a per-emotion basis
as well as the overall metric. We noticed that our
system’s overall performance, in terms of MAE,
on this held-out test set was slightly better than
what we obtained while constructing our model
during earlier experiments. This could be due to
the fact that we used the entire provided training
and validation set for the submission.

First, binary accuracy was calculated by round-
ing values to the nearest integer, and using non-
zeros for the ’positive’ class and zeros as the ’neg-
ative’ class. Binary accuracy is used to measure
the presence and absence of an emotion label.
Next, the 4-class accuracy is obtained in a sim-
ilar way. Each value is rounded to the nearest
integer in {0, 1, 2, 3} resulting in 4 classes. And
the accuracy is again measured on exact matches.
The 4-class accuracy provides a rough estimate of
how well a system predicts intensity of an emotion
because the 4-classes provide a coarser-step size
within the range of regression values (e.g. 4 steps
in the range [0,3] instead of 9 steps). Finally, the
correlation r is provided for a fine-grained metric
that measures how well the system output corre-
lates with the true intensities from the data.

For each emotion label, our correlation values
are near 0, which indicates that our system outputs
do not correlate with fine-grained emotion inten-
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Emotion MAE Binary 4-class Corr.
Acc(%) Acc(%) r

Anger 0.101 92.6 92.6 0.082
Disgust 0.051 96.3 96.3 0.064
Fear 0.051 95.7 95.7 0.011
Happy 0.404 70.5 62.0 0.551
Sad 0.111 91.0 91.0 -0.062
Surprise 0.038 97.7 97.7 -0.030
Overall 0.126 90.6 89.2 –

Table 5: Official Grand Challenge system results
for our early-fusion trimodal BLSTM.

sity values from the dataset. However, in the pres-
ence of relatively high 4-class accuracy, we know
that our system is correctly predicting which emo-
tions are present most of the time, and can produce
the correct intensity at a coarser-grained step size.

6 Analysis

Unfortunately we were not able to obtain infor-
mation about the distribution of emotion classes
contained in the held-out test set. However,
we did observe interesting combinations of emo-
tion label clusters from our training data. More
than 70% of the training examples had been
labeled with only 1 or 2 emotions, for ex-
ample: (Happy, Surprise), (Anger,Disgust),
(Disgust, Sad) or (Fear, Sad). At the same
time, the null case (no emotion) was the second-
most prevalent label meaning that many of the
video segments in our training data had no emo-
tion at all. There were a few rare cases of inter-
esting combinations, such as all 6 emotions being
present in one video segment. This exemplifies the
inherent complexity and challenge of human com-
munication and the task of emotion labeling.

In Figure 2, we show the distribution of log-
predicted emotion intensities for each of the 6
emotion classes. The BLSTM model appears to
have learned a representation where the tuple emo-
tions of (Surprise,Disgust) and (Anger, Fear)
each have a similar intensity distribution. Intu-
itively, this could be justified because these pairs
are close to each other on the emotional spectrum,
e.g. Surprise is easily mistaken for Disgust.
Our model however, performs best when distin-
guishing between Surprise and Disgust, imply-
ing that although the one-dimensional intensity
appears similar in Figure 2, the underlying repre-
sentation that is learned is complex enough to dis-

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Regression Output

0

20

40

60

80

100

120

Co
un

t

Anger
Disgust
Fear
Happy
Sad
Surprised

Figure 2: Distribution of predicted
intensity targets for each emotion:
[Anger,Disgust, Fear,Happy, Sad, Surprised]

tinguish between these. At the same time, Figure 2
implies that the model has learned that Fear and
Happy are extremely different emotions, seeing
as their corresponding distributions are far apart,
which is also intuitive.

7 Discussion and Future Work

We have presented our efforts towards creating a
robust and effective emotion recognition system.
Our best system predicts emotion in video by per-
forming both classification and regression on this
challenging multi-label problem. As this is the
first grand challenge for this dataset, we were not
able to make a direct comparison between other
systems at this time. However, our methodol-
ogy shows that our models improve simply by
adding additional modalities. Furthermore, all of
our DNN models perform better than chance. To
that end, we know that trimodal models perform
best, followed by bimodal models and then uni-
modal models. Our work shows that an early fu-
sion technique can effectively predict the presence
of multi-label emotions as well as their coarse-
grained intensities. Our approach creates a simple
and robust baseline on this new dataset.

In future work, we propose exploring feature se-
lection in order to better understand if and how
particular modality features correlate with particu-
lar emotions. For example, in the audio modality,
a falling pitch might indicate Sad, or a loud vol-
ume could indicate Surprise. Capturing features
that correlate with particular emotions could prove
useful for generating emotive speech.
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We have shown that this problem benefits from
sequence information. Therefore, in future efforts
to improve performance, one might explore the
distribution of emotions across video segments. It
is possible that there are relevant patterns of emo-
tion that are expressed from one segment to the
next. A potential approach for this would be to
use a fixed-width sliding window across multiple
consecutive video segments, and predict emotion
labels at regular time intervals.

Acknowledgments

This work was supported in part by the EPSRC
Centre for Doctoral Training in Data Science,
funded by the UK Engineering and Physical Sci-
ences Research Council (grant EP/L016427/1) and
the University of Edinburgh. The authors would
like to thank Steve Renals at University of Ed-
inburgh Centre for Speech Technology Research
(CSTR) and the anonymous reviewers for their
valuable comments.

References
Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. 2016. Tensorflow: A System For Large-
Scale Machine Learning. In Proceedings of the 12th
USENIX conference on Operating Systems Design
and Implementation, pages 265–283. USENIX As-
sociation.
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