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Abstract

This paper describes the IDLab system sub-
mitted to Task A of the CLPsych 2018 shared
task. The goal of this task is predicting psy-
chological health of children based on lan-
guage used in hand-written essays and socio-
demographic control variables. Our entry uses
word- and character-based features as well
as lexicon-based features and features derived
from the essays such as the quality of the
language. We apply linear models, gradient
boosting as well as neural-network based re-
gressors (feed-forward, CNNs and RNNs) to
predict scores. We then make ensembles of
our best performing models using a weighted
average.

1 Introduction

The goal of the CLPsych 2018 shared task is to
predict the psychological health of children based
on essays and socio-demographic control vari-
ables. The provided data stems from the Na-
tional Child Development Study (NCDS) which
followed a number of people born in a single
week of March 1958 in the UK (Power and Elliott,
2005). The psychological health of this group of
individuals was monitored in intervals of several
years. At the age of 11, participants were asked
to write an essay describing where they saw them-
selves at age 25. Simultaneously, their psychologi-
cal health was evaluated by their teachers based on
metrics defined by the Bristo Social Adjustment
Guides (BSAG) (Shepherd, 2013).

Given the written essays and social control vari-
ables (gender and social class), CLPsych partici-
pants are to predict three types of BSAG scores:
(i) total BSAG score, (ii) the depression
BSAG score, and (iii) the anxiety BSAG score.
In order to predict these scores, participants are al-
lowed to use the social control variables next to the
features extracted from the essays themselves.

Our system uses several types of features: bag-
of-word and bag-of-character features, features
derived from lexicons and term lists, and features
based on text statistics (see Section 3.2 for more
details). Using these features, we apply several
types of regressors: linear models, gradient boost-
ing and neural-network based models. For each
of the regressors, we explore different combina-
tions of features to predict each of the BSAG
scores. Subsequently, these models are combined
using weighted average ensembling. Two sets
of predictions were made: the first one is based
on the single best models, a second uses an en-
semble of models for each of the three scores
(depression, anxiety and total BSAG
scores).

Our ensemble of models gives a competitive re-
sult, positioning our system on the second place
with only 0.01 points under the winner of this
shared task. We think that this good performance
is mostly due to the different nature of our indi-
vidual models which complement each other when
ensembled.

The remainder of this paper is organized as fol-
lows: Section 2 describes the shared task in more
detail. Section 3 presents the features used by
the regressors. Section 4 describes regressors and
the general methodology of our approach. Sec-
tion 5 describes results we obtained during devel-
opment on our internal validation set and on the
real test set. Finally, we summarize our findings
and present future directions in Section 6.

2 Task and Data

Input for task A consists of essays written by 11-
year-old children describing where they see them-
selves at age 25, as well as several social control
variables:

1. Gender: gender of the participant child.
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2. Social Class: the job hierarchy of the fa-
ther of the participant child. The domain
comprises 6 values representing different job
categories: starting with professional and
managerial occupations and ending with un-
skilled occupations.

3. Essay: content of the essay written by the
participant child. Originally, the essays were
hand-written and later transcribed in digital
format. The average length of the essays is
225 characters.

The goal of shared task A is to predict the cur-
rent psychological health of the children. Psycho-
logical health is measured using scores assigned
by teachers of the children following metrics de-
fined in the BSAG. These guides score the total
psychological health using 12 different syndromes
(depression, anxiety, hostility, etc.). CLPsych
shared task A requires participants to predict three
scores:

1. Total: the sum of all the BSAG scores of all
the different syndromes.

2. Depression: the BSAG score related to the
depression syndrome.

3. Anxiety: the BSAG score related to the anx-
iety syndrome.

Participants are given a training set consisting
of essays from 9,217 children with corresponding
input variables and BSAG scores.

3 Features

In this section, we present features used by our
models, and experiment with a number of differ-
ent categories of feature extraction.

3.1 Lexical features
We use bag-of-n-gram features both on word- and
character-level. The latter provides robustness to
the spelling variation found in children’s writing.
For word-level we experiment with n-grams for n
ranging from 1 to 4. At character-level, we ex-
periment with 3- up to 6-grams. These one-hot
encodings are weighted using TF-IDF.

3.2 Feature Engineering
Next to the sparse bag-of-n-grams representations
of the essays, we apply several manually designed
features.

Social control features These features are given
as input in the data and consist of the gender and
social class of the participants. In order to be used
in regressors, we encode these features as one-hot
vectors.
Lexicon-based features We experiment with fea-
tures based on two lexicons: the Linguistic Inquiry
Word Count (LIWC) described in (Pennebaker
et al., 2015) and the DepecheMood (Staiano and
Guerini, 2014). The LIWC is a psycholinguis-
tic lexicon that allows to measure the emotional
health of individuals by providing a set of term
categories related to different mental states. In
our experiments we use all 73 (partly overlapping)
psychological word categories found in the LIWC
dictionary.

Similarly, DepecheMood is a lexicon consisting
of 37k different words (verbs, nouns, adjectives
and adverbs). Each of the words has weights as-
sociated to the following 8 mental states: afraid,
amused, angry, annoyed, don’t care, happy, in-
spired and sad. In our experiments, we calcu-
late the average of TF-IDF weights for these cate-
gories. These TF-IDF weights are already given
inside DepecheMood lexicon and are originally
calculated on articles from rappler.com based
on Rappler’s Mood Meter crowdsourcing.
Textual statistics features We extract a number
of features describing several characteristics of the
essays:

• Total number of words

• Average sentence length

• Average word length

• Ratio of spelling mistakes

• Ratio of different words

• Number of words not recognized (illegible)
when transcribing the essays from hand-
written to digital form.

Sentiment features We reason that the partici-
pants’ psychological health can partially be de-
tected by evaluating the essay in a positive-
negative sentiment spectrum. We use the pre-
trained sentiment classifier from (Cagan et al.,
2014).1 We hypothesize that individuals with
good psychological health will tend to use more

1The python library can be found at: https://pypi.
python.org/pypi/sentiment_classifier
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positive expressions than individuals with high
scores in any of BSAG syndromes.
Language model features Coming from the in-
tuition that mental state may be related to the
development of language skills, we include two
language model features. Our primary language
model feature is the average perplexity of the es-
says, as it is an often used metric to score the gen-
eral language quality and coherence of the texts.
As a secondary feature, we include the fraction
of out-of-vocabulary tokens over the entire essay,
with respect to the Penn Treebank data. We use the
word-level AWD_LSTM language model trained on
the Penn Treebank, presented by Merity et al.
(2017).

4 Models Description

We train a variety of different regression models
predicting the three aforementioned BSAG scores.
We include simple linear models as well as gradi-
ent boosted trees and neural network-based mod-
els. Our best performing models are subsequently
combined using ensembling. As a general rule,
we try to select different model function types in
order to achieve lower correlation between predic-
tions from the different types of models.

4.1 Linear Models
We experiment with two types of linear regressors:
support vector machines (SVMs) and ridge regres-
sion. Linear models are trained on two sets of fea-
tures.

1. Lexical features based purely on the text of
the essays (see Section 3.1). Here we use TF-
IDF weighted bag-of-word features as well as
character features.

2. Designed features through feature engineer-
ing (see Section 3.2).

To avoid overfitting, we tune the regularization
parameter α on a validation set. For SVM models
this parameter corresponds to squared L2 penalty.
For ridge models, it corresponds to the strength
of L2 regularization term. We experiment with
selecting models based on lowest RMSE error as
well as the ones with highest disattenuated Pear-
son correlation score.

4.2 Gradient Boosting
We apply gradient boosted tree regressors using
XGBoost (Chen and Guestrin, 2016) trained on

the designed features (see Section 3.2). To train
XGBoost models, we use early stopping by eval-
uating on a validation set with 10,000 estimators
and a logarithmic scale grid search of learning
rate from 10e−5 to 10e+5. We experiment with
RMSE as well as disattenuated Pearson correla-
tion scores as criterion to perform early stopping.

4.3 Feed-Forward Neural Networks
As a second type of non-linear models, we use
feed-forward neural networks (FFNNs). We train
FFNNs on our designed features (see Section 3.2)
expecting that the introduced non-linearity will
complement the results of previous models. Our
FFNN architecture consists of 3 hidden layers with
tanh activation units. We apply dropout regular-
ization of 0.5 between each of the layers. The net-
work has a total of 223 input features in the first
layer and 256 neurons in each of the three inter-
mediate hidden layers. We experiment with opti-
mizing for three loss functions:

1. Mean squared error (MSE): this is our de-
fault choice used for most of the regressors.

2. Huber: Huber loss is less sensitive to out-
liers which are present in BSAG scores (high
BSAG scores for few individuals).

3. Pearson correlation: we experiment with
correlation loss because it is directly related
to the metric used to evaluate the model per-
formance by organizers of shared task A.

4.4 Neural Sequence Encoders
We include two types of models based on neural
networks which encode the essays to a low di-
mensional representation, after which a score is
predicted using a feed-forward layer. Essays are
encoded using two of the most prevalent neural
network architectures for modeling of sequences,
convolutional neural networks (CNN) and recur-
rent neural networks (RNN).
Pretrained Embeddings The first layer of NN
architectures embeds the one-hot token repre-
sentations into a vector space of lower dimen-
sionality, which it then fine-tuned through back-
propagation. We initialize the embedding layer us-
ing embeddings from dedicated word embedding
techniques Word2Vec (Mikolov et al., 2013) and
Glove (Pennington et al., 2014). This proved to be
essential for good performance of the neural se-
quence models.
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CNNs We apply the architecture proposed by
Kim (2014) which consists of a single convolu-
tional layer with multiple filter sizes, followed by
one feed-forward layer over the three-dimensional
score vector. We use filters of size 3, 4, 5, 6 and
7 and vary the amount from 64 to 512 filters for
each size.
RNNs We experiment with two types of RNNs
to encode the essays, long short-term memory
networks (LSTM) (Hochreiter and Schmidhuber,
1997) and gated recurrent units (GRU) (Cho et al.,
2014). After encoding the essay in forward and
backward direction, we use the concatenated se-
quences of hidden states to predict scores. To re-
duce the dimensionality of this representation, we
use max-pooling and self-attention to obtain the
final essay encodings (Lin et al., 2017). We exper-
iment with single-layer bidirectional RNNs with
hidden state vectors of 64, 128 and 256 dimen-
sions. A fully connected layer of 32 and 64 nodes
is used to predict scores.

4.5 Model Ensembling
To produce weighted averages of predictions, we
use the forward model selection algorithm that
greedily selects the combination of models that
maximizes the disattenuated Pearson correlation
on the evaluation set. We use 100 iterations and
choose the best model if there is no improvement
after 30 iterations on the evaluation set.

5 Experiments

5.1 Training Details
We divide the training set of 9,217 individual eval-
uations into two parts: (i) a train set consisting of
7,835 examples, and (ii) an evaluation set consist-
ing of the rest (1,382 examples). For SVM, Ridge
and XGBoost models, we select the best models
on our evaluation set using two metrics: (i) mod-
els with the lowers RMSE score, and (ii) models
with the highest disattenuated Pearson correlation
score. For feed-forward neural nets we experiment
with three loss functions: (i) MSE, (ii) Huber, and
(iii) disattenuated Pearson correlation. Finally, for
neural sequence encoders, we use MSE as a loss
function. In order to build an ensemble of mod-
els, we further subdivide our evaluation set in two
equal parts:

1. Validation set: the validation set is used to
choose the best combination of models using
forward model selection (see Section 4.5).

2. Test set: the test set is used to verify that a
given model combination does not overfit the
evaluation set.

Before extracting features from the text of in-
put essays, we perform basic text preprocess-
ing functions: lowercasing, removal of punctu-
ation and extra spaces. For TF-IDF and em-
bedding lexical features we also remove the stop
words. Additionally, we use TextBlob (https:
//textblob.readthedocs.io/) in order to
correct the spelling mistakes.

Feed-forward neural networks are trained for
100 epochs with learning rate of 1e−5. We also
apply a weight decay (L2 penalty) of 1e−6 on the
Adam optimizer. Most of the models converge af-
ter training approximately for 20 epochs with a
batch size of 8.

CNN and RNN models are trained with Adam
and early stopping based on disattenuated Pearson
correlation. Models converge after training for ap-
proximately 10 epochs, with batch size 32. For
RNN models we apply a dropout with probability
0.3 on the embedding layer and the output layer.
For both CNN and RNN models we apply dropout
on the fully connected layer with probability 0.15.

5.2 Results

Table 1 summarizes results for different models
on our validation set. For linear models, we no-
tice that SVM models are sensitive to optimiz-
ing towards RMSE or disattenuated correlation
score. We also observe that SVM models have
lower disattenuated correlation scores for the anx-
iety BSAG metric. For feed-forward neural nets,
use of the Huber loss obtains the best performance.
We speculate that this is because this method is not
as influenced by outliers as other loss functions.
The rest of the models has approximately similar
performance.

A large boost in performance is observed when
creating ensembles of models. We gain between
0.02 and 0.04 points on our validation set for the
disattenuated correlation metric. We don’t see
this improvement on RMSE and MAE metrics
since our ensemble is greedily built to optimize for
Pearson correlation between predicted and ground
truth results.

Table 2 shows the weight combinations of our
ensemble for all three objectives to predict. We
only add best RMSE models for Ridge, SVM and
XGBoost regressors. The reason is that adding
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Anxiety Depression Total

RMSE MAE Diss. R RMSE MAE Diss. R RMSE MAE Diss. R

Development
Ridge RMSE (lex. feat.) 1.222 0.784 0.2100 1.460 1.076 0.3493 8.356 6.472 0.4532

+Diss. R (lex. feat.) 1.225 0.782 0.2160 1.497 1.138 0.4046 8.643 7.043 0.4783
+RMSE (des. feat.) 1.218 0.773 0.2136 1.446 1.073 0.3781 8.272 6.280 0.4719
+Diss. R (des. feat.) 1.218 0.773 0.2136 1.446 1.073 0.3781 8.272 6.280 0.4719

SVM RMSE (lex. feat.) 1.260 0.690 0.1129 1.517 1.046 0.2542 8.643 5.940 0.4526
+Diss. R (lex. feat.) 1.360 0.573 0.1220 1.811 1.007 0.4094 9.047 6.091 0.4624
+RMSE (des. feat.) 1.241 0.723 0.1227 1.470 1.005 0.3736 8.683 6.920 0.3418
+Diss. R (des. feat.) 1.352 0.573 0.1026 1.897 1.694 0.3508 8.449 6.019 0.4473

XGBoost RMSE (des. feat.) 1.221 0.769 0.1982 1.452 1.081 0.3624 8.302 6.257 0.4600
+Diss. R (des. feat.) 1.225 0.768 0.1997 1.458 1.073 0.3579 8.312 6.343 0.4557

CNN RMSE loss 1.221 0.772 0.2053 1.473 1.128 0.3863 8.390 6.488 0.4556
RNN RMSE loss 1.228 0.769 0.1630 1.444 1.070 0.3938 8.271 6.206 0.4805

FFNN MSE loss (des. feat.) 1.216 0.775 0.2253 1.445 1.073 0.3837 8.219 6.310 0.4945
+Huber loss (des. feat.) 1.246 0.697 0.2294 1.483 0.997 0.3921 8.486 5.884 0.5000
+Diss. R loss (des. feat.) 1.288 0.616 0.2010 1.675 0.959 0.3488 11.556 7.743 0.4290

Ensemble 1.223 0.743 0.2660 1.435 1.035 0.4246 8.252 6.047 0.5191

Test Runs
Submission 1 (Ensemble) 1.119 0.476 0.1946 1.393 1.004 0.4536 7.843 5.691 0.5667
Submission 2 (Single Model) 1.022 0.697 0.1760 1.403 1.019 0.4192 8.134 5.688 0.5140

Table 1: Results on internal evaluation set for best individual models; “lex. feat.” refers to the lexical features (see
section 3.1), whereas “des. feat.” are the designed features (see section 3.2).

Anxiety Depression Total

Ridge RMSE (lex. feat.) 0.2698 0.0625 0.1825
Ridge RMSE (des. feat.) - - -

SVM RMSE (lex. feat.) - - -
SVM RMSE (des. feat.) 0.0688 0.1563 0.0584

XGBoost RMSE (des. feat.) 0.2646 0.0469 0.0949

CNN RMSE loss 0.0423 0.1250 -
RNN RMSE loss - 0.3281 0.2993

FFNN MSE loss (des. feat.) - 0.2813 0.0365
FFNN Huber loss (des. feat.) 0.3545 - 0.3285
FFNN Diss. R loss (des. feat.) - - -

Table 2: Weights of the ensemble components.

models that had the best performance on Pearson
disattenuated correlation score decreased signifi-
cantly the RMSE and MAE scores of the ensem-
ble. How these models can still be added without
producing this drop in performance is left for fu-
ture work.

The bottom rows of Table 1 show the results
of our two submissions on the official CLPsych
test collection. We obtain a considerable improve-
ment using ensembles of models with respect to
our single best model submission, resulting in the
overall second best submission. We speculate that
this is because of different score distributions pro-
duced by dissimilar models used in this work. This
generates low correlation of individual model pre-

dictions, which results in better ensembles. We
were surprised to see that disattenuated correlation
score was several points higher in depression and
total BSAG predictions than on our internal vali-
dation set. The anxiety score, on the other hand, is
considerably lower. Further analysis is needed to
understand these differences, and to investigate the
impact of the individual types of hand-designed
features.

6 Conclusion and Future Work

In this paper we briefly described the Ghent Uni-
versity – IDLab submission to the CLPsych 2018
shared task A. We found that linear models, gradi-
ent boosting as well as neural network based mod-
els perform similarly but produce different mod-
els that, when combined, can increase the perfor-
mance on the test set considerably.

For future work, we plan to conduct a careful
error analysis (e.g. ablation tests) and examine the
best ways to design our train-validation splits in
order to decrease the score difference between the
validation and test sets. We also plan to experi-
ment with more sophisticated ways of ensembling
and stacking techniques.

We consider that in the end, most of the suc-
cess of this task comes down to designing a good
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set of features. In particular, one of the features
we didn’t explore is topic modeling. Additional
features can be obtained from topic model distri-
butions as they provide positive results on similar
tasks described in (Resnik et al., 2015) and (Cohan
et al., 2016).

Finally, another direction we want to explore
consists of using word and phrase embeddings,
pre-trained on a corpus of individuals with psy-
chological disorders. Some work has already been
done to gather this kind of corpus from online re-
sources (Twitter and Reddit in particular) (Yates
et al., 2017) and (Coppersmith et al., 2015). We
hypothesize that we can get a significant improve-
ment by initializing our CNN and RNN models
with these embeddings.
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cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Arman Cohan, Sydney Young, and Nazli Goharian.
2016. Triaging mental health forum posts. In Pro-
ceedings of the Third Workshop on Computational
Lingusitics and Clinical Psychology, pages 143–
147.

Glen Coppersmith, Mark Dredze, Craig Harman,
Kristy Hollingshead, and Margaret Mitchell. 2015.
CLPsych 2015 shared task: Depression and PTSD
on Twitter. In Proceedings of the 2nd Workshop on
Computational Linguistics and Clinical Psychology:
From Linguistic Signal to Clinical Reality, pages
31–39.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. arXiv preprint arXiv:1703.03130.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2017. Regularizing and Optimiz-
ing LSTM Language Models. arXiv preprint
arXiv:1708.02182.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

James W Pennebaker, Ryan L Boyd, Kayla Jordan, and
Kate Blackburn. 2015. The development and psy-
chometric properties of LIWC2015. Technical re-
port.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Chris Power and Jane Elliott. 2005. Cohort profile:
1958 British birth cohort (national child develop-
ment study). International journal of epidemiology,
35(1):34–41.

Philip Resnik, William Armstrong, Leonardo
Claudino, and Thang Nguyen. 2015. The Uni-
versity of Maryland CLPsych 2015 shared task
system. In Proceedings of the 2nd Workshop on
Computational Linguistics and Clinical Psychol-
ogy: From Linguistic Signal to Clinical Reality,
pages 54–60.

Peter Shepherd. 2013. Bristol social adjustment guides
at 7 and 11 years. Centre for Longitudinal Studies.

Jacopo Staiano and Marco Guerini. 2014. De-
pecheMood: a lexicon for emotion analysis
from crowd-annotated news. arXiv preprint
arXiv:1405.1605.

124



Andrew Yates, Arman Cohan, and Nazli Goharian.
2017. Depression and self-harm risk assessment in
online forums. arXiv preprint arXiv:1709.01848.

125


