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Deep learning has brought a wealth of state-of-the-art results and new capabilities. Although methods
have achieved near human-level performance on many benchmarks, numerous recent studies imply that
these benchmarks only weakly test their intended purpose, and that simple examples produced either
by human or machine, cause systems to fail spectacularly. For example, a recently released textual
entailment demo was criticized on social media for predicting that “John killed Mary” entails “Mary
killed John” with 92% confidence. Such surprising failures combined with the inability to interpret state-
of-the-art models have eroded confidence in our systems, and while these systems are not perfect, the
real flaw lies with our benchmarks that do not adequately measure a model’s ability to generalize, and
are thus easily gameable.

This workshop provides a venue for exploring new approaches for measuring and enforcing
generalization in models. We have solicited work in the following areas:

1. Analysis of existing models and their failings.

2. Creation of new evaluation paradigms, e.g. zero-shot learning, Winnograd schema, and datasets
that avoid explicit types of gamification.

3. Modeling advances such as regularization, compositionality, interpretability, inductive bias, multi-
task learning, and other methods that promote generalization.

Our goals are similar in spirit to those of the recent “Build it Break it” shared task. However, we
propose going beyond identifying areas of weakness (i.e. “breaking” existing systems), and discussing
evaluations that rigorously test generalization as well as modeling techniques for enforcing it.

We received eight archival submissions and seven cross submission, accepting five archival papers and
all cross submission. Predominately papers covered the first two stated goals of workshop, with the
majority identifying flaws in either methods or data. Of the papers proposing new evaluations, many
explored using synthetic data. The papers will be presented as posters at the workshop and we are
excited to see what discussions they generate. In addition to twelve papers that will be presented we are
equally excited for talks from Sam Bowman, Yejin Choi, Percy Liang, Ndapa Nakashole, Devi Parikh,
and Dan Roth. Finally , we would also like to thank Yejin, Devi and Dan for helping through service on
the steering committee.

– Yonatan, Omer, Mark
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Abstract

In this paper, we investigate the tendency of
end-to-end neural Machine Reading Compre-
hension (MRC) models to match shallow pat-
terns rather than perform inference-oriented
reasoning on RC benchmarks. We aim to test
the ability of these systems to answer ques-
tions which focus on referential inference. We
propose ParallelQA, a strategy to formulate
such questions using parallel passages. We
also demonstrate that existing neural models
fail to generalize well to this setting.

1 Introduction

Reading Comprehension (RC) is the task of read-
ing a body of text and answering questions about
it. It requires a deep understanding of the infor-
mation presented in order to reason about entities,
actions, events, and their interrelationships. This
necessitates language understanding skills as well
as the cognitive ability to draw inferences.

Recent efforts in creating large-scale datasets
have triggered a renewed interest in the RC task,
with subsequent development of complex end-
to-end solutions featuring neural models. While
these models do exceedingly well on the specific
datasets they are developed for (some reaching
or even surpassing human performance), they do
not perform proportionally across datasets. Weis-
senborn et al. (2017) have shown that using a con-
text or type matching heuristic to derive simple
neural baseline architectures can achieve compa-
rable results. Our experiments also indicate that
pattern matching can work well on these datasets.

Inference, an important RC skill (Spearritt,
1972; Strange, 1980), is the ability to understand
the meaning of text without all the information be-
ing stated explicitly. Table 5, Section A describes
the types of inference that we may encounter while
comprehending a passage along with the cues that

∗Equal Contribution

help perform such reasoning. Although state-of-
the-art deep learning models for machine reading
are believed to have such reasoning capabilities,
the limited ability of these models to generalize
indicates certain shortcomings. We believe that it
is important to develop benchmarks which give a
realistic sense of a system’s RC capabilities. Thus,
our goal in this paper is two-fold:
Proof of Concept: We propose a method to create
an RC dataset that assesses a model’s ability to:
• move beyond lexical pattern matching be-

tween the question and passage,
• infer the correct answers to questions which

contain referring expressions, and
• generalize to different language styles.

Analysis of Existing Models: We test three
end-to-end neural MRC models, which perform
well on SQuAD (Rajpurkar et al., 2016), on a
few question-answer pairs generated using our
methodology. We demonstrate that it is indeed dif-
ficult for these systems to answer such questions,
also indicating their tendencies to resort to shallow
pattern matching and overfit to training data.

2 Existing Datasets

In this work, we focus on datasets with multi-
word spans as answers rather than cloze-style RC
datasets like MCTest (Richardson et al., 2013),
CNN / Daily Mail (Hermann et al., 2015) and
Children’s Book Test (Weston et al., 2015).

The Stanford Question Answering Dataset
(SQuAD) (Rajpurkar et al., 2016) was one of the
first large scale RC datasets (over 100k QA pairs),
where the answer to each question is a span in the
given passage. For its collection, different sets
of crowd-workers were asked to formulate ques-
tions and answers using passages obtained from
∼500 Wikipedia articles. However, this resulted
in the questions having similar word patterns to
the sentences containing the answers. We empir-
ically demonstrate this in Table 1, where we ob-
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served that the sentence in the passage with the
highest lexical similarity to the question contained
the answer ∼80% of the time. Final answers tend
to be short, with an average span length of around
3 tokens, and are largely entities (40.88%). Subra-
manian et al. (2017) and Yang et al. (2017) provide
evidence for regular patterns in candidate answers
that neural models can exploit. We show in subse-
quent sections that models which perform well on
SQuAD rely on lexical pattern matching, and are
also not robust to variance in language style.

Metric SQuAD NewsQA ParallelQA
Jaccard 79.28% 38.11% 27.45%
TF-IDF 81.32% 51.86% 31.37%
BM25 74.26% 43.45% 27.45%

Table 1: Sentence Retrieval Performance using
Jaccard similarity (Jaccard, 1912), TF-IDF overlap
(Sparck Jones, 1972) and BM-25 overlap (Robertson
et al., 1994) scoring metrics

To alleviate the lack of topic diversity in
SQuAD, NewsQA (Trischler et al., 2016) was
created from 12,744 news articles sampled from
CNN/Daily Mail. To ensure lexical diversity, one
set of crowd-workers generated questions using
only an abstractive summary, while the answer
spans were marked in the full article by another set
of crowd-workers. However, news articles tend to
encourage questions that point to entities, and the
dataset does not specifically focus on inference.
Determining the exact answer span is harder, but
this may be due to the use of only news highlights
to generate questions; this may induce noise in the
answer spans marked in the news articles since the
question might not be exactly apt.

To prevent annotation bias, SearchQA (Dunn
et al., 2017) starts with question-answer pairs
from Jeopardy! and adds documents retrieved
by a search engine for each question as its con-
text. However, the questions are mostly factoid.
Kočiskỳ et al. (2017) found that 80% of answers
are bigrams or unigrams, and 99% contain 5 or
fewer tokens, with many answers being named
entities. TriviaQA (Joshi et al., 2017) similarly
includes question-answer pairs authored by trivia
enthusiasts along with independently-gathered ev-
idence documents which provide distant supervi-
sion for answering the questions.

These datasets have facilitated the development
of new QA models, but we believe there are sev-

eral important aspects of RC that remain untested.

3 ParallelQA

In an RC task, there is a need to incorporate ques-
tions that require not just lexical and syntactic
prowess, but reference resolution, multiple steps
of reasoning, and use of world knowledge. These
capabilities ultimately lead to global rather than
sentence-level understanding of text. The con-
struction of a large-scale dataset of this nature is
a challenging task. We take a small step in this
direction by focusing on referential inference.1

WikiHop (Welbl et al., 2017) is an interesting
multi-hop inference-focused dataset created using
entity-relation pairs for queries spanning different
Wikipedia passages. While the focus of our pi-
lot study is similar to theirs, we believe that our
method can easily be extended to other inference
types. Also, identifying the correct span is more
challenging than choosing an answer from a list.

We aim to incorporate multiple language styles,
making it hard for the system to memorize linguis-
tic patterns (Williams et al., 2017). We achieve
this by using two parallel passages that talk about
the same or related subject(s) but are obtained
from different sources. This helps in formulating
referential inference questions because there exists
no single sentence in the passage which matches a
paraphrase of the question, and necessitates that
inference (which goes beyond co-reference) be
performed across both passages. Evaluation is
easy and objective because answers are still spans
within the passages. Questions can be answered
solely on the basis of the information provided in
their accompanying passages.

For example, to answer Question 1 in Table 2,
the system will have to infer from passage 1 that
President Kamazu Banda belongs to the MCP and
was defeated in the elections. The equivalence of
this event and the election in passage 2 must be es-
tablished, while comprehending that the “favored
challenger” Bakili Muluzi is the one Banda lost
the elections to, and who belonged to the UDP,
making it the correct answer.

Given that the information is spatially scattered
across the two passages, this method would ensure
that the parallel passages have to be understood in
combination to answer the question.

1Referential inference is the process of identifying the dis-
course and/or real-world entity referred to by a linguistic ex-
pression (name, noun, pronoun, etc.).
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Hastings Kamuzu Banda was the leader of Malawi from 1961 to 1994. In 1963 he was formally appointed prime minister of
Nyasaland and, a year later, led the country to independence as Malawi. Two years later he proclaimed Malawi a republic with
himself as president. He declared Malawi a one-party state under the Malawi Congress Party (MCP) and became President of
MCP as well as President for Life of Malawi in 1971. A referendum ended his one-party state and a special assembly ended his
life-term presidency, stripping him of most of his powers. Banda ran for president in the democratic elections which followed
and was defeated. He died in South Africa in 1997.

Malawians Saturday wound up an historic election campaign bringing multiparty politics to a country ruled for the past three
decades by President Hastings Kamuzu Banda. The ailing president inspected troops from an open truck as some 20,000 people
turned up at a stadium here to celebrate his official birthday ahead of elections on May 17. Reading a prepared speech with
some difficulty, Banda appealed to Malawians to conduct themselves ”as ladies and gentlemen” during the elections, which
should be ”free and fair.” Meanwhile, the bigger opposition rally was addressed by the presidential challenger favored to win
the elections, Bakili Muluzi of the United Democratic Front (UDF).

Question 1: Who emerged victorious between the MCP and UDF?

Question 2: What did the MCP leader ask of the people of Malawi on polling day?

Question 3: What brought multiparty politics to Malawi after three decades?

Table 2: Example of a Parallel Passage. The questions and corresponding answers are color coded.

4 Proof of Concept

For a fair evaluation of existing models, we sought
to use data drawn from a similar domain, but writ-
ten in a different style. We chose the CNN/Daily
Mail corpus and Wikipedia because they both fo-
cus on factoid statements, yet differ in language
style to a noticeable extent (e.g. in the use of id-
iomatic expressions). We picked 20 CNN/Daily
Mail articles at random to form one of the passages
in our pair. To find an associated parallel passage,
we selected the most frequently mentioned enti-
ties in each article and obtained its corresponding
Wikipedia pages. We fragmented these into pas-
sages with at most 500 words, and performed a
k-Nearest Neighbor search using tf-idf and topic
vectors (Blei et al., 2003) to form pairs. We tuned
the number of entities per article used to retrieve
Wikipedia pages, as well as the sections consid-
ered in each article. This process produced a to-
tal of 15 News-Wiki passage pairs. While no two
pairs have the same news article, they may be
paired with the same Wiki passage.

We focused on referential inference for this pi-
lot, but the method can be extended to include
questions based on other types of inference. 15
human annotators were given explicit instructions
and real-world examples to form question-answer
pairs using given parallel passages. We collected
∼ 50 valid question-answer pairs through this
mechanism. The average length of the answers
obtained was around 4 words. Basic sentence re-
trieval statistics (similar to the ones discussed in
Section 2) are shown in Table 1, indicating that
lexical similarity between the question and pas-
sage sentences is insufficient to obtain an answer.

Our small-scale experiment shows the feasibil-
ity of the approach, although collecting a larger
dataset requires more effort in acquiring passages
and generating questions from diverse sources.

5 Analysis of Existing Models

Model
SQuAD ParallelQA

EM F1 EM F1
BiDAF 67.70 77.30 35.29 42.52
DrQA 69.64 78.76 39.22 47.23
R-Net 71.07 79.51 41.18 50.38

Table 3: Performance on SQuAD vs ParallelQA

We consider three deep learning models: Bidi-
rectional Attention Flow (BiDAF) 2 (Seo et al.,
2016), Document Reader (DrQA) 3 (Chen et al.,
2017), and Gated Self-Matching Networks (R-
Net) 4 (Wang et al., 2017) trained on SQuAD.
We feed the concatenated parallel passage and the
question as inputs. On a total of 51 QA pairs, we
observed exact match (EM) scores of about 40%
and token overlap F1 scores of about 45% for all
models, versus their performance on the SQuAD
dataset (EM of almost 70% and F1 of 80%). De-
tailed results are shown in Table 3.

Although the models were trained and tested on
different datasets, we expect them to perform rea-
sonably well on the new task since the data sources
and domain are similar. Also, the size of our col-
lected data is much smaller than the SQuAD de-
velopment set, but we believe that the samples are
fairly representative of data that can be generated

2
https://allenai.github.io/bi-att-flow/

3
https://github.com/hitvoice/DrQA

4
https://github.com/HKUST-KnowComp/R-Net
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Passage Question
...The UN is the largest, most familiar, most internationally represented and most power-
ful intergovernmental organisation in the world...UN envoy Yasushi Akashi called a meet-
ing of all parties to talks on a four-month ceasefire for Saturday afternoon, he added...

Who was sent to Bosnia as the envoy
of most powerful intergovernmental
organisation in the world?

...On arrival, the president and his wife Hillary were taken to University College, one
of 37 Oxford colleges, where he studied political science as a Rhodes Scholar between
October 1968 and June 1970... Clinton was born and raised in Arkansas and ...

From which state was this US Pres-
ident who was a Rhodes scholar be-
tween 1968 and 1970?

...withdrew from a UN-designated three-kilometer (two-mile) exclusion zone around the
eastern Bosnian enclave of Gorazde ... The United Nations (UN) is an intergovernmental
organization ... A replacement for the ineffective League of Nations, the organization ...
[eastern Bosnian enclave, Gorazde, eastern Bosnian enclave of Gorazde]

Where in Bosnia did the successor of
the League of Nations designate an
exclusion zone?

Todd Martin squeezed to a 7-6 7-6 victory over fellow-American Pete Sampras in the
final of the Queen’s Club tournament here on Sunday. The win further bolstered fifth
seeded Martin’s reputation as one of the most dangerous grass court players...

Pistol Pete lost to whom in the
Queen’s club tournament?

... (RENAMO) rebels at a UN-supervised assembly point brutally beat one of their senior
officials during a mutiny over severance pay on June 1 at Mocubela, about 100 kilometers
(62 miles) east of Mocuba. But RENAMO has denied the official, identified as Raul
Dique, was beaten up by mutineers, the Mozambican news agency (AIM) said in a report
monitored in Harare Thursday ...

Where was Raul Dique beaten up by
rebels of RENAMO?

Table 4: Examples of error trends on ParallelQA: blue - gold answer, red - span predicted incorrectly by all models,
orange - BiDAF and R-Net prediction overlap, olive - BiDAF, magenta - DrQA, cyan - R-Net

using our proposed mechanism. Thus, the low EM
and F1 scores support our hypothesis that these
datasets do not adequately assess the capabilities
of these models, which overfit to lexical patterns
rather than generalizing.

We now discuss a few common errors observed
upon manual inspection of the results. Examples
for each are provided in Table 4. The distribution
of predictions across these error categories can be
found in Figure 1, Section A.

• High Lexical Overlap - Incorrect Sen-
tence: The models tend to pick answer spans
from sentences which have high lexical over-
lap with the question. We observe that this
accounts for the largest chunk of errors across
all models (example 2). Our observations are
consistent with the findings of Jia and Liang
(2017). The models often simply resolve the
referential expression in the question to its
corresponding entity. In example 1, the mod-
els resolve “organisation” in the question to
“The UN” due to high lexical similarity.

• Incorrect Answer Boundaries: This is the
second most frequently observed error, where
the answers generated are almost correct, but
models face issues in appropriately defining
answer boundaries (example 3). R-Net and
DrQA, on average, produce shorter answers.
BiDAF tends to produce longer answers.

• Missing Logical Inference: Models are
sometimes unable to make certain logical
conclusions like A’s victory over B implies
that B lost to A (example 4).

• Entity Type Confusion: Despite having a
variety of entities as answers to questions in
the training data, sometimes the model an-
swers do not correspond to the correct entity
type (example 5).

6 Discussion & Conclusion

While our approach is promising, we observed a
few problems during the pilot study. Longer pas-
sages and constraints on the question formulation
require more time and skill in the annotation pro-
cess. This can lead to crowd-workers formulating
a single referring expression and then using it in
different contexts to form questions, reducing di-
versity. For some questions, although inference
is needed, both passages may not be necessary to
answer them. Since we used news articles and
Wikipedia passages in our pilot study, 58.82% of
answers were named entities. We plan to extend
this mechanism to other inference types and con-
duct a larger pilot before scaling up the collection.

Our experiments demonstrate that the Paral-
lelQA task can be more challenging than some
prior QA tasks. Our analysis shows that many
popular RC datasets seem to test the ability of
models to pick up superficial cues. ParallelQA
is our proposed step towards inference-oriented
reading comprehension. We use parallel pas-
sages from different sources for generating rea-
soning questions which encourage systems to gain
a deeper understanding of language, and become
robust to variations in style and topic. We include
examples from our initial pilot study in Table 6.
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A Supplemental Material

Inference Type Meaning Examples Information Required
Referential Coreferences, Referring Expressions Bill Clinton’s wife is Hillary Clinton A link between the expression and entity it refers to
Figurative Metaphors All the world’s a stage A dictionary of common metaphors and what they mean

Part-Whole Inclusion A dog is an animal An ontology of hierarchical and other relationships between words
Numeric Units, Operations 60 seconds is a minute Equivalence (and conversion) of units, Basic Operation Skills
Lexical Meanings from Linguistic Context I ate an apple (apple = fruit or company?) Contextual Information: Word Embeddings / NER / PoS

Denotation Literal Meanings of Expressions Olive branch denotes peace World Knowledge + Contextual Information
Spatial Reasoning about Space Berlin is in Germany which is in Europe World Knowledge + Basic Spatial Reasoning Rules

Temporal Reasoning about Time World War II happened before Cold War World Knowledge + Basic Temporal Reasoning Rules

Table 5: Different Types of Inference along with examples and possible information required to perform them

Figure 1: Distribution of errors by BiDAF, DrQA and R-Net across different categories using manual inspection
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Todd Martin squeezed to a 7-6 7-6 victory over fellow-American Pete Sampras in the final of the Queen’s Club tournament
here on Sunday. The win further bolstered fifth seeded Martin’s reputation as one of the most dangerous grass court players.
But it was essentially a baseline slogging match which provided little to whet the appetite for Wimbledon. There were no
breaks of serve in either set and only three break points in the entire match - two against Sampras in the second game and one
against Martin in the next. Martin clinched the first tie-break courtesy of a double fault from Sampras to lead 4-2 and then a
glorious cross-court forehand return on his second set point to take the shoot-out 7-4. He took the second tie-break by the same
score, Sampras saving three match points before a fierce smash clinched Martin’s third career title and his first victory over his
compatriot in four meetings.

Petros ”Pete” Sampras (born August 12, 1971) is a retired American tennis player widely regarded as one of the greatest in
the history of the sport. He was a longtime world No. 1 with a precise serve that earned him the nickname ”Pistol Pete”.
His career began in 1988 and ended at the 2002 US Open, which he won, defeating rival Andre Agassi in the final. Sampras
was the first man to win 14 Grand Slam singles titles (seven Wimbledon, five US Open, two Australian Open). He also won
seven year-end championships and finished six consecutive seasons atop the rankings. Summary of professional awards. U.S.
Olympic Committee ”Sportsman of the Year” in 1997. He was the first tennis player to receive this award. GQ Magazine’s
Individual Athlete Award for Man of the Year in 2000. Selected the No. 1 player (of 25 players) in the past 25 years by a
panel of 100 current and past players, journalists, and tournament directors to commemorate the 25th anniversary of the ATP
in 1997. Voted 48th athlete of Top 50 Greatest North American Athletes of ESPN’s SportsCentury (also youngest on list). In
2005, TENNIS Magazine named Sampras the greatest tennis player for the period 1965 through 2005, from its list, ”The 40
Greatest Players of the TENNIS Era”.

Question 1: The first man to win 14 Grand Slam singles titles lost to whom in the Queen’s club tournament?

Question 2: The greatest tennis player for the period 1965 through 2005 lost to Todd Martin in the finals of which tournament?

Question 3: What was the tally of Todd’s career titles after defeating the GQ Magazine’s Man of the Year award winner, in the
final of Queen’s club tournament?

Cambodian co-premiers Prince Norodom Ranariddh and Hun Sen said Wednesday they had agreed to holding peace talks with
the Khmer Rouge in Pyongyang without preconditions, in response to an appeal by King Norodom Sihanouk. The co-premiers
had sent an official letter to the king ”saying that we are ready to go to Pyongyang without ceasefire, without preconditions,”
Prince Ranariddh told journalists. ”Let talks begin,” he added. Hun Sen said the talks, beginning on May 27, would be based
on a peace plan put forward by King Sihanouk, but added that the government had yet to receive a reply from the Khmer Rouge
regarding the proposal. King Sihanouk has proposed that certain ”acceptable” members of the Khmer Rouge be given senior
cabinet posts in the government in exchange for giving up their zones, ceasing all guerrilla activities and merging their fighters
with the royal armed forces.

Hun Sen is the Prime Minister of Cambodia, President of the Cambodian People’s Party (CPP), and Member of Parliament (MP)
for Kandal. He has served as Prime Minister since 1985, making him the longest serving head of government of Cambodia,
and one of the longest serving leaders in the world. From 1979 to 1986 and again from 1987 to 1990, Hun Sen served as
Cambodia’s foreign minister. His full honorary title is Samdech Akeak Moha Sena Padey Techo Hun Sen. Born Hun Bunal, he
changed his name to Hun Sen in 1972 two years after joining the Khmer Rouge. Hun Sen rose to the premiership in January
1985 when the one-party National Assembly appointed him to succeed Chan Sy who had died in office in December 1984. He
held the position until the 1993 UN-backed elections, which resulted in a hung parliament. After contentious negotiations with
the FUNCINPEC, Hun Sen was accepted as Second Prime Minister, serving alongside Norodom Ranariddh until a 1997 coup
which toppled the latter. Ung Huot was then selected to succeed Ranariddh.

Question 1: According to Hun Bunal, what is the basis of talks on May 27th?

Question 2: Until which year did the Cambodian co-premiers hold office?

Question 3: The President of the Cambodian People’s Party was holding peace talks with the Khmer Rouge along with whom?

Table 6: Examples of collected parallel passages. The questions and corresponding answers are color coded.
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Abstract

Commonsense knowledge bases such as Con-
ceptNet represent knowledge in the form of
relational triples. Inspired by recent work by
(Li et al., 2016), we analyse if knowledge base
completion models can be used to mine com-
monsense knowledge from raw text. We pro-
pose novelty of predicted triples with respect to
the training set as an important factor in inter-
preting results. We critically analyse the dif-
ficulty of mining novel commonsense knowl-
edge, and show that a simple baseline method
outperforms the previous state of the art on
predicting more novel triples.

1 Introduction

Many natural language understanding tasks re-
quire commonsense knowledge in order to re-
solve ambiguities involving implicit assumptions.
Collecting such knowledge and representing it
in a reusable way is thus an important chal-
lenge. There exist several commonsense knowl-
edge bases maintained by experts (CyC) or ac-
quired by crowdsourcing (ConceptNet) which
represent commonsense knowledge as relational
triples (e.g., (“pen“, “UsedFor“, “writing“)) (Liu
and Singh, 2004). Automatic mining of common-
sense knowledge, the focus of this work, aims to
improve the coverage of such resources.

One common way of improving the coverage of
knowledge bases is through knowledge base com-
pletion (KBC), which can be formalized as pre-
dicting the existence of edges between (usually)
pre-existing nodes in the graph. Recent work by Li
et al. (2016) approached commonsense mining as
a KBC task. Their method mines candidate triples

∗Work partially done as intern in MILA
†CIFAR Senior Fellow

from Wikipedia and reranks the triples with a KBC
model in order to extend ConceptNet.

The goal of this paper is to investigate why
recent systems such as the above achieve good
performance, and understand their potential for
mining commonsense. We approach it by break-
ing down the previously reported aggregate re-
sults into the cases in which models perform well
or poorly. We focus in particular on the issue
of the novelty of model predictions with respect
to the triples in the training set. For example, a
triple predicted by a system could be correct be-
cause it generates output with a slightly different
wording or morphological inflection (e.g., (“fish“,
“AtLocation“, “water“) from (“fish“, “AtLoca-
tion“, “in water“)), or it could be correct because
it exhibits some degree of semantic generalization
(e.g., (“fish“, “IsCapableOf“, “swimming“) from
(“fish“, “AtLocation“, “in water“)). Arguably,
the former could be handled by better standard-
ization of data set formats or more comprehensive
model pre-processing, whereas the latter presents
an example of genuine commonsense inference
and novelty. This analysis is especially important
for commonsense mining because of the diversity
of the entities, relations, and linguistic expressions
thereof in current datasets.

The contribution of this paper is two-fold. First,
we test if the KBC task as it is set up in recent
work can gauge a model’s ability to mine novel
commonsense (i.e. find novel commonsense facts
based on some resource). We observe the contrary.
We present a model that performs poorly on KBC
but matches the best model on the task of min-
ing novel commonsense (evaluated by re-ranking
extracted candidate triples from Wikipedia). We
then examine the cause of this discrepancy, and
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find that around 60% of triples in the KBC test set
used by Li et al. (2016) are minor rewordings of
existing triples in the training set. This suggests
that controlling for the novelty of triples in both
KBC and Wikipedia evaluation is needed.

Second, we present a reassessment of previous
methods in which we control the dataset for nov-
elty, extending the results of Li et al. (2016). We
introduce a simple automated novelty metric and
show that it correlates with human judgment. We
then show that the performance of most models on
both KBC and Wikipedia triple reranking drops
drastically when we evaluate them examples that
are genuinely new according to our metric. Fi-
nally, we demonstrate that a simple baseline model
that does not model all interactions between el-
ements in a triple performs surprisingly well on
both KBC and reranking when we focus on novel
triples.

2 Related work

Knowledge extraction from text corpora is a vast
research area (Banko et al., 2007; Mitchell et al.,
2015), yet work that targets commonsense knowl-
edge specifically are comparatively rare (Gordon,
2014). Our focus is on the specific approach to
mining commonsense knowledge by casting it as
a KBC task, as in Li et al. (2016); Forbes and Choi
(2017).

Knowledge base completion (KBC) is a method
to improve coverage of knowledge base by pre-
dicting non-existing edges between nodes (Nickel
and Tresp, 2011; Socher et al., 2013). A common
modeling approach to KBC is to embed nodes and
the edge into a common representation space, fol-
lowed by a simple prediction model (Socher et al.,
2013).

Recently, Dettmers et al. (2017) observed that
some KBC benchmarks have test set triples that
are simply inversions of triples in their training
sets. Our work draws attention to a related is-
sue in commonsense KBC. Additionally, we find
that simple baseline models achieve strong per-
formances in our setting, in agreement with other
studies of KBC Joulin et al. (2017); Kadlec et al.
(2017).

In Angeli and Manning (2013), triple retrieval
based on distributional similarity is used to com-
plete ConceptNet. Our procedure for determining
the novelty of the triple is similar to methods used
in that work, but we apply it only in the context of

evaluation.

3 Completion vs Mining

Our goal in this section is to analyse the relation
between KBC and commonsense mining tasks fol-
lowing setup of Li et al. (2016).

3.1 Models
All our models take (h, r, t) triples as inputs,
where h and t are sequences of words representing
concepts and r is a relation from the ConceptNet
schema, and output the probability of the triple to
be true. Following Li et al. (2016), we embed h
and t by computing the sums h and t of the re-
spective word vectors.

Levy et al. (2015) showed that in the context
of predicting the hypernymy relation using only
head or only tail can be a strong baseline. To better
understand how complex reasoning is needed for
both KBC and mining tasks, we similarly consider
the two following models, which make strong sim-
plifying assumptions about the dependencies be-
tween elements in a triple. The Factorized model
uses only two-way interactions to compute the
triple score:

s(h, r, t) = α〈Ah+ b1,Bt+ b2〉
+ β〈Ar+ b1,Bt+ b2〉
+ γ〈Ar+ b1,Bh+ b2〉,

(1)

where h, r, and t are d1 dimensional embeddings
of head, relation and tail, A,B are d1 × d2 ma-
trices, b1,b2 are d2 dimensional biases, and α,
β, γ are learned scalars. The Prototypical model
is similar, but considers only the head-to-relation
and tail-to-relation terms (first and third terms in
Eq. 1).

We compare the two new models with the best
model from Li et al. (2016), a single hidden layer
DNN. In that model, the triple score is computed
as:

u(h, t) = φ(Ah+Bt+ b1)

s(h, r, t) = Wu(h, t) + b2,
(2)

where φ is a nonlinearity, A, B are d1 × d2 ma-
trices, b1 is a d2 dimensional bias, W is a d2 di-
mensional vector and b2 is a scalar. Additionally,
we compare against Bilinear of Li et al. (2016)1.
Bilinear model computes the triple score as:

s(h, r, t) = hTMrt, (3)

1It is the only model evaluated against the Wikipedia
ranking task in Li et al. (2016).
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where Mr is a d1 × d1 dimensional matrix, sep-
arate for each relation in the dataset. All models’
scores are fed into a sigmoid function in order to
compute the final prediction.

3.2 Setup
KBC models are trained using 100, 000 triples
from ConceptNet5 (Speer and Havasi, 2012) that
were extracted from the Open Mind Common
Sense (OMCS) corpus (Speer and Havasi, 2012).
For evaluation, we consider two ways to split the
dataset: a random split, as well as the confidence-
based split proposed by (Li et al., 2016), which
uses triples with the highest ConceptNet confi-
dence scores as a test set2. Following Li et al.
(2016) negative examples are sampled by ran-
domly swapping head, tail or relation component
of each triple. The cross-entropy loss is used, and
models are evaluated using F1 score3. All models
are initialized using skip-gram embeddings that
were pretrained on the OMCS corpus.

The commonsense mining task is based on
a set of 1.7M extracted candidate triples from
Wikipedia by Li et al. (2016). The extracted triples
are ranked using a KBC model, and the top of the
ranking is manually evaluated. We will refer to the
experiments in which we rerank external candidate
triples as mining experiments.

We found that similar hyperparameters and op-
timization methods work well across the models.
We use 1, 000 hidden units, and apply L2 regu-
larization with a weight of 10−6 to the word em-
beddings. All models are optimized using Ada-
grad (Duchi et al., 2010) with a learning rate 0.01
and batch sizes of 200 (DNN) and 600 (Factor-
ized and Prototypical). In Section 3.3, we com-
pare against the scores of a Bilinear model pro-
vided by Li et al. (2016). Experiments are per-
formed using Keras (Chollet et al., 2015) and Ten-
sorFlow (Abadi et al., 2015).

3.3 Comparison of KBC and Wikipedia
evaluations

First, we directly test if the performance of a
model on the KBC task is predictive of its perfor-
mance on the mining task. We follow the min-
ing evaluation protocol from (Li et al., 2016): we

2We note that random test set consists of worse quality
triples than confidence-based split. However, the latter leads
to a serious bias in evaluation. We leave addressing this trade-
off for future work.

3The threshold is selected based on a separate develop-
ment set, as in (Speer and Havasi, 2012).

XXXXXXXXNovelty
Model DNN Factorized Prototypical

Entire 0.892 0.890 0.794
≤ 33% 0.950 0.922 0.911
(33%, 66%] 0.920 0.898 0.839
≥ 66% 0.720 0.821 0.574

Table 1: F1 scores on Li et al. (2016) confidence-
based test set. F1 score is reported on each bucket
(based on the percentile of triple novelty) and the
entire test set.

Bilinear Factorized Prototypical DNN

Wikipedia 2.04 2.61 2.55 2.5

Table 2: Average human assigned score (from 1
to 5) of the top 100 Wikipedia triples ranked by
baselines compared to DNN and Bilinear from Li
et al. (2016).

rank triples by assigned scores and manually eval-
uate the top 100 resulting triples on a scale from 0
(nonsensical) to 4 (true statement). We re-evaluate
their model against our baselines and find that the
knowledge base completion task is a poor indica-
tor of performance on Wikipedia. Even though
the Factorized and Prototypical models achieve
the same or much worse score than DNN on the
KBC task (see the first row of Table 1), their min-
ing performance on the top 100 triples is better
(than both DNN and Bilinear), see Table 2. Triples
were scored by two students and scores were av-
eraged, with 0.81 Pearson correlation and 0.48
kappa inter-annotator agreement.

3.4 Novelty of triples

We hypothesize that the discrepancy reported in
Section 3.3 is due to a strong overlap of the train-
ing and testing sets in the KBC setup of Li et al.
(2016). We perform a human evaluation of the
novelty of the triples in the three test sets with re-
spect to the 100, 000 ConceptNet training set used.
The first is the confidence-based test set used in Li
et al. (2016). We compare it with a random sub-
set of ConceptNet. Finally, we consider a sam-
ple of 300 triples from the top 10, 000 triples of
Wikipedia dataset ordered by the Bilinear model.

For each triple in the three datasets, we fetch
the five closest neighbours using word embedding
distance and categorize them into five categories
based on the closest triple found in the training set:
“same relation and minor rewording” (1), “dif-
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ferent relation and minor rewording” (2), “same
relation and related word” (3), “different relation
and related word” (4), “no directly related triple”
(5). We ignore a small percentage of triples that
are not describing commonsense knowledge, as
well as false triples (some in the random subset,
and a large percentage in the Wikipedia dataset).

To give a better intuition, we provide example
triples for the confidence-based split of Li et al.
(2016). In Category 1 (defined as “same relation
and minor rewording”), we find (“egg”, “IsA”,
“food”), which has a close analog in the train-
ing set: (“egg”, “IsA”, “type of food”). An ex-
ample of a test triple in Category 3 (defined as
“different relation and related word”) is (“floor”,
“UsedFor”, “walk on”), which has a correspond-
ing triple in the training set (“floor”, “UsedFor”,
“stand on”). In the Appendix, we provide more
examples of triples from each category.

As shown in Table 3, we observe that approxi-
mately 87% examples in the confidence-based test
set fall into the first or second category, while these
categories constitute only 19% of the considered
subset of the Wikipedia triples (even after filtering
out false triples). We argue that not controlling
for the novelty of triples might introduce hard-to-
predict biases in the evaluation.

Finally, to understand the effects of using the
confidence-based split, we also re-evaluate models
on a random split. We observe that scores are con-
sistently lower than on the confidence-based split
(compare the first rows of Tables 1 and 4). In-
terestingly, the overall performance of the DNN
model degrades the most (absolute difference in
F1 score 9%), compared to Prototypical (4%) and
Factorized (7%).

4 Evaluation using novelty metric

Motivated by the described similarity of train and
test sets in the KBC task, we shift our attention
to re-evaluating models on datasets controlled for
novelty, extending results of Li et al. (2016). We
consider the same tasks as in Sec. 3: Concept-
Net5 completion task and commonsense mining
task based on Wikipedia triples.

4.1 Automatically measuring novelty

To approximate novelty, we use word embed-
dings (computed over the OMCS corpus) to calcu-
late distance d(a, b) = ||head(a) − head(b)||2 +
||tail(a) − tail(b)||2, where head and tail are

XXXXXXXXDataset
Novelty 1 2 3 4 5

Wikipedia 14% 5% 17% 8% 44%
Confident 65% 22% 4% 4% 2%
Random 21% 10% 16% 3% 29%

Table 3: Human assigned novelty categories to
triples from 3 different test datasets. High qual-
ity triples are usually trivial. Each column reports
percentage of triples in each category ordered by
novelty. Category 1 corresponds to “same relation
and minor rewording”. Category 5 corresponds to
“no directly related triple”.

represented by the average of word embeddings.
Such a formulation is related to the concept
of paradigmatic similarity (Sahlgren, 2006), and
word embedding-based distance can approximate
paradigmatic similarity (Sun et al., 2015). Two
words are paradigmatically similar if one can be
replaced for the other, while maintaining syn-
tactical correctness of the sentence (e.g. “The
wolf/tiger is a fierce animal“). We observe that
many trivial test triples are characterized by the
existence of a triple in the training set that only
differs by such substitutions.

We observe that the proposed distance metric
is correlated with human assigned novelty scores
(from Sec. 3.4). On the considered datasets Pear-
son correlation between automatic novelty score
and human assigned novelty score is 0.22 to 0.47,
with p-values between 0.03 and 0.004. We ac-
knowledge that the automated metric is simplistic,
for instance it underperforms for the triples con-
taining rare words or long phrases. Nevertheless,
the metric enables detecting a substantial portion
of trivial triples (e.g. morphological variations),
and we leave for future work developing better
measures of novelty.

Using the introduced metric, we can partially
explain the inconsistency in the performance of
Prototypical and Bilinear models between KBC
and mining Wikipedia. We note that the top of the
ranking on Wikipedia consists of mostly very far
(novel) triples (Figure 1), while KBC confidence-
based test set is mostly composed of trivial triples
(as argued in Section 3.4).

4.2 Novelty-binned evaluation of KBC

We now re-evaluate the KBC models using
our proposed novelty metric. First, we exam-
ine the performance on different subsets of the
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Figure 1: Mean embedding distance (y axis) of top
K (x axis) of triples in Wikipedia dataset for Bi-
linear (orange) and Prototypical (blue).

XXXXXXXXNovelty
Model DNN Factorized Prototypical

Entire 0.809 0.822 0.755
≤ 33% 0.883 0.874 0.866
(33%, 66%] 0.809 0.812 0.758
≥ 66% 0.725 0.731 0.674

Table 4: F1 scores on random split. F1 score is
reported on each bucket (based on the percentile
of triple novelty) and the entire set.

confidence-based split of ConceptNet5. Specifi-
cally, we split the confidence-based test set into
3 buckets, according to 33% (1.93 distance) and
66% (2.80 distance) quantile of distance to the
training set. Second, we run a similar experiment
but on a random split of the training set (bucket
thresholds at 2.1 and 2.95). Results are reported
in Tables 1 and 4.

As expected, the performance of models de-
grades quickly across buckets. The performance
on the farthest bucket drops from 10 to 20% F1
score with respect to the performance on the clos-
est bucket. We observe that the Factorized model
achieves the strongest performance on the farthest
bucket.

4.3 Novelty-binned evaluation on Wikipedia
Similar to Section 4.2, we analyse splitting candi-
date triples for the mining task using our novelty
metric. We split the Wikipedia dataset into 3 buck-
ets based on 33% (3.21 distance) and 66% (4.22
distance) quantiles of distance to the training set,
and we manually score the top 100 triples in each
bucket on the same scale from 1 to 5.

As in Section 4.2, we note a degradation of per-
formance across buckets for all models (from 1.06
to 0.32 mean human assigned score) and again the
Factorized model achieves the best performance
on the farthest bucket (mean score 2.26 compared
to 1.63 and 1.41). The Factorized model outper-
forms DNN on all buckets despite being a simpler

XXXXXXXXNovelty
Model DNN Factorized Prototypical

≤ 33% 2.47 2.58 2.33
(33%, 66%] 2.34 2.41 2.24
≥ 66% 1.41 2.26 1.63

Table 5: Novelty based evaluation of quality of
mined triples from Wikipedia dataset. Triples are
scored by humans on scale from 1 to 5.

model, which we hypothesize is due to DNN being
more prone to overfitting.

5 Conclusions

Mining genuinely novel commonsense is a chal-
lenging task, and training successful models will
require large training sets (e.g. ConceptNet) and
principled evaluation. We critically assessed the
potential of KBC models for mining common-
sense knowledge, and proposed several first steps
towards a more principled evaluation methodol-
ogy. Future work could focus on developing bet-
ter novelty metrics, and developing new regular-
ization techniques to better generalize to novel
triples.
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A Example triples

In this Appendix we report randomly picked ex-
amples from human assigned novelty categories
considered in the paper for each of the 3 datasets.
Due to large size of the training set, instead of
showing all triples from train set to human an-
notator, we show only 5 closest using embedding
based distance. A triple is classified as belong-
ing to the given category if at least one of the re-
trieved triples is sufficiently related. For exam-
ple, if for (“egg”, “IsA”, “food”) we find triple
(“egg”, “IsA”, “type of food”) in the top 5 closest
examples, we categorize it as belonging to the first
category (“same rel, rephrase”).
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A.1 Confidence-based split
In this Section we report examples for novelty cat-
egory from Confidence-based split dataset. For
each example we include the 5 examples that were
shown to the human annotator, ordered by close-
ness according to our word embedding metric.

A.1.1 “same rel, rephrase“
• (egg, IsA, food) : (egg, UsedFor, food), (egg,

HasProperty, good for food), (egg, IsA,
type of food), (egg, HasProperty, good for
you), (egg, AtLocation, omletts),

• (book, AtLocation, classroom) : (lot book,
AtLocation, classroom), (physic, AtLocation,
classroom), (teacher aide, AtLocation, class-
room), (desk and chair, AtLocation, class-
room), (test paper, AtLocation, classroom),

• (dog, CapableOf, be pet) : (dog, CapableOf,
be great pet), (dog, CapableOf, be loyal
pet), (dog, CapableOf, be over-fed), (dog,
IsA, good pet), (dog, NotDesires, be with cat),

A.1.2 “different rel, rephrase“
• (window, MadeOf, glass) : (window,

HasProperty, make of glass), (window,
DefinedAs, glass that be stick to window
frame), (abottle, MadeOf, glass), (window,
UsedFor, look out of), (window, UsedFor,
look inside),

• (bury cat, HasSubevent, dig hole) : (bury cat,
HasFirstSubevent, dig hole), (bury cat, Has-
Subevent, dig), (bury cat, HasFirstSubevent,
dig grind), (bury cat, UsedFor, when your cat
be dead), (bury cat, HasPrerequisite, make
sure it be dead),

• (bridge, UsedFor, cross river) : (bridge, Ca-
pableOf, cross river), (bridge, UsedFor, cross
sometihng), (bridge, UsedFor, cross wa-
ter), (bridge, UsedFor, cross over), (bridge,
ReceivesAction, find over river),

A.1.3 “same rel, similar word“
• (cat, CapableOf, hunt mouse) : (cat, Ca-

pableOf, hunt lizard), (cat, NotCapableOf,
like mouse), (cat, UsedFor, kill mouse), (cat,
CapableOf, kill mouse), (cat, Desires, eat
mouse),

• (pilot, CapableOf, land airplane) : (pilot, Ca-
pableOf, carsh airplane), (pilot, CapableOf,

land taildragger), (pilot, CapableOf, work in
airplane), (pilot, CapableOf, land), (pilot, At-
Location, airplane),

• (play sport, HasSubevent, run) : (play
baseball, HasSubevent, run), (play frisbee,
Causes, run), (do some exercise, Has-
Subevent, run), (horse jump high when they,
HasProperty, run), (go for run, HasSubevent,
run),

A.1.4 “different rel, similar word“
• (statue, AtLocation, museum) : (statue, Re-

ceivesAction, see in museum), (statue, IsA,
example of art), (statue, UsedFor, imortalize
someone), (statue, HasProperty, hard to cre-
ate), (statue, CapableOf, be beautiful),

• (son, PartOf, family) : (son, IsA, member
of family), (man and his daughter, IsA, fam-
ily), (son, DefinedAs, child of parent), (son,
AtLocation, his home), (son, IsA, male kid of
his parent),

• (internet, UsedFor, research) : (internet, IsA,
amaze research tool), (go on internet, Used-
For, research), (internet, IsA, research project
of darpa), (internet, UsedFor, do research or
chat), (internet, HasA, lot of information),

A.1.5 “no directly related triple“
• (clerk, CapableOf, stock shelve) : (clerk, Ca-

pableOf, be bag grocery), (clerk, CapableOf,
price item), (clerk, CapableOf, bag gro-
cery), (clerk, CapableOf, enter data), (clerk,
AtLocation, at hotel),

• (human, HasA, five finger on each
hand) : (human, HasA, five toe on each
foot), (human, HasA, arm hand finger fin-
gernail and lunula), (human, HasA, two
hand), (human, CapableOf, write with right
hand), (human, CapableOf, stand on two
leg),

• (cat, CapableOf, corner mouse) : (cat, Not-
CapableOf, like mouse), (cat, CapableOf,
kill mouse), (cat, UsedFor, kill mouse), (cat,
UsedFor, keep mouse away), (cat, AtLoca-
tion, petstore),

A.2 Random split
In this Section we report examples for novelty cat-
egory from Random split dataset. For each exam-
ple we include the 5 examples that were shown to
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the human annotator, ordered by closeness accord-
ing to our word embedding metric.

A.2.1 “same rel, rephrase“
• (coffee mug, AtLocation, cupboard) : (mug,

AtLocation, cupboard), (coffee cup, AtLoca-
tion, cupboard), (tea cup, AtLocation, cup-
board), (cup and plate, AtLocation, cup-
board), (can of soup, AtLocation, cupboard),

• (man, IsA, person) : (man, IsA, male per-
son), (egoistic person, IsA, person), (woman,
IsA, person), (child, InheritsFrom, per-
son), (child, IsA, person),

• (bookshelf, IsA, for store book) : (bookshelf,
UsedFor, store book), (bookshelf, Used-
For, display and store read mate-
rial), (bookshelf, UsedFor, hold and or-
ganize book), (bookshelf, UsedFor, organize
book), (bookshelf, UsedFor, display book),

A.2.2 “different rel, rephrase“
• (hear sing, HasSubevent, listen) : (hear

sing, HasFirstSubevent, listen), (hear sing,
HasPrerequisite, listen), (hear, HasPrerequi-
site, listen), (hear music, HasPrerequisite,
listen), (hear music, HasSubevent, listen),

• (procreate, HasPrerequisite, find mate)
: (procreate, HasFirstSubevent, find
mate), (procreate, Causes, have to raise your
grandchild), (procreate, HasFirstSubevent,
form will to do so),

• (go outside for even, MotivatedByGoal, see
star) : (go outside for even, HasSubevent,
that you see star), (go to film, UsedFor, see
star), (go outside for even, UsedFor, look at
star), (go outside for even, MotivatedByGoal,
you have date), (go outside for even, UsedFor,
get out of house),

A.2.3 “same rel, similar word“
• (aluminum, IsA, metal) : (aluminum,

IsA, material), (safety-pins, MadeOf,
metal), (titanium, IsA, metal), (quicksilver,
IsA, metal), (plumbum, IsA, metal),

• (cherry, AtLocation, jar) : (vegemite, AtLo-
cation, jar), (beet, AtLocation, jar), (toffee,
AtLocation, jar), (jellybeans, AtLocation,
jar), (moonshine, AtLocation, jar),

• (u.s president, IsA, political leader)
: (u.s president, IsA, in charge of arm
force), (president of something, IsA, it
leader), (president, IsA, leader), (president,
DefinedAs, leader of american govern-
ment), (us president, IsA, important political
figure),

A.2.4 “different rel, similar word“
• (attach case, AtLocation, embassy)

: (attach case, UsedFor, carry paper
and book), (attach case, AtLocation,
office), (attach case, AtLocation, court-
room), (attache case, AtLocation, busi-
nessperson hand), (attache case, CapableOf,
hold important document),

• (catch mumps, Causes, sickness) : (die,
HasSubevent, sickness), (catch mumps, Has-
Subevent, you have fever), (catch mumps,
HasFirstSubevent, get sick), (catch mumps,
MotivatedByGoal, be sick), (cold, IsA, sick-
ness),

• (buy something for love one, Causes, get
lay) : (get in line, MotivatedByGoal, get
lay), (have party, UsedFor, get lay), (get pay,
UsedFor, get lay), (become inebriate, Used-
For, get lay),

A.2.5 “no directly related triple“
• (fall from hot air balloon, CapableOf, kill

you) : (if you drink salt water it, CapableOf,
kill you), (drink sea water, CapableOf, kill
you), (water, CapableOf, kill you), (lighten,
CapableOf, kill you), (pretty thing, Capa-
bleOf, kill you),

• (milk, IsA, part of many food) : (milk, De-
finedAs, product of cow), (milk, ReceivesAc-
tion, produce by female cow), (milk, Capa-
bleOf, come from cow), (milk, ReceivesAc-
tion, make into cheese), (milk, ReceivesAc-
tion, create from cow),

• (some food, ReceivesAction, make from
dead animal) : (some food, HasProperty,
good but some be very dissgusting), (some
food, IsA, healthy and some be not), (some
food, HasProperty, poisonous if prepare im-
properly), (some food, ReceivesAction, grind
before eat), (some food, HasProperty, con-
sider exotic),
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A.3 Wikipedia

In this Section we report examples for novelty cat-
egory from Wikipedia dataset. For each example
we include the 5 examples that were shown to the
human annotator, ordered by closeness according
to our word embedding metric.

A.3.1 “same rel, rephrase“
• (deep snow, IsA, winter) : (snow, Sym-

bolOf, winter), (snow, AtLocation, win-
ter), (it, IsA, winter), (snowflake, AtLocation,
winter), (nice time of year, IsA, winter time),

• (winter season, HasProperty, cold) : (winter
weather, HasProperty, cold), (in winter it,
HasProperty, cold), (snow fall from sky when
weather, HasProperty, cold), (stethascopes,
HasProperty, cold), (cold weather, Causes,
cold),

• (mathematical logic, HasProperty, log-
ical) : (mathmatics, HasProperty, log-
ical), (human wish for happiness but
happiness, NotHasProperty, logical), (design
computer chip, HasPrerequisite, logical
think), (write program, HasPrerequisite,
logical think), (logic, DefinedAs, set of rule
by which axiom can be manipulate to derive
true statement),

A.3.2 “different rel, rephrase“
• (the house, HasA, room) : (house, MadeOf,

room), (many different way to put furniture,
AtLocation, room), (something you find up-
stairs, IsA, room), (something you find down-
stairs, IsA, room), (family room, IsA, room),

A.3.3 “same rel, similar word“
• (bus system, AtLocation, city) : (subway sys-

tem, AtLocation, city), (bus stop, AtLoca-
tion, city), (bus, AtLocation, city), (bus shel-
ter, AtLocation, city), (bus station, AtLoca-
tion, city),

• (satellite radio, HasA, channel) : (tv, HasA,
channel), (hear news, HasSubevent, change
channel), (watch television, HasSubevent,
change channel), (cnn, IsA, television chan-
nel), (cnn, IsA, tv channel),

• (summer, IsA, hotter weather) : (summer,
HasA, more sunshine than winter), (summer,
IsA, hot than winter), (summer, IsA, warm

than winter), (summer, DefinedAs, season of
baseball), (summer, DefinedAs, warm sea-
son),

A.3.4 “different rel, similar word“
• (liberal democracy, HasProperty, political)

: (democracy, IsA, political system), (liberal
democratic party, InstanceOf, japanese po-
litical party), (feminism, IsA, political ide-
ology), (libertarianism, IsA, political ideol-
ogy), (liberalism, IsA, political ideology),

• (music, UsedFor, musical express) : (music,
CapableOf, be express use musical no-
tation), (music, ReceivesAction, play with
musical instrument), (music, ReceivesAction,
write with musical symbol), (music, Creat-
edBy, instrument or human voice), (music,
CapableOf, express feel),

• (the planet, HasA, mass) : (boston, PartOf,
mass), (matter, HasA, mass), (planet
plutoi, ReceivesAction, discover by
mr), (some planet, HasA, more than one
moon), (magnitude of planet, IsA, quantifi-
able),

A.3.5 “no directly related triple“
• (field, HasA, vector potential) : (field, HasA,

plant grow in them), (field, UsedFor, agri-
cultural pursuit), (field, UsedFor, cultivate
crop), (field, UsedFor, graze livestock), (field,
UsedFor, ride horse),

• (town, HasA, center of commerce) : (town,
ReceivesAction, compose of many neighbor-
hood), (town, HasProperty, likely to have sev-
eral cafe), (town, IsA, small than city), (town,
DefinedAs, prarie dog community), (town,
UsedFor, live in),

• (divorce, HasProperty, mutual consent)
: (divorce, NotHasProperty, more common
than marriage), (divorce, DefinedAs, official
end to marriage), (divorce, IsA, fact of
life), (divorce, DefinedAs, termination of
marriage), (divorce, IsA, when marry couple
separate legallyt),
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Abstract

We discuss problems with the standard ap-
proaches to evaluation for tasks like visual
question answering, and argue that artificial
data can be used to address these as a com-
plement to current practice. We demonstrate
that with the help of existing ‘deep’ linguis-
tic processing technology we are able to cre-
ate challenging abstract datasets, which enable
us to investigate the language understanding
abilities of multimodal deep learning models
in detail, as compared to a single performance
value on a static and monolithic dataset.

1 Introduction & related work

In recent years, deep neural networks (DNNs)
have established a new level of performance for
many tasks in natural language processing (NLP),
speech, computer vision and artificial intelligence.
Simultaneously, we observe a move towards simu-
lated environments and artificial data, particularly
in reinforcement learning (Bellemare et al., 2013;
Brockman et al., 2016). As outlined by Kiela et al.
(2016), simulated data is appealing for various rea-
sons. Most importantly, it acts as a prototypi-
cal problem presentation, abstracted from its noisy
and intertwined real-world appearance.

However, with a few notable exceptions (Schef-
fler and Young, 2001; Byron et al., 2007), artifi-
cial data is relatively little used in NLP. Only re-
cently people started arguing for the use of simu-
lated data, like the long-term research proposal of
Mikolov et al. (2015) on learning to understand
language from scratch in a virtual environment,
and introduced benchmark datasets, like the bAbI
tasks (Weston et al., 2015) or the VQA datasets
discussed below. Here we focus on the problem of
visually grounded language understanding in the
context of visual question answering (VQA). In
principle, this task is particularly interesting from

a semantic perspective, since it combines general
language understanding, reference resolution and
grounded language reasoning in a simple and clear
task. However, recent work (Goyal et al., 2017;
Agrawal et al., 2016) has suggested that the pop-
ular VQA Dataset (Antol et al., 2015) is inade-
quate, due to various issues which allow a system
to achieve competitive performance without truly
learning these abilities.

To address this, modifications to the existing
VQA Dataset and several artificial VQA datasets
have been released. The former include C-VQA
(Agrawal et al., 2017), a new composition-focused
split, and VQA 2.0 (Goyal et al., 2017), an exten-
sion based on minimal image pairs. Similar ap-
proaches have been proposed in the context of im-
age captioning (Shekhar et al., 2017; Hodosh and
Hockenmaier, 2016), which relate to our proposal
in that they modify language in a principled way.
However, despite ‘mild artificiality’, some issues
with real-world data like the VQA Dataset remain.

On the other hand, examples of new artificial
datasets include the SHAPES dataset (Andreas
et al., 2016), the CLEVR dataset (Johnson et al.,
2017a), the NLVR dataset (Suhr et al., 2017), and
the ShapeWorld framework (Kuhnle and Copes-
take, 2017), which is our implementation of the
proposal presented here. They all consist of im-
ages showing abstract scenes with colored objects
and, except for NLVR, use artificially produced
language. Language generation for SHAPES and
CLEVR is template-based and dataset-specific,
while ShapeWorld leverages an existing broad-
coverage semantic grammar formalism.

These datasets are introduced with the motiva-
tion to provide a clear and challenging evaluation
for VQA systems. Johnson et al. (2017a) and
Kuhnle and Copestake (2017) investigated popu-
lar VQA systems on their datasets, and demon-
strate how artificial data provides us with detailed
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insights previously not possible. Despite its sim-
plicity, they uncover fundamental shortcomings of
current VQA models. Since then, CLEVR has
been of great importance for the development of
new VQA models based on dynamically assem-
bled modules (Hu et al., 2017; Johnson et al.,
2017b), a dedicated relational module (Santoro
et al., 2017), or a general modulation technique
(Perez et al., 2018), all of which achieve close-to-
perfect accuracy on CLEVR.

The advantage of artificial data in this paper
is not seen in its capacity to improve existing
models by augmenting training data, although this
would be conceivable. Instead we are interested
in its capacity to provide data for targeted inves-
tigations of specific model capabilities. We argue
that it constitutes a necessary, though not in itself
sufficient benchmark for genuine language under-
standing abilities. The aforementioned models ex-
hibit clearly superior understanding of the types of
questions CLEVR contains. This paper proposes
a principled way of continuing the incremental
progress in multimodal language understanding
initiated by CLEVR and its template-based gener-
ation approach, based on deep linguistic process-
ing tools. Our initial experiments show that we can
provide data that is challenging for state-of-the-art
models, like the quantification examples presented
in section 3.3. Note that while success on such
narrower datasets may not directly translate to im-
proved performance on broader datasets like the
VQA Dataset, the underlying mechanisms are im-
portant for progress in the longer run.

Our aims in this paper are threefold. First,
we provide a brief but systematic review of the
problems surrounding current standard evaluation
practices in deep learning. Secondly, we use this to
motivate the potential of artificial data from simu-
lated microworlds to investigate DNNs for visu-
ally grounded language understanding. Thirdly,
we present an evaluation methodology based on
linguistic processing resources, and show why
compositional semantic representations from a
symbolic grammar are particularly suitable for the
production of artificial datasets.

2 Problems of real-world datasets

In the following, we review a variety of issues re-
lated to the practice of evaluating DNNs on pop-
ular real-world datasets for tasks like VQA. We
emphasize that our arguments are mainly based on

large-scale and broad-coverage datasets obtained
in a relatively unconstrained way. Some of the
points do not (fully) apply to more specific and
carefully obtained data, like the NLVR dataset.

2.1 Issues with crowdsourced real-world data

The fact that DNNs require immense amounts of
data for successful training led to the practice of
adopting online data, such as the Flickr photo shar-
ing platform, and leveraging crowdsourcing, usu-
ally via Amazon Mechanical Turk (AMT). For in-
stance, the image captioning dataset MS COCO
(Lin et al., 2014) contains more than 300,000 im-
ages annotated with more than 2 million human-
written captions, while the popular VQA Dataset
(Antol et al., 2015) is based on MS COCO.

Data obtained this way tends to be compar-
atively simple in terms of syntax and composi-
tional semantics, despite exhibiting a high degree
of lexical complexity due to its real-world breadth.
Moreover, ‘re-purposed’ photos do not – and were
never intended to – reflect the visual complexity
of every-day scenarios (Pinto et al., 2008). Hu-
mans given the task of captioning such images
will mostly produce descriptions which are syn-
tactically simple. The way that workers on crowd-
sourcing platforms are paid gives them an incen-
tive to come up with captions quickly, and hence
further increases the tendency to simplicity. Note
also that, while this is a form of real-world data,
it has very little relationship to the way that a hu-
man language learner perceives the world, from
the fact that image/question pairs are presented in
no meaningful order to the impossibility of any
kind of interaction with a particular scene.

Natural language follows Zipf’s law for many
aspects (sentence length, syntactic complexity,
word usage, etc), and consequently has an inbuilt
simplicity bias when considered in terms of prob-
ability mass. The contents of image datasets based
on photos also have a Zipfian distribution, but with
biases which relate to what people choose to pho-
tograph rather than to what they see. Animal im-
ages in the VQA Dataset are predominantly cats
and dogs, sport images mainly baseball and tennis
(see Antol et al. (2015) for more statistics). Con-
sidering all these biases both in language and vi-
sion, the common evaluation measure – simple ac-
curacy of questions answered correctly – is not a
good reflection of a system’s general ability to un-
derstand visually grounded language.
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2.2 The Clever Hans effect

Crowdsourced visual questions have other unex-
pected properties. Goyal et al. (2017) and Mahen-
dru et al. (2017) note how questions rarely talk
about objects that are not present in the image,
hence an existential question like “Do you see
a...?” is mostly true. Agrawal et al. (2016) also
give the example of questions like “What covers
the ground?”, which can confidently be answered
with “snow” because of biases in common real-
world scenes, or, more precisely, biases in the pho-
tographs of real-world scenes. Such biases help
to explain why some text-only systems turn out to
perform well on visual question answering when
evaluated on the VQA Dataset.

Sturm (2014) compared such unexpected cues
when evaluation machine learning systems to the
story of ‘Clever Hans’, a horse exhibited in the
early 20th century which was claimed to under-
stand German and have extensive arithmetical and
reasoning abilities. Hans was eventually found
to be picking up on very subtle cues which were
given completely unconsciously by his owner and
which were not noticed by ordinary observers.
Some of the recent findings for DNNs, particu-
larly in NLP, suggest similarly problematic con-
clusions, like the surprisingly strong performance
of a bag-of-words model for sequential informa-
tion (Adi et al., 2017) or of text-only systems for
multimodal information (Jabri et al., 2016).

A more fundamental form of this effect is il-
lustrated by recent investigations in image recog-
nition. Szegedy et al. (2014) and Nguyen et al.
(2015) have shown surprisingly odd system behav-
ior when confronted with either only minimally
modified images or almost random noise. This be-
havior seems due to the specific interplay of a few
parameters which dominate the model’s decision,
and have led to an entire research subfield on ad-
versarial instances in vision. Such investigations
are not yet as prominent in the NLP community,
although see, e.g., Jia and Liang (2017), Sproat
and Jaitly (2016) and Arthur et al. (2016).

The ability to work with raw input data and to
pick up correlations/biases, which humans can-
not always manifest in explicit symbolic rules,
is precisely the strength of DNNs as feature ex-
tractors. But given the often millions of param-
eters and large number of unstructured input val-
ues, it is difficult to avoid unexpected hidden cues.
Real-world data with its enormous ‘sample space’,

which is necessarily only sparsely reflected, is
hence particularly prone to this effect.

The immediate problem is that a system trained
this way may not generalize appropriately to other
situations. The longer-term problem is that, while
we do not expect that DNNs will simulate human
capabilities in a fine-grained way, there has to be
some degree of comparability if they are ever to
be capable of justifying or explaining their behav-
ior. The ‘Clever Hans effect’ thus refers to situa-
tions where we wrongly and prematurely attribute
such human-like reasoning mechanisms to trained
models, when more careful and systematic inves-
tigations would have revealed our misjudgement.

2.3 Guiding principles for DNN evaluation
Compositionality is a fundamental aspect of lan-
guage, and consequently a necessary prerequisite
for any claim about ‘understanding’ natural lan-
guage. Besides being required for proper general-
ization to novel utterances, it constitutes a far more
efficient way of learning in the form of a structural
prior, it leads to more interpretable inference re-
sults by forcing more systematic processing, and
it results in more robust behavior, promising to re-
duce vulnerability to adversarial examples. How-
ever, Lake and Baroni (2017) recently gave reason
to doubt the compositional capabilities of recur-
rent DNNs, which are at the heart of virtually all
state-of-the-art NLP models. We conclude from
this that a different kind of test data than existing
benchmarks is required for more conclusive eval-
uations, and propose three simple principled ways
to reduce the risk of encountering such problems:

• Avoid solely evaluating a system on a single
and supposedly representative set, but design
test instances with the aim of specifically in-
vestigating and confirming the system’s in-
tended improvement over other models.

• Instead of keeping training and test data dis-
tributions similar, focus on the true compo-
sitional generalization abilities required by
dissimilar distributions. A more asymmetric
dataset represents a harder, but hence poten-
tially more interesting task.

• Do at least some experiments with clean data,
which reduces the likelihood of hidden biases
or correlations compared to more ‘realistic’
and complex data. For instance, the relation-
ship between image and text should be ex-
plicitly controlled in multimodal data.

19



A pentagon is above a green ellipse, and no blue shape is an ellipse.

∃a a.shape=pg a.y>b.y ∃b b.color=gr b.shape=el ∧ ¬∃c c.color=bl true c=d ∃d d.shape=el

∃a : a.shape=pg a.y>b.y ∃b : b.color=gr ∧ b.shape=el ∧ ¬∃c : c.color=bl c=d ∃d : d.shape=el

∃a : a.shape=pg ∧ [∃b : b.color=gr ∧ b.shape=el ∧ a.y>b.y] ∧ ¬∃c : c.color=bl ∧ [∃d : d.shape=el ∧ c=d]

(∃a : a.shape=pg ∧ [∃b : b.color=gr ∧ b.shape=el ∧ a.y>b.y]) ∧ (¬∃c : c.color=bl ∧ [∃d : d.shape=el ∧ c=d])

Figure 1: A caption with DMRS graph and semantic interpretation, illustrating how compositionality enables us
to generate combinatorially large amounts of non-trivial captions and infer their semantics from atomic elements.

3 Automatic generation of language data

In the following, we describe our approach for au-
tomatic generation of artificial VQA data using ex-
isting deep linguistic processing technology, based
on our implementation in the ShapeWorld frame-
work (Kuhnle and Copestake, 2017)1. We argue
that a compositional semantic approach using a
bidirectional grammar gives us precisely the sort
of data as outlined by the above principles. We
propose this approach as a complementary evalu-
ation step, since it is not intended to replace real-
world evaluation, but instead aims to cover aspects
which existing datasets cannot provide.

3.1 Abstract microworlds

The generation process we use is based on ran-
domly sampled abstract world models, i.e. values
which specify a microworld, entities and all their
attributes. In the case of our framework these in-
clude the number of entities, their shape and color,
position, rotation, shade, etc. Such a world model
can be visualized straightforwardly.

In this context, datasets are generators which
can create an unlimited amount of data instances,
hence making multiple iterations over a fixed set
of training instances obsolete. Importantly, dif-
ferent datasets constrain the general sampling pro-
cess in different ways by, for instance, restricting
the number of objects, the attribute values avail-
able, the positioning of entities, and more. This
addresses the point of specifying different data
distributions for training and testing. Moreover, it
makes it possible to partition evaluation data as de-
sired, which facilitates the detailed investigation of
system behavior for specific instances and hence
the discovery of systematic shortcomings.

1
https://github.com/AlexKuhnle/ShapeWorld

3.2 Syntactically rich language generation

Of the recent abstract datasets mentioned in the in-
troduction, Suhr et al. (2017) use human-written
captions, the SHAPES dataset (Andreas et al.,
2016) a minimalist grammar, and the CLEVR
dataset (Johnson et al., 2017a) a more complex
one based on functional building blocks, both
template-based and specifically designed for their
data. For our approach we leverage technology
made available by the DELPH-IN (Deep Linguis-
tic Processing with HPSG) consortium. More
specifically, we make use of the broad-coverage,
bidirectional2, high-precision English Resource
Grammar (Flickinger, 2000), which builds on the
compositional semantic framework of Minimal
Recursion Semantics (Copestake et al., 2005). For
our system we use one of its variant, Depen-
dency MRS (DMRS, Copestake (2009), Copes-
take et al. (2016)), and generate natural lan-
guage sentences from abstract DMRS graphs us-
ing Packard’s parser-generator ACE3.

We have found that DMRS graphs can easily
be enriched with appropriate semantics to be eval-
uated on a given world model. This means that
the internals of the language system are essentially
using a form of model-theoretic semantics. How-
ever, the external presentation of our task is still
‘natural’, i.e. only consists of image and language.
Compositional representations like DMRS further
enable us to produce an infinite number of cap-
tions of arbitrary syntactic complexity.

Figure 1 shows an example of a non-trivial cap-
tion with corresponding DMRS graph and logi-
cal representation over a world model. Both the

2Bidirectional grammars can be used for generation as
well as parsing, of which the latter might be useful here, for
instance, in investigating ambiguity effects.

3
http://sweaglesw.org/linguistics/ace/
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• Less than one triangle is cyan.

• At least half the triangles are red.

• More than a third of the shapes are cyan squares.

• Exactly all the five squares are red.

• More than one of the seven cyan shapes is a cyan square.

• Twice as many red shapes as yellow shapes are circles.

Figure 2: An image with several example captions focusing on quantification. The task is image caption agreement,
that is, to decide whether the caption agrees with the image (green) or not (red), similar to yes/no questions in VQA.

abstractness and compositionality of the semantic
representation are essential to allow us to scale be-
yond toy examples. The abstract scenario puts an
emphasis on experiments with closed-class vocab-
ulary and syntax, as compared to open-class dom-
inated real-world datasets. However, the same ap-
proach can be extended to more complex domains,
like the clip-arts of Zitnick et al. (2016).

In the future, we plan to implement two inter-
esting extensions for our framework: First, para-
phrase rules can be expressed on grammar-level
and integrated into the generation process as post-
processing step for increased linguistic variety.
Second, (D)MRS-based grammars for other lan-
guages, such as the JACY grammar for Japanese
(Siegel et al., 2016), can be used simply by trans-
lating the internal mapping of atomic DMRS com-
ponents to corresponding semantic elements.

3.3 Quantification example

Figure 2 presents an example image accompa-
nied by a variety of correct and incorrect cap-
tions focusing on quantification. We produce both
count-based (“three”) and fraction-based (gener-
alized) quantifiers (“half”) in various modifica-
tions (“less than three”), optionally with addi-
tional number restriction (“at least three of the
five”) or comparative (“half as many as”).

We decide to focus on quantifiers here because,
on the one hand, they can exhibit a high degree
of structural complexity, which can only be re-
solved by using visual information. On the other
hand, categories like ‘number’ in VQA 2.0 or
‘count’ and ‘compare integer’ in CLEVR imply
that count-based quantification is specifically cov-
ered by these datasets. As the various captions in
figure 2 illustrate, this is not fully the case. Note
that we so far do not consider scope ambiguity
of nested quantifiers, although our approach can
be extended accordingly, since the (D)MRS for-
malism supports scope underspecification, which
is one of the reasons for choosing DMRS.

4 Conclusion: Why use artificial data?

Challenging test data. The interplay of abstract
world model and semantic language representa-
tion enables us to generate captions requiring non-
trivial multimodal reasoning. In fact, the resulting
captions can be more complex than the sort of cap-
tions we could plausibly obtain from humans, and
do not suffer from a Zipfian tendency to simplicity
on average (unless configured accordingly).

Avoid Clever Hans effect. The simple, abstract
domain and the controlled generation process
based on randomly sampling microworlds makes
such data comparatively unbiased and greatly re-
duces the possibility of hidden complex correla-
tions. We can be confident that we cover the data
space both relatively uniformly and more exhaus-
tively than this is the case in real-world datasets.

Flexibility & reusability. Real-world and/or
human-created data essentially has to be obtained
again for every change/update, like for VQA v2.0
(Goyal et al., 2017). In contrast to that, modular-
ity and detailed configurability make our approach
easily reusable for a wide range of potentially un-
foreseen changes in evaluation focus.

Rich evaluation. Ultimately, our goal in provid-
ing datasets is to enable detailed evaluations (of
DNNs). By creating atomic test datasets specifi-
cally evaluating instance types individually (e.g.,
counting, spatial relations, or even more fine-
grained), we can unit-test a DNN for specific sub-
tasks. We believe that such a modular approach is
a better way to establish trust in the understanding
abilities of DNNs than a monolithic dataset and a
single accuracy number to assess performance.
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Abstract

Seq2Seq based neural architectures have be-
come the go-to architecture to apply to se-
quence to sequence language tasks. Despite
their excellent performance on these tasks, re-
cent work has noted that these models usually
do not fully capture the linguistic structure re-
quired to generalize beyond the dense sections
of the data distribution (Ettinger et al., 2017),
and as such, are likely to fail on samples from
the tail end of the distribution (such as inputs
that are noisy (Belinkov and Bisk, 2018) or of
different lengths (Bentivogli et al., 2016)). In
this paper, we look at a model’s ability to gen-
eralize on a simple symbol rewriting task with
a clearly defined structure. We find that the
model’s ability to generalize this structure be-
yond the training distribution depends greatly
on the chosen random seed, even when per-
formance on the standard test set remains the
same. This suggests that a model’s ability to
capture generalizable structure is highly sensi-
tive. Moreover, this sensitivity may not be ap-
parent when evaluating it on standard test sets.

1 Introduction

It is well known that language has certain struc-
tural properties which allows natural language
speakers to make “infinite use of finite means”
(Chomsky, 1965). This structure allows us to gen-
eralize beyond the typical machine learning defini-
tion of generalization (Valiant, 1984) (which con-
siders performance on the distribution that gener-
ated the training set), permitting the understand-
ing of any utterance sharing the same structure,
regardless of probability. We refer to this notion
as linguistic generalization 1.

Many problems in NLP are treated as sequence
to sequence tasks with solutions built on seq2seq-

∗*These authors contributed equally to this work.
1From here on, mentions of generalization refer to the lin-

guistic kind.

attention based models. While these models per-
form very well on standard datasets and also ap-
pear to capture some linguistic structure (Williams
et al., 2018; Belinkov et al., 2017; Linzen et al.,
2016), they also can be quite brittle, typically
breaking on uncharacteristic inputs (Lake and Ba-
roni, 2018; Belinkov and Bisk, 2018).

Due to the high capacity of these models, it
is not unreasonable to expect them to learn some
structure from the data. However, learning struc-
ture is not a sufficient condition to achieving lin-
guistic generalization. If this structure is to be us-
able on data outside the training distribution, the
model must learn the structure without addition-
ally learning patterns specific to the training data.

In this work, we look at the feasibility of train-
ing seq2seq-attention models so they generalize in
this linguistic sense. We train models on a symbol
replacement task with a well defined generalizable
structure. The task is simple enough that all mod-
els achieve near perfect accuracy on the standard
test set, i.e., where the inputs are drawn from the
same distribution as that of the training set. We
then test these models for linguistic generalization
by creating test sets of uncharacteristic inputs, i.e.,
inputs that are not typical in the training distribu-
tion but still solvable given that the generalizable
structure was learned. Our results show that gen-
eralization is highly sensitive2; even changes in
the random seed can drastically affect the ability
to generalize. This suggests that the line between
generalization and failure is quite fine, and may
not be feasible to reach by tuning alone.

2 Symbol Rewriting Task

Real world NLP tasks are complex, and as such,
it can be difficult to precisely define what a model

2The sensitivity of generalization is also hinted at in Mc-
Coy et al. (2018) who additionally note performance varia-
tions across initializations
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should and should not learn during training. As
done in previous work (Lake and Baroni, 2018;
Rodriguez and Wiles, 1998), we ease analysis by
looking at a simple formal task. The task is set up
to mimic (albeit, in an oversimplified manner) the
input-output symbol alignments and local syntac-
tic properties that models must learn in many nat-
ural language tasks, such as translation, tagging
and summarization. The task is defined over se-
quences of symbols, {x1, ...xn|xi ∈ X}, where
X is the input alphabet. Each symbol x ∈ X
is uniquely associated with its own output alpha-
bet Yx. Output is created by taking each indi-
vidual symbol xi in the sequence and rewriting
it as any sequence of k symbols from Yxi . To
do the task, the model must learn alignments be-
tween the input and output symbols, and preserve
the simple local syntactic conditions (every group
of k symbols must come from the same input al-
phabet Yx). As an example, let X = {A,B},
YA = {Consonants}, YB = {Vowels}, and k = 2.
Then a valid output for the input BA would be
aupt. For our task, |X| = 40 and each xi has a
corresponding output alphabet Yxi of size 16.

To generalize to any input sequence, a model
must: (1) learn the generalizable structure - the
alignments between input and output alphabets,
and (2) not learn any dependencies among input
symbols or sequence length. To test the extent
to which (2) is met, we train3 seq2seq-attention
models with 100,000 randomly generated samples
with inputs uniformly generated with lengths 5-10
and no input symbol appearing more than once in
a single sample. If the model learned alignments
without picking up other dependencies among in-
put symbols or input lengths then the resulting
model should have little problem in handling in-
puts with repeated symbols or different lengths,
despite never seeing such strings.

For evaluation we trained 50 different models
with the same configuration, chosen with a valida-
tion set, but with different random seeds. We cre-
ated 4 different test sets, each with 2000 randomly
generated samples. The first test set consists of
samples that are characteristic of the training set,
having lengths 5-10 and no repeats (Standard).
The second set tests the model’s ability to gener-
alize to repeated symbols in the input (Repeat).
The third and fourth sets test its ability to general-

3A detailed account of model training, regularization, and
tuning is provided in the supplementary material.

0 20 40 60 80 100
Accuracy

Standard

Repeat

Short

Long

Figure 1: Accuracy % distribution across 50 runs
with different random seeds on the four test sets.

ize to different input lengths, strings of length 1-4
(Short) and 11-15 (Long) respectively.

3 Results and Conclusions

The distribution of model accuracy4 measured at
instance level on the four test sets across all the
50 seeds is given in Figure 1. All models perform
above 99% on the standard set, with a deviation
well below 0.1. However, the deviation on the
other two sets is much larger, ranging from 13.39
for the repeat set to 20.63 for the long set. In gen-
eral, the model performs better on the repeat set
than on the short and long sets. Performance on
the short and long sets is not always bad, some
seeds giving performances of above 95% for either
the short or long set. Ideally, we would like a seed
which performs good on all the test sets; however,
this seems hard to obtain. The highest average per-
formance across the non standard test sets for any
seed was 79.52%. Learning to generalize for both
the repeated and longer inputs seems even harder,
with the Pearson correlation between performance
on the repeat and long sets being -0.71.

The variability in generalization on uncharac-
teristic inputs (and thus, the extent of linguistic
generalization) given different random seeds is
alarming, particularly given the fact that the stan-
dard test set performance remains mostly the same
regardless. The task presented here was easy and
simple to analyze, however, future work may be
done on natural language tasks. If these proper-
ties hold it might indicate that a new evaluation
paradigm for NLP should be pushed; one that em-
phasizes performance on uncharacteristic inputs in
addition to the data typically seen in training.

4We compute accuracy as # times the model produced a valid output
# samples .
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A Supplemental Material

A.1 Model and Training Details

The models we use are single layer, unidirec-
tional, seq2seq LSTMs (Hochreiter and Schmid-
huber, 1997) with bilinear attention (Luong et al.,
2015) and trained with vanilla SGD. To determine
the epoch to stop training at, we create a valida-
tion set of 2000 samples with the same character-
istics as the training set, i.e., of length 5-10 with
no repeated symbols. Training is stopped once ac-
curacy5 on the validation set either decreases or
remains unchanged. The size of the hidden state
and embeddings were chosen such that they were
as small as possible without reducing validation
accuracy, giving a size of 32.

Tuning hyperparameters is often done on a val-
idation set drawn from the same distribution as
the training set (as we often don’t know the ex-
act form of uncharacteristic inputs, with the ex-
ception of noisy inputs) which motivated our de-
cision to use a validation set of characteristic in-
puts to decide the epoch to stop at. However, we
noticed only small variation in the validation per-
formance upon using different learning rates and
dropout probabilities (where dropout was applied
to the input and output layers). In order to fine tune
these parameters to avoid extreme overfitting, we
created another validation set consisting of 5000
samples of ”uncharacteristic” inputs, i.e., inputs
with repeated symbols and varying from length 3-
12. These two hyperparameter values were set to
0.125 and 0.1, respectively, according to the per-
formance on this validation set, averaged across
a set of randomly chosen random seeds. Further
training details are listed in Table 1.

A.2 Symbol Rewriting Task Examples

Here we provide a simple example of the task.
If the input symbol A maps to any permutations
of a1, a2, or a3, and B maps to permutations of
b1, b2, or b3. Each ai and bi has 2 possible val-
ues, ai1 or ai2 and bi1 or bi2 respectively. Thus,
mapping an input symbol to 48 (8 ∗ 3!) possible
permutations. A possible valid output for the in-
put AB is a21a32a11b32b11b22. Note that any such
permutation is valid and permutations are selected
at random when generating the data. We allow this
stochasticity in the outputs in order to prevent the
model from resorting to pure memorization. Ta-

5Defined in section 3
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LSTM Layers 1
WE/LSTM size 32
Attention Bilinear
Batch size 64
Optimizer SGD
LR 0.125
Max gradient norm 5
Dropout 0.1

Table 1: Model details.

Standard Repeat Short Long
Size 2k 2k 2k 2k
Src Length 5-10 5-10 1-4 11-15
Tgt Length 15-30 15-30 3-12 33-45

Table 2: Details about the four test sets used in our
experiments.

ble 2 provides further information on the 4 differ-
ent test sets.

A.3 Model Performance
We provide the summary statistics across all runs
(50 different random seeds) in Table 3, which
gives the mean, standard deviation, minimum, and
maximum accuracies across all random seeds. We
additionally provide a sample of performances for
some individual random seeds in Table 4, with
the highest and lowest accuracies in each column
highlighted.

Standard Repeat Short Long
Mean 99.85 86.67 64.36 32.09
Std. 0.03 13.39 18.61 20.63
Min. 99.73 45.70 32.80 0.15
Max. 99.88 99.85 96.35 97.60

Table 3: Accuracy % summarized across all 50
runs with different random seeds.

Seed Standard Repeat Short Long
2787 99.88 94.65 42.05 23.05
5740 99.86 45.70 56.55 97.60

10000 99.86 98.55 32.80 0.15
14932 99.73 87.05 42.20 29.75
28897 99.87 99.85 47.40 1.40
30468 99.87 86.35 96.35 12.90

Table 4: Accuracy % on the test sets for selected
runs out of 50 with different random seeds.
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Abstract

We argue that extrapolation to examples out-
side the training space will often be easier for
models that capture global structures, rather
than just maximise their local fit to the training
data. We show that this is true for two popular
models: the Decomposable Attention Model
and word2vec.

1 Introduction

In a controversial essay, Marcus (2018a) draws the
distinction between two types of generalisation:
interpolation and extrapolation; with the former
being predictions made between the training data
points, and the latter being generalisation outside
this space. He goes on to claim that deep learning
is only effective at interpolation, but that human
like learning and behaviour requires extrapolation.

On Twitter, Thomas Diettrich rebutted this
claim with the response that no methods extrapo-
late; that what appears to be extrapolation from X
to Y is interpolation in a representation that makes
X and Y look the same. 1

It is certainly true that extrapolation is hard, but
there appear to be clear real-world examples. For
example, in 1705, using Newton’s then new in-
verse square law of gravity, Halley predicted the
return of a comet 75 years in the future. This
prediction was not only possible for a new ce-
lestial object for which only a limited amount of
data was available, but was also effective on an or-
bital period twice as long as any of those known
to Newton. Pre-Newtonian models required a set
of parameters (deferents, epicycles, equants, etc.)
for each body and so would struggle to generalise
from known objects to new ones. Newton’s theory
of gravity, in contrast, not only described celes-

1https://twitter.com/tdietterich/
status/948811920001282049

Figure 1: Generalising to unseen data: dotted line =
training manifold; black arrows = interpolation; grey
arrows = extrapolation. Both directions are represented
globally in the training data, but local interpolation is
only effective in one of them at each point.

tial orbits but also predicted the motion of bodies
thrown or dropped on Earth.

In fact, most scientists would regard this sort
of extrapolation to new phenomena as a vital test
of any theory’s legitimacy. Thus, the question of
what is required for extrapolation is reasonably
important for the development of NLP and deep
learning.

Marcus (2018a) proposes an experiment, con-
sisting of learning the identity function for binary
numbers, where the training set contains only the
even integers but at test time the model is required
to generalise to even numbers. A standard multi-
layer perceptron (MLP) applied to this data fails
to learn anything about the least significant bit in
input and output, as it is constant throughout the
training set, and therefore fails to generalise to the
test set. Many readers of the article ridiculed the
task and questioned its relevance. Here, we will
argue that it is surprisingly easy to solve Marcus’
even-odd task and that the problem it illustrates is
actually endemic throughout machine learning.

Marcus (2018a) links his experiment to the sys-
tematic ways in which the meaning and use of a
word in one context is related to its meaning and
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use in another (Fodor and Pylyshyn, 1988; Lake
and Baroni, 2017). These regularities allow us to
extrapolate from sometimes even a single use of a
word to understand all of its other uses.

In fact, we can often use a symbol effectively
with no prior data. For example, a language
user that has never have encountered the sym-
bol Socrates before may nonetheless be able to
leverage their syntactic, semantic and inferential
skills to conclude that Socrates is mortal contra-
dicts Socrates is not mortal.

Marcus’ experiment essentially requires extrap-
olating what has been learned about one set of
symbols to a new symbol in a systematic way.
However, this transfer is not facilitated by the
techniques usually associated with improving gen-
eralisation, such as L2-regularisation (Tikhonov,
1963), drop-out (Srivastava et al., 2014) or prefer-
ring flatter optima (Hochreiter and Schmidhuber,
1995).

In the next section, we present four ways to
solve this problem and discuss the role of global
symmetry in effective extrapolation to the unseen
digit. Following that we present practical exam-
ples of global structure in the representation of
sentences and words. Global, in these examples,
means a model form that introduces dependencies
between distant regions of the input space.

2 Four Ways to Learn the Identity
Function

The problem is described concretely by Marcus
(1998), with inputs and outputs both consisting of
five units representing the binary digits of the in-
tegers zero to thirty one. The training data con-
sists of the binary digits of the even numbers
(0, 2, 4, 8, . . . , 30) and the test set consists of the
odd numbers (1, 3, 5, 7, . . . , 31). The task is to
learn the identity function from the training data
in a way that generalises to the test set.

The first model (SLP) we consider is a simple
linear single layer perceptron from input to output.

In the second model (FLIP), we employ a change
of representation. Although the inputs and outputs
are given and fixed in terms of the binary digits 1
and 0, we will treat these as symbols and exploit
the freedom to encode these into numeric values
in the most effective way for the task. Specifically,
we will represent the digit 1 with the number 0 and
the digit 0 with the number 1. Again, the network
will be a linear single layer perceptron without bi-

Model Train Test

SLP 8.12e-06 0.99
FLIP 6.79e-05 1.04e-05
ORTHO 1.27e-04 4.09e-05
CONV 1.71e-04 3.20e-05
PROJ 5.15e-06 8.07e-06

Table 1: Mean Squared Error on the Train (even num-
bers) and Test (odd numbers) Sets.

ases.
Returning to the original common-sense repre-

sentation, 1 → 1 and 0 → 0, the third model
(ORTHO) attempts to improve generalisation by
imposing a global condition on the matrix of
weights in the linear weights. In particular, we re-
quire that the matrix is orthogonal, and apply the
absolute value function at the output to ensure the
outputs are not negative.

For the fourth model (CONV), we use a linear
Convolutional Neural Network (ConvNet, Lecun
et al., 1998) with a filter of width five. In other
words, the network weights define a single linear
function that is shifted across the inputs for each
output position.

Finally, in our fifth model (PROJ) we employ an-
other change of representation, this time a dimen-
sionality reduction technique. Specifically, we
project the 5-dimensional binary digits d onto an
n dimensional vector r and carry out the learning
using an n-to-n layer in this smaller space.

r = Ad (1)

where the entries of the matrix A are Aij =
eβ(j−i). In each case, our loss and test evaluation
is based on squared error between target and pre-
dicted outputs.

Training. Each model is implemented in Ten-
sorFlow (Abadi et al., 2015) and optimised for
1,000 epochs. In Eq. (1), we find that values of
β = ln(2) and n = 1 work well in practice.

Results. As can be seen in Table 1, SLP fails to
learn a function that generalises to the test set.
In contrast, all the other models (FLIP, ORTHO,
CONV, PROJ) generalise almost perfectly to the
test set. Thus, we are left with four potential ap-
proaches to learning the identity function. Is low-
est test set error the most appropriate means of
choosing between them?
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Discussion. This decision probably isn’t as mo-
mentous as the choice discussed by Galileo in his
Dialogue Concerning the Two Chief World Sys-
tems, where he presented the arguments for and
against the heliocentric and geocentric models of
planetary motion. These pre-Newtonian models
could, in principle, attain as much predictive accu-
racy as desired, given enough data, by simply in-
corporating more epicycloids for each planet. On
the other hand, they could not extrapolate beyond
the bodies in that training data. Here, we will try to
extract something useful from our results by con-
sidering how each model might generalise to other
data and problems.

Although FLIP has the second lowest test set er-
ror, it is at best a cheap hack2 which works only
in the limited circumstance of this particular prob-
lem. If there were more than a single fixed digit in
the training data, this trick would not work.

ORTHO suffers from the same problem, though
it does embody the principle that everything in the
input should end up in the output which seems to
be part of this task.

CONV on the other hand will generalise to any
size of input and output, and will even generalise
to multiplication by powers of 2, rather than just
learning the identity function.

PROJ, with the values β = ln(2) and n = 1,
boils down to converting the binary digits into the
equivalent single real value and learning the iden-
tity function via linear regression. This approach
will extrapolate to values of any magnitude3 and
generalise to learning any linear function, rather
than just the identity. As such, it is probably
the only practically sensible solution, although it
cheats by avoiding the central difficulty in the orig-
inal problem.

At its most general, this central difficulty is the
problem of extrapolating in a direction that is per-
pendicular to the training manifold. The even
number inputs lay on a 4 dimensional subspace,
while the odd numbers were displaced in a direc-
tion at right angles to that subspace. In this general
form, the problem of how to respond to variation
in the test set that is perpendicular to the training
manifold lacks a well-defined unique solution, and

2Nonetheless, such tricks are hardly unknown in machine
learning research.

3Generalisation to values outside the training set would
not be so successful had we used an MLP rather than a uni-
form linear function. Fitting to the training set using sigmoids
will not yield a function that continues to approximate the
identity very far beyond its range in the training set.

this helps to explain why many people dismissed
the task entirely.

However, this problem is in fact pervasive in
most of machine learning. Training instances will
typically lie on a low dimensional manifold and
effective generalisation to new data sources will
commonly require handling variation that is or-
thogonal to that manifold in an appropriate man-
ner, e.g. Fig. 1. If prediction is based on local
interpolation using a highly non-linear function,
then no amount of smoothing of the fit will help.

Convolution is able to extrapolate from even
to odd numbers because it exploits the key struc-
ture of the ordering of digits that a human would
use. A human, given this task, would recognise
the correspondence between input and output po-
sitions and then apply the same copying operation
at each digit, which is essentially what convolu-
tion learns to do. It implicitly assumes that there
is a global translational symmetry4 across input
positions, and this reduces the number of param-
eters and allows generalisation from one digit to
another.

Returning to the linguistic question that inspired
the task, we can think of systematicity in terms of
symmetries that preserve the meaning of a word
or sentence (Kiddon and Domingos, 2015). Ide-
ally, our NLP models should embody or learn the
symmetries that allow the same meaning to be ex-
pressed within multiple grammatical structures.

Unfortunately, syntax is complex and prohibits
a short and clear investigation here. On the other
hand, relations between sentences (e.g. contradic-
tion) sometimes have much simpler symmetries.
In the next section, we examine how global sym-
metries can be exploited in an inference task.

3 Global Symmetries in Natural
Language Inference

The Stanford Natural Language Inference (SNLI,
Bowman et al., 2015) dataset attempts to provide
training and evaluation data for the task of cat-
egorising the logical relationship between a pair
of sentences. Systems must identify whether each
hypothesis stands in a relation of entailment, con-
tradiction or neutral to its corresponding premise.
A number of neural net architectures have been

4Coincidentally, the rejection of the Earth centred model
in favour of planetary motions orbiting the Sun played an im-
portant role in the recognition that the laws of physics also
have a global translational symmetry, i.e. that no point in
space is privileged or special.
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proposed that effectively learn to make test set pre-
dictions based purely on patterns learned from the
training data, without additional knowledge of the
real world or of the logical structure of the task.

Here, we evaluate the Decomposable Attention
Model (DAM, Parikh et al., 2016) in terms of its
ability to extrapolate to novel instances, consisting
of contradictions from the original test set which
have been reversed. For a human that understands
the task, such generalisation is obvious: knowing
that A contradicts B is equivalent to knowing that
B contradicts A. However, it is not at all clear that
a model will learn this symmetry from the SNLI
data, without it being imposed on the model in
some way. Consequently we also evaluate a modi-
fication, S-DAM, where this constraint is enforced
by design.

Models. Both models build representations, vp
and vh, of premise and hypothesis in attend and
compare steps. The original DAM model then
combines these representations by concatenating
them and then transforming and aggregating the
result to produce a final representation uph, form-
ing the input to a 3-way softmax:

uph = t(vp;vh),

p(i) = s(uph ·Wi), with i ∈ {c, e, n}. (2)

In S-DAM, we break the prediction into two de-
cisions: contradiction vs. non-contradiction fol-
lowed by entailment vs. neutral. The first deci-
sion is symmetrised by concatenating the vectors
in both orders and then summing the output of
the same transformation applied to both concate-
nations:

ũph = t(vp;vh) + t(vh;vp),

p(j) = s(ũph · W̃j), with j ∈ {c,¬c}.
(3)

Predictions for entailment and neutral are then
made conditioned on ¬c:

ūph = t(vp;vh),

p(k|¬c) = s(ūph · W̄k), with k ∈ {e, n}. (4)

Results. Table 2 gives the accuracies for both
models on the whole SNLI test set, the subset of
contradictions, and the same set of contradictions
reversed. In the last row, the DAM model suffers a
significant fall in performance when the contradic-
tions are reversed. In comparison, the S-DAM’s
performance is almost identical on both sets.

Instances DAM S-DAM

Whole Test Set 86.71% 85.95%
Contradictions 85.94% 85.69%
Reversed Contradictions 78.13% 85.20%

Table 2: Accuracy on all instances, contradictions and
reversed contradictions from the SNLI test set.

Thus, the S-DAM model extrapolates more ef-
fectively because its architecture exploits a global
symmetry of the relation between sentences in
the task. In the following section, we investi-
gate a global symmetry within the representation
of words.

4 Global Structure in Word Embeddings

Word embeddings, such as GloVe (Pennington
et al., 2014) and word2vec (Mikolov et al., 2013),
have been enormously effective as input repre-
sentations for downstream tasks such as question
answering or natural language inference. One
well known application is the king = queen −
woman+man example, which represents an im-
pressive extrapolation from word co-occurrence
statistics to linguistic analogies (Levy and Gold-
berg, 2014). To some extent, we can see this pre-
diction as exploiting a global structure in which
the differences between analogical pairs, such as
man − woman, king − queen and father −
mother, are approximately equal.

Here, we consider how this global structure in
the learned embeddings is related to a linearity in
the training objective. In particular, linear func-
tions have the property that f(a + b) = f(a) +
f(b), imposing a systematic relation between the
predictions we make for a, b and a+ b. In fact, we
could think of this as a form of translational sym-
metry where adding a to the input has the same
effect on the output throughout the space.

We hypothesise that breaking this linearity, and
allowing a more local fit to the training data will
undermine the global structure that the analogy
predictions exploit.

Models. These embedding models typically rely
on a simple dot product comparison of target and
context vectors as the basis for predicting some
measure of co-occurrence s:

s = f

(∑

i

targeti · contexti

)
. (5)
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D Linear Non-Linear

100 50.38% 42.96%
200 53.18% 40.66%
400 50.77% 32.43%

Table 3: Accuracy on the analogy task.

We replace this simple linear function of the con-
text vectors, with a set of non-linear broken-stick
functions gi( · ).

s = f

(∑

i

gi (contexti)

)
,

gi (x) =

{
mix if nix+ ci < 0,

(mi + ni)x+ ci otherwise.

We modify the CBOW algorithm in the publicly
available word2vec code to incorporate this non-
linearity and train on the commonly used text8 cor-
pus of 17M words from Wikipedia. As this modi-
fication doubles the number of parameters used for
each word, we test models of dimensions 100, 200
and 400.

Results. Table 3 reports the performance on
the standard analogy task distributed with the
word2vec code. The non-linear modification of
CBOW is substantially less successful than the
original linear version on this task. This is true
on all the sizes of models we evaluated, indicating
that this decrease is not simply a result of over-
parameterisation.

Thus, destroying the global linearity in the em-
bedding model undermines extrapolation to the
analogy task.

5 Conclusions

Language is a very complex phenomenon, and
many of its quirks and idioms need to be treated as
local phenomena. However, we have also shown
here examples in the representation of words and
sentences where global structure supports extrap-
olation outside the training data.

One tool for thinking about this dichotomy is
the equivalent kernel (Silverman, 1984), which
measures the extent to which a given prediction
is influenced by nearby training examples. Typi-
cally, models with highly local equivalent kernels
- e.g. splines, sigmoids and random forests - are
preferred over non-local models - e.g. polynomi-

als - in the context of general curve fitting (Hastie
et al., 2001).

However, these latter functions are also typi-
cally those used to express fundamental scientific
laws - e.g. E = mc2, F = Gm1m2

r2
- which fre-

quently support extrapolation outside the original
data from which they were derived. Local models,
by their very nature, are less suited to making pre-
dictions outside the training manifold, as the influ-
ence of those training instances attenuates quickly.

We suggest that NLP will benefit from incorpo-
rating more global structure into its models. Exist-
ing background knowledge is one possible source
for such additional structure (Marcus, 2018b; Min-
ervini et al., 2017). But it will also be necessary to
uncover novel global relations, following the ex-
ample of the other natural sciences.

We have used the development of the scientific
understanding of planetary motion as a repeated
example of the possibility of uncovering global
structures that support extrapolation, throughout
our discussion. Kepler and Newton found laws
that went beyond simply maximising the fit to the
known set of planetary bodies to describe regular-
ities that held for every body, terrestrial and heav-
enly.

In our SNLI example, we showed that simply
maximising the fit on the development and test
sets does not yield a model that extrapolates to re-
versed contradictions. In the case of word2vec, we
showed that performance on the analogy task was
related to the linearity in the objective function.

More generally, we want to draw attention to the
need for models in NLP that make meaningful pre-
dictions outside the space of the training data, and
to argue that such extrapolation requires distinct
modelling techniques from interpolation within
the training space. Specifically, whereas the latter
can often effectively rely on local smoothing be-
tween training instances, the former may require
models that exploit global structures of the lan-
guage phenomena.
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