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Abstract

This paper sets out to investigate ways of
normalizing noisy text that appear on social
media platforms like Facebook, Twitter,
Whatsapp, etc. We proposed a deep learn-
ing based approach to text normalization
using Recurrent Neural Network (RNN)
based Encoder–Decoder architecture with
Long Short Term Memory (LSTM). To
circumvent the unavailability of suitable
large noisy–clean parallel dataset, we de-
veloped synthetic datasets. We trained and
evaluated the proposed model on our syn-
thetic datasets and the WNUT1 shared task
dataset. The uniqueness of our approach is
in the use of synthetic datasets in a transfer
learning approach for improving the perfor-
mance of text normalization based on deep
neural models. Our transfer learning based
deep neural model produced state-of-the-
art results (F1 score 0.9098) outperforming
the previous best performing model on the
WNUT test set by 7%.

1 Introduction

There is a large quantity of user-generated content
on the web, characterized by social media, creativ-
ity and individuality, which has created problems
at two levels. Firstly, social media text is often un-
suitable for various Natural Language Processing
(NLP) tasks, such as Information Retrieval, Ma-
chine Translation, Opinion Mining, etc., due to the
irregularities found in such content. Secondly, non-
native speakers of English, older Internet users and
non-members of the in-groups often find such texts
difficult to comprehend. Prompt use of Internet
and the resulting noisy user generated text found
in different social media platforms such as social
networking sites, blogs, etc., cause a hindrance in

1https://noisy-text.github.io/2015/norm-shared-task.html

understanding casual written English, which often
does not conform to the rules of spelling, grammar
and punctuation.

In this paper, we present an approach for text
normalization of social media text. Our approach
uses a sequence to sequence model (Sutskever
et al., 2014) in which we tried Recurrent Neural
Network (RNN) based encoder-decoder approach
(Bahdanau et al., 2014) with Long Short Term
Memory (LSTM). The use of LSTMs for text nor-
malization in the present work is motivated by
(Sproat and Jaitly, 2016). We take a character
based LSTM approach motivated by the work of
(Ling et al., 2015) who showed that character based
approach is superior to word based approach for
neural network based sequence to sequence mod-
elling tasks2. Our LSTM model was trained with
attention mechanism (Bahdanau et al., 2014).

2 Related Work

Text Normalization is a well known task in the
field of NLP, particularly in the Social Media do-
main. Clark and Araki (2011) provides a detailed
survey on the challenges and applications of text
normalization in Social Media.

Researchers have shown that text normalization
is a major factor in improving performance of NLP
intermediate tasks like part-of-speech tagging (Han
et al., 2013) and NLP applications like machine
translation (Hassan and Menezes, 2013).

Research in text normalization started with
spelling correction with noisy channel model
(Kernighan et al., 1990; Mays et al., 1991). Since
then several different approaches have been pro-
posed by researchers. We report here a few of the
most prominent works on text normalization, with
a particular focus on social media.

2(Ling et al., 2015) showed improvement on the machine
translation task. Text normalization is conceptually very simi-
lar to and can be modelled as a machine translation task using
noisy–clean parallel corpus..312



Statistical Approaches: In the early 1990’s, re-
searchers in the AT&T Bell Labs (Kernighan et al.,
1990) and IBM Research (Mays et al., 1991) car-
ried out independent work on spelling correction
using noisy channel model. This generative model
has remained the most dominant and successful
approach to text normalization until very recently.

Hassan and Menezes (2013) proposed an ap-
proach for normalizing social media text which
used random walk framework on a contextual simi-
larity bipartite graph constructed from n-grams se-
quences, which they interpolated with edit distance
. They used the proposed method as a preprocess-
ing step to improve machine translation quality on
social media text.

Pennell and Liu (2010) proposed text normaliza-
tion for text messages (SMS) to make them suitable
as input to speech synthesizer. They used statisti-
cal classifier which tries to learn when and which
character to delete and then reverse the mappings
to normalize short text messages.

Sproat et al. (2001) proposed a taxonomy of
non-standard words (NSW) and explored several
methods like n-gram language models, decision
trees, weighted finite state transducers, etc., for text
normalization of NSWs. They reported that a sys-
tematic class-specific treatment results in improved
text normalization.

Choudhury et al. (2007) proposed a Hidden
Markov model based text normalization approach
for SMS texts and texting language. Aw et al.
(2006) used SMT models to normalize noisy SMS
text by translating SMS text to Regular English text.
Mikheev (2000) solved three major problems in
text normalization: sentence boundary disambigua-
tion, disambiguation of capitalized words when
they are used in positions where capitalization is
expected, and identification of abbreviations.

Deep Learning Based Approaches: Deep
learning based approaches have emerged as a com-
petitive alternative in recent years and research
have been reported on deep learning based text
normalization.

One of the most prominent work on deep learn-
ing based approach to text normalization is (Sproat
and Jaitly, 2016) which proposed different RNN
architectures to normalize texts for text-to-speech
(TTS) Systems. The main focus of their work was
to normalize written texts to their correct spoken
form. The proposed system used LSTMs and at-
tention based Sequence-To-Sequence models (Bah-

danau et al., 2014). Sproat and Jaitly (2017) used
the same framework to build their TTS text normal-
ization models for English and Russian and trained
their models on huge amount of training data. Their
dataset consists of 1.1 billion English words and
290 million Russian words and they reported very
high accuracy, over 0.99 for both English and Rus-
sian. They also augmented their system with a
finite-state transducer (FST) filter to take care of
mistakes made by the RNN based model.

Deep Neural Network models suffer from the
Out-Of-Vocabulary (OOV) problem (Luong et al.,
2014), when text normalization is performed using
word based approach. Xie et al. (2016) solved this
problem by illustrating how character based neural
networks are much better in normalizing noisy and
user generated texts. They also showed that results
can be improved by introducing synthesized errors
in a datasets. They showed improvement using
noisy text collected from English learner forum.

Leeman-Munk et al. (2015) proposed a model
for normalizing noisy text which uses two aug-
mented feed forward networks (Glorot and Bengio,
2010), flagger to identify the word to be normalized
and at last a normalizer which provides the correct
output for one token at a time.

Chollampatt et al. (2016) showed that neural ma-
chine translation models are better in correcting
grammatical errors, a task closely related to text
normalization, as compared to phrase based sta-
tistical machine translation models (Wang et al.,
2014).

Other noticeable works in text normalization in-
clude the use of adaptive parser-centric strategy
(Zhang et al., 2013) to convert noisy texts into gram-
matically correct texts, unsupervised model using
semantic similarity and Re-ranking strategy (Li and
Liu, 2014). Torunoğlu and Eryiğit (2014) proposed
a cascaded approach for normalizing Turkish text
by dividing the main problem into sub problems
and solving them one by one. Liu (2012) used
character-block level SMT to normalize SMS and
Twitter text. Pusateri et al. (2017) reports the use
of bi-directional LSTM for the task of inverse text
normalization, the objective of which is the exact
opposite of (Sproat and Jaitly, 2016), i.e. to con-
vert the spoken form token sequence produced by
a speech recognizer into written form.313



3 System Architecture

3.1 Recurrent Neural Network

The main motive behind using RNN for text nor-
malization is to utilize sequential content. Input
to the RNNs is the current information they see as
well as the previous information remembered by
them at that time. In Fig 1, taken from (Elman,
1991), “BTSXVPE” at the bottom shows the cur-
rent input and “CONTEXT UNITS” represents the
output at the previous step. The decision of recur-
rent net reached at time step ti affects the decision
it will reach one moment later at time step ti+1.
As discussed in (Quast, 2016), RNNs are called
recurrent because they perform the same task for
every element of a sequence, with the output being
dependent on the previous computations. It is often
said that recurrent networks have memory. Adding
memory to neural networks has a purpose: there
is information in the sequence itself and recurrent
nets use it to perform tasks. That sequential in-
formation is preserved in the recurrent network’s
hidden state which manages to span many time
steps as it cascades forward to affect the processing
of each new example. This feature of RNN makes
it an efficient approach for normalizing noisy text.

Figure 1: RNN Network Architecture

A drawback of the RNN is that, as the gap be-
tween the relevant information and the point where
it is needed widens, RNNs fail in remembering the
information. This problem with RNN was explored
by Bengio et al. (1994). To overcome this problem,
LSTM Networks were introduced by Hochreiter
and Schmidhuber (1997).

3.2 Long-Short Term Memory Network

As discussed in (Olah, 2015), LSTM networks are
another variety of RNNs, mainly used for learning
long-term dependencies. In standard RNNs, there
is always a chain of repeating modules containing
a simple structure.

LSTMs are a fairly simple extension of RNNs.

The objective of LSTM can be briefly described
into three points as follows.

• Deciding which information to remem-
ber/forget: The model needs to learn a sepa-
rate method to forget/remember information
when new inputs come in; it needs to know
which beliefs to keep and which ones to throw
away.

• Updating new information: When new in-
put comes in, the model first forgets any long-
term information it decides it no longer needs.
Then it learns which parts of the new input are
worth using and saves them into its long-term
memory.

• Handling long-term dependencies: Finally,
the model needs to learn which parts of its
long-term memory are immediately useful and
therefore it needs to focus on.

3.3 RNN Encoder–Decoder
RNN Encoder–Decoder models (Cho et al., 2014)
can be stated a sequence to sequence mapping be-
tween two sequences, learned using two RNNs,
one on either side, encoder and decoder, which are
trained jointly. For example, in our model, sen-
tences having erroneous words were kept at the en-
coder side and the corresponding sentences having
correctly spelled words were kept at the decoder
side. The encoder part receives a sequence and then
coverts it into an encoded representation of the se-
quence, which is further decoded by the decoder
to provide the output sequence. RNN encoder-
decoder models may contain different cells like
GRU or LSTM, or simply RNN. It is quite obvious
that the encoded representation of a sequence must
be a fixed size vector.

The encoder encodes an input sequence into a
fixed-length vector representation and the decoder
decodes a given fixed-length vector representation
into an output sequence.

3.4 Attention-based Bidirectional RNN
Model

Attention Mechanisms in Neural Networks are
(very) loosely based on the visual attention mech-
anism found in humans. Our bidirectional RNN
encoder consists of forward and backward RNNs.
Using attention mechanism, the decoder gives at-
tention to different parts of the input sequence at
each step of the output generation .314



4 Data Sets and Resources

As discussed in Section 3.4, we trained a mono-
lingual encoder-decoder based S2S model for our
task, where the encoder encodes the input incorrect
text and the decoder produces the correct text as
output. We consider noisy texts and their corre-
sponding corrected version as a parallel data on
which we train our S2S model. However, it is a
well known fact that deep neural network models
(S2S in our case) typically require large amount of
training data. Obtaining such large parallel training
data, particularly for the social media domain is
a major challenge itself in text normalization re-
search. Therefore, in the absence of such parallel
training data, we constructed synthetic data, i.e. ar-
tificially developed parallel dataset in which one
side consists of sentences having misspelled and
noisy words and the other side consists of sentences
containing correctly spelled and normalized words.
The noisy side (having misspelled words) of the
parallel data was created by randomly replacing
words in a clean text corpus with the help of four
different dictionaries mentioned in Section 4.1. All
of these dictionaries consist of parallel list (a hash
table) of correct words and their corresponding in-
correct noisy versions, where the correct word is
stored as a key and the values for those keys are
one or many misspelled words corresponding to
the key.

4.1 Dictionaries

We used Peter Norvig Copus3, one of the most pop-
ular resource in text normalization research, there
were containing 7,841 correctly spelled words and
their corresponding misspelled version(s). A snap-
shot of the Peter Norvig Corpus is shown below.

......
looking: loking, begining, luing, look*2, locking,
lucking, louk, looing, lookin, liking
eligible: eligble, elegable, eligable
scold: schold, skold
......

However, the Peter Norvig corpus is a general
domain spelling error corpus, i.e., it is not specifi-
cally designed for noisy social media content and
as such does not contain spelling error phenomena
that are typical to social media text. To include the
flavour of errors which occur in social media con-
versations, we used two spelling error dictionaries

3http://norvig.com/ngrams/spell-errors.txt

provided by the WNUT 2015 shared task4 on “Nor-
malization of Noisy Text” which contain one to one
mapping of incorrect words to correct words. The
two dictionaries contain 3,804 and 41,182 [correct,
incorrect] word pairs respectively. To make the
dataset even noisier, we also constructed another
social media spelling error dictionary containing
652 new word pairs by manually observing dif-
ferent Whatsapp Group chat conversations, public
comments on Facebook’s posts and Facebook Con-
versations.

4.2 Synthetic Dataset Preparation

We crawled 500K sentences from different news do-
main websites such as Fox News5, The Guardian6,
Yahoo News7 and CNN News8 and then with the
help of Peter Norvig’s corpus we prepared a syn-
thetic noisy dataset by replacing some words in
each sentence with their corresponding misspelled
words, if found in the Peter Norvig corpus. If there
exist multiple misspelled versions for the same
word in the Peter Norvig corpus, then the choice of
misspelled word was taken randomly. Since many
of the sentences were very long in the crawled cor-
pus, we broke them (both the original sentence
and the corresponding noisy sentence) down to se-
quences of five-grams in order to keep the sequence
length shorter. Here sequence length refers to the
number of characters in a sequence. Thus, we cre-
ated a synthetic parallel dataset, Synthetic1, and
Table 1 shows how our parallel synthetic dataset
look like, in which the misspelled words are shown
as underlined.

We also created another synthetic dataset
(Synthetic2) using a Chat Conversation dataset9

in a similar manner, however, with two noticeable
changes. For this dataset we did not split the se-
quence into n-grams because in this dataset se-
quence length was not too large as compared to
Synthetic1 dataset and we took the help of all
the four dictionaries to create the parallel dataset.
The chat conversation dataset belongs to the Cor-
nell Movie Dialogue dataset (Danescu-Niculescu-
Mizil and Lee, 2011) and it contains conversational
data extracted from movie scripts. The dataset was

4https://noisy-text.github.io/2015/norm-shared-task.html
5http://www.foxnews.com/
6https://www.theguardian.com/international
7http://noornotews.yahoo.com/
8http://edition.cnn.com/
9https://github.com/1228337123/tensorflow-seq2seq-

chatbot/tree/master/data315



Raw Corpus
...
The government guidance will be reviewed early next year after a period of public comment
...

Clean Text Noisy Text
...
The government guidance will be reviewed
government guidance will be reviewed
guidance will be reviewed early
will be reviwed early next
be reviewed early next year
reviewed early next year after
...

...
The govment guidence will be reviewed
guverment guidence we’ll be reviewed
guidance wil be reviewed erly
wiull be reviewed eigly next
be reviewed erly enxt yeer
reviewed erly nexst year afert
...

Table 1: A snapshot of the Synthetic1 dataset

originally built for building chat systems. We con-
structed our synthetic data from this raw data. With
Synthetic2, our main motive was to build a very
noisy dataset containing errors that are typical to so-
cial media. Therefore, we replaced as many words
as we could find in the two WNUT dictionaries and
our social media dictionary. At last, we checked
if any of the non-replaced words in a sequence
occurs in keys of the Peter Norvig corpus, and if
found, they were also replaced with a correspond-
ing (randomly chosen) misspelled word. Thus, we
created the parallel dataset Synthetic2 reflecting
errors typical of social media text. A snapshot of
the Synthetic2 dataset is shown in Table 2.

Other than these synthetic datasets, we also used
the standard training dataset released by the WNUT
2015 shared task on “Normalization of Noisy Text”.
This dataset consists of real Twitter data containing
different types of abbreviations used and errors
made in social media conversations.

Thus, we ended up with three different datasets10

– Synthetic1, Synthetic2 and WNUT. Table 3
presents the dataset statistics of all the datasets
that we used to train and evaluate our models.

5 Proposed Models

Model 1 (M1) : This model was trained and tested
on the Synthetic1 training and test set, respec-
tively. A batch size of 305 was considered and
model was trained for 20 epochs at constant learn-
ing rate of 0.001. In this dataset sequence length
was 74. Training this model took 20 hours (1
hour/epoch) on a single GPU. This model was built

10We will release the synthetics datasets and make available
for text normalization research upon publication of the paper.

as a general purpose spelling corrector for regular
English sentences.

Model 2 (M2) : From this model onwards, all
our models are focused mainly on in social media
text. This model was trained and tested on the
Synthetic2 training and test set, respectively. The
sequence length of was 214 and batch size was kept
to 32. The model was trained for 4 epochs as after
4th epoch, loss function started diverging and after
making changes in the learning rate, there was no
sign of convergence of loss. Learning rate was kept
constant for 4 epochs at 0.001. Training this model
took 16 hours (4 hour/epoch) on a single GPU.

Model 3 (M3) : This model was also trained
and tested on Synthetic2 dataset, however, the se-
quence length was kept to 160. We decreased the
sequence length so that we could train our model
for more number of epochs. Decreasing the se-
quence length made the training dataset smaller
to 1,29,590 sentences, we refer to this dataset as
Synthetic3. We were able to train this model for
7 epochs by changing the learning rate form 0.001
to 0.0001 after 4 epochs. Training this model took
17.5 hours (2.5 hour/epoch) on a single GPU.

Model 4 (M4) : This model was trained and
tested on WNUT datasets. Sequence length was
kept at 160 and model was trained for 50 epochs
and batch size for this experiment was 32. Learning
rate was changed from 0.001 to 0.0001 and then
back to 0.001, in between the epochs after observ-
ing the behaviour of the loss function. Training this
model took 2.5 hours (3 minutes/epoch) on a single
GPU.

Model 5 (M5): This model was trained on
the merged training datasets of Synthetic3 and316



Clean Text Noisy Text
... ...
Not the hacking and gagging and spitting part. Not tne hackinq und gaggin nd spittin part.
Please.’, “You’re asking me out. Plz.’, “You’re askin meh out.
That’s so cute. What’s your name again?” That’s sou cute. What’s yur nyam again?”
... ...

Table 2: A snapshot of Synthetic2 dataset

Statistics

Datasets
Training Set Test Set

Sentences Words Sentences Words
Incorrect Correct Total Incorrect Correct Total

Synthetic 1 495,000 1,345,500 1,129,500 2,475,000 5,000 15,520 9,480 25,000
Synthetic 2 139,683 953,881 385,792 1,339,673 1,000 7,569 4,101 11,670
Synthetic 3 129,690 856,256 325,456 1,181,781 1,000 6,528 3,594 10,122

WNUT 2,950 19,903 27,482 44,385 1967 11,239 18,182 29,421

Table 3: Dataset Statistics

WNUT. The model was trained for 15 epochs. Loss
function was constant at 0.001 and batch size was
256. Training this model took 18.75 hours (1.25
hours/epoch).

Model 6 (M6): This model was built using trans-
fer learning approach by using the trained weights
of model M3 for further training of the model on
the WNUT dataset. Sequence length was kept at
160 and the model was trained for 10 epochs. The
batch size was 32. The objective behind using
transfer learning approach was to make use of the
additional synthetic training dataset and hopefully
to improve the system performance on the WNUT
test set.

Model 7 (M7): This is another model built using
transfer learning approach, however, in this case
training was first carried out on the WNUT datasets
for 20 epochs and then the learned weights were
further used to retrain the model on the Synthetic3
dataset (10 epochs). Loss function for this model
was constant at 0.001 and the batch size was 128.
Training this model on the WNUT dataset and the
Synthetic3 dataset took 65 minutes (3.25 min-
utes/epoch) and 6.5 hours (40 minutes/epoch), re-
spectively.

“Negative log Likelihood” was used as the loss
function for all the experiments (M1–M7) as ac-
cording to (Lewis and Gale, 1994), this loss func-
tion proved to be quite perfect for Sequence to Se-
quence models. “ADAM” optimizer as described in
(Kingma and Ba, 2014) was used for all the experi-
ments. All models mentioned here, used 3 layers
on each side encoder & decoder.

6 Experimental Setup

Before loading the datasets for experiments, we
padded the data. For faster computation, input
sequences were divided into number of batches.
Since there were variations in sequence length, we
padded the data to make them all having uniform
length. “EOS” token was kept at the end of each
sequence, to identify its end. Shorter length se-
quences were padded with trailing zeros. We used
word2index dictionary containing key as all char-
acters and numbers as their indices. “EOS” and
“PAD” were given “0” and “1” index respectively.
The length of this dictionary was 98. The synthetic
data and the dictionaries mentioned in Section 4.1
will be made publicly available for research upon
publication of the paper.

Our models were built using deep learning li-
brary Tensorflow11. TensorFlow allows to effi-
ciently perform specific machine learning number-
crunching operations like derivatives on huge ma-
trices . With Tensorflow, processing can be easily
distributed across CPU cores, GPU cores, or mul-
tiple devices like multiple GPUs and even across
a distributed network of computers. Python12 was
used for preparation of the dataset as mentioned in
section 4.2 and scripting of the models.

7 Results

Since the proposed model can also mistakenly mod-
ify some correct words that should not be changed,
precision and recall are the most suitable metrics

11https://www.tensorflow.org/
12https://www.python.org/317



for evaluating this scenario (Powers, 2011). Ac-
cordingly, we evaluated the proposed models using
precision, recall and F1-score. In the context of text
normalization, true positives refer to cases where
incorrect words are replaced by the correct words,
and true negatives represent correct words being
left as they are. False positives concern cases when
the model replaces a correct word by an incorrect
word. False negatives pertain two cases when the
model either does not provide any correction or
provides a wrong correction for an incorrect word.
Table 4 shows the evaluation results of all the ex-
periments mentioned in Section 5. For the benefit
of comparison, Table 5 groups these results into
two subsets - the ones evaluated on the synthetic
test sets and the others evaluated on the WNUT test
set. It is to be noted here that the models trained
only with the synthetic data (M1, M2 and M3) are
not meant to be evaluated with the WNUT test
set, however, for the sake of comparison, we also
evaluated these models on the the WNUT test set.

Among the experiments carried out only with
synthetic datasets, the best result (F1 Score =
0.9205) was achieved with M1. The other mod-
els trained on other synthetic datasets, M2 and M3,
could not achieve similar results since M2 and M3

could not be trained much due to their large se-
quence length. However, it is to be noted that only
the Peter Norvig spelling error corpus was used on
news domain data to introduce noise and prepare
the Synthetic1 dataset, while all the four dictio-
naries were employed to introduce noise in con-
versational data to prepare the Synthetic2 dataset.
Therefore, Synthetic2 dataset is much more reflec-
tive of social media data and hence more challeng-
ing. Among M2 and M3, since M3 was trained on
shorter sequences and was also trained for more
epochs, it was able to produce better performance
than M2.

Then we evaluated our models on the WNUT
dataset, the only standard dataset available for text
normalization research. Since the training dataset
size was very small, the model (M4) produced rel-
atively low performance (F1 Score = 0.8223) even
after training for 50 epochs. This relatively low
performance can be attributed to the very small
amount of training data (only 2,950 sentences) in
the WNUT dataset; deep learning based models
are known to perform poorly than traditional ma-
chine learning based methods on small training
data. However, this result is only next to the best

result (F1 Score = 0.8421) achieved in the WNUT
2015 shared task (Baldwin et al., 2015) in the con-
strained category.

M5, trained on a merged training set of
Synthetic3 and WNUT, produced better results
on both the Synthetic3 as well as WNUT test sets,
which can be observed by comparing the perfor-
mance of M5 with M3 and M4.

Both M6 and M7 make use of transfer learning
approach. M6 improves the model performance
on the Synthetic3 test set over M3, however, it
could not improve over M5. On the other hand,
M6 could not beat the performance of M4 on the
WNUT test set. The reason behind this could
be that M6 is essentially a pre-trained model M3,
trained on Synthetic3 and further trained on the
WNUT dataset. It is to be noticed however that
it provides huge improvement over M3’s perfor-
mance on the WNUT testset.

We changed the sequence of training in M7, i.e.,
first on WNUT and then on Synthetic3 dataset,
and also increased the batch size to 128. These
changes improved the model performance signifi-
cantly and provided the best performance on both
the Synthetic3 and WNUT test sets. It provided
an F1 Score of 0.9098 on the WNUT test set which
outperforms the best result (F1 Score = 0.8421)
reported in the WNUT shared task (Baldwin et al.,
2015).

Table 6 shows a comparison of the results ob-
tained by our systems against the two top perform-
ing systems in the WNUT shared task in both con-
strained and unconstrained track. Surprisingly, un-
constrained systems were not able to outperform
constrained systems in the WNUT shared task, as
is also noted in (Baldwin et al., 2015). However,
by making use of our synthetic training data and
using a transfer learning approach, we were able to
obtain state of the art results on the WNUT dataset.

Our models were able to correctly normalize so-
cial media specific errors and abbreviations. For
example “LOL” was normalized to “Laughing out
Loud” or “Lots of Laughs” depending upon the
context, “GM” was normalized to “Good Morn-
ing”, “k” to “ok” and so on. Among other types
of social media errors, “ohhhhhhhhhhhhhhhh” was
normalized to ”oh”, “b4” to “before”, “hiiiiiiiii”
to “hi”, etc.318



Model Train
Sequence
Length

Test Precision Recall F1 Score

M1 Synthetic1 74
Synthetic1 0.9622 0.8822 0.9205

WNUT 0.1845 0.1756 0.1784

M2 Synthetic2 214
Synthetic2 0.8066 0.7204 0.7610

WNUT 0.2569 0.2356 0.2457

M3 Synthetic3 160
Synthetic3 0.9102 0.8595 0.8841

WNUT 0.3096 0.3156 0.3125
M4 WNUT 160 WNUT 0.8558 0.7915 0.8223

M5
Merged datasets

(Synthetic3 + WNUT)
160

Synthetic3 0.9366 0.9089 0.9225
WNUT 0.8569 0.8698 0.8633

M6
Transfer Learning

Synthetic3→WNUT
160

Synthetic3 0.9389 0.8856 0.9114
WNUT 0.8747 0.7260 0.7935

M7
Transfer Learning

WNUT→ Synthetic3
160

Synthetic3 0.9458 0.9056 0.9252
WNUT 0.9256 0.8945 0.9098

Table 4: Results of different models on synthetic and WNUT datasets

Synthetic Test Sets
Precision Recall F1 Score

M1 0.9622 0.8822 0.9205
M2 0.8066 0.7204 0.7610
M3 0.9102 0.8595 0.8841
M5 0.9366 0.9089 0.9225
M6 0.9389 0.8856 0.9114
M7 0.9458 0.9056 0.9252

WNUT Test Set
Precision Recall F1 Score

M4 0.8558 0.7915 0.8223
M5 0.8569 0.8698 0.8633
M6 0.8747 0.7260 0.7935
M7 0.9256 0.8945 0.9098

Table 5: Results of RNN based LSTM Models on
Synthetic and WNUT Test Sets

8 Conclusions & Future work

In this paper we presented a work on text normal-
ization using RNN based encoder-decoder LSTM
with an attention mechanism. We illustrate the
usefulness of our approach on a variety of noisy
datasets - standard real dataset as well as synthetic
datasets. We obtained state of the art results on the
WNUT dataset using our synthetic training data
and a transfer learning approach. Another impor-
tant contribution of this study is the development of
noisy–clean parallel synthetic datasets from user-
generated text reflecting both error patterns in reg-
ular text as well as social media. The proposed
model, with further improvisations, can be useful

in the field of social media to make social media
communications better and more understandable.

Our next goal is to construct a large real (i.e., not
synthetic) social media dataset, similar to WNUT,
suitable for training deep learning models which
will definitely help to improve text normalization
of social media texts. We would also like to explore
other deep learning based models for the task.
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