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Abstract

This paper presents our work to apply 
non linear neural network for parsing 
five r esource p oor I ndian L anguages be-
longing to two major language families 
- Indo-Aryan and Dravidian. Bengali 
and Marathi are Indo-Aryan languages 
whereas Kannada, Telugu and Malayalam 
belong to the Dravidian family. While 
little work has been done previously on 
Bengali and Telugu linear transition-based 
parsing, we present one of the first parsers 
for Marathi, Kannada and Malayalam. All 
the Indian languages are free word order 
and range from being moderate to very 
rich in morphology. Therefore in this work 
we propose the usage of linguistically mo-
tivated morphological features (suffix and 
postposition) in the non linear framework, 
to capture the intricacies of both the lan-
guage families. We also capture chunk 
and gender, number, person information 
elegantly in this model. We put forward 
ways to represent these features cost effec-
tively using monolingual distributed em-
beddings. Instead of relying on expensive 
morphological analyzers to extract the in-
formation, these embeddings are used ef-
fectively to increase parsing accuracies for 
resource poor languages. Our experiments 
provide a comparison between the two lan-
guage families on the importance of vary-
ing morphological features. Part of speech 
taggers and chunkers for all languages are 
also built in the process.

1 Introduction

Over the years there have been several successful
attempts in building data driven dependency
parsers using rich feature templates (Kübler et

al., 2009) requiring a lot of feature engineering
expertise. Though these indicative features
brought enormously high parsing accuracies,
they were computationally expensive to extract
and also posed the problem of data sparsity.
To address the problem of discrete represen-
tations of words, distributional representations
became a critical component of NLP tasks
such as POS tagging (Collobert et al., 2011),
constituency parsing (Socher et al., 2013) and
machine translation (Devlin et al., 2014). The
distributed representations are shown to be more
effective in non-linear architectures compared
to the traditional linear classifier (Wang and
Manning, 2013). Keeping in line with this trend,
Chen and Manning (Chen and Manning, 2014)
introduced a compact neural network based
classifier for use in a greedy, transition-based
dependency parser that learns using dense vector
representations not only of words, but also of
part-of-speech (POS) tags, dependency labels,
etc. In our task of parsing Indian languages,
a similar transition-based parser based on their
model has been used. This model handles the
problem of sparsity, incompleteness
and expensive feature computation
(Chen and Manning, 2014).

The last decade has seen quite a few attempts at
parsing Indian languages Hindi, Telugu and Ben-
gali (Bharati et al., 2008a; Nivre, 2009; Man-
nem, 2009; Kolachina et al., 2010; Ambati et al.,
2010a). The research in this direction majorly fo-
cused on data driven transition-based parsing us-
ing MALT (Nivre et al., 2007), MST parser (Mc-
Donald et al., 2005) or constraint based method
(Bharati et al., 2008b; Kesidi, 2013). Only re-
cently Bhat et al. (2016a) have used neural net-
work based non-linear parser to learn syntac-
tic representations of Hindi and Urdu. Follow-
ing their efforts, we present a similar parser for
parsing five Indian Languages namely Bengali,
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Marathi, Telugu, Kannada, Malayalam. These
languages belong to two major language fami-
lies, Indo-Aryan and Dravidian. The Dravidian
languages - Telugu, Kannada and Malayalam are
highly agglutinative. The rich morphological na-
ture of a language can prove challenging for a
statistical parser as is noted by (Tsarfaty et al.,
2010). For morphologically rich, free word order
languages high performance can be achieved using
vibhakti1 and information related to tense, aspect,
modality (TAM). Syntactic features related to case
and TAM marking have been found to be very use-
ful in previous works on dependency parsing of
Hindi (Ambati et al., 2010b; Hohensee, 2012; Ho-
hensee and Bender, 2012; Bhat et al., 2016b). We
decided to experiment with these features for other
Indian languages too as they follow more or less
the same typology, all being free order and rang-
ing from being moderate to very morphologically
rich. We propose an efficient way to incorporate
this information in the aforementioned neural net-
work based parser. In our model, these features
are included as suffix (last 4 characters) embed-
dings for all nodes. Lexical embeddings of case
and TAM markers occurring in all the chunk are
also included.

We also include chunk tags and gender, number,
person information as features in our model. Tak-
ing cue from previous works where the addition
of chunk tags2 (Ambati et al., 2010a) and gram-
matical agreement (Bharati et al., 2008a; Bhat,
2017) has been proven to help Hindi and Urdu,
our experiments test their effectiveness for other
5 languages in concern. Computationally, obtain-
ing chunk tags can be done with ease. However,
acquiring information related to gender, number,
person for new sentences remains a challenge if
we aim to parse resource poor languages for which
sophisticated tools do not exist. We show that
adding both these features definitely increases ac-
curacy but we are able to gain major advantage by
just using the lexical features, suffix features and
POS tags which can be readily made available for
low resource languages.

The rest of the paper is organised as follows. In
Section 2 we talk about the data and the depen-
dency scheme followed. Section 3 provides the

1vibhakti is a generic term for postposition and suffix that
represent case marking

2a chunk is a set of adjacent words which are in depen-
dency relation with each other, and are connected to the rest
of the words by a single incoming arc to the chunk

rationale behind using each feature taking into ac-
count language diversity. Section 4 details about
feature representations, models used and the ex-
periments conducted. In Section 5 we observe the
effects of inclusion of rich morpho-syntactic fea-
tures on different languages and back the results
with linguistic reasoning. In Section 6 we con-
clude and talk about future directions of research
our work paves the way for.

2 Data and Background

2.1 Dependency Treebanks

There have been several efforts towards develop-
ing robust data driven dependency parsing tech-
niques in the last decade (Kübler et al., 2009).
The efforts, in turn, initiated a parallel drive for
building dependency annotated treebanks (Tsar-
faty et al., 2013). Development of Hindi and Urdu
multi-layered and multi-representational (Bhatt et
al., 2009; Xia et al., 2009; Palmer et al., 2009)
treebanks was a concerted effort in this direction.
In line with these efforts, treebanks for Kannada,
Malayalam, Telugu, Marathi and Bengali are be-
ing developed as a part of the Indian Languages
- Treebanking Project. The process of treebank
annotation for various languages took place at dif-
ferent institutes3. These treebanks are manually
annotated and span over various domains, like that
of newswire articles, conversational data, agricul-
ture, entertainment, tourism and education, thus
making our models trained on them robust. The
treebanks are annotated systematically with part of
speech (POS) tags, morphological features (such
as root, lexical category, gender, number, person,
case, vibhakti, TAM (tense, aspect and modal-
ity) label in case of verbs, or postposition in case
of nouns), chunking information and syntactico-
semantic dependency relations. There has been
a shift from the Anncorra POS tags (Bharati et
al., 2006) that were initially used for Indian Lan-
guages to the new common tagset for all Indian
languages which we would refer to as the Bureau
of Indian Standards (BIS) tagset (Choudhary and
Jha, 2011). This new POS tagging scheme is finer
than the previous scheme. The dependency re-
lations are marked following the Computational
Paninian Grammar (Bharati et al., 1995; Begum

3The organizations involved in this project are Jadavpur
University-Kolkata (Bengali), MIT-Manipal (Kannada), C-
DIT,Trivandrum (Malayalam), IIT-Bombay (Marathi), IIIT-
Hyderabad (Hindi)
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Types Tokens Chunks Sentences
Avg. tokens
/ per sentence

Kannada 36778 188040 143400 16551 11.36
Malayalam 20107 65996 54818 5824 11.33
Telugu BIS 4079 11338 8203 2173 5.21
Telugu Ann. 4582 13477 8363 2322 5.80
Bengali 18172 87321 69458 8209 10.64
Marathi 24792 94844 69214 7983 11.88

Table 1: Treebank statistics for the 5 languages
used in the experiments

et al., 2008). Partial corpus of all the languages
containing 25,000 tokens has been released pub-
licly in ICON 2017 4, the rest is still being anno-
tated with multi layered information and sanity-
checked. The Telugu treebank data correspond-
ing to BIS tagset is still being built so we used the
data from ICON10 parsing contest (Husain et al.,
2010). It was cleaned and appended with some
more sentences. We automatically converted this
data from Anncorra tagset to BIS tagset against
some word lists and rules. Since 149 sentences
are lost in automatic conversion we report results
on both the datasets. The statistics of the tree-
bank data in this work can be found in the Table
1. Previous work has been done to convert the
Hindi Treebank to Universal Dependencies (UD)
(Tandon et al., 2016). These new treebanks which
are built on the same underlying principle, could
also be converted to UD by the same process as a
future work.

2.2 Computational Paninian Grammar

Computational Paninian Grammar (CPG) formal-
ism lies at the heart of Indian language treebank-
ing. Dependency Structure−the first layer in these
treebanks−involves syntactico-semantic depen-
dency analysis based on this framework(Bharati
et al., 1995; Begum et al., 2008). The grammar
treats a sentence as a series of modified-modifier
relations where one of the elements (usually a
verb) is the primary modified. This brings it close
to a dependency analysis model as propounded
in Tesnière’s Dependency Grammar (Tesnière,
1959). The syntactico-semantic relations between
lexical items provided by the Pān. inian grammati-
cal model can be split into two types.

1. Kāraka: These are semantically related to
a verb as the direct participants in the ac-

4(http://kcis.iiit.ac.in/LT)

tion denoted by a verb root. The gram-
matical model has six ‘kārakas’, namely
‘kartā’ (the doer), ‘karma’ (the locus of ac-
tion’s result), ‘karan. a’ (instrument), ‘sam-
pradāna’ (recipient), ‘apādāna’ (source),
and ‘adhikaran. a’ (location). These relations
provide crucial information about the main
action stated in a sentence.

2. Non-kāraka: These relations include reason,
purpose, possession, adjectival or adverbial
modifications etc.

Both the Kāraka and Non-kāraka relations in
the scheme are given in Table 2. The * in the gloss
name signifies that the relation can be more gran-
ular in function and branches to different types. 5

Relation Meaning

k1 Agent / Subject / Doer
k2* Theme / Patient / Goal
k3 Instrument
k4* Recipient / Experiencer
k5 Source
k7* Spatio-temporal
rt Purpose
rh Cause
ras Associative
k*u Comparative
k*s (Predicative) Noun /

Adjective Complements
r6 Genitives

relc Modification by Relative Clause
rs Noun Complements (Appositive)

adv Verb modifier
adj Noun modifier

Table 2: Some major dependency relations be-
longing to Computational Paninian Grammar

3 Getting the best Features

We first describe the rationale behind choosing
each feature, why it is important for each language
and report a series of experiments by adding them
one by one to observe their effects. It is a known
fact that language specific features play a crucial
role in robust dependency parsing, but their gener-
ation may require expensive tools.

3.1 Part of Speech Tags

POS tags are very important for dependency pars-
ing, as a purely lexical parser may lead to sparse-
ness but adding POS tags provides a coarser gram-
matical category. This generalization of words

5The complete set of dependency relation types can be
found in (Bharati et al., 2009)
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help as words belonging to the same part-of-
speech are expected to have the same syntactic
behavior. McDonald et al. (2011) have shown in
their delexicalised parser that most of the informa-
tion is captured in POS tags and just using them as
features provides high unlabeled attachment score
(UAS). However, for labeled dependency parsing,
especially for semantic-oriented dependencies like
Paninian dependencies these non-lexical features
are not predictive enough.

3.2 Word
It is an indispensable unit for labeled dependency
parsing. It is important for resolving ambiguous
relationships for dependency parsing. But lexi-
cal units are sparse and difficult to learn given a
limited training data set. This sparsity is observed
more in morphologically rich languages.

3.3 Vibhakti (Suffix and Postpositions)
In a relatively fixed word order language like En-
glish the position of a word or phrase relative to
the verbal head, gives cues for grammatical re-
lations. On the other hand free word order and
morphologically rich languages change the mor-
phological form of the dependent word, the head
word, or both in order to represent grammatical re-
lations. This information about grammatical rela-
tions thus remains available irrespective of the po-
sition of words. The morphemes (suffixes) in Dra-
vidian languages explicitly represent grammati-
cal and semantic relations in a sentence. This is
in contrast to Indo-Aryan languages where case
marking can also be expressed lexically as postpo-
sitions to establish relations between nominals and
verbal predicates, the degree of which depends on
their varying morphological richness. Hindi and
Urdu are relatively sparse in morphology when
compared to Bengali, which in turn is less rich
than Marathi. These units called vibhakti that ex-
hibit case marking are important surface cues that
help identify various dependency relations. Also
are important the units that mark Tense, Aspect,
Modality ( TAM ) of a verb. There exists a direct
mapping between many TAM labels and the nom-
inal case markers because TAMs control the case
markers of some nominals. Different languages
tend to encode syntactically relevant information
in different ways. It has been shown in previ-
ous works for Hindi(Ambati et al., 2010b) that the
integration of morphological and syntactic infor-
mation boosts the accuracy for treebanks that are

syntacto-semantic in nature. We experiment to see
the extent to which it helps the other Indian lan-
guages.

3.4 Chunk Tag

Previous work on Hindi (Ambati et al., 2010a)
has shown that considerable improvement in pars-
ing could be achieved using the local morphosyn-
tactic features like chunk tags. In analytical lan-
guages, where information about finiteness or non
finiteness of verbs is not captured in the chunk
head alone but is also indicated by postpositions
and auxiliaries following the head, the different
chunk level tags6can help the parser identify dif-
ferent syntactic behavior of these verbs. For ex-
ample a finite verb can become the root of the sen-
tence, whereas a non-finite or infinitival verb can-
not. Ambati et al. (2010a) used a coarser POS tag
scheme so the improvement observed on addition
of chunk was major. But in the new tagset that we
are using, the finiteness information for verbs is
marked at the POS level too. Therefore we exper-
iment to see how far the chunk information helps
us in this setting.

3.5 Gender, Number, Person

We want to capture the agreement between verb
and its arguments in all languages by the addi-
tion of other morphological features such as gen-
der, number and person ( GNP ) for each node.
The verb agrees in GNP with the highest available
karaka k1 usually. But agreement rules can be
complex, it may sometimes take default feature or
agree with karaka k2 in some cases. The problem
worsens when there is a complex verb. Similar
problems with agreement features have also been
noted by (Goldberg and Elhadad, 2009). So we
experiment to see if the parser can learn selective
agreement pattern for different languages.

Kannada and Malayalam have a three gender
system - gender marking is based on semantics.
Human males and females are masculine and fem-
inine gender respectively, whereas all things and
animals are neuter gender. Telugu also has a three-
gender system but human females are grouped
with neuter nouns in singular, and human males in
plural. The verb in Malayalam is not marked for
number, gender person. Similarly in Bengali, the
verb changes according to the person information

6finite, non-finite, infinitival and gerundial (Bharati et al.,
2006)
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only, it exhibits no grammatical gender phenom-
ena at all. Marathi also has a three gender system
- masculine, feminine and neuter.

4 Experimental Setup

In our experiments, we focus on establishing
dependency relations between the chunk heads
which we henceforth denote as inter-chunk pars-
ing. The relations between the tokens of a chunk
(intra-chunk dependencies) are not considered for
experimentation as they can easily be predicted
automatically using a finite set of rules (Kosaraju
et al., 2012). Moreover we also observed the high
learnability of intra-chunk relations from an ini-
tial experiment. We found the accuracies of intra-
chunk dependencies to be more than 99.00% for
both Labeled Attachment and Unlabeled Attach-
ment. The treebanks available to us are in the SSF
format (Bharati et al., 2007). We use in house built
tool to convert from SSF to CoNLL format. This
tool uses head and vibhakti computation tools as
its dependencies. The head computation tool finds
the head of a chunk based on certain rules writ-
ten using POS tag information of nodes. The vib-
hakti computation module is again a simple, rule
based tool that uses POS tag information to decide
whether a lexical unit qualifies as a postposition or
not. It then augments the head of the chunk with
its postpositional features in the SSF format. Our
parser uses data in the converted CoNLL format.

We use the arc-eager parsing model for parsing
sentences containing projective arcs only, discard-
ing the non-projective sentences. The data set is
split in the ratio of 80-10-10 for training, testing
and tuning the parsing model. Baseline for pars-
ing is set using a delexicalised model having only
POS tags as features . We explore with different
feature sets by adding features like words, suf-
fix, chunk tags and GNP information one by one.
These features are represented as described be-
low. In order to parse in more realistic settings, we
also show parsing results using predicted POS and
chunk tags obtained from the models discussed be-
low. We report auto accuracy of the parsing model
on the same training, development and testing sets
that are used for parsing with gold tags.

4.1 Parsing Model

We have used a non-linear neural network greedy
transition-based parser, similar in structure to
(Chen and Manning, 2014). A few new features

have been introduced in the input layer of the
model as described below. Our parsing model
is based on transition-based dependency parsing
paradigm (Nivre, 2008). Particularly, we use an
arc-eager transition system (Nivre, 2003). The
arc-eager system defines a set of configurations
for a sentence w1 ,...,wn where each configura-
tion C = (S, B, A) consists of a stack S, a buffer
B, and a set of dependency arcs A. For each sen-
tence, the parser starts with an initial configuration
where S = [ROOT], B = [w1 ,...,wn] and A = φ and
terminates with a configuration C if the buffer is
empty and the stack contains the ROOT. The parse
trees derived from transition sequences are given
by A. To derive the parse tree, the arc-eager sys-
tem defines four types of transitions (t): 1) Shift,
2) Left-Arc, 3) Right-Arc, and 4) Reduce. We use
a non-linear neural network to predict the transi-
tions for the parser configurations. The neural net-
work model is the standard feed-forward neural
network with a single layer of hidden units. We
use 200 hidden units and RelU activation func-
tion. The output layer uses softmax function for
probabilistic multi-class classification. The model
is trained by minimizing cross entropy loss with
an l2-regularization over the entire training data.
We also use mini-batch Adagrad for optimization
(Duchi et al., 2011) and apply dropout (Hinton et
al., 2012). The parameters like number of itera-
tions, learning rate, embedding size were tuned on
the development set.

From each parser configuration, we extract fea-
tures related to the top four nodes in the stack, top
four nodes in the buffer and leftmost and rightmost
children of the top two nodes in the stack and the
leftmost child of the top node in the buffer.

4.2 Part of Speech Tagging and Chunking
Model

We trained POS taggers and Chunkers for all the
five languages using a similar neural network ar-
chitecture like parsing, discussed above. Second
order structural features in the form of lexical and
non-lexical units were used. The input layer con-
sisted of the current word, words in the context
size of 2 surrounding the current word and the last
four characters of all these words. Intra-word in-
formation is extremely useful when dealing with
morphologically rich languages as word internal
features contribute more context than word exter-
nal features while predicting POS and chunk tags.
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Using POS tags as feature has obvious benefits
for chunking. At least chunk tags can be deter-
ministically predicted if the POS tags are known.
But a chunking model using auto POS tags gives
less accuracy than a sans POS model. For exam-
ple in Kannada, using gold POS tags in chunker
gave an accuracy of 99.46%, sans POS model gave
95.25% but model having auto POS tags reduced
it to 95%. So we stuck to using only lexical and
suffix features while chunking.

4.3 Representation of Lexical Units

In our non-linear parsing model, we use dis-
tributed representation of lexical features. Us-
ing distributed representation, units of words are
projected to a low dimensional continuous vector
space. Unlike sparse representation in linear mod-
els, these word embeddings allow words that are
closer in the embedding space to share the model
parameters, thus providing an efficient solution to
the problem of data sparsity. Moreover since word
embeddings are assumed to capture semantic and
syntactic aspects of a word, they can also improve
the correlation between words and dependency la-
bels. The same representations are also used in the
POS tagger.

The monolingual corpora of all the languages
are used to learn their respective word embed-
dings. The data is collected from various sources
such as Wikipedia dump7, ILCI - health, tourism
agriculture and entertainment data (Jha, 2010),
raw corpus from EMILLE / CIIL (Xiao et al.,
2004), LCC (Goldhahn et al., 2012), part of Open-
subtitles corpus (Tiedemann, 2009), to train rich
domain independent word-embeddings so that our
parsing model is not biased. We use the Skip-
gram model with negative sampling implemented
in the open-source word2vec toolkit (Mikolov
et al., 2013) to learn word representations. The
context window size was kept to 1, as shorter con-
text captures more syntactic relatedness compared
to longer contexts that capture semantic and topi-
cal similarity. The word embedding size was ex-
perimented with and embeddings of dimension 64
gave the best results.

4.4 Representation of POS, Chunk and GNP
Tags

POS tags are small in number, but show semantic
similarity like words. We use distributed represen-

7https://dumps.wikimedia.org

tations for POS tags also by projecting them to a
continuous low dimensional vector space. Similar
settings as the above word embedding mode were
used, while keeping the embeddings’ dimension to
be 20. The model for each language was trained
on ILCI POS tagged data and treebank data that
we were already using. The words were replaced
by their corresponding tags to form a sequence.
To represent chunk tags and GNP information, we
use randomly initialized embeddings in the range
of -0.25 to +0.25. The dimension of input vectors
are taken to be 5.

In a real time setting, GNP information cannot
be learnt from unlabeled monolingual data but re-
quire the presence of a morphological analyzer.
It is an expensive tool to build. Due to the un-
availability of a decently accurate tool for these
resource poor languages, we have used gold tags
in all our experiments just to observe their influ-
ence on parsing.

4.5 Representation of Vibhakti (Suffix and
Postpositions)

Morphologically rich languages like Dravidian
Languages, are highly agglutinative. The same
root words inflect to have many word forms with
different suffixes and prefixes. These morphemes
denote the grammatical relation between a word
and its arguments and may also represent TAM.
This poses a problem to efficiently learn word
embeddings for them. Most word embedding
models consider word as a basic independent en-
tity without considering its internal structure and
shape. No explicit relationship among morpholog-
ically related words are captured too. While some
work has been done to learn character based em-
beddings using deep neural networks for specific
tasks like POS tagging, learning language mod-
els, learning word similarity etc, they are a differ-
ent end to end architecture in themselves and can-
not be used in integration with our parsing model.
Therefore we thought it might be a good idea to
treat suffixes - the last 4 characters of a word as
separate units and learn embedding for them us-
ing word2vec to capture the linguistic regular-
ity. This provides a potential solution for esti-
mating rare and complex words rather than rep-
resenting them in a crude way using only one or
a few vectors. Instead of using the last few char-
acters we could have used the case and TAM in-
formation present in the treebank in the form of
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linguistic morphemes for each word, but due to
the absence of a decent or no morphological an-
alyzer for these languages, these features would
not have been available for real time parsing of de-
velopment and test set. Moreover since there are
more than one morpheme in a word, methods to
jointly learn word and character embeddings and
composing them to yield a single representation
(Bojanowski et al., 2016), need to be explored for
these languages.

For Indo-Aryan langauges the degree of case
and TAM marking being a part of word morphol-
ogy varies according to the morphological rich-
ness of the language. This information can also
be expressed lexically as postpositions or as auxil-
iaries in contrast to the Dravidian languages. Since
we experiment on inter-chunk parsing and estab-
lish relations between heads of chunks, this in-
formation is lost. So we compose a vector by
averaging the representations ( that are looked
up from the word2vec embedding model de-
scribed above ) of these postpositions and auxil-
iaries present in a chunk, and use it as a feature.

5 Results

The results of experimenting with the features de-
scribed in Section 4 for all the 5 languages are pre-
sented in the Table 4. The metrics used for evalua-
tion are Unlabeled and labeled attachment score (
UAS and LAS) and label accuracy ( LA ). The per-
formance corresponding to the highest performing
feature set has been highlighted. The tags in our
treebanks are syntactico-semantic and it has been
observed with other treebanks that learning such
tags is difficult (Nivre et al., 2007a). Despite that
we achieve decent LAS for all 5 languages. We
also experiment with a coarser scheme of POS tags
for Telugu to see the effect of the granularity of
POS tag on dependency parsing. Since some 149
sentences are lost in automatic conversion from
coarser to finer treebank representation for Telugu,
we cannot directly compare their parsing perfor-
mance but can still get an idea that the coarser
scheme is better in predicting LAS. This was not
so intuitive as the richer information encoded in
finer POS tagset should have helped the parser dis-
ambiguate dependency relations. We leave the la-
bel wise dependency relation analysis, taking into
account the granularity of the POS tags for fu-
ture work. Our delexicalised parser using only
POS tags ( f1 ) achieves good results for unla-

beled parsing for all languages and serves as a
good baseline. However it gives poor results for
LA and in turn for LAS as was expected, lowest
LAS and UAS being for Marathi. On addition
of suffix features to POS tags ( f2 ) LAS shows
a substantial increase for all languages, for an ex-
ample +21.37% for Kannada gold test set. Though
the highest increase is for Marathi as its baseline
is very poor and even the partial lexical informa-
tion gives the parser a major boost. The lowest
increase of +9.1% is in Telugu gold test set. Dif-
ferent Dravidian languages show different levels
of sophistication in case marking encoded in their
suffixes. While in Kannada adding full lexical in-
formation ( f3 ) to the baseline delexicalised parser
does not increase accuracy a lot in comparison to
f2, in Malayalam f2 that is partial lexical informa-
tion ( suffix and POS tags ) perform better than f3.

We see that addition of suffix embeddings to
word and POS tags (f4), acts as a complemen-
tary feature and shows substantial increase for
Kannada and Malayalam, whereas quite less for
Telugu. Bengali parser however does not show
much increase as it is an Indo-Aryan language.
Marathi shows a considerable increase despite be-
ing an Indo-Aryan language as it is morphologi-
cally richer and behaves likes pseudo Dravidian.
Geographically it is also the southernmost Indo-
Aryan language and shows syntactic convergence
with the neighboring Dravidian language family.
Similarly adding postposition information ( f5 )
benefits Bengali parser considerably as compared
to other Dravidian languages and Marathi.

It is noticed that adding chunk tag information (
f6 ) helps across all languages, specially in LA as
was conjectured. However the increase is slightly
more for Indo-Aryan compared to Dravidian as in
the latter the the average number of words in a
chunk is less owing to the agglutinative nature of
the languages. The head word and its morphemes
encode most of the information for finite or non
finiteness of verbs and case markers and is avail-
able to us in inter-chunk parsing. While in Bengali
and Marathi the information marked by verb auxil-
iaries and postpositions supporting the head word
in a chunk are lost, so the additional chunk infor-
mation helps to disambiguate between the root and
non root verb in complex constructions.

Next we see the effect of GNP information (
f7 ) on parsing accuracies. There is an increase
in all languages except Malayalam. It is reason-
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able as there is no agreement between Malayalam
verbs and their arguments. However it increases
for Malayalam in the auto development and auto
test set. It could be due to inconsistencies within
the data. GNP marking is also very noisy for
Marathi data, may be it could be looked into for
validation. We could not report results for Ben-
gali for this feature as the data is not marked for
morphological information.

We have also reported the performance of our
POS tagger and chunker for all 5 languages in Ta-
ble 3. With very simple features it gives better or
comparable results for all languages compared to
Bengali (Ghosh, 2013; Alam et al., 2016), Malay-
alam (V V and Sharma, 2016). Our results on Tel-
ugu and Bengali parsing or POS tagging cannot
be compared directly to the previous works as we
used a different dataset with a finer POS tagging
scheme. Numerically it is still better than their re-
sults, it could be owed to the increase in size of
the dataset, the architecture of our neural network
models and dense representation of features.

Thus we show empirically that the presented
feature set is useful for a range of morphologically
rich languages across different language families,
however some features are more important to cer-
tain languages than others.

6 Conclusion and Future work

We have presented our work to adapt an exist-
ing neural network parser to suit the particularities
for 5 Indian languages Kannada, Malayalam, Tel-
ugu, Bengali and Marathi belonging to two ma-
jor language families Dravidian and Indo-Aryan.
We proposed a unified strategy for all languages
for the inclusion of rich-morphosyntactic cues in
the existing parsing framework. The cost effective
representation of the linguistically motivated fea-
tures such as suffix, postposition, chunk and GNP
aim to capture the linguistic intricacies of all lan-
guages. A detailed discussion of the rationale be-
hind each feature and their effect on parsing ac-
curacy was presented. Our results provided the
comparison that suffix information is more use-
ful for parsing Dravidian languages while postpo-
sition is for Indo-Aryan languages, with the ex-
ception of Marathi. We showed the performance
of our parser in real time settings by using auto
POS and chunk tag. In turn we also built POS
taggers and chunkers for these resource poor lan-
guages. Through our work we aimed to open av-

Kan Mal Tel
Bis

Tel
Ann.

Ben Mar

chunk
D 95.23 96.59 93.73 91.89 94.26 94.42
T 95.25 96.74 91.28 93.17 94.25 94.93

pos
D 92.85 93.06 83.76 90.29 89.74 91.49
T 92.31 92.78 83.31 88.81 89.34 91.83

Table 3: Accuracy of Chunker and POS Model for
Kannada (Kan), Malayalam (Mal), Bengali (Ben),
Marathi (Mar), Telugu (Tel) Bis and Anncorra
(Ann.) tagset. D=Development Set, T=Test Set.

enues for further research in dependency parsing
for these underrepresented languages. As a future
work we propose to build cross-lingual parsers
for these languages by exploiting the topological
and genetic similarities among them. Since Indian
languages are morphologically very rich, ways of
learning character-aware POS tagging and depen-
dency parsing models could also be explored.
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Feat.
Gold Auto

Development Test Development Test
LAS UAS LA LAS UAS LA LAS UAS LA LAS UAS LA
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f5 68.17 84.58 73.39 70.76 86.29 75.64 65.21 82.68 71.2 68.12 84.58 73.36
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f3 74.2 94.1 75.43 70.67 92.93 71.85 72.73 93.37 74.32 69.85 92.11 71.26
f4 74.69 93.98 75.92 73.14 94.11 74.32 74.03 93.73 75.68 71.61 93.29 73.14
f5 74.82 93.61 76.29 72.44 94.11 73.5 74.2 93.73 75.92 70.44 92.58 72.08
f6 75.43 94.84 76.78 71.73 93.05 72.91 74.45 93.37 76.17 70.55 93.05 71.97
f7 75.31 94.59 76.29 72.79 93.76 73.97 72.97 92.75 74.57 70.91 92.82 72.2

Telugu (BIS)
f1 54.73 90.03 55.63 56.26 87.61 57.65 53.45 89.0 55.12 55.37 87.23 57.14
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Marathi
f1 34.81 59.92 39.29 34.06 59.11 38.5 34.83 60.24 39.1 33.45 58.63 38.24
f2 64.25 83.52 68.79 62.57 81.15 67.38 63.96 83.38 68.44 61.98 80.74 66.94
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Bengali
f1 52.71 78.08 55.22 52.52 78.7 54.93 49.33 74.65 52.82 48.34 74.89 51.63
f2 68.19 85.37 70.82 67.6 84.86 70.68 64.42 82.1 68.26 63.61 81.75 67.38
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f7 - - - - - - - - - - - -

Table 4: Parsing accuracies of our neural network based parser for all 5 languages. Auto development
and test set contain predicted POS and chunk tags. Gloss of the features are f1 = POS only, f2 = f1+
suffix, f3 = POS + word, f4 = f3 + suffix , f5 = f4+ PSP, f6 = f5 + chunk, f7 = f6 + GNP
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