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Abstract

The positive effect of adding subword infor-
mation to word embeddings has been demon-
strated for predictive models. In this paper we
investigate whether similar benefits can also
be derived from incorporating subwords into
counting models. We evaluate the impact of
different types of subwords (n-grams and un-
supervised morphemes), with results confirm-
ing the importance of subword information
in learning representations of rare and out-of-
vocabulary words.

1 Introduction

Low dimensional word representations (embed-
dings) have become a key component in modern
NLP systems for language modeling, parsing, sen-
timent classification, and many others. These em-
beddings are usually derived by employing the dis-
tributional hypothesis: that similar words appear
in similar contexts (Harris, 1954).

The models that perform the word embedding
can be divided into two classes: predictive, which
learn a target or context word distribution, and
counting, which use a raw, weighted, or factored
word-context co-occurrence matrix (Baroni et al.,
2014). The most well-known predictive model,
which has become eponymous with word embed-
ding, is word2vec (Mikolov et al., 2013a). Pop-
ular counting models include PPMI-SVD (Levy
et al., 2014), GloVe (Pennington et al., 2014), and
LexVec (Salle et al., 2016b).

These models all learn word-level represen-
tations, which presents two main problems: 1)
Learned information is not explicitly shared
among the representations as each word has an in-
dependent vector. 2) There is no clear way to rep-
resent out-of-vocabulary (OOV) words.

fastText (Bojanowski et al., 2017) addresses
these issues in the Skip-gram word2vec model by

representing a word by the sum of a unique vector
and a set of shared character n-grams (from hereon
simply referred to as n-grams) vectors. This ad-
dresses both issues above as learned information is
shared through the n-gram vectors and from these
OOV word representations can be constructed.

In this paper we propose incorporating subword
information into counting models using a strategy
similar to fastText. We use LexVec as the counting
model as it generally outperforms PPMI-SVD and
GloVe on intrinsic and extrinsic evaluations (Salle
et al., 2016a; Cer et al., 2017; Wohlgenannt et al.,
2017; Konkol et al., 2017), but the method pro-
posed here should transfer to GloVe unchanged.

The LexVec objective is modified 1 such that a
word’s vector is the sum of all its subword vectors.
We compare 1) the use of n-gram subwords, like
fastText, and 2) unsupervised morphemes iden-
tified using Morfessor (Virpioja, 2013) to learn
whether more linguistically motivated subwords
offer any advantage over simple n-grams.

To evaluate the impact subword information has
on in-vocabulary (IV) word representations, we
run intrinsic evaluations consisting of word sim-
ilarity and word analogy tasks. The incorporation
of subword information results in similar gains
(and losses) to that of fastText over Skip-gram.
Whereas incorporating n-gram subwords tends to
capture more syntactic information, unsupervised
morphemes better preserve semantics while also
improving syntactic results. Given that intrin-
sic performance can correlate poorly with per-
formance on downstream tasks (Tsvetkov et al.,
2015), we also conduct evaluation using the Ve-
cEval suite of tasks (Nayak et al., 2016), in which
all subword models, including fastText, show no
significant improvement over word-level models.

We verify the model’s ability to represent
1Our implementation of subword LexVec is available at

https://github.com/alexandres/lexvec
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OOV words by quantitatively evaluating nearest-
neighbors. Results show that, like fastText, both
LexVec n-gram and (to a lesser degree) unsuper-
vised morpheme models give coherent answers.

This paper discusses related word (§2), intro-
duces the subword LexVec model (§3), describes
experiments (§4), analyzes results (§5), and con-
cludes with ideas for future works (§6).

2 Related Work

Word embeddings that leverage subword informa-
tion were first introduced by Schütze (1993) which
represented a word of as the sum of four-gram vec-
tors obtained running an SVD of a four-gram to
four-gram co-occurrence matrix. Our model dif-
fers by learning the subword vectors and result-
ing representation jointly as weighted factoriza-
tion of a word-context co-occurrence matrix is per-
formed.

There are many models that use character-level
subword information to form word representations
(Ling et al., 2015; Cao and Rei, 2016; Kim et al.,
2016; Wieting et al., 2016; Verwimp et al., 2017),
as well as fastText (the model on which we base
our work). Closely related are models that use
morphological segmentation in learning word rep-
resentations (Luong et al., 2013; Botha and Blun-
som, 2014; Qiu et al., 2014; Mitchell and Steed-
man, 2015; Cotterell and Schütze, 2015; Bhatia
et al., 2016). Our model also uses n-grams and
morphological segmentation, but it performs ex-
plicit matrix factorization to learn subword and
word representations, unlike these related models
which mostly use neural networks.

Finally, Cotterell et al. (2016) and Vúlic et al.
(2017) retrofit morphological information onto
pre-trained models. These differ from our work in
that we incorporate morphological information at
training time, and that only Cotterell et al. (2016)
is able to generate embeddings for OOV words.

3 Subword LexVec

The LexVec (Salle et al., 2016a) model factorizes
the PPMI-weighted word-context co-occurrence
matrix using stochastic gradient descent.

PPMIwc = max(0, log
Mwc M∗∗
Mw∗ M∗c

) (1)

where M is the word-context co-occurrence ma-
trix constructed by sliding a window of fixed size

centered over every target word w in the subsam-
pled (Mikolov et al., 2013a) training corpus and
incrementing cell Mwc for every context word c
appearing within this window (forming a (w, c)
pair). LexVec adjusts the PPMI matrix using con-
text distribution smoothing (Levy et al., 2014).

With the PPMI matrix calculated, the sliding
window process is repeated and the following loss
functions are minimized for every observed (w, c)
pair and target word w:

Lwc =
1

2
(u>wvc − PPMIwc)

2 (2)

Lw =
1

2

k∑

i=1

Eci∼Pn(c)(u
>
wvci − PPMIwci)

2

(3)

where uw and vc are d-dimensional word and
context vectors. The second loss function de-
scribes how, for each target word, k negative sam-
ples (Mikolov et al., 2013a) are drawn from the
smoothed context unigram distribution.

Given a set of subwords Sw for a word w, we
follow fastText and replace uw in eqs. (2) and (3)
by u′w such that:

u′w =
1

|Sw|+ 1
(uw +

∑

s∈Sw

qhash(s)) (4)

such that a word is the sum of its word vector and
its d-dimensional subword vectors qx. The num-
ber of possible subwords is very large so the func-
tion hash(s)2 hashes a subword to the interval
[1, buckets]. For OOV words,

u′w =
1

|Sw|
∑

s∈Sw

qhash(s) (5)

We compare two types of subwords: simple
n-grams (like fastText) and unsupervised mor-
phemes. For example, given the word “cat”, we
mark beginning and end with angled brackets and
use all n-grams of length 3 to 6 as subwords,
yielding Scat = {〈 ca, at〉, cat}. Morfessor (Vir-
pioja, 2013) is used to probabilistically segment
words into morphemes. The Morfessor model
is trained using raw text so it is entirely unsu-
pervised. For the word “subsequent”, we get
Ssubsequent = {〈 sub, sequent〉}.

2http://www.isthe.com/chongo/tech/comp/fnv/
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4 Materials

Our experiments aim to measure if the incorpora-
tion of subword information into LexVec results
in similar improvements as observed in moving
from Skip-gram to fastText, and whether unsu-
pervised morphemes offer any advantage over n-
grams. For IV words, we perform intrinsic evalua-
tion via word similarity and word analogy tasks, as
well as downstream tasks. OOV word representa-
tion is tested through qualitative nearest-neighbor
analysis.

All models are trained using a 2015 dump of
Wikipedia, lowercased and using only alphanu-
meric characters. Vocabulary is limited to words
that appear at least 100 times for a total of 303517
words. Morfessor is trained on this vocabulary list.

We train the standard LexVec (LV), LexVec
using n-grams (LV-N), and LexVec using
unsupervised morphemes (LV-M) using the
same hyper-parameters as Salle et al. (2016a)
(window = 2, initial learning rate = .025,
subsampling = 10−5, negative samples = 5,
context distribution smoothing = .75,
positional contexts = True).

Both Skip-gram (SG) and fastText (FT) are
trained using the reference implementation3 of
fastText with the hyper-parameters given by
Bojanowski et al. (2017) (window = 5,
initial learning rate = .025, subsampling = 10−4,
negative samples = 5).

All five models are run for 5 iterations over
the training corpus and generate 300 dimensional
word representations. LV-N, LV-M, and FT use
2000000 buckets when hashing subwords.

For word similarity evaluations, we use the
WordSim-353 Similarity (WS-Sim) and Relat-
edness (WS-Rel) (Finkelstein et al., 2001) and
SimLex-999 (SimLex) (Hill et al., 2015) datasets,
and the Rare Word (RW) (Luong et al., 2013)
dataset to verify if subword information improves
rare word representation. Relationships are mea-
sured using the Google semantic (GSem) and syn-
tactic (GSyn) analogies (Mikolov et al., 2013a)
and the Microsoft syntactic analogies (MSR)
dataset (Mikolov et al., 2013b).

We also evaluate all five models on downstream
tasks from the VecEval suite (Nayak et al., 2016)4,
using only the tasks for which training and evalu-
ation data is freely available: chunking, sentiment

3https://github.com/facebookresearch/fastText
4https://github.com/NehaNayak/veceval

Evaluation LV LV-N LV-M SG FT
WS-Sim .749 .748 .746 .783 .778
WS-Rel .627 .627 .625 .683 .672
SimLex .359 .374 .366 .371 .367

RW .461 .522 .479 .481 .500
GSem 80.7 73.8 80.7 78.9 77.0
GSyn 62.8 68.6 63.8 68.2 71.1
MSR 49.6 55.0 53.8 57.8 59.6

Chunk 90.4 90.6 90.5 90.4 90.4
Sentiment 77.0 77.0 77.6 75.3 77.9
Questions 87.4 87.4 87.3 86.6 85.1

NLI 43.3 43.4 43.3 43.4 43.8

Table 1: Word similarity (Spearman’s rho), analogy
(% accuracy), and downstream task (% accuracy) re-
sults. In downstream tasks, for the same model accu-
racy varies over different runs, so we report the mean
over 20 runs, in which the only significantly (p < .05
under a random permutation test) different result is in
chunking.

and question classification, and natural language
identification (NLI). The default settings from the
suite are used, but we run only the fixed settings,
where the embeddings themselves are not tunable
parameters of the models, forcing the system to
use only the information already in the embed-
dings.

Finally, we use LV-N, LV-M, and FT to gen-
erate OOV word representations for the follow-
ing words: 1) “hellooo”: a greeting commonly
used in instant messaging which emphasizes a syl-
lable. 2) “marvelicious”: a made-up word ob-
tained by merging “marvelous” and “delicious”.
3) “louisana”: a misspelling of the proper name
“Louisiana”. 4) “rereread”: recursive use of prefix
“re”. 5) “tuzread”: made-up prefix “tuz”.

5 Results

Results for IV evaluation are shown in table 1, and
for OOV in table 2. Like in FT, the use of subword
information in both LV-N and LV-M results in 1)
better representation of rare words, as evidenced
by the increase in RW correlation, and 2) signifi-
cant improvement on the GSyn and MSR tasks, in
evidence of subwords encoding information about
a word’s syntactic function (the suffix “ly”, for
example, suggests an adverb). There seems to a
trade-off between capturing semantics and syntax
as in both LV-N and FT there is an accompany-
ing decrease on the GSem tasks in exchange for
gains on the GSyn and MSR tasks. Morphological
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Word Model 5 Nearest Neighbors

“hellooo”
LV-N hellogoodbye, hello, helloworld, helloween, helluva
LV-M kitsos, finos, neros, nonono, theodoroi

FT hello, helloworld, hellogoodbye, helloween, joegazz

“marvelicious”
LV-N delicious, marveled, marveling, licious, marvellous
LV-M marveling, marvelously, marveled, marvelled, loquacious

FT delicious, deliciously, marveling, licious, marvelman

“louisana”
LV-N luisana, pisana, belisana, chiisana, rosana
LV-M louisy, louises, louison, louiseville, louisiade

FT luisana, louisa, belisana, anabella, rosana

“rereread”
LV-N reread, rereading, read, writeread, rerecord
LV-M alread, carreer, whiteread, unremarked, oread

FT reread, rereading, read, reiterate, writeread

“tuzread”
LV-N tuzi, tuz, tuzla, prizren, momchilgrad, studenica
LV-M tuzluca, paczk, goldsztajn, belzberg, yizkor

FT pazaryeri, tufanbeyli, yenipazar, leskovac, berovo

Table 2: We generate vectors for OOV using subword information and search for the nearest (cosine distance)
words in the embedding space. The LV-M segmentation for each word is: {〈hell, o, o, o〉}, {〈marvel, i, cious〉},
{〈louis, ana〉}, {〈re, re, read〉}, {〈 tu, z, read〉}. We omit the LV-N and FT n-grams as they are trivial and too
numerous to list.

segmentation in LV-M appears to favor syntax less
strongly than do simple n-grams.

On the downstream tasks, we only observe sta-
tistically significant (p < .05 under a random per-
mutation test) improvement on the chunking task,
and it is a very small gain. We attribute this to both
regular and subword models having very similar
quality on frequent IV word representation. Statis-
tically, these are the words are that are most likely
to appear in the downstream task instances, and so
the superior representation of rare words has, due
to their nature, little impact on overall accuracy.
Because in all tasks OOV words are mapped to
the “〈unk〉” token, the subword models are not be-
ing used to the fullest, and in future work we will
investigate whether generating representations for
all words improves task performance.

In OOV representation (table 2), LV-N and FT
work almost identically, as is to be expected. Both
find highly coherent neighbors for the words “hel-
looo”, “marvelicious”, and “rereread”. Interest-
ingly, the misspelling of “louisana” leads to co-
herent name-like neighbors, although none is the
expected correct spelling “louisiana”. All models
stumble on the made-up prefix “tuz”. A possible
fix would be to down-weigh very rare subwords in
the vector summation. LV-M is less robust than
LV-N and FT on this task as it is highly sensitive
to incorrect segmentation, exemplified in the “hel-
looo” example.

Finally, we see that nearest-neighbors are a
mixture of similarly pre/suffixed words. If these
pre/suffixes are semantic, the neighbors are se-
mantically related, else if syntactic they have sim-
ilar syntactic function. This suggests that it should
be possible to get tunable representations which
are more driven by semantics or syntax by a
weighted summation of subword vectors, given we
can identify whether a pre/suffix is semantic or
syntactic in nature and weigh them accordingly.
This might be possible without supervision using
corpus statistics as syntactic subwords are likely to
be more frequent, and so could be down-weighted
for more semantic representations. This is some-
thing we will pursue in future work.

6 Conclusion and Future Work

In this paper, we incorporated subword infor-
mation (simple n-grams and unsupervised mor-
phemes) into the LexVec word embedding model
and evaluated its impact on the resulting IV
and OOV word vectors. Like fastText, sub-
word LexVec learns better representations for rare
words than its word-level counterpart. All mod-
els generated coherent representations for OOV
words, with simple n-grams demonstrating more
robustness than unsupervised morphemes. In fu-
ture work, we will verify whether using OOV rep-
resentations in downstream tasks improves perfor-
mance. We will also explore the trade-off between
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semantics and syntax when subword information
is used.
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