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Abstract

This paper describes our system submis-
sion for the ACL 2018 shared task on
named entity recognition (NER) in code-
switched Twitter data. Our best re-
sult (F1 = 53.65) was obtained using a
Support Vector Machine (SVM) with 14
features combined with rule-based post-
processing.

1 Introduction

Named Entity Recognition (NER) is a part of in-
formation extraction and refers to the automatic
identification of named entities in text. The ACL
2018 shared task invited participants to extract
and classify the following named entities in code-
switched data obtained from Twitter: person, lo-
cation, organization, group, title, product, event,
time, and other (Aguilar et al., 2018). The Tweets
are either Spanish-English or Modern Standard
Arabic-Egyptian, and participants were free to
participate in either language pair. This paper de-
scribes our system for the Spanish-English NER
task.

This particular NER task is challenging for two
reasons. Firstly, NER has proved to be more dif-
ficult for Tweets than for longer text, as accuracy
in NER ranges from 85-90% on longer texts com-
pared to 30-50% on Tweets (Derczynski et al.,
2015). One of the reasons for this difference
is that Tweets contain non-standard spelling, un-
usual punctuation, and unreliable capitalization.
Fromheide et al. (2014) also point out that another
difficulty stems from the rapidly changing topics
and linguistic conventions on Twitter. The 2015
and 2016 shared tasks for NER on Noisy User-
generated Text (W-NUT) reported F1 scores be-
tween 16.47 and 52.41 for identifying 10 different
NE categories (Baldwin et al., 2015; Strauss et al.,

2016). NER methods range from bidirectional
long short-term memory (LSTM) (Limsopatham
and Collier, 2016) and Conditional Random Fields
(CRF) (Toh et al., 2015), to Named Entity Link-
ing (Yamada et al., 2015). The second added chal-
lenge for the data in this task is that the Tweets
contain English and Spanish named entities. Both
languages need to be taken into account in order
to accurately identify the NEs in this data.

2 Data sets

The organizers provided three different English-
Spanish data sets: a training set, a development
set, and a test set. The data consists of multilin-
gual Spanish-English Tweets and contains NEs in
both languages. Table 1 provides an overview of
the data and the total number of NEs available in
each of the sets (Aguilar et al., 2018). The gold
standard for the test set was not distributed and we
are therefore not aware of the distribution of NEs
in the test set.

Data set #Tweets #Tokens #NEs
Train 50,757 616,069 12,366
Development 832 9583 152
Test 15,634 183,011 -

Table 1: Number of Tweets, tokens and Named
Entities in the Spanish-English data sets.

3 System description

We used scikit-learn 0.19 (Pedregosa et al., 2011)
to train and test five different types of classifiers
using eight-fold cross validation:

• Support Vector Machine (SVM) (Chang and
Lin, 2011)

• Decision Trees (DT)
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• K-nearest Neighbors (KNN)

• AdaBoost (Ada) (Freund and Schapire, 1995)

• Random Forest (RF) (Breiman, 2001)

We trained the classifiers with different training
corpus sizes of 80.000, 120.000, 200.000, 300.000
and 550.000 tokens, and we reserved 10% of each
size for testing to avoid overfitting on the training
data. The best classifier is the Support Vector Ma-
chine using the default scikit-learn parameters and
a Radial Basis Function (RBF) Kernel, which is
defined as

K(x, x′) = exp(−‖x− x
′‖2

2σ2
) (1)

The results are obtained using the pre- and post-
processing steps that are described in further detail
in sections 3.1 and 3.3.

3.1 Pre-processing

Early experiments showed that reducing the orig-
inal tag set from two tags per category to one tag
per category improved overall classification. ’B-
LOC’ refers to either the first word in a multi-
word NE or a single word NE, and ’I-LOC’ refers
to any tokens in a multi-word NE that follows the
initial ’B-’ token. The information specific to the
location of the NE within an NE sequence was re-
moved and both tags are reduced to ’X-’. This im-
proved classification performance as it reduced the
number of different possible tags from 19 to 10
(one per NE category plus the ”O” tag) and was
easily reverted in the post-processing stage.

3.2 Feature selection

After testing numerous different features, and dis-
carding ones such as ’proceeded by preposition
or possessive pronoun’ and ’difference in rank
in the frequency dictionaries’, we found that the
features described below achieved the best result.
There are three different types of features: token-
centered features (1-5), context related features
(6-9), and rank dictionary lookup features (10-
14). To reduce dimensionality and computational
workload, we condensed several mutually exclu-
sive boolean features into common functions re-
turning different integer values according to their
outcome. For example, for the capitalization fea-
ture, rather than returning a boolean outcome for
each of the four possible capitalization options (all
lowercase, all uppercase length greater than 3, all

uppercase length less than 3, first letter capital-
ized), they are combined into one feature that re-
turns [0,1,2,3].

All rank features are obtained by sorting the
corresponding list in order of frequency, with the
most frequent occurrence in rank one. We normal-
ized the ranks so that the value stays between 0 and
1, where 0 denotes the absence in the ranked lists
and the closer the figure is to 1, the more highly
ranked the token is.

For each feature, the possible outcomes that
are inserted into the vector are provided in square
brackets, where ’int’ denotes the absolute rank,
pairs of [0-1] boolean outcomes, and lists of num-
bers correspond to the exclusive outcomes of the
function.

1. Capitalization – Check if the token is: all
lowercase, all uppercase with length greater
than 3, all uppercase with length less or equal
to 3, or first letter only uppercase [0,1,2,3]

2. Token length - Returns the token-length [int]

3. Contains non-ASCII - Does the token contain
non-ASCII characters? [0,1]

4. Token first or last in Tweet - Check if token
is: first token, last token, or other [0,1,2]

5. Token in majority language - Check if the
token language is the majority language of
the tweet. Determined with a lexical lookup
in frequency-ranked word lists for English
and Spanish extracted from Wikipedia [0,1]
(Claeser et al., 2018)

6. Code-switch - Returns true if the token’s
language is different from that of the token
before [0,1] (Claeser et al., 2018)

7. Previously tagged as, single-word - The most
common tag associated with the token in the
training set. The outcome is either one of the
nine NE categories or the token is not present
in the training data [0-9]

8. Previously tagged as, multi-word - Same
as above but for multi-word expressions [0-9]

9. Is multi-word time - Regular expressions to
capture multi-word time expressions such as
’23 de mayo’ and ’april 29th’ [0,1]

10. Rank in family names - Rank in list of last
names extracted from the Wikipedia page
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’Living people’ [int]

11. Rank in first names - Rank in list of first
names extracted from the Wikipedia page
’Living people’ [int]

12. Rank in cities list - Rank in list of all United
States census designated places (2016)
ordered descending by population [int]

13. Rank in Spanish Dictionary - Rank in word
list from Spanish Wikipedia [int]

14. Rank in English Dictionary - Rank in word
list from English Wikipedia [int]

3.3 Post-processing

The first step in post-processing was to restore
all the named entity categories that were simpli-
fied during the training of the SVM. All categories
were reduced, for example, from ’B-PER’ and ’I-
PER’ to X-PER in a pre-processing step, and were
changed back to the original annotation.

The second step in post-processing was to ad-
dress the misclassified multi-word tokens. For ex-
ample, in a sequence of ’B-TITLE’, ’I-TITLE’,
’I-TITLE’, if the middle token is misclassified as
not being an NE, the tags shift to ’B-TITLE’, ’O’,
’B-TITLE’ and the entire multi-word NE would
therefore be misclassified.

To solve this issue, we used a dictionary lookup
approach and compared possible multi-word NE
sequences to lists of multi-word tokens based on
the types of tokens present in the training data.
The ’-GROUP’, ’-PERSON’ and ’-OTHER’ lists
stems from Wikipedia, and the ’-TITLE’ list con-
tains titles of video games available from Steam.
We found post-processing to be most effective
when the multi-word NE consisted of at least two
tokens and was no longer than five tokens. We
started by checking the longest NEs first, so that,
for example, ’Tomb Raider’ would not split the
longer NE ’Rise of the Tomb Raider’. If a match
was found in any of the lists, the tags gained
from post-processing replaced those tagged by the
SVM.

The final step addresses specific tokens that are
very frequent in many of the categories and are
therefore not learned correctly by the classifiers.
The Spanish particle ’de’, was often classified as
an NE, but should have been classified as ’O’. So,
if ’de’ was tagged as an NE, but not proceeded by a

Classifier Macro F1 FB1
Support Vector Machine 0.49 0.48
Decision Tree 0.61 0.43
KNN 0.50 0.44
Random Forest 0.59 0.45
AdaBoost 0.41 0.39

Table 2: Results for the train/test set without post-
processing (Macro F1) and the held-out test set
(FB1).

token with a ’B-’, the NE tag was removed. A sim-
ilar rule applies to the article ’the’, which was fre-
quently tagged as ’O’, and caused issues for multi-
word NEs starting with ’the’. If ’the’ is followed
by a NE, the tag is switched to match the rest of
the tokens in the multi-word sequence.

4 Results

Table 2 shows the best result obtained with a train-
ing size of 550.000 tokens for each of the five clas-
sifiers using 8-fold cross validation and the results
of those five classifiers when applied to the held-
out test data. Note that all figures are without post-
processing. We only performed post-processing
on the SVM to achieve the final result of 53.56.
Table 2 shows that the Macro F1, which is the per-
formance of the classifiers when splitting the train-
ing data into 90% train and 10% test, is higher for
the Decision Tree, KNN and Random Forest clas-
sifiers. However, when applying the classifiers on
the held-out test set, the FB1 is highest for the
SVM. It is also clear that while a certain degree
of overfitting is to be expected, it is much higher
for the Decision Tree based classifiers than for the
SVM. For the SVM, the Macro F1 and the FB1 is
very similar, in contrast to the Decision Tree clas-
sifier where the difference is much larger.

Size SVM DT KNN RF Ada
30k 0.25 0.33 0.34 0.40 0.23
80k 0.38 0.39 0.39 0.43 0.27
120k 0.43 0.45 0.44 0.48 0.28
200k 0.40 0.48 0.45 0.48 0.28
300k 0.43 0.56 0.49 0.58 0.33

Table 3: Performance of the classifiers with the
different training sizes.

We also tested the classifiers with different sizes
of training data. Table 3 provides the Macro
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Category Precision Recall FB1
EVENT 31.25% 11.11 % 16.39
GROUP 58.82 % 20.62 % 30.53
LOC 58.88 % 58.14 % 58.51
ORG 32.99 % 15.84 % 21.40
OTHER 100.00 % 3.45 % 6.67
PER 75.32 % 58.91 % 66.11
PROD 71.19 % 43.64 % 54.11
TIME 57.14 % 2.65 % 5.06
TITLE 22.45 % 14.93 % 17.93

Table 4: Results of best performing SVM per cat-
egory including post-processing.

F1 from our train/test split data for the training
sizes 30.000, 80.000, 120.000, 200.000, 300.000
and 550.000 tokens. The performance of all five
classifiers improves significantly with increased
amounts of training data.
The evaluation of the results per named entity cat-
egory using the best performing SVM show that
some of the categories were classified more accu-
rately than others. The best results were obtained
for person (66.11), location (58.51) and product
(54.11). The most challenging categories were
time (5.06) and other (6.67).

5 Discussion

The large variation in F1 per category, for example
in ’-TIME’, is partly due to the inconsistent anno-
tation of tokens. Table 5 below shows the days
of the week present in the training data in both
Spanish and English and all the tags associated
with these tokens. It shows that all of these tokens
are inconsistently annotated in that they are some-
times annotated as ’-TIME’ and sometimes anno-
tated as ’O’. For example in Tweets (1) and (2) be-
low, ’Happy Friday’ is used in the same context,
but is only tagged as ’B-TIME’ in the first Tweet.

(1) Happy Friday Familia!!! #ElvacilonDe-
LaGatita #battingcage #HappyHour 17
ave NW 7 Calle http://t.co/fbPk0sER05

(2) RT @isazapata : Challenge yourself and
move away from your comfort zone!
Happy Friday!! http://t.co/OK320hNQ

Some variation in the annotation of tokens such
as ’Friday’ is to be expected, as the token may
not always refer to a day of the week but a ti-
tle or another type of named entity, but the SVM

will discard the information from the feature vec-
tor if ’Friday’ is ’tagged as ’O’ more often than
’-TIME’.

TOKEN -TIME O
lunes 21 74
monday 7 11
martes 23 51
tuesday 2 3
miercoles 7 20
wednesday 1 4
jueves 18 68
thursday 5 10
viernes 48 87
friday 13 35
sabado 6 21
saturday 6 9
domingo 34 63
sunday 16 18

Table 5: Number of times the tag ’-TIME’ occurs
for the days of the week in the training Tweets.

Whilst training the classifiers, we noticed a
large amount of variation in the results for the
train/test data. To find out exactly how much the
results fluctuate, we used the random split func-
tion in scikit-learn and split the training data into
two chunks: 90% training and 10% testing and re-
trained the classifier with the new version of the
training data. Consequently, the intermediate re-
sults for each of the classifiers was always on a
different 10% test set. The difference between
the best and the worst result can be up to an in-
crease in macro F1 of 0.12 with the same classifier
and the same size training set. The results also
showed that by increasing the number of tokens in
the training data, the performance of the classifiers
improved.

To illustrate why this may be the case, table
6 below contains the number of overlapping NEs
for three different splits for each training size. It
shows the large amount of variance in the results
depending on how the random split occurred. We
counted all types that were tagged as an NE in the
training data in total, compared to how many of
those NEs were in the train and test sets. For ex-
ample, for the first random 30.000 tokens split,
there were 456 NEs in the training data, and 65
NEs in the training test set. A total of 17 NEs in
the training test set were also present in the train-
ing data, meaning that the SVM had already en-
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countered these tokens. Depending on how the
data was split, the overlap already encountered
in the training data varies from 0.19 to 0.26 for
30.000 tokens. This difference is not as large for
550.000 tokens, where it varies between 0.6 and
0.63.

Size Total Train Test Overlap
30k 504 456 65 0.26
30k 504 464 51 0.22
30k 504 454 62 0.19
80k 1096 1003 142 0.35
80k 1096 1007 147 0.39
80k 1096 996 169 0.41
120k 1561 1443 215 0.45
120k 1561 1439 227 0.46
120k 1561 1440 223 0.46
200k 2262 2085 362 0.51
200k 2262 2066 408 0.52
200k 2262 2092 365 0.53
300k 3074 2818 545 0.53
300k 3074 2824 550 0.55
300k 3074 2822 557 0.55
550k 4705 4369 854 0.61
550k 4705 4390 857 0.63
550k 4705 4331 927 0.60

Table 6: Distribution of NEs in the training data.
The overlap refers to the percentage of types that
was present in both the training set and the test set
extracted from the training.

Table 6 also illustrates that the number of overlap-
ping tokens increases immensely when the num-
ber of tokens in the training data increases. It
ranges from .19 to .63, which means that the
higher the number of tokens in the training set, the
likelihood that NEs in the test set are also present
in the training data increases. Therefore, the clas-
sifier does not need to classify as many unseen to-
kens and overall performance increases.

6 Conclusion and Future Work

We presented a named entity recognition system
for Spanish-English code-switched Tweets based
on a combination of classical machine learning al-
gorithms and post-processing. The best perform-
ing classifier was a Support Vector Machine with
an RBF kernel, allowing it to be flexible and less
prone to overfitting compared to other classifiers
on the held-out test data. We used a small set of
features which were selected based on frequency

observations in the training data. This provides a
classifier with low computational costs and could
allow for easy adaptation for other language pairs.
Overall, the task of recognizing named entities in
multilingual Twitter data proved to be quite chal-
lenging. We managed to achieve an overall F1 of
53.65 and thus modestly outperformed the base-
line provided by Aguilar et al. (2018). The re-
sults show that there is a large amount of vari-
ation in classifier performance depending on the
specific NEs present in the training and test sets.
The classifiers could be improved by incorporat-
ing gazetteer resources more specific to Spanish-
speaking countries, for example for geographical
entities similar to that of the United States census
list. Currently, the focus lies on English NEs as
there are more resources available. Furthermore,
the current approach relies heavily on gazetteer-
ing, and the wider context of a token could be
taken into account by, for example, determining
correlations of certain types of NEs with related
verbs in the same Tweet.
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