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Abstract

This paper presents an unsupervised
model for morpheme segmentation of
words collected from any raw textual cor-
pus of a natural language. The model in-
corporates a numerical weighting scheme
with thresholding technique for finding le-
gitimate morphemes from a given input
corpus. Kneedle algorithm is used as a
thresholding technique for determining le-
gitimacy of the morphemes. We ran our
experiments on five languages – English,
Finish, Turkish, German and Bengali, and
the model performance is comparable to
the state-of-the-art systems.

1 Introduction

Morpheme segmentation of words is an essential
part of many linguistic and natural language pro-
cessing applications. Appropriate morpheme seg-
mentation helps to understand the hidden structure
of a language’s words and how new words can
be built from the existing words. In morpheme
segmentation, a word is divided into a stem mor-
pheme and a single affix morpheme (for one-slot
morphological languages) or multiple affix mor-
phemes (for multi-slot morphological languages).
Stem is also often referred to as base, root, lemma,
etc., although they have subtle differences and are
used in different contexts. An affix can be of
many types; some of the most commonly under-
stood affixes are prefix, suffix, infix, etc. However,
for the proposed model, only prefixes and suffixes
are considered. Two primary functional types of
morphemes exist in morphology: inflectional and
derivational morphemes. Inflectional morphemes
are affixes that are used to create variant forms of
a word in order to signal grammatical information;
but they do not change the meaning of the word.

∗*Work done while at Jadavpur University.

Derivational morphemes are affixes that are used
to derive new words with new meanings. Both
types of morphemes are considered in our work.

The presented model’s work principle falls into
the category of Unsupervised Learning of Mor-
phology (ULM) (Hammarström and Borin, 2011)
which usually outputs a morphological structure
description of a language from an input raw cor-
pus of that language, provided that the system may
need some semi-automatic or manual supervision.
The objectives of an ULM based approach can
vary. It generally ranges from demand for mor-
phological description of a language to finding
lexicon, paradigm list for stems, affix list, same-
stem decision, inflectional table and much more.
The objective of our proposed model is to discover
the stem set and an affix set given a large corpus
of a particular language.

Although there are many motivating factors
behind ULM from both linguistic and practical
point of view (Hammarström and Borin, 2011),
the three major motivations are - providing a
primary-step for language acquisition, reducing
time-consuming manual effort in morphological
analysis and language documentation. The first
motivation is elicited from the necessity of grab-
bing primary details and learning basic word struc-
tures for a newly observed language. The sec-
ond motivation is that unsupervised statistical ap-
proaches take less amount of time for accom-
plishing a task without taking much external ef-
forts and resources. The third motivating fac-
tor is drawn from a linguistics point of view. It
has been observed that in the current world, 80%
of the world’s languages (almost 7000 total lan-
guages) are spoken by only 100,000 speakers or
less (Ostler, 2008). It has also been observed that
many natural languages are at the verge of extinc-
tion (Krauss, 1992). Many linguists fear that with
the extinction of such languages, many cultures
and valuable information will be lost. They sug-298



gest taking help from any immediate quick pro-
cedures to restore those almost extinct language
details (language documentation). A fast unsuper-
vised approach for morpheme segmentation can
provide an essential equipment for language doc-
umentation for such languages.

2 Related works

There exist many types of unsupervised mor-
pheme segmentation models and ULM based sys-
tems with their own strengths and weaknesses.
Hammarström and Borin (2011) classified the
ULM models into four underlying types.

The first type emerged as border separation in
words through substring frequency determination
which explores the idea that if a substring occurs
multiple times with other different substrings, then
the former substring could be an affix morpheme,
whereas the latter ones can be recognized as stem
morphemes. After finding such substrings, this
type of morphological analysis model tries to de-
fine the borders in words. The first-ever ULM
based system (Harris, 1955) falls in this category
of ULM which is a very popular ULM technique
till date. Few researchers (Golcher, 2006; Ham-
marström, 2009) suggested morpheme segmenta-
tion using entropy.

The second type uses grouping and abstracting
techniques and they first group all similar mor-
phological words into a particular cluster among
many existing ones, then find unique pattern for
each cluster of words in such a way that the pat-
terns can reveal all morphemes corresponding to
the clusters. his approach is also very common and
has multiple implementation examples (Schone,
2001; Yarowsky and Wicentowski, 2000; Wicen-
towski and Yarowsky, 2002; Wicentowski, 2004;
Majumder et al., 2007).

The third ULM based approach (Mayfield and
McNamee, 2003; De Pauw and Wagacha, 2007) is
quite similar to basic machine learning based ap-
proaches. It first represents each word by multiple
features and finally stems are separated from the
affixes based on the feature values.

The last type of ULM technique is quite similar
to the first ULM technique, with a small excep-
tion that prior to the border separation, words are
categorized based on their phoneme structure (Ro-
drigues and Cavar, 2007). This ULM technique
is applicable for non-concatenative morphology
analysis, whereas the rest of the ULM techniques

work mainly with concatenative morphological
languages. Our proposed approach falls in the first
category of ULM.

3 Proposed Method

The proposed morpheme segmentation model
takes a raw, unannotated word dataset of an arbi-
trary language as input. Using a numerical weight-
ing scheme with thresholding strategy, the model
ultimately produces a set of stems and a set of
affixes. The model also provides the morpheme
segmentation of the words. It is to be noted
that the model has been proposed and works well
with concatenative, one-slot morphological lan-
guages (e.g., Bengali), although it is applicable to
multi-slot morphological languages (e.g., Turkish,
Finnish, etc.).

The proposed morpheme segmentation model
for concatenative morphological languages has
three basic modules. The first module is responsi-
ble for finding all probable initial morphemes (i.e.,
stems and affixes) from a raw text corpus. The sec-
ond module scores the morphemes found by the
first step. The third module finds out the optimal
set of stems and affixes with unsupervised thresh-
olding.

3.1 Morpheme Generation

This module finds out all probable stems and af-
fixes by comparing every word with every other
word in a text corpus. For example, by compar-
ing the two words ‘pass’ and ‘passing’, one can
easily perceive that ‘pass’ and ‘ing’ could be the
stem and affix respectively. For an efficient stor-
ing and accessing mechanism of each stem, af-
fix and stem-derived word (i.e., surface word), an
implicit matrix (M) type structure is considered,
where the matrix columns represent stem-derived
words and the rows represent the stems. Each
element of the matrix represents an affix (i.e., a
prefix or a suffix) or null, which when applied to
the corresponding row-word, produces the corre-
sponding column-word. A snapshot of the matrix
is shown in Figure 1. Algorithm 1 outlines the pro-
cess of generating the stem-affix-word matrix from
the corpus words. To address the scalibility of this
alrogithm, we have included a short discussion in
Section 4.3.299



Figure 1: Representation of corpus as stem-affix-word matrix

Input: Raw text corpus C of language L
Output: M, two-dimentional matrix, with size

|C| ∗ |C|, where |C| is the number of unique
words in C corpus

begin
foreach element (m) in matrixM do

m← ‘null′

end
foreach distinct word w1 in C do

foreach distinct word w2 in C do
if w2 = w1 + a1, where a1 is an affix

then
M[w1][w2]← a1

M[w1][w2].type← ‘suffix’
else if w2 = a1 + w1, where a1 is an

affix then
M[w1][w2]← a1

M[w1][w2].type← ‘prefix’
end

end
end

end
Algorithm 1: Generating all possible stems and
affixes

3.2 Weighting Morphemes

We propose a weighting scheme that provides a
ranking over the morphemes produced by Algo-
rithm 1; the hypothesis is that higher ranked mor-
phemes are likely to be legitimate morphemes of
the language. The proposed weighting scheme
works in three steps: independent scoring of the
affixes, stem scoring through all its possible af-
fixes, and joint stem-affix scoring.

3.2.1 Independent Affix Scoring
In this stage of the weighting scheme, every pos-
sible affix found inM is scored independently. If
an affix works as both prefix and suffix, then two
different scores are produced for that affix. The in-
dependent score for an affix is calculated from the
number of different possible stems which appears
adjacent to the affix. For an affix (ax), we refer to
this number as its branching factor (bfax). Equa-
tion 1 shows the calculation of independent score

(IS) of ax from the branching factor of ax.

IS(ax) = tanhβ(bfax − 1) (1)

This formulation of the affix score (as in Equa-
tion 1) was chosen for two major reasons. Firstly,
affixes whose branching factor is 1 are canceled
out since such affixes carry no or very little signif-
icance with regard to the legitimacy of the affix.
Secondly, we want high independent score (close
to 1) for all affixes above a certain value of branch-
ing factor so that affixes with very high branch-
ing factors can not dominate over affixes having
low branching factors. Although the parameter
β needs to be tuned for optimal performance, we
chose a value of 2 for β for our experiments. Fig-
ure 2 shows the tangent hyperbolic function (cf.
equation 1) for varying β values.

Figure 2: tanh(β(x-1)) function with varying β

Algorithm 1 only considers those stems which
appear as words themselves in corpus C. Algo-
rithm 2 alleviates this shortcoming and modifies
the matrixM to discover other possible legitimate
stems (that do not appear as words in C) with the
help of independent affix scores. Algorithm 2 can
also take care of morpheme segmentation in multi-
slot morphological languages to some extent.

3.2.2 Affix-Dependent Stem Scoring
This stage determines the affix-dependent score
(AdS) for each stem found by Algorithm 2. AdS300



Input: Corpus C and MatrixM along with the
corresponding independent affix scores and
types

Output: M, enriched with probable corpus-absent
stems and adjusted for multi-slot morpheme
segmentation

begin
/* For multi-slot morphological

language */
foreach ax such that IS(ax) == 0 do

Build a set of sets, Sax , where,
Sax = {{ax1 , ax2 , ..., axn} : ax =
concat(ax1 .ax2 ...axn) and ∀iIS(axi) 6=
0};

if Sax 6= NULL then
Define mslot IS : sax

k ∈ Sax → N;
mslot IS(sax

k ) =∑n
i=1{IS(axi

) : where axi
∈sax

k
}

cardinality(s
ax
k

)
;

BestSax → argmax
s∈Sax

mslot IS(s);

IS(ax)← mslot IS(BestSax );
end

end
/* Generating corpus-absent

possible stems */
foreach non-zero independent scored affix ax in
M do

foreach unique word wx in C do
if wx = newstem + ax or
wx = ax + newstem then

if no row with newstem inM then
MakeM[newstem] row;
∀i(M[newstem][i]←null);

end
M[newstem][wx]← ‘ax’;
setM[newstem][wx].type

accordingly
end

end
end

end
Algorithm 2: ModifyingM for multi-slot mor-
phological languages and corpus-absent stems

is an indicator of the genuineness of a detected
stem of being an actual stem. The AdS of a
stem depends on its associated affixes in M and
their independent scores. If a stem is associated
with more zero independent scored affixes than
non-zero independent scored affixes, then the stem
loses its genuineness of being a valid stem. The
more a stem is associated with non-zero indepen-
dent scored affixes, the more reliable the stem is.

The AdS of stemx is computed as in Equation
2 where S is the sum of independent scores of af-
fixes associated to stemx, X and Y represent the
number of non-zero and zero independent scored
affixes, respectively, associated with stemx, and
α(≥ 1) is a penalty factor for associated zero in-

dependent scored affixes.

AdS(stemx) =
S

X + α.Y
(2)

Through adjusting the value of α, the affix-
dependent score of a stem can be changed with the
number of zero independent scored affixes. Large
α value highly penalizes this score, whereas low
α value do the opposite. For our experiments we
fixed α as 2.

3.2.3 Joint Stem-Affix Scoring
IS(ax) determines the legitimacy of ax of being
an acutal affix. However, the linguistic authentic-
ity of an affix is always estimated along a stem.
For example, in English, the ‘ing’ suffix holds a
high independent score, but the chance of its asso-
ciation with the stem ‘k’ (i.e., k+ing) is very low
compared to the stem ‘watch’ (i.e., watch+ing), for
example. Therefore, a joint scoring mechanism
taking into account both affix and stem is required.

The joint stem-affix score (JSAS) of stemx

and ay is computed as in Equation 3.

JSAS(stemx, ay) = AdS(stemx)∗IS(ay) (3)

3.3 Finding Optimal Set of Stems and Affixes
with Unsupervised Thresholding

This is the final operational stage of the proposed
model which results in an optimal stem set and an
affix set (i.e., paradigm list) fromM based on the
JSAS scores. A threshold on JSAS is required
for achieving this. For the proposed model, a value
of 2 was considered for both β and α. The thresh-
old value (ThresholdJSAS) for JSAS is deter-
mined using the Kneedle algorithm (Satopaa et
al., 2011), an unsupervised approach for finding
the knee points on curves. The knee points in
a tunable system parameter’s curve represent ad-
vantageous values for that parameter which bal-
ance the overall system performance compared to
most of the other points in that curve. Unlike
other knee points detection approaches, the Knee-
dle algorithm does not incorporate any system spe-
cific information to find out the knee points. This
aspect of the Kneedle algorithm helps keep our
model almost unsupervised.

3.4 Justification of Our Morpheme
Weighting Scheme

Although intuitions behind deriving our mor-
pheme weighting scheme may look like a heuris-
tic procedure, actually, the weighting scheme is301



firmly rooted in basic linguistic postulates. We
came up with those methods (equations) for the
weighting scheme after attending a few conven-
tional linguistic and mathematical rules. The
Independent Affix Scoring (IS) method can be
justified through the Zipf’s empirical law. It
has been observed for many years that most of
the languages and even random texts follow the
Zipf’s law (Li, 1992). According to the empir-
ical law, in a large dataset, for every individual
word (word) the multiplication of its rank in the
corpus (rword) and count frequency of the word
(CountFreqword) remains the same (i.e., rword ∗
CountFreqword ≡ constant). Figure 3 shows a
sample distribution of the Zipf’s law.

Figure 3: An Ideal Example of Zipf’s Law

From this empirical law, it is not difficult to un-
derstand that most of the lower ranked words of a
large corpus appear for a very few number of times
(e,g,. only once or twice). It might so happen that
these words with low empirical counts can also
possess new affixes. Those affixes will also exist
with an unquestionably low count. Therefore, we
formulated Equation 1 to select all those low count
affixes by assigning them identical weights as the
high counted affixes. On the other hand, the sec-
ond method of the morpheme weighting scheme,
Affix-Dependent Stem Scoring (AdS), can be jus-
tified when it is seen as a regular mathematical
normalization technique with adding denomina-
tor penalties for zero independent scored affixes
(since zero independent scored affixes are really
insignificant). The last method of the weight-
ing scheme, Joint Stem-Affix Scoring (JSAS), is
nothing but a single objective function comprised
of IS and AdS as two distinct objectives.

4 Experiments

4.1 Datasets and Experimental Setup

The proposed method of morpheme segmentation
was experimented on five languages – English,
Bengali, Finnish, German and Turkish. For En-
glish, Turkish, German and Finnish, we used the
Morpho-Challenge1 datasets which provide both
raw text corpora as well as gold-standard test-
sets. The gold-standard datasets mostly contain
multi-slot morpheme segmentation samples. The
datasets also come with evaluation results of a
baseline system (Morfessor) (Creutz and Lagus,
2007). The Morpho-Challenge datasets’ training
data contains 617,297, 2,338,323, 2,928,030 and
878,036 distinct Turkish, German, Finnish and
English words respectively. The test sets contain
1,000 words for each of those four languages. The
Dataset also provides a perl script for evaluation
on the gold-standard data. For Bengali, we used
a gold standard testset (containing 14,034 words)
developed in-house and collected a raw corpus
(containing 28,927 unique words) by crawling
an online Bengali newspaper. Unlike Morpho-
Challenge dataset, the Bengali gold-standard data
mostly contain single-slot morpheme segmenta-
tion examples. The output generated by the system
heavily depends on choosing a proper threshold
value for JSAS which we determined using the
Kneedle algorithm. Figure 4 graphically shows
the JSAS score thresholding by Kneedle algo-
rithm for the Bengali dataset.

Figure 4: Thresholding using Kneedle algorithm

1http://morpho.aalto.fi/events/morphochallenge2010/302



Table 1: Evaluation Results
Metric System Bengali English Turkish Finnish German

Precision
B 0.488 0.456 0.421 0.464 0.433
MB - 0.813 0.896 0.906 0.828
P 0.853 0.763 0.695 0.612 0.746

Recall
B 0.842 0.713 0.627 0.675 0.630
MB - 0.417 0.177 0.143 0.197
P 0.724 0.622 0.573 0.542 0.526

F-measure

B 0.617 0.556 0.504 0.550 0.513
MB - 0.551 0.296 0.248 0.319
P 0.783 0.685 0.628 0.575 0.617
Best - 0.674 0.653 0.625 0.508

4.2 Evaluation

System performance was evaluated with preci-
sion, recall and f-measure (F1-measure) and the
evaluation results are reported in Table 1. We
developed a new baseline model which is simi-
lar to the proposed model except that it consid-
ers ISbaseline(ax) = bfax instead of transform-
ing the branching factor through hyperbolic tan-
gent function. Table 1 presents the performance
of the newly constructed baseline (B), Morfes-
sor baseline (MB), the proposed model (P) and
the best results (Best) reported so far on this
dataset2. The baseline model produces high re-
call, however, due to absence of a proper thresh-
olding mechanism, it results in low precision and
hence low F-measure. We observed that the pro-
posed model shows much better results for single-
slot morpheme segmentation compared to multi-
slot morpheme segmentation. With the aforemen-
tioned set-up, the best performance was observed
for Bengali (F-measure 0.783) and the lowest for
Finnish (F-measure 0.575). The proposed model
outperformed the best results reported so far for
English and German on this dataset. Considering
that our model is almost unsupervised and it does
not require any resources other than a vocabulary,
our model results are, overall, comparable with the
best results reported on this dataset obtained with
semi-supervised approaches.

4.3 Scalabiliy

To keep our morpheme segmentation method scal-
able towards large vocabulary, we introduced mul-
tiple trie data structures to implement the implicit
matrix structured shape for storing the stems and
affixes. The trie implementation significantly re-

2http://morpho.aalto.fi/events/morphochallenge2010/results/

duces our system running time because of its effi-
cient searching and storing mechanism compared
to an ordinary two-dimensional array.

Our model took 1,624.28616 seconds for find-
ing out all possible morpheme segmentations over
all the datasets for the mentioned languages. We
carried out the entire task on a computer with Intel
Core2Duo processor and 4 gigabytes RAM.

5 Conclusions

In this paper we presented an almost unsupervised
model for morpheme segmentation given a text
corpus. The proposed model uses statistical scor-
ing technique with an unsupervised thresholding
algorithm. The model performs bettter on single-
slot morpheme segmentation than multi-slot mor-
pheme segmentation. The proposed model yields
performance comparable to state-of-the-art perfor-
mance and outperforms the best results reported so
far on English and German.
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