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Abstract

In this paper, we investigate the effects of
using subword information in representa-
tion learning. We argue that using syntac-
tic subword units effects the quality of the
word representations positively. We intro-
duce a morpheme-based model and com-
pare it against to word-based, character-
based, and character n-gram level models.
Our model takes a list of candidate seg-
mentations of a word and learns the rep-
resentation of the word based on different
segmentations that are weighted by an at-
tention mechanism. We performed exper-
iments on Turkish as a morphologically
rich language and English with a com-
parably poorer morphology. The results
show that morpheme-based models are
better at learning word representations of
morphologically complex languages com-
pared to character-based and character n-
gram level models since the morphemes
help to incorporate more syntactic knowl-
edge in learning, that makes morpheme-
based models better at syntactic tasks.

1 Introduction

The distributional hypothesis of Harris (1954) has
been used to motivate work on vector space mod-
els to learn word representations. Deep learning
models learn another kind of vector space model
for building word representations, which shows
superior performance in representing words.

Although deep neural networks have been very
successful in representing words via such vectors,
those models have not been very successful at esti-
mating the representations of rare words since they
do not appear often enough to allow us to collect
reliable statistics about their context. Morpholog-

ically complex words are also rare by definition.
Cao and Rei (2016) state that a word like unbe-
lievableness does not exist in the first 17 million
words of Wikipedia. Some methods have been
proposed to deal with the sparsity issue in learning
word representations. One approach is to utilize
the subword information such as characters, char-
acter n-grams, or morphemes rather than learning
distinct word representations without considering
the inner structure of words.

Character-based models usually learn better
word representations compared to word-based
models since they capture the regularities inside
the words so that it mitigates the sparsity in rep-
resentation learning. However, those models learn
the representations through the characters that do
not correspond to a syntactic or semantic unit. In
Turkish, two words can have similar word repre-
sentations under a character-based model just be-
cause of their common suffixes. For example,
character-based models such as (Bojanowski et al.,
2017) generate similar word representations for
words that have common character n-grams such
as kitaplardan (from the books) and kasaplardan
(from the butchers) (where lar and dan are suf-
fixes, kitap and kasap are the roots) although the
two words are semantically not related at all.

Another problem we observed for the character-
based models is that such models estimate dis-
tant representations for words that are semanti-
cally related but involve different forms of the
same morpheme so called allomorphs. This is one
of the consequences of vowel harmony in some
languages like Turkish. We observed this through
several semantic similarity tasks performed on se-
mantically similar but orthographically different
words by using the word representations obtained
from character n-gram level models such as fast-
text (Bojanowski et al., 2017). For example, Turk-
ish words such as mavililerinki (of the ones with
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the blue color) and sarılılarınki (of the ones with
the yellow color) with allomorphs li and lı; ler and
lar; in and ın are asserted to be distant from each
other in regard to their word representations un-
der a character n-gram level model such as fast-
text (Bojanowski et al., 2017), although the two
words are semantically similar and both referring
to colors.

In this paper, we argue that learning word rep-
resentations through morphemes rather than char-
acters lead to more accurate word vectors es-
pecially in morphologically complex languages.
Such character-based models are strongly affected
by the orthographic commonness of words, that
governs orthographically similar words to have
similar word representations.

We introduce a model to learn morpheme and
word representations especially for morphologi-
cally very complex words without using an exter-
nal supervised morphological segmentation sys-
tem. Instead, we use an unsupervised segmen-
tation model to initialize our model with a list
of candidate morphological segmentations of each
word in the training data. We do not provide a
single segmentation per word like others (Botha
and Blunsom, 2014; Qiu et al., 2014), but in-
stead we provide a list of potential segmenta-
tions of each word. Therefore, our model relaxes
the requirement of an external segmentation sys-
tem in morpheme-based representation learning.
To our knowledge, this will be the first attempt
in co-learning of morpheme representations and
word representations in an unsupervised frame-
work without assuming a single morphological
segmentation per word.

Our model is mostly similar to that of Lazari-
dou et al. (2013) and Botha and Blunsom (2014)
since we also aim to learn morpheme and word
representations. Our model is akin to that of Pin-
ter et al. (2017) from the training perspective since
they infer the out-of-vocabulary word embeddings
from pre-trained word embeddings. Here, we also
try to mimic the word2vec (Mikolov et al., 2013)
embeddings (i.e. that are the expected outputs of
the model) to learn the rare word representations
with a complex morphology.

Our model shows some architectural similari-
ties to that of Cao and Rei (2016). Both models
use the attention mechanism to up-weight the cor-
rect morphological segmentation of a word. How-
ever, their model is character-based and our model

is morpheme-based where different segmentations
of each word contribute to the resulting vector. It
should be noted that our main concern is to inves-
tigate what character-based models cannot learn
that the morpheme-based models learn. As for the
experimental setting, we have chosen Turkish lan-
guage that has a complex morphology and severe
allomorphy.

The results show that a morpheme-based model
is better at estimating word representations of
morphologically complex words (with at least 2-
3 suffixes) compared to other word-based and
character-based models. We present experimen-
tal results on Turkish as an agglutinative language
and English as a morphologically poor language.

2 Related Work

Classical word representation models such as
word2vec (Mikolov et al., 2013) have been suc-
cessful in learning word representations for fre-
quent words. Since these classical models are
based on collecting contextual information in a
very large corpus, they estimate deficient word
representations for rare words due to insufficient
contextual information. This has a negative conse-
quence in some natural language processing tasks
that make use of the word representations.

One approach to overcome this deficiency in
estimating rare word representations is to apply
compositional methods. Each word comprises of
different subword units, such as characters, char-
acter n-grams, or morphemes. Lazaridou et al.
(2013) apply compositional methods by having the
stem and affix representations in order to estimate
the distributional representation of morphologi-
cally complex words. Bojanowski et al. (2017) in-
troduce an extension to word2vec (Mikolov et al.,
2013) by representing each word in terms of
the vector representations of its n-grams, which
was earlier applied by Schütze (1993) that learns
the representations of fourgrams by applying sin-
gular value decomposition (SVD). Analogously,
Alexandrescu and Kirchhoff (2006) represent each
character n-gram with a vector representation and
words are estimated by the summation of the sub-
word representations. Their results show that com-
positional methods that are originally proposed for
estimating the meaning of phrases can also be used
for estimating the meaning of a word by combin-
ing the information coming from different sub-
word units. Botha and Blunsom (2014) introduce
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Figure 1: The neural network architecture of the
morph2vec model.

a log-bilinear language model that integrates mor-
phology with compositional methods, that is ap-
plied to translation task for morphologically rich
languages.

Compositional models that use character-level
features show that the representations of rare
words can be estimated more accurately (in both
semantic and syntactic tasks) than the word-based
models since the character-level models share
more features across different words that helps to
mitigate sparsity. Cotterell and Schütze (2015)
encode morphological tags within word embed-
dings by using a log-bilinear model, thereby lead-
ing morphologically similar words to have closer
word representations in the embedding space. Lu-
ong et al. (2013) learn word representations based
on morphemes that are obtained from an exter-
nal morphological segmentation system. Col-
lobert et al. (2011) enhance word vectors with
some character-level features such as capitaliza-
tion. Bhatia et al. (2016) incorporate morpholog-
ical information as a prior distribution to improve
word embeddings. They use Morfessor (Creutz
and Lagus, 2002) as an external morphological
segmentation system to extract the inner structure
of words.

3 The morph2vec Model

In our morpheme-based model, a word is en-
coded by a sequence of morphemes. Each word
wsi with a particular morphological segmentation
si is represented by a list of morphemes m =

{m0,m1, . . . ,mn} as follows:

wsi = m0m1 . . .mn

We assume that the correct morphological seg-
mentation of a word is not known a priori
by assuming a completely unsupervised learning
model. We use an unsupervised neural segmenta-
tion algorithm (Üstün and Can, 2016) that gener-
ates a list of candidate segmentations for a given
word (see Section 4 for the details).

Each distinct morpheme is defined by a column
vector in a morpheme embedding matrix Wm ∈
Rdmorph×|M | where dmorph is the vector dimen-
sion for the morphemes and M is the set of all
pseudo morphemes.

Word representations are coupled with a partic-
ular morphological segmentation of each word. In
other words, each segmentation of a single word
has its own representation. Word representation
for each particular segmentation is learned by a
sequential function f that takes a sequence of
morphemes and generates the word representation
with a dimension of dword. The word embedding
that is to be estimated compositionally via its mor-
phemes that belong to segmentation si is denoted
by vsi and estimated by a function f as follows:

vsi = f(wsi) = f(vm0 , vm1 , . . . , vmn) (1)

where vm0 denotes the vector of m0.
We use bidirectional LSTMs (Bi-LSTM)

(Hochreiter and Schmidhuber, 1997) to estimate
a trainable function f in our neural network
architecture that is illustrated in Figure 1. In the
forward LSTMs, morphemes from the beginning
till the end of the word are given sequentially,
whereas in the backward LSTMs, morphemes
from the end till the beginning of the word are
given in the reverse order. Each output of Bi-
LSTM which is the concatenation of the outputs
of the forward and backward LSTMs represents a
particular segmentation of a given word.

Therefore, we train the model with a list of
potential segmentations of each word in training
data. Since a word is represented by different mor-
pheme sequences that refer to different segmenta-
tions of the same word, we use an attention model
over these sequences that are learned by the Bi-
LSTMs. Attention model learns a weight αi for
each segmentation, such that

∑Sw
i αi = 1 where

Sw denotes all potential morphological segmenta-
tions of w. The final word representation is the
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Figure 2: An illustration of generating potential
segmentations for words in the training set.

weighted sum of the embeddings of all candidate
segmentations:

fattn(w) =
∑
i

αivsi (2)

where vsi is the vector for segmentation si that is
the output of a Bi-LSTM. The weight αi is esti-
mated as follows (Bahdanau et al., 2014):

αi =
exp(vT tanh(W · vsi))∑
j exp(vT tanh(W · vsj ))

(3)

Here, a feed-forward layer is used with a soft-
max function that is applied over the outputs of
Bi-LSTMs. W ·vsi denotes the corresponding col-
umn in the weight matrix of the feed-forward layer
in the attention.

For training, we use the pre-trained
word2vec (Mikolov et al., 2013) vectors in
order to minimize the cost between the learned
and pre-trained vectors with the following
objective function:

J(Θ) =

N∑
i=k

h(wk) +
λ

2
‖Θ‖22 (4)

where h(wk) is the cost for the kth word wk in
a training set of size N with a L2 regularization
term on the model parameters θ. We use the cosine
proximity loss between the learned and the pre-
trained vector.

4 Neural Morphological Segmentation

Although it is possible to train the model by
providing all the potential segmentations of each
word, we utilize an unsupervised segmentation al-
gorithm to make the model computationally more
efficient by reducing the search space. The seg-
mentation algorithm is based on the neural model
by Üstün and Can (2016) that uses the semantic
similarity between substrings of a word to detect
the potential morpheme boundaries. This algo-
rithm is based on the idea that the meaning of
a word is preserved especially through inflection

s0 araba - larım - ın
s1 arabalar - ı - mın
s2 arabalar - ım - ın
s3 araba - lar - ı - mın
s4 araba - lar - ım - ın

Table 1: Some candidate segmentations of the
Turkish word arabalarımın. The bold one is the
correct segmentation for this word.

Parent Child Sim.
araba araba-lar 0.65

arabalar araba-lar-ım 0.41
arabalarım araba-lar-ım-ın 0.26

Table 2: The cosine similarities between the sub-
strings (parent-child) of the Turkish word ara-
balarımın (of my cars). 0.25 is assigned for the co-
sine similarity threshold and only the splits above
the threshold are listed.

and it benefits from the word representations to
utilize this preservation. The parent-child relations
such as (respect,respectful) are defined similar to
that of Narasimhan et al. (2015).

The algorithm begins by generating all possi-
ble segmentations where there are at most K seg-
ments1 (see Table 1). Then, the algorithm checks
the semantic similarity at each split point (between
the parent and its child) whether it is greater than
a threshold2. If the condition is satisfied for all
split points in a segmentation, the segmentation is
added to the segmentations list that will be passed
to a Bi-LSTM. Figure 2 illustrates an example for
the segmentation algorithm on the Turkish word
arabalarımın (of my cars). # denotes a function
that takes two words and returns true if the co-
sine similarity between two substrings is above the
threshold value. The cosine similarities between
the substrings of the word arabalarımın are given
in Table 2.

Here we use the segmentation algorithm for
mainly training purposes because the accuracy of
the algorithm has a strong impact on generat-
ing word representations. Since all possible mor-
phemes are not generated in training, if the seg-
mentation algorithm generates an unknown mor-
pheme in testing, the representation for that word
involving the unknown suffix cannot be generated.
In order to ensure that all morphemes have a rep-

1K is defined as 4 in all experiments.
2The threshold is assigned 0.25 in all experiments.
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resentation, we use an external supervised seg-
mentation system for only testing purposes. An-
other reason is that due to incorrect segmentations
suggested by the unsupervised segmentation algo-
rithm, two words (semantically related) involving
the same set of suffixes cannot benefit from the
syntactic similarity and therefore the representa-
tions of those words might diverge in testing.

5 Experiments

We performed several experiments to assess the
quality of our morpheme and word embeddings.
We did experiments on Turkish as a highly aggluti-
native language with a very complex morphology
and English with a comparably poor morphology.

5.1 Experimental Setting
In all experiments, morpheme vectors have a di-
mension of dmorph = 75, while the forward and
backward LSTMs have a dimension of dLSTM =
300. Since the output of the Bi-LSTMs is the con-
catenation of the forward and backward LSTMs,
the Bi-LSTM output has a dimensionality of
dbiLSTM = 600. The output of the Bi-LSTMs is
reduced to half after feeding the output through a
feed-forward layer that results with a word vector
dimension of dword = 300. Our model is imple-
mented in Keras, and publicly available3.

For the pre-trained word vectors, we used the
word vectors of dimension 300 that were obtained
by training word2vec (Mikolov et al., 2013).
For Turkish, we trained word2vec on Boun cor-
pus (Sak et al., 2008) that contains 361 million
word tokens. For English, we used the Google’s
pre-trained word2vec model4 that was trained on
100 billion words with a vocabulary size of 3M.
For training of our model, we used the most fre-
quent 200K words from the pre-trained vocabular-
ies to filter out the noise for both languages.

In order to compare the quality of our em-
beddings against the embeddings obtained from
character n-gram level model fasttext (Bojanowski
et al., 2017), we used the pre-trained word vectors
trained on Wikipedia (Bojanowski et al., 2017)
and we used the Google’s pre-trained word vec-
tors5. In order to compare our model with the
character-based model by Cao and Rei (2016), we
used Text8 corpus6.

3http://nlp.cs.hacettepe.edu.tr/projects/morph2vec/
4https://code.google.com/archive/p/word2vec/
5https://code.google.com/archive/p/word2vec/
6Available at mattmahoney.net/dc/text8

Model en tr
word2vec (Mikolov et al., 2013) 0.69 0.483
fasttext (Bojanowski et al., 2017) 0.71 0.208

morph2vec 0.38 0.529

Table 3: The comparison of the Spearman corre-
lation between the human judgments and the word
similarities obtained by computing the cosine sim-
ilarity between the learned word embeddings for
English and Turkish.

Only for testing reasons, we used PC-
KIMMO (Koskenniemi, 1984) for English and the
two-level Turkish morphology (Akın and Akın,
2007) for Turkish in order to segment test sets to
obtain the actual morphemes for generating word
representations from the morpheme vectors that
are learned in a fully unsupervised setting. Unsu-
pervised segmentation system also could be used
for the evaluation step, but we wanted to minimize
the effect of incorrect segmentations to be able to
evaluate the embeddings properly. Yet, we discuss
the effect of the supervised vs unsupervised seg-
mentations in Section 5.5.

We did only intrinsic evaluation with a set of
experiments that assess the quality of the word and
morpheme representations.

5.2 Evaluation of Word Representations:
Word Similarity Results

In order to evaluate the quality of the word vec-
tors, we did experiments on a list of word pairs.
We computed the cosine similarity between the
learned vectors of each word pair and compared
the similarity scores against to human judgments.

We used the Set 2 in WordSim353 dataset
(Finkelstein et al., 2001) for the semantic similar-
ity experiments that already involves the human
judgment scores from 1 to 10 for 200 English word
pairs. Since there is no available word-pair list for
Turkish, we prepared WordSimTr7 that involves
138 word pairs and asked 15 human annotators to
judge how similar two words are on a fixed scale
from 1 to 10 where 1 shows a poor semantic sim-
ilarity between the two words. Our Turkish word
pair list involves two groups of words. The first
group involves 81 semantically similar words that
have at least two suffixes (possibly allomorphs).
An example pair is televizyonlarda (on the televi-

7http://nlp.cs.hacettepe.edu.tr/projects/morph2vec/
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Model WordSim353 RW
char2vec

(Cao and Rei, 2016) 0.345 0.284
morph2vec 0.386 0.297

Table 4: The comparison of the Spearman corre-
lation between the human judgments and the word
similarities obtained by computing the cosine sim-
ilarity between the learned word embeddings for
English on Text8 corpus.

sions) and radyolarda (on the radios) that have lar
(for the plural) and da (for the locative case) with a
semantically similar stem pair. The second group
involves 57 semantically unrelated word pairs that
are orthographically similar through their suffixes.
An example word pair in this group is kitaplar-
dan (from the books) and kasaplardan (from the
butchers) with two suffixes lar (for the plural) and
dan (for the ablative case) with semantically un-
related two stems kitap (the book) and kasap (the
butcher). Some other example word pairs in the
Turkish word pair list is given in Table 5. As seen
on the table, our morpheme-based model is bet-
ter at learning word representations with multiple
suffixes.

The results are given in Table 3. English words
mostly do not involve any suffixes, which hinders
our model’s performance. However, our model
performs better than both fasttext (Bojanowski
et al., 2017) and word2vec (Mikolov et al., 2013)
on Turkish despite the highly agglutinative mor-
phological structure of the language. It shows that
our model learns better word representations for
morphologically complex words, whereas words
with no suffixes are not estimated as good as the
complex ones.

We also compared our model against the
character-based model char2vec (Cao and Rei,
2016). For this purpose, we trained our model on
the same dataset and parameters as char2vec to be
able to compare with their reported results. The
dataset is called Text8 corpus and consists of the
first 100mb of a cleaned-up dumb of Wikipedia
in 2006. For the evaluation, we tested our word
embeddings on Rare Words (RW) (Luong et al.,
2013) and Wordsim353 (Finkelstein et al., 2001)
datasets. The results are given in Table 4. Our
results outperform char2vec (Cao and Rei, 2016)
on both word similarity test sets. This shows
that our model learns better word embeddings for

both in-vocabulary and rare words compared to
char2vec (Cao and Rei, 2016).

5.3 Evaluation of Word Representations:
Analogy Results

We performed experiments for the analogy task in
order to test whether the suffixes make a linear nu-
merical change on the word vectors in the embed-
ding space. The analogy experiments are usually
performed for a triple of words such that A is to B
so C is to ?, where A-B+C is expected to be equal
to the questioned word. The analogy can be se-
mantical such as cat is to meow, so dog is to bark,
or syntactic such as go is to gone, so have is to
had.

Here, we tested only the syntactic analogy on
a list of word tuples since our focus is especially
morphologically complex languages. For English,
we used the syntactic relations section provided in
the Google analogy dataset (Mikolov et al., 2013)
that involves 10675 questions. Since there is no
analogy dataset for Turkish, we prepared a Turk-
ish analogy set SynAnalogyTr8 with 206 syntactic
questions that involves inflected word forms. The
syntactic word tuples are judged by 40 human an-
notators in a scale from 1 to 10, where 1 shows
a weak word analogy. Most words involve more
than one suffix to test the morphological regular-
ity in the analogy task.

The results are given in Table 6 and Table 7
for English and Turkish. The results show that
our model outperforms both word2vec (Mikolov
et al., 2013) and fasttext (Bojanowski et al., 2017)
on both Turkish and English languages. Addition-
ally, some examples to analogy results are given
in Table 9 and the nearest neighbors of the Turk-
ish word kitap-lar-dan-mış (it was from the books)
are given in Table 8.

5.4 Evaluation of Morpheme
Representations: Allomorph Results

In addition to the evaluation of the word vectors,
we also evaluated the morpheme vectors that are
the input embeddings to the neural network to
be estimated during training. In order to evalu-
ate how well our morpheme vectors represent the
morphemes, we used the allomorphs. Allomorphs
can be considered as true synonyms as they con-
vey the same meaning with each other but with a
different orthography.

8http://nlp.cs.hacettepe.edu.tr/projects/morph2vec/
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Word Pair Human Score morph2vec word2vec fasttext
kitap-lar-dan / kasap-lar-dan 0.12 0.07 0.19 0.55

(from the books) / (from the butchers)
kağıt-ta-ki-ler / bardak-ta-ki-ler 0.22 0.12 OOW 0.64

(the ones on the paper) / (the ones in the glass)
şirket-ler-de / firma-lar-da 0.87 0.82 0.46 0.76

(in the companies) / (in the firms)
kazanan-lar-dı / yenilen-ler-di 0.64 0.60 OOW 0.43

(they were the winners) /
(they were the defeated ones)

Table 5: Example Turkish word pairs and their similarities based on human judgements, morph2vec,
word2vec (Mikolov et al., 2013), and fasttext (Bojanowski et al., 2017). - denotes the morpheme bound-
aries.

Model Accuracy (%)
word2vec (Mikolov et al., 2013) 74.0
fasttext (Bojanowski et al., 2017) 74.9

morph2vec 80.5

Table 6: Analogy results on English Google syn-
tactic analogy dataset.

Model Accuracy (%)
word2vec (Mikolov et al., 2013) 16.0
fasttext (Bojanowski et al., 2017) 65.5

morph2vec 71.3

Table 7: Analogy results on Turkish syntactic
analogy dataset SynAnalogyTr.

In Turkish, there is a common use of allomorphs
due to the vowel and consonant harmony in the
language. For example, the morpheme dı has got
8 allomorphs one of which is chosen depending
on the last vowel and the consonant in the word,
that are di, du, dü, ti, tu, tü, and tı. For example,
-ti (the past tense of the third person singular) is
chosen, for the verb git-(mek) (to go), whereas du
is chosen for the verb solu-(mak) (to breathe).

We prepared a Turkish dataset that involves
108 morphemes9 that are allomorphs of 33 unique
morpheme types including tense and case markers
as well as derivations. For the evaluation of al-
lomorphs, we used the MAP metric that is often
used in information retrieval tasks. For each allo-
morph set in the data, we calculated the MAP@k
where k is the number of allomorphs for the given
morpheme. If the allomorph of a morpheme ex-

9http://nlp.cs.hacettepe.edu.tr/projects/morph2vec/

kitap-lar-dan-mış Cosine sim.
(it was from the books)
yazılmış (it was written) 0.669

hikaye-ler-den (from the stories) 0.667
kitap-lar (the books) 0.661

kitap-lar-dan (from the books) 0.639
kitap-lar-da (in the books) 0.635

roman-lar-dan (from the novels) 0.625

Table 8: Nearest neighbors of the word kitap-
lar-dan-mış and the cosine similarity between the
word and the neighbor that are obtained from
morph2vec word vectors.

ists in the k nearest neighbours, then it is regarded
as correct, otherwise it is incorrect. We averaged
the MAP@k scores for all allomorph sets. The
results are given in Table 10. Our model can
learn the morpheme representations better than
fasttext (Bojanowski et al., 2017) since allomorphs
in our model are closer to each other in the em-
bedding space compared to fasttext. Some of
the allomorphs obtained from our model and fast-
text (Bojanowski et al., 2017) are given in Ta-
ble 11. As seen on the table, our model can capture
the allomorphs better than fasttext (Bojanowski
et al., 2017). Additionally, all Turkish allomorphs
learned by our model are given in Figure 3. As can
be seen from the figure, the allomorphs fall into
similar regions in the vector space. Apart from
some infrequent morphemes, the rest has similar
representations.

5.5 The Effect of Supervision
In our experiments, the model training is per-
formed in a fully unsupervised setting in terms of
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Word 1 Word 2 Word 3 Expected morph2vec word2vec fasttext
gel-dim gel-me-dim duy-dum duy-ma-dım 0.80 0.43 0.63
(I came) (I did not come) (I heard) (I did not hear)
çöz-müş çöz-müş-tü bul-muş bul-muş-tu 0.73 0.18 0.66

(she solved) (she had solved) (she found) (she had found)
aç-mak aç-ıl-mak ört-mek ört-ün-mek 0.89 0.36 0.52

(to open) (to be opened) (to cover) (to cover himself)

Table 9: Example Turkish analogy questions and the cosine similarities between the expected words and
the learned word representations obtained from morph2vec, word2vec and fasttext.

Model MAP
fasttext (Bojanowski et al., 2017) 0.504

morph2vec 0.618

Table 10: MAP scores for the allomorph cover-
age in fasttext (Bojanowski et al., 2017) and the
morph2vec.

morph morph2vec fasttext
iyor ıyor yor uyor üyor ıyor yor uyor üyor
mı mu mi mü mi mu ıyor
dı tı di du tu dü ti duk dır tı dü di ın tır ı

mış müş muş müş yor dık

Table 11: Some allomorphs of the given mor-
pheme on the left that are found by our model and
fasttext (Bojanowski et al., 2017). The bold font
indicates the non-allomorphs for the given mor-
pheme type.

the segmentation algorithm. However, we used su-
pervised methods for segmenting test sets in eval-
uation to generate word representations from the
actual morphemes that are learned in the train-
ing. We conducted another set of experiments
with both supervised and unsupervised segmenta-
tion algorithms to show the effect of the segmen-
tation algorithm used to generate the word embed-
dings in the word similarity test sets. Table 12
demonstrates the effect of the segmentation algo-
rithm. Here, we employed the neural unsupervised
model by Üstün and Can (2016) and the super-
vised segmentation system Zemberek (Akın and
Akın, 2007).

The results show that we can generate better
word embeddings when the morphemes are ex-
tracted by a supervised segmentation algorithm
beforehand although the difference is not signif-
icant. Therefore the supervised segmentation al-

Model Spearman
Unsupervised (Üstün and Can, 2016) 0.517

Supervised (Akın and Akın, 2007) 0.529

Table 12: Word similarity Spearman correlation
scores obtained when a supervised and unsuper-
vised segmentation algorithm is used for the test
sets.

gorithm used in testing can be replaced with an
unsupervised segmentation algorithm.

However, it should be noted that when an un-
supervised algorithm used, the possibility to come
across with a segment that is not present in our
model increases, hence we cannot generate the
word embeddings for such words. Therefore, the
results for the unsupervised setting is limited to
only in-vocabulary words (i.e the words for which
we can create a word embedding).

6 Conclusion and Future Work

Recent work shows that character level models
learn more representative word embeddings for
rare words (including morphologically complex
words) compared to word level models, which
is a sign that incorporating subword information
improves the word representations. However, in
this paper, we argued that morpheme-based rep-
resentation models can learn better word embed-
dings (especially for the syntactic tasks) since
they incorporate the syntactic and semantic in-
formation through the morphemes better com-
pared to character level models. We pointed to
the poor representation of allomorphs in complex
words where the character-level models estimate a
low word similarity between semantically similar
words with different forms of the same morpheme,
i.e. allomorphs. Moreover, we pointed to the char-
acter level models that assign a high word similar-
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Figure 3: Turkish allomorph vectors learned by morph2vec. Some morphemes are blurry because of the
overlapping of a few allomorphs.

ity to the words that are orthographically similar
but semantically unrelated.

We introduce a morpheme-based representation
model that learns word embeddings through the
morphemes that are obtained from a list of mor-
phological segmentations for each word. There-
fore, our work introduces the idea of releasing the
need for using an external morphological segmen-
tation system in such representation learning mod-
els that are based on subword information. Our
morpheme-based model morph2vec learns better
word representations for morphologically com-
plex words compared to the word-based model
word2vec (Mikolov et al., 2013), character-based
model char2vec (Cao and Rei, 2016), and the
character n-gram level model fasttext (Bojanowski

et al., 2017). Our results are also competitive for
the English language.

We leave other languages and experiments such
as morphological segmentation task for the future
work. Another goal is to perform extrinsic eval-
uation on a different task such as part-of-speech
tagging using the learned word embeddings.
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