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Abstract

We describe SOCKEYE,1 an open-source sequence-to-sequence toolkit for Neural Machine

Translation (NMT). SOCKEYE is a production-ready framework for training and applying

models as well as an experimental platform for researchers. Written in Python and built on

MXNET, the toolkit offers scalable training and inference for the three most prominent encoder-

decoder architectures: attentional recurrent neural networks, self-attentional transformers, and

fully convolutional networks. SOCKEYE also supports a wide range of optimizers, normalization

and regularization techniques, and inference improvements from current NMT literature. Users

can easily run standard training recipes, explore different model settings, and incorporate new

ideas. The SOCKEYE toolkit is free software released under the Apache 2.0 license.

1 Introduction

For all its success, Neural Machine Translation (NMT) presents a range of new challenges.

While popular encoder-decoder models are attractively simple, recent literature and the results

of shared evaluation tasks show that a significant amount of engineering is required to achieve

“production-ready” performance in both translation quality and computational efficiency. In a

trend that carries over from Statistical Machine Translation (SMT), the strongest NMT systems

benefit from subtle architecture modifications, hyper-parameter tuning, and empirically effective

heuristics. To address these challenges, we introduce SOCKEYE, a neural sequence-to-sequence

toolkit written in Python and built on Apache MXNET2 [Chen et al., 2015]. To the best of our

knowledge, SOCKEYE is the only toolkit that includes implementations of all three major neural

translation architectures: attentional recurrent neural networks [Schwenk, 2012, Kalchbrenner

and Blunsom, 2013, Sutskever et al., 2014, Bahdanau et al., 2014, Luong et al., 2015], self-

attentional transformers [Vaswani et al., 2017], and fully convolutional networks [Gehring et al.,

2017]. These implementations are supported by a wide and continually updated range of features

reflecting the best ideas from recent literature. Users can easily train models based on the latest

research, compare different architectures, and extend them by adding their own code. SOCKEYE

is under active development that follows best practice for both research and production software,

including clear coding and documentation guidelines, comprehensive automatic tests, and peer

review for code contributions.

1https://github.com/awslabs/sockeye (version 1.12)
2https://mxnet.incubator.apache.org/

Proceedings of AMTA 2018, vol. 1: MT Research Track Boston, March 17 - 21, 2018   |  Page 200



2 Encoder-Decoder Models for NMT

The main idea in neural sequence-to-sequence modeling is to encode a variable-length input

sequence of tokens into a sequence of vector representations, and to then decode those representa-

tions into a sequence of output tokens. We give a brief description for the three encoder-decoder

architectures as implemented in SOCKEYE, but refer the reader to the references for more details

or to the arXiv version of this paper [Hieber et al., 2017].

2.1 Stacked Recurrent Neural Network (RNN) with Attention [Bahdanau et al., 2014,
Luong et al., 2015]

The encoder consists of a bi-directional RNN followed by a stack of uni-directional RNNs. An

RNN at layer l produces a sequence of hidden states hl
1 . . .h

l
n:

hl
i = fenc(h

l−1
i ,hl

i−1), (1)

where frnn is some non-linear function, such as a Gated Recurrent Unit (GRU) or Long Short

Term Memory (LSTM) cell, and hl−1
i is the output from the lower layer at step i. The bi-

directional RNN on the lowest layer uses the embeddings ESxi as input and concatenates the

hidden states of a forward and a reverse RNN: h0
i = [

−→
h 0

i ;
←−
h 0

i ]. With deeper networks, learning

turns increasingly difficult [Hochreiter et al., 2001, Pascanu et al., 2012] and residual connections

of the form hl
i = hl−1

i + fenc(h
l−1
i ,hl

i−1) become essential [He et al., 2016].

The decoder consists of an RNN to predict one target word at a time through a state vector s:

st = fdec([ETyt−1; s̄t−1], st−1), (2)

where fdec is a multi-layer RNN, st−1 the previous state vector, and s̄t−1 the source-dependent

attentional vector. Providing the attentional vector as an input to the first decoder layer is

also called input feeding [Luong et al., 2015]. The initial decoder hidden state is a non-linear

transformation of the last encoder hidden state: s0 = tanh(Winithn + binit). The attentional

vector s̄t combines the decoder state with a context vector ct:

s̄t = tanh(Ws̄[st; ct]), (3)

where ct is a weighted sum of encoder hidden states: ct =
∑n

i=1 αtihi. The attention vector αt

is computed by an attention network [Bahdanau et al., 2014, Luong et al., 2015]:

αti = softmax(score(st,hi))

score(s,h) = v�
a tanh(Wus +Wvh). (4)

2.2 Self-attentional Transformer
The transformer model [Vaswani et al., 2017] uses attention to replace recurrent dependencies,

making the representation at time step i independent from the other time steps. This requires the

explicit encoding of positional information in the sequence by adding fixed or learned positional

embeddings to the embedding vectors.

The encoder uses several identical blocks consisting of two core sublayers, self-attention

and a feed-forward network. The self-attention mechanism is a variation of the dot-product

attention [Luong et al., 2015] generalized to three inputs: a query matrix Q ∈ R
n×d, a key

matrix K ∈ R
n×d, and a value matrix V ∈ R

n×d, where d denotes the number of hidden

units. Vaswani et al. [2017] further extend attention to multiple heads, allowing for focusing on

different parts of the input. A single head u produces a context matrix

Cu = softmax

(
QWQ

u (KWK
u )�√

du

)
VWV

u , (5)
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where matrices WQ
u ,W

K
u and WV

u are in R
d×du . The final context matrix is given by concate-

nating the heads, followed by a linear transformation: C = [C1; . . . ;Ch]W
O. The form in

Equation 5 suggests parallel computation across all time steps in a single large matrix multiplica-

tion. Given a sequence of hidden states hi (or input embeddings), concatenated to H ∈ R
n×d,

the encoder computes self-attention using Q = K = V = H. The second subnetwork of an

encoder block is a feed-forward network with ReLU activation defined as

FFN(x) = max(0,xW1 + b1)W2 + b2, (6)

which is also easily parallelizable across time steps. Each sublayer, self-attention and feed-

forward network, is followed by a post-processing stack of dropout, layer normalization [Ba

et al., 2016], and residual connection.

The decoder uses the same self-attention and feed-forward networks subnetworks. To

maintain auto-regressiveness of the model, self-attention on future time steps is masked out

accordingly [Vaswani et al., 2017]. In addition to self-attention, a source attention layer which

uses the encoder hidden states as key and value inputs is added. Given decoder hidden states

S ∈ R
m×s and the encoder hidden states of the final encoder layer Hl, source attention is

computed as in Equation 5 with Q = S,K = Hl,V = Hl. As in the encoder, each sublayer

is followed by a post-processing stack of dropout, layer normalization [Ba et al., 2016], and

residual connection.

2.3 Fully Convolutional Models (ConvSeq2Seq)
The convolutional model [Gehring et al., 2017] uses convolutional operations and also dis-

penses with recurrency. Hence, input embeddings are again augmented with explicit positional

encodings.

The convolutional encoder applies a set of (stacked) convolutions that are defined as:

hl
i = v(Wl[hl−1

i−�k/2	; ...;h
l−1
i+�k/2	] + bl) + hl−1

i , (7)

where v is a non-linearity such as a Gated Linear Unit (GLU) [Gehring et al., 2017, Dauphin

et al., 2016] and Wl ∈ R
dcnn×kd the convolutional filters. To increase the context window

captured by the encoder architecture, multiple layers of convolutions are stacked. To maintain

sequence length across multiple stacked convolutions, inputs are padded with zero vectors.

The decoder is similar to the encoder but adds an attention mechanism to every layer. The

output of the target side convolution

sl∗t = v(Wl[s̄l−1
t−k+1; ...; s̄

l−1
t ] + bl) (8)

is combined to form S∗ and then fed as an input to the attention mechanism of Equation 5 with a

single attention head and Q = S∗,K = Hl,V = Hl, resulting in a set of context vectors ct.
The full decoder hidden state is a residual combination with the context such that

s̄lt = sl∗t + ct + s̄l−1
t . (9)

To avoid convolving over future time steps at time t, the input is padded to the left.

3 The SOCKEYE toolkit

In addition to the currently supported architectures introduced in Section 2, SOCKEYE contains a

number of model features (Section 3.1), training features (Section 3.2), and inference features

(Section 3.3). See the public code repository3 for a more detailed manual on how to use these

features and the references for detailed descriptions.

3https://github.com/awslabs/sockeye/
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3.1 Model features

Layer and weight normalization To speed up convergence of stochastic gradient descent

(SGD) learning methods, SOCKEYE implements two popular techniques: layer normalization

[Ba et al., 2016] and weight normalization [Salimans and Kingma, 2016]. If a neuron implements

a non-linear mapping f(w�x+ b), its input weights w are transformed, for layer normalization,

as wi ← (wi − mean(w))/var(w), where the weight mean and variance are calculated over all

input weights of the neuron; and, for weight normalization, as w = g · v/||v||, where the scalar

g and the vector v are neuron’s new parameters.

Weight tying Sharing weights of the input embedding layer and the top-most output layer has

been shown to improve language modeling quality [Press and Wolf, 2016] and to reduce memory

consumption for NMT. It is implemented in SOCKEYE by setting Wo = ET . For jointly-built

BPE vocabularies [Sennrich et al., 2017a], SOCKEYE also allows setting ES = ET .

RNN attention types Attention is a core component of NMT systems. Equation 4 gave the

basic mechanism for attention for RNN based architectures, but a wider family of functions can

be used to compute the score function. SOCKEYE supports the following attention types: MLP,

dot, bilinear, and location from Luong et al. [2015] and multi-head from Vaswani et al. [2012].4

RNN context gating Tu et al. [2017] introduce context gating for RNN models as a way to

better guide the generation process by selectively emphasizing source or target contexts. This

is accomplished by introducing a gate zt = σ(WzET (yt−1) +Uzsi−1 +Cz s̄t), where Wz ,

Uz and Cz are trainable weight matrices. SOCKEYE implements the “both” variant of Tu et al.

[2017], where zt multiplies the hidden state st of the decoder and 1− zt multiplies the source

context ht.

RNN attention feeding When training multi-layer RNN systems, there are several possibilities

for selecting the hidden state that is used for computation of the attention score. By default

SOCKEYE uses the last decoder RNN layer and combines the computed attention with the hidden

RNN state in a feed-forward layer similar to Luong et al. [2015]. Following Wu et al. [2016],

SOCKEYE also supports the option to use the first layer of the decoder to compute the attention

score, which is then fed to the upper decoder layers.

3.2 Training features

Optimizers SOCKEYE can train models using any optimizer from MXNET’s library, including

stochastic gradient descent (SGD) and Adam [Kingma and Ba, 2014]. SOCKEYE also includes

its own implementation of the Eve optimizer, which extends Adam by incorporating information

from the objective function [Koushik and Hayashi, 2016]. This allows learning to accelerate over

flat areas of the loss surface and decelerate when saddle points cause the objective to “bounce”.

Learning schedules Recent work has shown the value of annealing the base learning rate α
throughout training, even when using optimizers such as Adam [Vaswani et al., 2017, Denkowski

and Neubig, 2017]. SOCKEYE’s ‘plateau-reduce’ scheduler implements rate annealing as follows.

At each training checkpoint, the scheduler compares validation set perplexity against the best

previous checkpoint. If perplexity has not surpassed the previous best in N checkpoints, the

learning rate α is multiplied by a fixed constant and the counter is reset. Optionally, the scheduler

can reset model and optimizer parameters to the best previous point, simulating a perfect

prediction of when to anneal the learning rate.

4Note that the transformer and convolutional architectures cannot use these attention types.
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Monitoring Training progress is tracked in a metrics file that contains statistics computed at

each checkpoint. It includes the training and validation perplexities, total time elapsed, and

optionally a BLEU score on the validation data. To monitor BLEU scores, a subprocess is started

at every checkpoint that decodes the validation data and computes BLEU. Note that this is an

approximate BLEU score, as source and references are typically tokenized and possibly byte-pair

encoded. All statistics can also be written to a Tensorboard event file that can be rendered by a

standalone Tensorboard fork.5

Regularization SOCKEYE supports standard techniques for regularization, such as dropout.

This includes dropout on input embeddings for both the source and the target and the proposed

dropout layers for the transformer architecture. One can also enable variational dropout [Gal

and Ghahramani, 2016] to sample a fixed dropout mask across recurrent time steps, or recurrent
dropout without memory loss [Semeniuta et al., 2016]. SOCKEYE can also use MXNET’s label
smoothing [Pereyra et al., 2017] feature to efficiently back-propagate smoothed cross-entropy

gradients without explicitly representing a dense, smoothed label distribution.

Fault tolerance SOCKEYE saves the training state of all training components after every

checkpoint, including elements like the shuffling data iterator and optimizer states. Training can

therefore easily be continued from the last checkpoint in the case of aborted process.

Mult-GPU training SOCKEYE can take advantage of multipe GPUs using MXNET’s data

parallelism mechanism. Training batches are divided into equal-sized chunks and distributed to

the different GPUs which perform the computations in parallel.6

3.3 Inference features
SOCKEYE supports beam search on CPUs and GPUs through MXNET. Our beam search

implementation is optimized to make use of MXNET’s symbolic and imperative API and uses

its operators as much as possible to let the MXNET framework efficiently schedule operations.

Hypotheses in the beam are length-normalized with a configurable length penalty term as in Wu

et al. [2016].

Ensemble decoding SOCKEYE supports both linear and log-linear ensemble decoding, which

combines word predictions from multiple models. Models can use different architectures, but

must use the same target vocabulary.

Batch decoding Batch decoding allows decoding multiple sentences at once. This is partic-

ularly helpful for large translation jobs such as back-translation [Sennrich et al., 2015], where

throughput is more important than latency.

Vocabulary selection Each decoding time step requires the translation model to produce a

distribution over target vocabulary items. This output layer requires matrix operations dominated

by the size of the target vocabulary, |Vtrg|. One technique for reducing this computational cost

involves using only a subset of the target vocabulary, V′
trg , for each sentence based on the source

[Devlin, 2017]. SOCKEYE can use a probabilistic translation table7 for dynamic vocabulary

selection during decoding. For each input sentence, V′
trg is limited to the top K translations for

each source word, reducing the size of output layer matrix operations by 90% or more.

Attention visualization In cases where the attention matrix of RNN models is used in down-

stream applications, it is often useful to evaluate its soft alignments. For this, SOCKEYE supports

returning or visualizing the attention matrix of RNN models.

5https://github.com/dmlc/tensorboard
6It is important to adapt the batch size accordingly.
7For example, as produced by fast_align [Dyer et al., 2013].
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Toolkit Architecture EN→DE LV→EN

FAIRSEQ CNN 23.37 15.38

MARIAN RNN 25.93 16.19

Transformer 27.41 17.58

NEMATUS RNN 23.78 14.70

NEURALMONKEY RNN 13.73 10.54

OPENNMT-LUA RNN 22.69 13.85

OPENNMT-PY RNN 21.95 13.55

T2T Transformer 26.34 17.67

SOCKEYE CNN 24.59 15.82

RNN 25.55 15.92

Transformer 27.50 18.06

Table 1: BLEU scores for evaluated toolkits and architectures using “best found” settings on

WMT newstest2017.

4 Experiments and comparison to other toolkits

We benchmarked each of SOCKEYE’s supported architectures against other popular open-source

toolkits on two language directions: English into German (EN→DE) and Latvian into English

(LV→EN). Models in both language pairs were based on the complete parallel data provided for

each task as part of the Second Conference on Machine Translation [Bojar et al., 2017]. We

ran each toolkit in a “best available” configuration, where we took settings from recent relevant

papers that used the toolkit, or communicated directly with authors. Toolkits evaluated include

FAIRSEQ [Gehring et al., 2017], MARIAN [Junczys-Dowmunt et al., 2016], NEMATUS [Sennrich

et al., 2017b], NEURALMONKEY [Helcl and Jindřich Libovický, 2017], OPENNMT [Klein

et al., 2017], and TENSOR2TENSOR (T2T)8.9 Shown in Table 1, SOCKEYE’s RNN model is

competitive with MARIAN, the top-performer, the CNN model outperforms FAIRSEQ, and the

transformer outperforms all models from all other toolkits. See [Hieber et al., 2017] for more

extensive comparisons and further details.

5 Summary

We have presented SOCKEYE, a mature, open-source framework for neural sequence-to-sequence

learning that implements the three major architectures for neural machine translation (the only

one to do so, to our knowledge). Written in Python, it is easy to install, extend, and deploy; built

on top of MXNET, it is fast parallelizable across GPUs. In the interest of future comparisons and

cooperative development through friendly competition, we have provided the system outputs and

training and evaluation scripts used in our experiments. We invite feedback and collaboration on

the web at https://github.com/awslabs/sockeye.
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Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Shujian

Huang, Matthias Huck, Philipp Koehn, Qun Liu, Varvara Logacheva, Christof Monz, Matteo

Negri, Matt Post, Raphael Rubino, Lucia Specia, and Marco Turchi. Findings of the 2017

Conference on Machine Translation (WMT17). In WMT, 2017.

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,

Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine learning library

for heterogeneous distributed systems. CoRR, abs/1512.01274, 2015.

Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with

gated convolutional networks. CoRR, abs/1612.08083, 2016.

Michael Denkowski and Graham Neubig. Stronger baselines for trustable results in neural

machine translation. In EMNLP Workshop on NMT, 2017.

Jacob Devlin. Sharp models on dull hardware: Fast and accurate neural machine translation

decoding on the cpu. In EMNLP, 2017.

Christopher Dyer, Victor Chahuneau, and Noah Smith. A simple, fast, and effective reparameter-

ization of IBM Model 2. In NAACL, 2013.

Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in recurrent

neural networks. In NIPS, 2016.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin. Convolutional

sequence to sequence learning. CoRR, abs/1705.03122, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. In CVPR, 2016.
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