
Semgrex-Plus: a tool for automatic dependency-graph rewriting

Fabio Tamburini
University of Bologna

FICLIT
Bologna, Italy

fabio.tamburini@unibo.it

Abstract

This paper describes an automatic proce-
dure, the Semgrex-Plus tool, we developed
to convert dependency treebanks into dif-
ferent formats. It allows for the definition
of formal rules for rewriting dependencies
and token tags as well as an algorithm for
treebank rewriting able to avoid rule in-
terference during the conversion process.
This tool is publicly available1.

1 Introduction

Creating a treebank, annotating each sentence
with its syntactic structure, is certainly a time-
consuming and error prone task. For these rea-
sons, treebanks often require maintenance and re-
visions to correct mistakes or to adapt it to differ-
ent needs.

In big projects, such as the Universal Dependen-
cies (UD) project (Nivre et al., 2016), guidelines
updates due to new language addition, change in
theoretical approaches of a specific phenomenon
management, mistakes or other changes often re-
quire specific tools to automate, at the maxi-
mum possible level, the process of treebank sub-
structures rewriting. Moreover, the treebanks de-
veloped for a specific language need often to be
completely converted to adhere to other standards,
for example to comply to the UD specifications
and conventions.

For phrase-structure treebanks there are vari-
ous tools able to perform trees rewriting, such as
Tregex/Tsurgeon pair (Levy and Andrew, 2006),
but for dependency treebanks, largely dominant
in these years, no specific rewriting tool seems to
be available to the community. There are some
generic, though very powerful, graph rewriting
tools (Guillaume et al., 2012; Ribeyre, 2013) that

1https://github.com/ftamburin/
Semgrex-Plus.git

can be adapted to this task, but with some issues
discussed in the last Section.

The StanfordNLP group developed a very in-
teresting tool to perform treebank search by us-
ing a specialised query language. Using the Sem-
grex package2 (Chambers et al., 2007) the user
is able to specify search patterns and retrieve all
the matching subgraphs inside a specific depen-
dency treebank. This tool is very flexible and rich
of operators, allowing the user to design powerful
search patterns.

We extended the behaviour of this package
adding some new functionalities for automatic
dependency-graph rewriting useful for treebank
maintenance, revision and conversion, producing a
new tool, called Semgrex-Plus, that we made pub-
licly available1.

Semgrex-Plus can be used, in principle, to con-
vert any dependency treebank represented using
the CoNLL format into a different format that
does not require re-tokenisation steps, or to rewrite
some parts of the treebank using different depen-
dency structures, labels and/or word tags.

This paper is organized as follows: we provide
the description of the original Semgrex tool in Sec-
tion 2; we then introduce the Semgrex-Plus tool
describing the addition to the original tool in Sec-
tion 3; in Section 4 the rule checking procedures
and in Section 5 we present a treebank-conversion
experiment using Semgrex-Plus; in the last Sec-
tion we draw some provisional conclusion.

2 The Stanford Semgrex Search
Language

Semgrex represents nodes in a dependency
graph as a (non-recursive) attribute-value ma-
trix. It then uses regular expressions for
subsets of attribute values. For example,

2http://nlp.stanford.edu/software/
tregex.shtml

Proceedings of the Fourth International Conference on Dependency Linguistics (Depling 2017), pages 248-254,
Pisa, Italy, September 18-20 2017

248

{word:record;tag:/N.*/} refers to any
node that has a value ‘record’ for the attribute
‘word’ and a ‘tag’ starting with the letter ‘N’,
while ‘{}’ refers to any node in the graph. The
most important part of Semgrex regards the possi-
bility to specify relations between nodes or group
of nodes. See Table 1 for a reference taken
from the original documentation and Table 2 for
some examples of Semgrex search patterns to-
gether with the retrieved subgraphs.

For example, ‘{}=1 <subj=A {}=2’ finds
all the pairs of nodes connected by a directed
‘subj’ relation in which the first node ({}=1) is the
dependent and the other the head. Logical connec-
tives can be used to form more complex patterns
and node/relation naming (the ‘=’ assignments)
can help to retrieve matched nodes/relations from
the patterns. Please refer to (Chambers et al.,
2007) or to the online manual3 for a more com-
plete description of the Semgrex query language.

3 Semgrex-Plus

Unfortunately Semgrex is only a query language
and, in its original form, cannot be used to rewrite
dependency (sub)graphs. In order to extend the
possibility of Semgrex, we then modified the
original application to manage pairs of patterns:
the first is used to search into the treebank for
the required subgraphs, and the second is used
to specify how the retrieved subsgraphs have
to be rewritten. For example the pattern pair
“{tag:det}=1 >arg=A {tag:noun}=2”
→ “{tag:ART}=1 <DET=A {tag:NN}=2”,
what we called a ‘Semgrex-Plus rule’, changes
the direction of the dependency between the
head and the dependent and, at the same time,
changes the words tags and relation label. The
starting ‘search’ pattern and final ‘rewrite’ pattern
have to contain the same number of nodes and
dependency edges. Node and relation naming
has been the fundamental trick to introduce
such extension, allowing for nodes and relations
matching between the search pattern and rewrite
pattern.

3.1 Rule Application Procedure

For converting a treebank into a different format or
to adjust some specific subgraphs, by applying a

3https://nlp.stanford.edu/nlp/javadoc/
javanlp/edu/stanford/nlp/semgraph/
semgrex/SemgrexPattern.html

complex set of Semgrex-Plus rules, it is necessary
to define a specific procedure in order to avoid rule
application interference: the application of a rule
to the treebank changes the treebank structure po-
tentially blocking the application of the remaining
rules.

The solution we adopted decouples the search
and rewrite operations for the rule application. We
defined a set of new rewriting operations on a gen-
eral dependency treebank:

• DEL REL(graphID, depID, headID): deletes
a dependency edge between two graph nodes;

• INS REL(graphID, depID, headID, label):
inserts a new labelled dependency edge be-
tween two graph nodes;

• REN TAG(graphID, nodeID, tag): replace
the tag of a specific graph node.

The conversion task has been implemented as a
three-steps process:

• first of all, each Semgrex-Plus rule is always
applied to the original treebank producing a
set of matching subgraphs that have to be
rewritten;

• for each match, a set of specific operations for
rewriting the subgraph corresponding to the
processed matching are generated and stored;

• lastly, the whole set of rewriting opera-
tions produced processing the entire set of
Semgrex-Plus rules, each applied to the origi-
nal treebank, is sorted by graphID, duplicates
are removed and every operation is applied
graph by graph respecting the following or-
der: first dependency deletions, second de-
pendency insertions and lastly tag renaming.

This way of processing the original treebank
and transforming it into the new format should
guarantee that we do not experience rule interfer-
ence due to the conversion procedure, because the
generation of the rewriting operations due to the
Semgrex-Plus rules application is decoupled from
the real treebank rewriting.

Figure 1 shows the results of the application
of three Semgrex-Plus rules to two simple depen-
dency graphs.

249

Symbol Meaning
{}=1 Generic node without any attribute with ID=‘1’

{tag:W}=2 Generic node with attribute tag=‘W’ and with ID=‘2’
A <reln=X B A is the dep. of a rel. reln (with ID=‘X’) with B
A >reln=X B A is the gov. of a rel. reln (with ID=‘X’) with B
A <<reln B A is the dep. of a rel. reln in a chain to B following dep.->gov. paths
A >>reln B A is the gov. of a rel. reln in a chain to B following gov.->dep. paths

A x,y<<reln B A is the dep. of a rel. reln in a chain to B following dep.->gov. paths btw. dist. of x and y
A x,y>>reln B A is the gov. of a rel. reln in a chain to B following gov.->dep. paths btw. dist. of x and y

A == B A and B are the same nodes in the same graph
A . B A is immediately precedes B, i.e. A.index() == B.index() - 1

A $+ B B is a right immediate sibling of A
A $- B B is a left immediate sibling of A

A $++ B B is a right sibling of A
A $-- B B is a left sibling of A
A @ B A is aligned to B

Table 1: Supported node specification and relations and their symbols by the original Stanford Semgrex
tool. Semgrex-Plus currently supports only the first four operators in rewriting rules.

Semgrex search pattern Retrieved subgraphs

{A} >X
(
{B} >Y {C}

)

{A} >X {B} >Y {C}

{D} >Z
(
{A} >X {B} >Y {C}

)
... See previous example to build all retrieved subgraphs.

Table 2: Some examples of Semgrex search patterns and the corresponding retrieved subgraphs.

4 Rule Overlap/Interference Checking

Decoupling the ‘search’ from ‘rewrite’ operations
should avoid any interference artificially intro-
duced by the conversion procedure, but do not
guarantee that errors in rules definition could gen-
erate problems due to rules interference.

We designed a specific tool that compare each
rule in the ruleset with all the other rules and try to
find potential interference between them. In order
to find this potential problems (without applying
the rules to a specific treebank we do not know in
advance if a problem effectively will arise or not,
thus we prefer to call them ‘potential’) we have to
check if two rules exhibit specific kinds of over-
laps, but only in the subgraphs that will be actually

modified by the rewrite pattern.
The first step identify which edges in the search

pattern are modified by the rewrite pattern of each
rule. An edge is modified by a specific rule appli-
cation if:

• the relation will be modified (the relation will
connect different nodes, one or both, or it will
have a different label);

• one of its nodes will be modified by an at-
tribute change.

In the second step each rule is compared to all
the others by considering the intersection between
the two subgraphs formed by modified edges. If
the intersection is not empty and

250

Figure 1: An example of graph conversion: the results of the application of three Semgrex-Plus rules to
two simple dependency graphs.

Figure 2: Rules added to the first three (R1-R3 in Figure 1) to demonstrate rule overlap checking.

a) the two search patterns completely match,
then we have a full overlap between rules and
this mark a problem. The rule matching is
similar to a unification process thus an empty
node (e.g. {}=1) will match with any other
node.

b) the two search patterns do not completely
match, then we got a partial overlap between
rules and this is only a potential problem be-
cause, in principle, the two rules should apply
to different subgraph without creating real is-
sues.

An empty intersection between rules modified
subgraphs do not create any problem.

If we add the rules in Figure 2 to the ones pre-
sented in Figure 1 and apply the described algo-
rithm to check for rule overlapping, we will obtain
two full overlaps for rule pairs R3-R4 and R5-R6
and three partial overlaps for rule pairs R3-R5, R3-
R6 and R4-R5.

5 Some Linguistic Examples

We used an early version of the Semgrex-Plus
package to automate the conversion of the Venice
Italian Treebank (Delmonte et al., 2007) into a dif-
ferent format, namely the MIDT+ format (Bosco
et al., 2012), in order to start the merging of this
treebank into the Italian Universal-Dependency
treebank (Alfieri and Tamburini, 2016).

251

Figure 3: Some simple examples of rules that do not modify the dependency structures.

Figure 4: An example of rule that rewrite the dependency structure.

The set of rules manually written for converting
VIT dependency structures can be subdivided into
two macro-classes: (a) rules that do not modify the
structures and (b) rules that need to modify the de-
pendencies, both in term of edge direction and in
term of different structuring between the involved
nodes.

Regarding the rules that do not modify the de-
pendency structures, they simply rename the de-
pendency label using a 1:1 or an N:1 look-up ta-
ble, as VIT, with respect to MIDT+, typically in-
volves more specific dependency types. Figure 3
outlines some simple examples of such kind of
conversions.

There are, of course, other kind of operations
on subgraphs that require also the rewriting of the
dependency structure. A good example concerns
relative clauses in which the role of the relative
pronoun and, as a consequence, the connections
of the edge expressing the noun modification are
completely different in the two formalisms. Figure

4 shows one example of this kind of rewriting.

Cases of coordination presented several prob-
lems for treebank conversions: in VIT the head of
the coordinated structure is linked to the connec-
tive and then the two (or possibly more) coordi-
nated structures can be linked with a wide range of
different dependency types (e.g. between phrases
- sn, sa, savv, sq, sp, predicative complements -
acomp, ncomp, adjuncts - adj, adjt, adjm, adjv,
subjects - subj, objects - obj, etc.) leading to a
large number of different combinations. More-
over, each dependency combination has to be fur-
ther specified by the different token tags. MIDT+
represents coordinate structures in a different way:
the connective and the second conjunct are both
linked to the first conjunct that is connected to the
head of the coordinated structure.

Figure 5 shows one example: the first formal
rule represents an abstract rule pattern that has to
be filled with all the real tag combinations found
in VIT, generating a huge number of different

252

Figure 5: An example of coordination structures in VIT and MIDT+ and the conversion rule.

rules, one of them outlined by the second com-
plete Semgrex-Plus rule. This process generated
more than 2,800 different rules for handling all the
coordinated structures in VIT.

There is also a need for a third kind of rules
for rewriting single PoS-tags that might have re-
mained unchanged during the main conversion
process.

Applying all the 4,250 Semgrex-Plus rules we
wrote, we obtained a converted treebank in which
228,534 out of 280,641 dependency relation were
automatically converted, giving a global coverage
of 81.4%.

To test the effectiveness of the conversion pro-
cedure and the conversion rules we randomly se-
lected 100 sentences (2582 dependency relations
to be converted) from the treebank and manually
checked every newly created dependency relation,
both in term of the connected nodes and the as-
signed label. We obtained the following results:
among the 2008 relations that have been automat-
ically converted we found 125 wrongly converted
dependency relations. So, on this sample, we ob-
tained a coverage of 2008/2582 = 77.8%, slightly
less than on the whole treebank, with a conversion
error rate = 125/2008 = 6.2%.

6 Conclusions

This paper presents the tool Semgrex-Plus, de-
rived from the StanfordNLP Semgrex tool, we de-
veloped to allow for dependency structure rewrit-
ing inside a specific treebank.

This procedure can be, in principle, adaptable
to any conversion between different dependency
treebank formats or to modify the specific de-

pendency structures, labels and/or word tags con-
nected with a particular phenomenon.

Beside some simple examples of dependency
structure rewriting using Semgrex-Plus we gave in
this paper, we briefly reported on the use of this
tool for automating the conversion of an Italian de-
pendency treebank into a different format, in order
to show the effectiveness of this tool when used in
big and complex conversion projects.

To the best of our knowledge, there are only
general-graph rewriting tools (Guillaume et al.,
2012; Ribeyre, 2013) available to automatise this
task for dependency graphs. Though this pack-
ages are very powerful and quite flexible, it is
not clear, however, if they apply the rewriting op-
erations when a rule pattern is found, modifying
the treebank immediately, or not, and if there are
some rule-checking procedures for raising poten-
tial problems in rules application, because, as we
have seen in Section 4, a sequential application of
the various rewriting rules could complicate the
process of treebanks conversion. On the other
hand, decoupling the pattern recognition from the
rewriting operations, as done by the Semgrex-Plus
tool, guarantee that we can write rules having in
mind the original tagset without any modification,
but we should still check and avoid interference
among the conversion rules.

We can also find some powerful treebank con-
verters in literature but they are usually tied to
specific pair of tagsets (often tailored to the Penn
treebank) (Johansson and Nugues, 2007; Choi and
Palmer, 2010), and cannot be easily adapted to
general needs, or are devoted to tree manipulation,
for example the tool ‘Tregex’ (Levy and Andrew,

253

2006).
In any case, the formal rules for converting a

treebank have to be manually written by using the
proposed tool syntax and the final result has to be
carefully tested to check the effectiveness of the
conversion rules. The tool do not guarantee that,
writing incomplete or wrong rules, the final result
will be fine. For example, if we need to invert the
direction of a dependency, we must include in the
rule conversion also the node governing such de-
pendency, in order to properly manage the graph
and avoid the generation of illegal graphs (e.g.
non-rooted trees/graphs).

References

Linda Alfieri and Fabio Tamburini. 2016. (Almost)
Automatic Conversion of the Venice Italian Tree-
bank into the Merged Italian Dependency Treebank
Format. In Proc. 3rd Italian Conference on Compu-
tational Linguistics - CLiC-IT 2016, pages 19–23,
Napoli, Italy.

Cristina Bosco, Simonetta Montemagni, and Maria
Simi. 2012. Harmonization and Merging of two
Italian Dependency Treebanks. In Proc. of LREC
2012, Workshop on Language Resource Merging,
pages 23–30, Istanbul.

Nathanael Chambers, Daniel Cer, Trond Grenager,
David Hall, Chloe Kiddon, Bill MacCartney, Marie-
Catherine de Marneffe, Daniel Ramage, Eric Yeh,
and Christopher Manning. 2007. Learning Align-
ments and Leveraging Natural Logic. In Proc. of the
Workshop on Textual Entailment and Paraphrasing,
pages 165–170.

Jinho Choi and Martha Palmer. 2010. Robust
Constituent-to-Dependency Conversion for English.
In Proc. of 9th International Workshop on Treebanks
and Linguistic Theories - TLT9, Tartu, Estonia.

Rodolfo Delmonte, Antonella Bristot, and Sara Tonelli.
2007. VIT - Venice Italian Treebank: Syntactic and
Quantitative Features. In Proc. Sixth International
Workshop on Treebanks and Linguistic Theories.

Bruno Guillaume, Guillaume Bonfante, Paul Masson,
Mathieu Morey, and Guy Perrier. 2012. Grew: un
outil de réécriture de graphes pour le TAL. In Gilles
Sérasset Georges Antoniadis, Hervé Blan-chon,
editor, 12ième Conférence annuelle sur le
Traitement Automatique des Langues (TALN’12),
Grenoble, France. ATALA.

Richard Johansson and Pierre Nugues. 2007. Ex-
tended Constituent-to-dependency Conversion for
English. In Proc. of NODALIDA 2007, Tartu, Es-
tonia.

Roger Levy and Galen Andrew. 2006. Tregex and
Tsurgeon: tools for querying and manipulating tree
data structures. In Proc. of 5th International Con-
ference on Language Resources and Evaluation -
LREC 2006, Genoa, Italy.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC 2016), pages 1659–1666, Por-
torož, Slovenia.

Corentin Ribeyre. 2013. Vers un système générique de
réécriture de graphes pour l’enrichissement de struc-
tures syntaxiques. In RECITAL 2013 - 15ème Ren-
contre des Etudiants Chercheurs en Informatique
pour le Traitement Automatique des Langues, pages
178–191, Les Sables d’Olonne, France.

254

