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Abstract 

This paper presents a method of designing 
specific high-order dependency factor on 
the linear chain conditional random fields 
(CRFs) for named entity recognition (NER). 
Named entities tend to be separated from 
each other by multiple outside tokens in a 
text, and thus the first-order CRF, as well as 
the second-order CRF, may innately lose 
transition information between distant 
named entities. The proposed design uses 
outside label in NER as a transmission me-
dium of precedent entity information on the 
CRF. Then, empirical results apparently 
demonstrate that it is possible to exploit 
long-distance label dependency in the orig-
inal first-order linear chain CRF structure 
upon NER while reducing computational 
loss rather than in the second-order CRF. 

1 Introduction 

The concept of conditional random fields (CRFs) 
(John Lafferty, Andrew McCallum, & Fernando 
Pereira, 2001) has been successfully adapted in 
many sequence labeling problems (Andrew 
McCallum & Wei Li, 2003; Fei Sha & Fernando 
Pereira, 2003; John Lafferty et al., 2001; 
McDonald & Pereira, 2005). Even in deep-learn-
ing architecture, CRF has been used as a funda-
mental element in named entity recognition 
(Lample, Ballesteros, Subramanian, Kawakami, & 
Dyer, 2016; Liu, Tang, Wang, & Chen, 2017). 

One of the primary advantages of applying the 
CRF to language processing is that it learns transi-
tion factors between hidden variables correspond-
ing to the label of single word. The fundamental 
assumption of the model is that the current hidden 
state is conditioned on present observation as well 

as the previous state. For example, a part-of-
speech (POS) tag depends on the word itself, as 
well as the POS tag transitions from the previous 
word. In the problem, the POS tags are adjacent to 
each other in a text forming a tag sequence; there-
fore, the sequence labeling model can fully capture 
dependencies between labels. 

In contrast, a CRF in named entity recognition 
(NER) cannot fully capture dependencies between 
named entity (NE) labels. According to Ratinov & 
Roth (2009), named entities in a text are separated 
by successive “outside tokens” (i.e., words that are 
non-named entities syntactically linking two NEs) 
and considerable number of NEs have a tendency 
to exist at a distance from each other. Therefore, 
high-order interdependencies of named entities be-
tween successive outside tokens are not captured 
by first-order or second-order transition factors. 

One major issue in previous studies was con-
cerned with the way in which to explore long-dis-
tance dependencies in NER. Only dependencies 
between neighbor labels are generally used in 
practice because conventional high-order CRFs 
are known to be intractable in NER (Ye, Lee, 
Chieu, & Wu, 2009). Previous studies have 
demonstrated that implementation of the higher-
order CRF exploiting pre-defined label patterns 
leads to slight performance improvement in the 
conventional CRF in NER (Cuong, Ye, Lee, & 
Chieu, 2014; Fersini, Messina, Felici, & Roth, 
2014; Sarawagi & Cohen, 2005; Ye et al., 2009). 
However, there are certain drawbacks associated 
with handling named entity transitions within arbi-
trary length outside tokens. 

In an attempt to utilize long-distance transition 
information of NEs through non-named entity to-
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kens, this study explores the method which modi-
fies the first-order linear-chain CRF by using the 
induction method. 
 

2 Precursor-induced CRF 

Prior to introducing the new model formulation, 
the following information presents the general con-
cept of CRF. As a sequence labeling model, the 
conventional CRF models the conditional distribu-
tion 𝑃(𝒚|𝒙)  in which x is the input (e.g., token, 
word) sequence and y is the label sequence of x. A 
hidden state value set consists of target entity labels 
and a single outside label. By way of illustration, 
presume a set {𝐴, 𝐵, 𝑂} as the hidden state value set; 
assign 𝐴 or 𝐵 to NEs, likewise, assign 𝑂 to outside 
words. From the hidden state set, a label sequence 
is formed in a linear chain in NER; for example, a 
sequence 〈𝐴, 𝑂, ⋯ 𝑂, 𝐵〉  in which successive out-
side words are between the two NE words. Because 
the first-order model assumes that state transition 
dependencies exist only between proximate two la-
bels to prevent an increase in computational com-
plexity, the first-order CRF learns bigram label 
transitions from the subsequence; 
{(𝐴, 𝑂), (𝑂, 𝑂), (𝑂, 𝐵)}  that is, label transition 
data learnt from the example sequence. In the ex-
ample, dependency (𝐴 , 𝐵)  is not captured in the 
model. 

The main purpose of the precursor-induced CRF 
model, introduced in this study, is to capture spe-
cific high-order named entity dependency that is an 
outside word sequence between two NEs. The 
main idea can be explained in the following man-
ner: 

 It mainly focuses on beneficial use of outside 
label as a medium delivering dependency be-
tween separated NEs. 

 Focuses on label subsequence hav-
ing〈𝑒𝑛𝑡𝑖𝑡𝑦, 𝑜𝑢𝑡𝑠𝑖𝑑𝑒ା, 𝑒𝑛𝑡𝑖𝑡𝑦〉 pattern. (Fig-
ure 1 (a)) 

 Adds memory element to the hidden varia-
bles for the outside states (Figure 1(b)).  

 The first outside label in an outside subse-
quence explicitly has a first-order depend-
ency with its adjacent entity. If the first out-
side label tosses the information to the next, 
the information possibly flows forward. 

 By induction process, the information of the 
first entity can flow through multiple outside 
labels to the second entity state (Figure 1(c)).  

In the pre-induced CRF, the outside state with a 
memory element behaves as if an information 
transmission medium is delivering information 
about the presence or absence of the preceding en-
tity forward. It is required to expand state set. States 
are collected and only entity states are selected. 
Multiplied outside state set is derived by multipli-
cation of entity states and outside state. Expanded 
state set is consequently derived as a union of entity 
states and multiplied outside states. 

Turning to the formulation, the conditional prob-
ability distribution of a label sequence y, given an 
observation x in the CRF has a form as Eq.(1), 

 

p(𝑦|𝑥) =
ଵ

(௫)
∙

∏ 𝑒𝑥𝑝൛∑ 𝜃𝑓(𝑦௧ , 𝑦௧ିଵ, 𝑥௧)
ୀଵ ൟ்

௧ୀଵ    (1) 
 
where fk is an arbitrary feature function having cor-
responding weight 𝜃, the 𝒵(𝒙) is a partition func-
tion, and t is time step (Sutton & McCallum, 2011). 
The feature function fk is generally indicator func-
tion that has value 1 only if the function is matched 
to a certain condition, otherwise 0. Transition fac-
tor in CRF has a form of function fij(y, y', 
x)=1{y=i}1{y'=j}, and observation factor has a form of 
a function fio(y, y', x)=1{y=i}1{x=o}. Derived from 
Eq.(1), conditional probability distribution of the 
precursor-induced CRF takes a form as Eq.(2), 

p(𝑦|𝑥, 𝑎) =
ଵ

(௫,)
∙

∏ 𝑒𝑥𝑝൛∑ 𝜃𝑓(𝑦௧ , 𝑦௧ିଵ, 𝑥௧ , 𝑎௧ , 𝑎௧ିଵ)
ୀଵ ൟ்

௧ୀଵ     (2) 
 
where the variable a is to store the induced state 

 

Figure 1: Transformation from conventional 
CRF to precursor-induced CRF; two entities 

(polygons) are separated and the only depend-
ency between states are within first-order. 
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information, and the value of "at" is activated by 
the value of "at-1" and "yt" Once the "at" is activated, 
the "at" eventually transmutes the value of "yt." 

This induction process eventually expands the 
original label value set. It produces newly induced 
outside states instead of the single outside state; for 
example, the process modifies an original label se-
quence 〈𝐴, 𝑂, ⋯ 𝑂, 𝐵〉  to 〈𝐴, 𝐴[𝑂]ା, ⋯ 𝐴[𝑂]ା, 𝐵〉 . 
This transformation helps the CRF learn long-dis-
tance named entity transitions, even in the first-or-
der form; from the modified example sequence, the 
model can learn label transition data {(𝐴[𝑂]ା, 𝐵)} 
where entity 𝐵 depends on entity 𝐴 preceding itself. 
In terms of the number of newly produced states, 
when N=|States| in the original first-order CRF (a 
state set consists of NE states and one outside state), 
this procedure introduces 𝑁  new states. (if the 
IOB2 tagging scheme (Tjong & Sang, 1995) is ap-
plied, (𝑁 − 1) 2⁄ + 1 new states are introduced). 

To train the precursor-induced CRF, L-BFGS 
optimization method (Fei Sha & Fernando Pereira, 
2003) and l2-regularization (Ng, 2004) are used as 
conventional first-order CRF exploits (Sutton & 
McCallum, 2011). Furthermore, the Viterbi algo-
rithm is used for inference. 

During training and inference, it is also required 
to treat the fragmented outside states as a single 
outside label in practice. First, a weight of an ob-
servation feature fio depends on the frequency of an 
observation as well as co-occurrence label data. 
Fragmenting a single outside state into multiple 
states may cause data-sparseness problems espe-
cially for observation features occurring within the 
fine-grained outside states in training time. To pre-
vent the data sparseness problem derived by the 
precursor-induced CRF, observation factor fio(y,y',x) 
is customized as (1{i∈⌐Outside, y=i} + 1{i∈Outside}) 
1{x=o}1{y'=1}. Second, the expected label alphabets in 
inference time are required to be matched to the la-
bel alphabets of given annotation. Therefore, the 
fragmented outside state reverts to the original out-
side label. 

3 Experiments 

All the experiments were performed by imple-
menting both the original and precursor-induced 
CRF1. The activity refers to CRF implemented in 
MALLET (Andrew Kachites McCallum, 2002). To 
compare precursor-induced CRF with the original 
CRF in NER on the real-world clinical documents 
and biomedical literatures, three annotated NER 
corpus were used; i2b2 2012 NLP shared task data 

                                                      
1 https://github.com/jinsamdol/precursor-induced_CRF 

(Sun, Rumshisky, & Uzuner, 2013), discharge sum-
maries of rheumatism patients at Seoul National 
University Hospital (SNUH), and JNLPBA 2004 
Bio-Entity Recognition shared task data (Kim, 
Ohta, Tsuruoka, Tateisi, & Collier, 2004). The dis-
charge summary of rheumatism patient corpus is 
built for this evaluation. This corpus consists of 200 
electronic clinical documents where English and 
Korean words are jointly used for recording patient 
history. We used the division of training and test set 
provided by the i2b2 2012 and JNLPBA corpus in 
this evaluation. For the SNUH corpus, 10-fold 
cross validation was used. 

Annotated named entities involved in the clini-
cal NER evaluation are related to mentions describ-
ing the patient’s history. In the i2b2 2012 corpus, 
problem, test, and treatment named entity classes 
are used. In the SNUH corpus, symptom, test, diag-
nosis, medication, and procedure-operation classes 
are used. The named entity classes in the biomedi-
cal NER evaluation are DNA, RNA, protein, cell 
line, and cell type. 

In the i2b2 2012 training data, 9,942 entities 
have outside state precedence, and approximately 
63.8% cases of them take a pattern 
〈𝑒𝑛𝑡𝑖𝑡𝑦, 𝑜𝑢𝑡𝑠𝑖𝑑𝑒ା, 𝑒𝑛𝑡𝑖𝑡𝑦〉 . Likewise, in SNUH 
corpus, 58.9% cases of NEs having outside prece-
dence have a preceding named entity. Median value 
of the distance between consecutive entities tend to 
be within 3-4 in the datasets. The long distance de-
pendency is restricted within a single instance (i.e., 
a sentence). 

To perform NER evaluation, two types of feature 
families are used: (a) token itself and neighbor to-
kens in window size 3. In addition, morphologi-
cally normalized tokens are used together. (b) mor-
phology features such as character prefix and suffix 
of length 2–4. Our feature setting 1 uses the single 
feature family (a) and feature setting 2 simultane-
ously uses both of the feature family (a) and (b). 
The reason for setting these simple feature config-
urations is for the purpose of reducing bias that the 
feature will affect the performance comparison of 
the models. 

In order to compare the proposed model with the 
conventional CRF, both the first-order and the sec-
ond-order CRF are used as baseline models. 
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The performance comparison result is shown in 
the Table 1. The result shows a tendency that pre-
cursor-induced (pre-induced) CRF leads to a slight 
performance improvement compared to both the 
first-order and second-order CRFs in most cases. 
However, the overall improvement is small. 

Table 2 compares the elapsed time per iteration 
in parameter training for each model. The result 
shows that the second-order CRF takes quite more 
time than the first-order CRF to compute one train-
ing iteration. The pre-induced CRF takes 1.7 times 
more computation time than the first-order CRF in 
average. The pre-induced CRF takes significantly 
less time than the second-order CRF while the pre-
induced CRF exploits longer label transition de-
pendency than the second-order CRF. 

These results indicate that the precursor-induced 
CRF, where long-distance dependency is intro-
duced in CRF by label induction, slightly improves 
the effectiveness in clinical and biomedical NER 
while also significantly reducing computational 
cost rather than building second- or higher-order 
CRFs. 

4 Conclusion 

The requirement utilizing high-order dependen-
cies often holds in sequence labeling problems; 
however, second-order or higher-order models are 

considered computationally infeasible. Therefore, 
this study focuses on beneficial use of single out-
side label as a medium delivering long-distance de-
pendency. The design of the precursor-induced 
CRF apparently allows precedent named entity in-
formation to pass through outside labels by induc-
tion, even when the model maintains a first-order 
template. Although the performance improvement 
is small in both the clinical and biomedical NER 
evaluations, this study has shown that the proposed 
design enables reduced computational cost in uti-
lizing long-distance label dependency compared to 
the second-order CRF. 

 Evidence from this study suggests that the utili-
zation of outside labels as precedent NE infor-
mation transmission medium presumably can en-
hance the expressiveness of the CRF while keeping 
the first-order template. Considerable work is re-
quired to validate the model. For example, the val-
idation of the precursor-induced CRF in deep neu-
ral architecture for NER, such as the LSTM-CRF 
neural architecture (Lample et al., 2016), will be 
worth performing in the future. In addition, valida-
tion of the model in various problems, such as NER 
in general domain (Tjong, Sang, & Meulder, 2003) 
and de-identification problem of personal health in-
formation in clinical natural language processing 
(Stubbs, Filannino, & Uzuner, 2017; Stubbs, 
Kotfila, & Uzuner, 2015), will be performed in the 
future study. 
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