
Proceedings of the Workshop on the Relevance of Linguistic Structure in Neural Architectures for NLP, pages 13–18
Melbourne, Australia, July 19, 2018. c©2018 Association for Computational Linguistics

13

Latent Tree Learning with Differentiable Parsers:
Shift-Reduce Parsing and Chart Parsing

Jean Maillard, Stephen Clark
Computer Laboratory, University of Cambridge
jean@maillard.it, sc609@cam.ac.uk

Abstract

Latent tree learning models represent sen-
tences by composing their words accord-
ing to an induced parse tree, all based
on a downstream task. These models of-
ten outperform baselines which use (exter-
nally provided) syntax trees to drive the
composition order. This work contributes
(a) a new latent tree learning model based
on shift-reduce parsing, with competitive
downstream performance and non-trivial
induced trees, and (b) an analysis of the
trees learned by our shift-reduce model
and by a chart-based model.

1 Introduction

Popular recurrent neural networks in NLP, such
as the Gated Recurrent Unit (Cho et al., 2014)
and Long Short-Term Memory (Hochreiter and
Schmidhuber, 1997), compute sentence represen-
tations by reading their words in a sequence. In
contrast, the Tree-LSTM architecture (Tai et al.,
2015) processes words according to an input parse
tree, and manages to achieve improved perfor-
mance on a number of linguistic tasks.

Recently, Yogatama et al. (2016), Maillard et al.
(2017), and Choi et al. (2017) all proposed sen-
tence embedding models which work similarly to
a Tree-LSTM, but do not require any parse trees
as input. These models function without the as-
sistance of an external automatic parser, and with-
out ever being given any syntactic information as
supervision. Rather, they induce parse trees by
training on a downstream task such as natural lan-
guage inference. At the heart of these models is
a mechanism to assign trees to sentences – effec-
tively, a natural language parser. Williams et al.
(2017a) have recently investigated the tree struc-
tures induced by two of these models, trained for

a natural language inference task. Their analysis
showed that Yogatama et al. (2016) learns mostly
trivial left-branching trees, and has inconsistent
performance; while Choi et al. (2017) outperforms
all baselines (including those using trees from con-
ventional parsers), but learns trees that do not cor-
respond to those of conventional treebanks.

In this paper, we propose a new latent tree learn-
ing model. Similarly to Yogatama et al. (2016), we
base our approach on shift-reduce parsing. Unlike
their work, our model is trained via standard back-
propagation, which is made possible by exploit-
ing beam search to obtain an approximate gradient.
We show that this model performs well compared
to baselines, and induces trees that are not as triv-
ial as those learned by the Yogatama et al. model
in the experiments of Williams et al. (2017a).

This paper also presents an analysis of the trees
learned by our model, in the style of Williams et al.
(2017a). We further analyse the trees learned by
the model of Maillard et al. (2017), which had
not yet been done, and perform evaluations on
both the SNLI data (Bowman et al., 2015) and the
MultiNLI data (Williams et al., 2017b). The for-
mer corpus had not been used for the evaluation of
trees of Williams et al. (2017a), and we find that it
leads to more consistent induced trees.

2 Related work

The first neural model which learns to both parse a
sentence and embed it for a downstream task is by
Socher et al. (2011). The authors train the model’s
parsing component on an auxiliary task, based on
recursive autoencoders, while the rest of the model
is trained for sentiment analysis.

Bowman et al. (2016) propose the “Shift-
reduce Parser-Interpreter Neural Network”, a
model which obtains syntax trees using an in-
tegrated shift-reduce parser (trained on gold-
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standard trees), and uses the resulting structure to
drive composition with Tree-LSTMs.

Yogatama et al. (2016) is the first model to
jointly train its parsing and sentence embedding
components. They base their model on shift-
reduce parsing. Their parser is not differentiable,
so they rely on reinforcement learning for training.

Maillard et al. (2017) propose an alternative
approach, inspired by CKY parsing. The algo-
rithm is made differentiable by using a soft-gating
approach, which approximates discrete candidate
selection by a probabilistic mixture of the con-
stituents available in a given cell of the chart. This
makes it possible to train with backpropagation.

Choi et al. (2017) use an approach similar to
easy-first parsing. The parsing decisions are dis-
crete, but the authors use the Straight-Through
Gumbel-Softmax estimator (Jang et al., 2017) to
obtain an approximate gradient and are thus able
to train with backpropagation.

Williams et al. (2017a) investigate the trees pro-
duced by Yogatama et al. (2016) and Choi et al.
(2017) when trained on two natural language in-
ference corpora, and analyse the results. They find
that the former model induces almost entirely left-
branching trees, while the latter performs well but
has inconsistent trees across re-runs with different
parameter initializations.

A number of other neural models have also been
proposed which create a tree encoding during pars-
ing, but unlike the above architectures rely on tra-
ditional parse trees. Le and Zuidema (2015) pro-
pose a sentence embedding model based on CKY,
taking as input a parse forest from an automatic
parser. Dyer et al. (2016) propose RNNG, a prob-
abilistic model of phrase-structure trees and sen-
tences, with an integrated parser that is trained on
gold standard trees.

3 Models

CKY The model of Maillard et al. (2017) is
based on chart parsing, and effectively works
like a CKY parser (Cocke, 1969; Kasami, 1965;
Younger, 1967) using a grammar with a single non-
terminal A with rules A → A A and A → α,
where α is any terminal. The parse chart is built
bottom-up incrementally, like in a standard CKY
parser. When ambiguity arises, due to the mul-
tiple ways to form a constituent, all options are
computed using a Tree-LSTM, and scored. The
constituent is then represented as a weighted sum

of all possible options, using the normalised scores
as weights. In order for this weighted sum to ap-
proximate a discrete selection, a temperature hy-
perparameter is used in the softmax. This process
is repeated for the whole chart, and the sentence
representation is given by the topmost cell.

We noticed in our experiments that the weighted
sum still occasionally assigned non-trivial weight
to more than one option. The model was thus able
to utilize multiple inferred trees, rather than a sin-
gle one, which would have potentially given it an
advantage over other latent tree models. Hence
for fairness, in our experiments we replace the
softmax-with-temperature of Maillard et al. (2017)
with a softmax followed by a straight-through es-
timator (Bengio et al., 2013). In the forward pass,
this approach is equivalent to an argmax function;
while in the backward pass it is equivalent to a soft-
max. Effectively, this means that a single tree is
selected during forward evaluation, but the train-
ing signal can still propagate to every path during
backpropagation. This change did not noticeably
affect performance on development data.

Beam Search Shift-Reduce We propose a
model based on beam search shift-reduce parsing
(BSSR). The parser works with a queue, which
holds the embeddings for the nodes representing
individual words which are still to be processed;
and a stack, which holds the embeddings of the
nodes which have already been computed. A stan-
dard binary Tree-LSTM function (Tai et al., 2015)
is used to compute the d-dimensional embeddings
of nodes:

i
fL
fR
u
o

 = Ww +UhL +VhR + b,

c = cL ⊙ σ(fL) + cR ⊙ σ(fR)

+ tanh(u)⊙ σ(i),

h = σ(o)⊙ tanh(c),

where W,U are learned 5d × d matrices, and b
is a learned 5d vector. The d-dimensional vec-
tors σ(i), σ(fL), σ(fR) are known as input gate
and left- and right-forget gates, respectively. σ(ot)
and tanh(ut) are known as output gate and can-
didate update. The vector w is a word embed-
ding, while hL,hR and cL, cR are the childrens’
h- and c-states. At the beginning, the queue con-
tains embeddings for the nodes corresponding to
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single words. These are obtained by computing
the Tree-LSTM with w set to the word embed-
ding, and hL/R, cL/R set to zero. When a SHIFT

action is performed, the topmost element of the
queue is popped, and pushed onto the stack. When
a REDUCE action is performed, the top two ele-
ments of the stack are popped. A new node is then
computed as their parent, by passing the children
through the Tree-LSTM, with w = 0. The new
node is then pushed onto the stack.

Parsing actions are scored with a simple multi-
layer perceptron, which looks at the top two stack
elements and the top queue element:

r = Ws1 · hs1 +Ws2 · hs2 +Wq · hq1,

p = softmax (a+A · tanh r),

where hs1,hs2,hq1 are the h-states of the top two
elements of the stack and the top element of the
queue, respectively. The three W matrices have
dimensions d × d and are learned; a is a learned
2-dimensional vector; and A is a learned 2 × d
vector. The final scores are given by log p, and the
best action is greedily selected at every time step.
The sentence representation is given by the h-state
of the top element of the stack after 2n− 1 steps.

In order to make this model trainable with gradi-
ent descent, we use beam search to select the b best
action sequences, where the score of a sequence of
actions is given by the sum of the scores of the in-
dividual actions. The final sentence representation
is then a weighted sum of the sentence representa-
tions from the elements of the beam. The weights
are given by the respective scores of the action
sequences, normalised by a softmax and passed
through a straight-through estimator. This is equiv-
alent to having an argmax on the forward pass,
which discretely selects the top-scoring beam el-
ement, and a softmax in the backward pass.

4 Experimental Setup

Data To match the settings of Maillard et al.
(2017), we run experiments with the SNLI cor-
pus (Bowman et al., 2015). We additionally run a
second set of experiments with the MultiNLI data
(Williams et al., 2017b), and to match Williams
et al. (2017a) we augment the MultiNLI train-
ing data with the SNLI training data. We call
this augmented training set MultiNLI+. For the
MultiNLI+ experiments, we use the matched ver-
sions of the development and test sets. We use

Model SNLI MultiNLI+

Prior work: Baselines

100D LSTM (Yogatama) 80.2 —
300D LSTM (Williams) 82.6 69.1
100D Tree-LSTM (Yogatama) 78.5 —
300D SPINN (Williams) 82.2 67.5

Prior work: Latent Tree Models

100D ST-Gumbel (Choi) 81.9 —
300D ST-Gumbel (Williams) 83.3 69.5
300D ST-Gumbel† (Williams) 83.7 67.5
100D CKY (Maillard) 81.6 —
100D RL-SPINN (Yogatama) 80.5 —
300D RL-SPINN† (Williams) 82.3 67.4

This work: Latent Tree Models

100D CKY (Ours) 82.2 69.1
100D BSSR (Ours) 83.0 69.0

Table 1: SNLI and MultiNLI (matched) test set ac-
curacy. †: results are for the model variant without
the leaf RNN transformation.

pre-trained 100D GloVe embeddings1 (Penning-
ton et al., 2014) for performance reasons, and
fine-tune them during training. Unlike Williams
et al. (2017a), we do not use a bidirectional leaf
transformation. Models are optimised with Adam
(Kingma and Ba, 2014), and we train five in-
stances of every model. For BSSR, we use a beam
size of 50, and let it linearly decrease to its final
size of 5 over the first two epochs.

Setup To assign the labels of entails, contra-
dicts, or neutral to the pairs of sentences, we
follow Yogatama et al. (2016) and concatenate
the two sentence embeddings, their element-wise
product, and their squared Euclidean distance into
a vector v. We then calculate q = ReLU (C · v +
c), where C is a 200 × 4d learned matrix and c a
200-dimensional learned bias; and finally predict
p(y = c | q) ∝ exp (B · q + b) where B is a
3× 200 matrix and b is 3-dimensional.

5 Experiments

For each model and dataset, we train five instances
using different random initialisations, for a total of
2× 2× 5 = 20 instances.

NLI Accuracy We measure SNLI and MultiNLI
test set accuracy for CKY and BSSR. The aim is
to ensure that they perform reasonably, and are in
line with other latent tree learning models of a sim-
ilar size and complexity. Results for the best mod-

1
https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/
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F1 w.r.t.
Left Branching Right Branching Stanford Parser

Dataset Model Self-F1 µ (σ) max µ (σ) max µ (σ) max

MultiNLI+ 300D SPINN (Williams) 71.5 19.3 (0.4) 19.8 36.9 (3.4) 42.6 70.2 (3.6) 74.5
MultiNLI+ 300D ST-Gumbel (Williams) 49.9 32.6 (2.0) 35.6 37.5 (2.4) 40.3 23.7 (0.9) 25.2
MultiNLI+ 300D ST-Gumbel† (Williams) 41.2 30.8 (1.2) 32.3 35.6 (3.3) 39.9 27.5 (1.0) 29.0
MultiNLI+ 300D RL-SPINN† (Williams) 98.5 99.1 (0.6) 99.8 10.7 (0.2) 11.1 18.1 (0.1) 18.2
MultiNLI+ 100D CKY (Ours) 45.9 32.9 (1.9) 35.1 31.5 (2.3) 35.1 23.7 (1.1) 25.0
MultiNLI+ 100D BSSR (Ours) 46.6 40.6 (6.5) 47.6 24.2 (6.0) 27.7 23.5 (1.8) 26.2
MultiNLI+ Random Trees (Williams) 32.6 27.9 (0.1) 27.9 28.0 (0.1) 28.1 27.0 (0.1) 27.1

SNLI 100D RL-SPINN (Yogatama) — — 41.4 — 19.9 — 41.7
SNLI 100D CKY (Ours) 59.2 43.9 (2.2) 46.9 33.7 (2.6) 36.7 30.3 (1.1) 32.1
SNLI 100D BSSR (Ours) 60.0 48.8 (5.2) 53.9 26.5 (6.9) 34.0 32.8 (3.5) 36.4
SNLI Random Trees (Ours) 35.9 32.3 (0.1) 32.4 32.5 (0.1) 32.6 32.3 (0.1) 32.5

Table 2: Unlabelled F1 scores of the trees induced by various models against: other runs of the same
model, fully left- and right-branching trees, and Stanford Parser trees provided with the datasets. The
baseline results on MultiNLI are from Williams et al. (2017a). †: results are for the model variant without
the leaf RNN transformation.

els, chosen based on development set performance,
are reported in Table 1.

While our models do not reach the state of the
art, they perform at least as well as other latent
tree models using 100D embeddings, and are com-
petitive with some 300D models. They also out-
perform the 100D Tree-LSTM of Yogatama et al.
(2016), which is given syntax trees, and match
or outperform 300D SPINN, which is explicitly
trained to parse.

Self-consistency Next, we examine the consis-
tency of the trees produced for the development
sets. Adapting the code of Williams et al. (2017a),
we measure the models’ self F1, defined as the un-
labelled F1 between trees by two instances of the
same model (given by different random initializa-
tions), averaged over all possible pairs. Results are
shown in Table 2. In order to test whether BSSR
and CKY learn similar grammars, we calculate the
inter-model F1, defined as the unlabelled F1 be-
tween instances of BSSR and CKY trained on the
same data, averaged over all possible pairs. We
find an average F1 of 42.6 for MultiNLI+ and 55.0
for SNLI, both above the random baseline.

Our Self F1 results are all above the baseline
of random trees. For MultiNLI+, they are in line
with ST-Gumbel. Remarkably, the models trained
on SNLI are noticeably more self-consistent. This
shows that the specifics of the training data play
an important role, even when the downstream
task is the same. A possible explanation is that
MultiNLI has longer sentences, as well as multiple
genres, including telephone conversations which

often do not constitute full sentences (Williams
et al., 2017b). This would require the models to
learn how to parse a wide variety of styles of data.
It is also interesting to note that the inter-model
F1 scores are not much lower than the self F1
scores. This shows that, given the same training
data, the grammars learned by the two different
models are not much more different than the gram-
mars learned by two instances of the same model.

F1 Scores Finally, we investigate whether these
models learn grammars that are recognisably left-
branching, right-branching, or similar to the trees
produced by the Stanford Parser which are in-
cluded in both datasets. We report the unlabelled
F1 between these and the trees from from our mod-
els in Table 2, averaged over the five model in-
stances. We show mean, standard deviation, and
maximum.

We find a slight preference from BSSR and the
SNLI-trained CYK towards left-branching struc-
tures. Our models do not learn anything that re-
sembles the trees from the Stanford Parser, and
have an F1 score with them which is at or be-
low the random baseline. Our results match those
of Williams et al. (2017a), which show that what-
ever these models learn, it does not resemble PTB
grammar.

6 Conclusions

First, we proposed a new latent tree learning
model based on a shift-reduce parser. Unlike a pre-
vious model based on the same parsing technique,
we showed that our approach does not learn triv-
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ial trees, and performs competitively on the down-
stream task.

Second, we analysed the trees induced by our
shift-reduce model and a latent tree model based
on chart parsing. Our results confirmed those of
previous work on different models, showing that
the learned grammars do not resemble PTB-style
trees (Williams et al., 2017a). Remarkably, we saw
that the two different models tend to learn gram-
mars which are not much more different than those
learned by two instances of the same model.

Finally, our experiments highlight the impor-
tance of the choice of training data used for la-
tent tree learning models, even when the down-
stream task is the same. Our results suggest that
MultiNLI, which has on average longer sentences
coming from different genres, might be hinder-
ing the current models’ ability to learn consistent
grammars. For future work investigating this phe-
nomenon, it may be interesting to train models us-
ing only the written genres parts of MultiNLI, or
MultiNLI without the SNLI corpus.
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