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Abstract

Representing sentences as numerical vec-
tors while capturing their semantic con-
text is an important and useful interme-
diate step in natural language processing.
Representations that are both general and
discriminative can serve as a tool for tack-
ling various NLP tasks.

While common sentence representation
methods are unsupervised in nature, re-
cently, an approach for learning univer-
sal sentence representation in a supervised
setting was presented in (Conneau et al.,
2017). We argue that although promis-
ing results were obtained, an improve-
ment can be reached by adding various un-
supervised constraints that are motivated
by auto-encoders and by language mod-
els. We show that by adding such con-
straints, superior sentence embeddings can
be achieved. We compare our method with
the original implementation and show im-
provements in several tasks.

1 Introduction

Word embeddings are considered one of the key
building blocks in natural language processing and
are widely used for various applications (Mikolov
et al., 2013; Pennington et al., 2014). While word
representations has been successfully used, rep-
resenting the more complicated and nuanced na-
ture of the next element in the hierarchy - a full
sentence - is still considered a challenge. Once
trained, universal sentence representations can be
used as an out-of-the-box tool for solving various
NLP and computer vision problems. Even though
their importance is unquestionable, it seems that
current results are still far from satisfactory.

More concretely, given a set of sentences
{si}ni=1, sentence embedding methods are de-
signed to map them to some feature space F along
with a distance metricM such that given two sen-
tences si and sj that have similar semantic mean-
ing, their distanceM(si, sj) would be small. The
challenge is learning a mapping T : {si}ni=1 → F
that manages to capture the semantics of each si.
While sentence embedding are not always used in
similarity probing, we find this formulation use-
ful as the similarity assumption is implicitly made
when training classifiers on top of the embeddings
in downstream tasks.

Sentences embedding methods were mostly
trained in an unsupervised setting. In (Le and
Mikolov, 2014) the ParagraphVector model was
proposed which is trained to predict words in
the document. SkipThought (Kiros et al., 2015)
vectors rely on the continuity of text to train an
encoder-decoder model that tries to reconstruct
the surrounding sentences of a given passage. In
Sequential Denoising Autoencoders (SDAE) (Hill
et al., 2016) high-dimensional input data is cor-
rupted according to some noise function, and the
model is trained to recover the original data from
the corrupted version. FastSent (Hill et al., 2016)
learns to predicts a Bag-Of-Word (BOW) repre-
sentation of adjacent sentences given a BOW rep-
resentation of some sentence. In (Klein et al.,
2015) a Hybrid Gaussian Laplacian density func-
tion is fitted to the sentence to derive Fisher Vec-
tors.

While previous methods train sentence em-
beddings in an unsupervised manner, a recent
work (Conneau et al., 2017) argued that better rep-
resentations can be achieved via supervised train-
ing on a general sentence inference dataset (Bow-
man et al., 2015). To this end, the authors use
the Stanford Natural Language Inference (SNLI)
dataset (Bowman et al., 2015) to train different
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Method MR CR SUBJ MPQA SST TREC MRPC SICK-R SICK-E STS14
FastSent 70.8 78.4 88.7 80.6 - 76.8 72.2/80.3 - - .63/.64
SkipThought 76.5 80.1 93.6 87.1 82.0 92.2 73.0/82.0 0.858 82.3 .29/.35
BiLSTM 79.9 84.6 92.1 89.8 83.3 88.7 75.1/82.3 0.885 86.3 .68/.65
AE Reg 79.0 84.4 91.8 90.0 82.4 88.8 75.0/82.4 0.888 86.8 .66/.65
LM Reg 79.1 85.3 92.2 90.2 83.6 87.6 75.7/82.8 0.888 86.3 .66/.65
Combined 80.04 84.56 91.96 90.19 84.07 87.8 74.84/82.34 0.888 86.44 .67/.65
Bi-AE Reg 79.9 84.1 92.1 90.2 83.8 89 75.9/82.6 0.888 87.7 .66/.65
Bi-LM Reg 79.1 84.6 91.2 90.0 82.6 89.4 74.4/81.8 0.888 86.4 .66/.64

Table 1: Sentence embedding results. BiLSTM refers to the original BiLSTM followed by Max-
Pooling implementation of (Conneau et al., 2017) which is the baseline for our work. AE Reg and
LM Reg refers to the Auto-Encoder and Language-Model regularization terms described in 2.1 and
Combined refers to optimizing with both terms. Bi-AE Reg and Bi-LM Reg refers to the bi-directional
Auto-Encoder and bi-directional Language-Model regularization terms described in 2.2. As evident from
the results, adding simple unsupervised regularization terms improves the results of the model on almost
all the evaluated tasks.

sentence embedding methods and compare them
on various benchmarks. The SNLI dataset is com-
posed of 570K pairs of sentences with a label
depicting the relationship between them, which
can be either ’neutral’, ’contradiction’ or ’entail-
ment’. The authors show that by leveraging the
dataset, state-of-the-art representations can be ob-
tained which are universal and general enough for
solving various NLP tasks.

A different, unsupervised, task in NLP is es-
timating the probability of word sequences. A
family of algorithms for this task titled word lan-
guage models seek to model the problem as esti-
mating the probability of a word, given the previ-
ous words in the text. In (Bengio et al., 2003) neu-
ral networks were employed and (Mikolov et al.,
2010) was among the first methods to use recurrent
neural networks (RNN) for modeling the prob-
lem, where the probability of the a word is es-
timated based on the previous words fed to the
RNN. A variant of RNN - Long Short Term Mem-
ory (LSTM) networks (Hochreiter and Schmid-
huber, 1997) - were used in (Sundermeyer et al.,
2012). Following that, (Zaremba et al., 2014) pro-
posed a dropout augmented LSTM.

We note that there exists a connection between
those two problems and try to model it more ex-
plicitly. Recently, the incorporation of the hidden
states of neural language models in downstream
supervised-learning models have been shown to
improve the results of the latter (e.g. ElMo - Pe-
ters et al. (2018), CoVe - McCann et al. (2017)
Peters et al. (2017), Salant and Berant (2017) )
– in this work we jointly train the unsupervised

and supervised tasks. To this end, we incorpo-
rate unsupervised regularization terms motivated
by language modeling and auto-encoders in the
training framework proposed by (Conneau et al.,
2017). We test our proposed model on a set of
NLP tasks and show improved results over the
baseline framework of (Conneau et al., 2017).

2 Method

Our approach builds upon the previous work
of (Conneau et al., 2017). Specifically, we
use their BiLSTM model with max pool-
ing. More concretely, given a sequence of
T words, {wt}t=1,...,T with given word embed-
ding (Mikolov et al., 2013; Pennington et al.,
2014) {vt}t=1,...,T ,a bidirectional LSTM com-
putes a set of T vectors {ht}t=1,...,T where each
ht is the concatenation of a forward LSTM and
a backward LSTM that read the sentences in two
opposite directions. We denote {

−→
ht} and {

←−
ht} as

the hidden states of the left and right LSTM’s re-
spectively, where t = 1, . . . , T . The final sentence
representation is obtained by taking the maximal
value of each dimension of the {ht} hidden units
(i.e.: max pooling). The original model of (Con-
neau et al., 2017) was trained on the SNLI dataset
in a supervised fashion - given pairs of sentences
s1 and s2, denote their representation by s̄1 and
s̄2. During training, the concatenation of s̄1, s̄2,
|s̄1 − s̄2| and s̄1 ∗ s̄2 is fed to a three layer fully
connected network followed by a softmax classi-
fier.
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2.1 Regularization terms
We note that by training on SNLI, the model might
overfit and would not be general enough to provide
universal sentence embedding. We devise several
regularization criteria that incentivize the hidden
states to maintain more information about the in-
put sequence.

Specifically, denote the dimension of the word
embedding by d and the dimension of the hid-
den state by l. We add a linear transformation
layer Ll×d : H → W on top of the BiLSTM
to transform the hidden states back to the dimen-
sion of word embeddings and denote its output by
{w′t}t=1,...,T . Recall that in the training process,
we minimize the log-likelihood loss of the fully
connected network predictions which we denote
by yi where ygt is the prediction score given to the
correct ground truth class. Now, the total loss cri-
teria with our regularization term can be written
as

L = −log

(
eygt∑
j e

yj

)
+ λ

T∑
t=1

‖w′t − wt‖2 (1)

or as

L = −log

(
eygt∑
j e

yj

)
+ λ

T−1∑
t=1

‖w′t − wt+1‖2

(2)

where the first term in both (1) and (2) is the
original classification loss. We call the second reg-
ularization term in (1) an auto-encoder regulariza-
tion term and in (2) a language model regulariza-
tion term. Intuitively, since each w′t is obtained by
a linear transformation of ht, it enforces the hid-
den state ht to maintain enough information on
each wt such it can be reconstructed back from
ht or such that the following word wt+1 can be
predicted from ht. This aids in obtaining a more
general sentence representation and mitigates the
risk of overfitting to the SNLI training set. The
constant λ in (1) and (2) is a hyper-parameter that
controls the amount of regularization and was set
to 1 in our experiments.

We have also experimented with combining the
two terms, giving equal weight to each of them in
optimizing the model.

2.2 Bi-directional Regularization terms
Similarly to regularization terms described in 2.1,
we devise variants of (1) and (2) which take

into account the bi-directional architecture of the
model. Here, we add two linear transformation
layers:

−→
L l

2
×d :

−→
H → W and

←−
L l

2
×d :

←−
H → W

on top of the forward LSTM and backward LSTM,
respectively, and denote their output as {−→w ′t} and
{←−w ′t}, respectively, where t = 1, . . . , T .

Now, equations (1) and (2) are re-written as:

L = −log

(
eygt∑
j e

yj

)
+ λ1

T∑
t=1

‖−→w ′t − wt‖2 (3)

+λ2

T∑
t=1

‖←−w ′t − wt‖2

and

L = −log

(
eygt∑
j e

yj

)
+ λ1

T−1∑
t=1

‖−→w ′t − wt+1‖2

(4)

+λ2

T∑
t=2

‖←−w ′t − wt−1‖2

We call the second regularization term in (3) a
bi-directional auto-encoder regularization and in
(4) a bi-directional language model regularization
term. Again, λ1 and λ2 are hyper-parameters con-
trolling the amount of regularization and were set
to 0.5 in our experiments.

3 Experiments

Following (Conneau et al., 2017) we have tested
our approach on a wide array of classification
tasks, including sentiment analysis (MR – Pang
and Lee (2005), SST – Socher et al. (2013)),
question-type (TREC – Li and Roth (2002)),
product reviews (CR – Hu and Liu (2004)),
subjectivity/objectivity (SUBJ – Pang and Lee
(2005)) and opinion polarity (MPQA – Wiebe
et al. (2005)). We also tested our approach on se-
mantic textual similarity (STS 14 – Agirre et al.
(2014)), paraphrase detection (MRPC – Dolan
et al. (2004)), entailment and semantic related-
ness tasks (SICK-R and SICK-E – Marelli et al.
(2014)), though those tasks are more close in na-
ture to the task of the SNLI dataset which the
model was trained on. In our experiments we have
set λ from eq. (1) and eq. (2) to be 1 and λ1,
λ2 from eq. (3) and eq. (4) to be 0.5. All other
hyper-parameters and implementation details were
left unchanged to provide a fair comparison to the
baseline method of (Conneau et al., 2017).
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Our results are summarized in table 1. We
compared out method against the baseline BiL-
STM implementation of (Conneau et al., 2017)
and included FastSent (Hill et al., 2016) and
SkipThought vectors (Kiros et al., 2015) as a ref-
erence.

As evident from table 1 in almost all the
tasks evaluated, adding the proposed regulariza-
tion terms improves performance. This serve to
show that in a supervised learning setting, addi-
tional information on the input sequence can be
leveraged and injected to the model by adding sim-
ple unsupervised loss criteria.

4 Conclusions

In our work, we have sought to connect unsu-
pervised and supervised learning in the context
of sentence embeddings. Leveraging supervision
given by some general task aided in obtaining
state-of-the-art sentence representations (Conneau
et al., 2017). However, every supervised learning
tasks is prone to overfit. In this context, overfitting
to the learning task will result in a model which
generalizes less well to new tasks.

We alleviate this problem by incorporating un-
supervised regularization criteria in the model’s
loss function which are motivated by auto-
encoders and language models. We note that the
added regularization terms do come at the price of
increasing the model size by ld parameters (where
d and l are the dimensions of the word embedding
and the LSTM hidden state, respectively) due to
the added linear transformation (see 2.1). How-
ever, as evident from our results, this does not hin-
der the model performance, even though we did
not increase the amount of training data. More-
over, since those term are unsupervised in nature,
it is possible to pre-train the model on unlabeled
data and then finetune it on the SNLI dataset.

In conclusion, our experiments show that
adding the proposed regularization terms results
in a more general model and superior sentence
embeddings. This validates our assumption that
while the a supervised signal is general enough
for learning sentence embeddings, it can be further
improved by incorporated a second unsupervised
signal.
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