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Abstract

We report the results of our experiments
in the context of the NEWS 2018 Shared
Task on Transliteration. We focus on the
comparison of several diverse systems, in-
cluding three neural MT models. A com-
bination of discriminative, generative, and
neural models obtains the best results on
the development sets. We also put forward
ideas for improving the shared task.

1 Introduction

Transliteration is the conversion of names and
words between distinct writing scripts. It is an
interesting and well-defined task, which is suit-
able for testing sequence-to-sequence models. In
this edition of the NEWS Shared Task on Machine
Transliteration, we tested a number of different ap-
proaches on all provided languages and datasets.
Because of the sheer number of tested models,
only minimal tuning was conducted. The results
demonstrate that, on average, the neural models
perform better than other systems, and that a com-
bination of neural and non-neural models further
improves the results. However, no individual sys-
tem is clearly superior on all datasets.

2 Systems

In this section, we briefly describe the principal
systems that we tested.

2.1 DIRECTL+
DIRECTL+ is a publicly available discriminative
string transduction tool1, which was initially de-
veloped for grapheme-to-phoneme conversion (Ji-
ampojamarn et al., 2008). Previous University
of Alberta teams have successfully applied DI-
RECTL+ to transliteration in the previous editions

1https://code.google.com/archive/p/directl-p

of the NEWS shared task (Jiampojamarn et al.,
2009, 2010; Bhargava et al., 2011; Kondrak et al.,
2012; Nicolai et al., 2015). We apply M2M-aligner
(Jiampojamarn et al., 2007) to align the source-
target pairs before training.

Because of time constraints and the number of
other models that we tested, we made only min-
imal effort to tune the parameters of DIRECTL+
on distinct language sets. This explains why our
DIRECTL+ results may be lower than the ones in
the previous shared tasks. In particular, the default
maximum alignment length setting of 2 on both
sides is known to produce poor results on language
pairs that dramatically differ in the average word
length, such as English and Chinese. Other impor-
tant parameters include the source context size and
joint m-gram size.

2.2 SEQUITUR

SEQUITUR is a joint n-gram-based string trans-
duction system2 (Bisani and Ney, 2008), which di-
rectly trains a joint n-gram model from unaligned
data. Higher-order n-gram models are trained iter-
atively from lower-order models. The final order
of the model is a parameter tuned on the devel-
opment set. We found that 6-gram models work
best for most language pairs, with the following
exceptions: 4-gram for HeEn, 3-gram for ArEn
and EnVi, and 2-gram for T-EnPe.

One limitation of SEQUITUR is that both the
source and target character sets are limited to a
maximum of 255 symbols. This precluded the ap-
plication of SEQUITUR to Chinese and Japanese
Kanji. For the English-Korean (EnKo) language
pair, our work-around was to convert Korean
Hangul into Latin characters using a romanization
module.3

2http://www-i6.informatik.rwth-aachen.de/web/Software
3https://metacpan.org/Lingua::KO::Romanize::Hangul
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2.3 OpenNMT

We adopt the OpenNMT tool (Klein et al., 2017),
specifically the PyTorch variant4, as a baseline
neural machine translation system. We apply the
system “as-is” to all language pairs, with all pa-
rameters left at their default settings. Word bound-
aries are inserted between all characters in the
input and output, resulting in translation models
which view characters as words and words as sen-
tences.

2.4 Base NMT

As our main neural system, we implement a
character-level neural transducer (NMT) follow-
ing the encoder-decoder architecture of Sutskever
et al. (2014), which is widely applied to machine
translation. The encoder is a bi-directional recur-
rent neural network (RNN) applied to randomly
initialized character embeddings. We employ the
soft attention mechanism of Luong et al. (2015) to
learn an aligner within the model. The NMT is
trained for a fixed random seed using the Adam
optimizer with a learning rate of 0.0005, embed-
dings of 128 dimensions, and hidden units of size
256. We employ beam search using a beam size of
10 to generate the final predictions at test time.

2.5 RL-NMT

RL-NMT is our implementation of an alternative
system that specializes the neural encoder-decoder
architecture to the sequence-labelling task, and
trains with a biased Actor-Critic reinforcement-
learning objective (Najafi et al., 2018). The NMT
model is always conditioned on gold-standard
contexts during maximum-likelihood training,
while at test time, it is conditioned on its own pre-
dictions, creating a train-test mismatch (Ranzato
et al., 2015). In order to alleviate this mismatch,
we apply the Actor-Critic algorithm to fine-tune
the network (RL-NMT) (Sutton and Barto, 1998;
Bahdanau et al., 2016) by giving intermediate re-
wards of +1 if the generated character is cor-
rect, and 0 otherwise. We then assign the tem-
poral difference credits for each prediction (Sut-
ton and Barto, 1998). The critic model is a non-
linear feed-forward network for estimating these
assigned credits. After pre-training the NMT
model, we apply a vanilla gradient descent algo-
rithm for RL training with a fixed learning rate of
0.1.

4https://github.com/OpenNMT/OpenNMT-py

2.6 Linear Combination

We also consider the linear combination of multi-
ple systems. One motivation for the combination
is the observation that the non-neural models of-
ten perform better on datasets with fewer training
instances. We make each individual system gener-
ate the 10 best transliterations for each test input,
and combine the lists via a linear combination of
the confidence scores. Scores of each model are
normalized as described in (Nicolai et al., 2015,
Section 4.1). The linear coefficients are tuned sep-
arately for each language pair on the provided de-
velopment sets, using grid search with a step of
0.1.

2.7 Non-Standard DTLM

DTLM is a new system that combines discrimi-
native transduction with character and word lan-
guage models derived from large unannotated cor-
pora (Nicolai et al., 2018). DTLM is an extension
of DIRECTL+, whose target language modeling
is limited to a set of binary n-gram features. Tar-
get language modelling is particularly important in
low-data scenarios, where the limited transduction
models often produce many ill-formed output can-
didates. We avoid the error propagation problem
that is inherent in pipeline approaches by incorpo-
rating the LM feature sets directly into the trans-
ducer, which are based exclusively on the forms in
the parallel training data. The weights of the new
features are learned jointly with the other features
of DIRECTL+.

In addition, we bolster the quality of trans-
duction by employing a novel alignment method,
which we refer to as precision alignment. The idea
is to allow null substrings on the source side dur-
ing the alignment of the training data, and then
apply a separate aggregation algorithm to merge
them with adjoining non-empty substrings. This
method yields precise many-to-many alignment
links that result in substantially higher transduc-
tion accuracy.

Since transliteration is mostly used for named
entities, our language model and unigram counts
are obtained from a corpus of named entities. We
query DBPedia for a list of proper names, dis-
carding names that contain non-English charac-
ters. The resulting list of 1M names is used as a
word-list, and also used to train the character lan-
guage model.
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Set Development Test

System DTL SEQ
NMT

LC DTL SEQ
NMT

LC
Open Base RL Open Base RL

RunID 8 3 6 1 2 13 8 3 6 1 2 13
ChEn 19.3 N/A 23.9 31.2 31.3 32.2 11.6 N/A 19.2 20.8 20.9 21.0
EnCh 69.6 N/A 70.1 70.6 70.9 73.2 24.6 N/A 27.1 26.0 28.2 27.5
EnBa 45.4 46.0 41.6 42.3 42.5 50.7 35.8 37.8 32.7 33.5 34.0 40.7
EnHe 58.1 60.5 58.2 59.2 58.6 63.2 15.3 16.8 17.0 16.8 16.8 16.1
HeEn 20.8 25.5 23.0 25.8 26.7 29.2 6.4 6.4 9.2 7.8 7.8 8.8
EnHi 45.9 45.9 29.2 34.3 34.9 49.0 32.3 30.3 29.4 26.8 25.4 32.2
EnKa 32.9 36.3 25.8 33.0 34.5 39.9 25.1 28.3 23.4 23.7 22.0 30.4
EnTa 40.2 38.0 28.8 32.8 33.1 42.9 19.3 19.7 18.1 17.9 18.5 21.3
EnTh 37.2 37.7 36.3 39.7 41.8 44.3 14.8 14.0 15.5 16.0 16.6 16.1
ThEn 22.5 44.9 39.5 43.8 44.0 48.9 13.0 22.1 27.1 26.9 26.2 27.3
EnVi 37.0 42.8 1.0 41.6 41.2 47.8 34.0 43.6 0.0 39.6 39.6 45.4
EnJa 48.8 48.9 47.7 51.6 52.4 55.1 32.9 32.0 34.6 35.9 36.8 39.0
JnJk 42.0 N/A 36.2 50.6 50.5 53.9 38.5 N/A 46.6 56.5 56.9 59.3
ArEn 21.4 32.1 25.8 33.9 34.4 36.3 33.0 35.2 39.4 36.3 37.3 39.1
B-PeEn 16.5 31.2 28.2 26.7 26.7 33.6 N/A N/A N/A N/A N/A N/A
T-EnPe 55.5 56.0 48.8 57.2 57.6 59.6 0.0 0.0 0.0 0.0 0.0 0.0
T-PeEn 39.0 62.7 47.0 62.8 62.5 67.8 39.3 64.5 50.7 63.8 64.4 68.2
B-EnPe 79.0 76.8 70.5 76.3 77.4 81.2 61.2 61.2 53.2 58.4 59.2 62.4
EnKo 37.4 38.7 0.6 39.9 40.8 47.6 26.8 24.5 0.0 27.8 27.9 34.0
Avg 40.4 38.1 35.9 44.9 45.4 50.3 24.4 23.0 23.3 28.1 28.3 31.0

Table 1: Transliteration word accuracy on the development and test sets of the shared task.

2.8 Other submissions

We also submitted several other systems for eval-
uation. The neural models included an NMT
model with a conditional random field (CRF) in-
stead of decoder RNNs (RunID 10), self-critical
reinforcement learning over NMT (RunID 11),
and self-critical RL with intermediate rewards
(RunID 12). For the language pairs on which we
tested DTLM, we also submitted a correspond-
ing baseline DIRECTL+ model (RunID 7). The
remaining three submissions correspond to dif-
ferent linear combinations: SEQUITUR with RL-
NMT ((RunID 5), SEQUITUR/RL-NMT with DI-
RECTL+ ((RunID 9), and our primary linear com-
bination of DIRECTL+, SEQUITUR, and RL-
NMT ((RunID 13), which we report in Table 1.

3 Development Experiments

We divided the available data into three parts for
training, validation, and development testing. We
created the validation sets for each language pair
by randomly selecting instances from the provided
training sets. Our validation sets had the same size
as the provided development sets: 1000 instances

for each language pair, except 500 for EnVi. We
trained the models on the remaining instances in
the training sets. We used the provided develop-
ment sets for development testing, as well as for
selecting the SEQUITUR model order, and tuning
the linear combinations coefficients.

Table 1 shows the development results (on the
left). The average word accuracy is computed
across all 19 language pairs, using a result of 0%
for runs which could not be completed (N/A). On
average, our two neural systems outperform the
other individual systems, with RL-NMT better
than NMT in most cases. Surprisingly, one of
the two non-neural systems is the most accurate on
about half of the datasets, even though DIRECTL+
(DTL) was not properly tuned, and SEQUITUR

(SEQ) could not be run on three datasets. On the
other hand, the OpenNMT tool is well below the
other systems, and completely fails on EnVi and
EnKo. Arguably, the most interesting outcome is
that the linear combination (LC) of three diverse
systems, DIRECTL+, SEQUITUR and RL-NMT
substantially improves over the best-performing
individual system on all datasets.
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Figure 1: The effect of training size for RL-NMT
and SEQUITUR on the ArEn development set.

We conjecture that traditional ML approaches
perform better than neural networks on datasets
with fewer training instances. The average train-
ing size for the sets on which the former sur-
pass the latter is approximately 13 thousand vs. 20
thousand instances for the remaining sets. Further
evidence is provided by Figure 1, which shows
that SEQUITUR outperforms RL-NMT when the
training set contains fewer than 400 instances.

4 Test Results

For the final testing, we kept the same training
and validation splits as in the development exper-
iments. In order to facilitate comparison between
the development and test results, we decided not
to augment the training data with the provided de-
velopment sets, even though this would negatively
affect our official results.

Table 1 shows the test results (on the right). The
results in bold are the top-1 word accuracy on each
dataset, which we designated as our primary runs
for the leader-board of the shared task. Although,
unlike in the development experiments, LC falls
short of achieving the top result on each set, it is
still the best on average. RL-NMT and NMT
stand out among the individual systems, which
confirms the development results. We observe a
striking drop in accuracy across the board in com-
parison to the development results.

Table 2 shows the results of the non-standard
DTLM system and the corresponding DIRECTL+
baseline on three datasets. The ability to leverage
raw target corpora allows DTLM to substantially
outperform all other models.

Set Dev Test
System DTL DTLM DTL DTLM
RunID 7 4 7 4
ChEn 13.0 37.7 9.4 30.0
HeEn 21.9 38.7 6.8 17.3
ThEn 37.0 48.0 20.3 31.2

Table 2: The non-standard results of DTLM, and
the corresponding standard baseline.

5 Problems

In this section, we describe a few issues which we
hope will be resolved in the future NEWS tasks.

We found that the CodaLab environment did not
facilitate the submission process. During the sub-
mission phase, we experienced multiple failures
and delays due to the server being overloaded.

We could not obtain meaningful results on T-
EnPe and B-PeEn, because the Persian characters
in the train and test sets have incompatible encod-
ings. Specifically, they seem to contain a mixture
of visually similar characters from the Persian and
Arabic scripts, which have distinct encodings.

We were not able to locate the progress test data
described in the whitepaper (Chen et al., 2018).

After the results submission deadline, we be-
came aware of the proposed baseline based on SE-
QUITUR. In our opinion, the official baseline re-
sults should have been made available at the time
of the data release.

We believe that better publicity for the shared
task (for example, on the ACL Portal) would help
increase the number of participating teams. In ad-
dition, the requirement to pay for several datasets
may be a deterrent to broader participation.

6 Conclusion

We described the details of the models that we
tested in the shared task. In particular, we ex-
perimented with combining diverse ML systems,
applying reinforcement learning to neural models,
and leveraging target corpora for transliteration.
Our results suggest that these techniques lead to
improvements in accuracy with respect to the base
systems. Finally, we recounted our experiences,
and provided suggestions related to the manage-
ment of the shared task. We hope that this report
will serve as a useful reference for future experi-
ments involving the datasets from NEWS 2018.
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