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Abstract
Universal Dependency (UD) annotations,
despite their usefulness for cross-lingual
tasks and semantic applications, are not
optimised for statistical parsing. In the
paper, we ask what exactly causes the
decrease in parsing accuracy when train-
ing a parser on UD-style annotations and
whether the effect is similarly strong for
all languages. We conduct a series of ex-
periments where we systematically mod-
ify individual annotation decisions taken
in the UD scheme and show that this re-
sults in an increased accuracy for most, but
not for all languages. We show that the en-
coding in the UD scheme, in particular the
decision to encode content words as heads,
causes an increase in dependency length
for nearly all treebanks and an increase in
arc direction entropy for many languages,
and evaluate the effect this has on parsing
accuracy.

1 Introduction

Syntactic parsing, and in particular dependency
parsing, is an important preprocessing step for
many NLP applications. Many different parsing
models are available for many different languages,
and also a number of annotation schemes that dif-
fer with respect to the linguistic decisions they
take. One of them is the Universal Dependencies
(UD) scheme (Nivre et al., 2016) that has been
developed to support cross-lingual parser transfer,
and cross-lingual NLP tasks in general, and to pro-
vide a foundation for a sound cross-lingual evalu-
ation.

While the value of the UD framework for mul-
tilingual applications is beyond doubt, it has been
discussed that the annotation decisions taken in
the UD framework are likely to decrease pars-
ing accuracies, as most dependency-based parsers

do prefer a chain representation of shorter depen-
dencies over the UD-style encoding of dependen-
cies where content words are heads, with function
words attached as dependent nodes (content-head
encoding). This is especially relevant for the en-
coding of coordinations, copula, and prepositions
(Marneffe et al., 2014) (see figure 1). Several
studies have addressed this problem and presented
experiments on converted trees, offering evidence
that a function-head encoding might increase the
learnability of the annotation scheme (Schwartz et
al., 2012; Popel et al., 2013; Silveira and Manning,
2015; Rosa, 2015; Versley and Kirilin, 2015; Ko-
hita et al., 2017).

Evaluating the learnability of annotation frame-
works, however, is not straightforward and at-
tempts to do so have often resulted in an apples-
to-oranges comparison as there are multiple fac-
tors that can impact parsing performance, includ-
ing the language, the annotation scheme, the size
of the treebank, and the parsing model. Even text-
intrinsic properties such as domain and genre of
the texts that are included in the treebank can in-
fluence results (Rehbein and van Genabith, 2007).
It is not possible to control for all of them and this
has made it extremely difficult to come to conclu-
sions concerning the learnability of syntactic rep-
resentations for different languages or annotation
frameworks.

In the paper, we show that the design decisions
taken in the UD framework have a negative impact
on the learnability of the annotations for many lan-
guages, but not for all. We do this by evaluating
three important design decisions made in the UD
scheme and compare their impact on parsing ac-
curacies for different languages.

The contributions of the paper are as follows.
We test the claim that content-head dependencies
are harder to parse, using three parsers that imple-
ment different parsing paradigms. We present a
conversion algorithm that transforms the content-
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head encoding of the UD treebanks for coordi-
nation, copula constructions and for prepositions
into a function-head encoding and show that our
conversion algorithm yields high accuracies (be-
tween 98.4% and 100%) for a back-and-forth con-
version of gold trees.

We run parsing experiments on the original
and the converted UD treebanks and compare the
learnability of the annotations across 15 different
languages, showing that language-specific prop-
erties play a cruicial role for the learning pro-
cess. We further show that the changes in depen-
dency length that result from the different encod-
ing styles are not responsible for the changes in
parsing accuracy.

The paper is structured as follows. We first re-
view related work (§2) and present our conversion
algorithm (§3). The data and setup for our experi-
ments as well as the results are described in section
§4. After a short discussion (§5) we conclude (§6).

2 Related work

It is well know from the literature that the linguis-
tic framework used for a particular task has a great
impact on the learnability of the annotations. Sev-
eral studies have tried to evaluate and compare an-
notation schemes for syntactic parsing of one lan-
guage (Kübler, 2005; Schwartz et al., 2012; Hu-
sain and Agrawal, 2012; Silveira and Manning,
2015) or across languages (Mareček et al., 2013;
Rosa, 2015; Kohita et al., 2017), or have investi-
gated the impact of a particular parsing model on
the learnability of specific phenomena encoded in
the framework (McDonald and Nivre, 2007; Gold-
berg and Elhadad, 2010).

Popel et al. (2013) present a thorough crosslin-
gual investigation of different ways to encode co-
ordination in a dependency framework. They did,
however, not address the issue of learnability of
the different encodings. This has been done in
Maraček et al. (2013), who reach the somewhat
disenchanted conclusion that the observed results
of their experiments are “unconvincing and not
very promising” (Mareček et al., 2013).

Versley and Kirilin (2015) look at the influence
of languages and annotation schemes in universal
dependency parsing, comparing 5 different parsers
on 5 languages using two variants of UD schemes.
They state that encoding content words as head has
a negative impact on parsing results and that PP
attachment errors account for a large portion of

the differences in accuracy between the different
parsers and between treebanks of varying sizes.

Recent work by Gulordava and Merlo (2016)
has looked at word order variation and its impact
on dependency parsing of 12 languages. They fo-
cus on word order freedom and dependency length
as two properties of word order that systematic-
ally vary between different languages. To as-
sess their impact on parsing accuracy, they mod-
ify the original treebanks by minimising the de-
pendency lengths and the entropy of the head-
direction (whether the head of dependent dep can
be positioned to the left, to the right, or either
way), thus creating artificial treebanks with sys-
tematically different word order properties. Pars-
ing results on the modified treebanks confirm that
a higher variation in word order and longer depen-
dencies have a negative impact on parsing accura-
cies. These results, however, do not hold for all
languages.1

The work of Gulordava and Merlo (2016) can
not be used to compare the impact of different
encoding schemes on the learnability of the an-
notations, as the modifications applied by the au-
thors do result in artificial treebanks and cannot be
traced back to specific design decisions, thus mak-
ing the results hard to interpret for our purposes.

Kohita et al. (2017) overcome this problem by
providing a conversion algorithm for the three
functional labels case, dep, mark from the UD
scheme. They convert the representations for
those labels into function-head encodings and
present parsing experiments on 19 treebanks from
the UD project. Their results corroborate earlier
findings and show that the conversions improve re-
sults for 16 out of 19 languages, using two graph-
based parsers (MST and RBG) with default feature
templates.

Our work is similar in spirit to the one of Ko-
hita et al. (2017). We do, however, address partly
different linguistic phenomena, namely the encod-
ing of adpositions, copula verbs and coordina-
tions. In contrast to Kohita et al. (2017), we do
not back-transform the parser output but evaluate
the converted trees against a converted version of
the gold trees, as it has been shown that the back-
conversion results in error propagation, which is
reflected in lower parsing accuracies (Silveira and

1For German, for instance, word order variability seems
to have a much stronger impact on parsing results while opti-
mising dependency length resulted in a lower LAS.
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Figure 1: Dependency trees for conversion of coordination (left), prepositions (middle) and copula
(right); UD encoding (brown, above) and modified trees with function words as heads (green, below).

Manning, 2015).2

Another difference to Kohita et al. (2017) con-
cerns the parsers used in the experiments. While
Kohita et al. (2017) use two graph-based parsing
algorithms, we choose three parsers that represent
different parsing paradigms, namely a transition-
based parser, a graph-based parser and a head-
selection parser. The latter is a neural parsing
model that simply tries to find the best head for
each token in the input. While the first two parsers
use rich feature templates (and thus might be bi-
ased towards one particular encoding scheme), the
head-selection parser does not use any pre-defined
feature templates but learns all information di-
rectly from the input (§4.1).3

This allows us to test whether the previous re-
sults hold for parsers implementing different pars-
ing paradigms and, crucially, whether they are in-
dependent of the feature templates used by the
parsers. Finally, we are interested in the interac-
tion between language, parser bias, and encoding
scheme.

3 Conversion algorithm

The phenomena we consider in our experiments
concern the encoding of copula verbs, coordina-
tions and adpositions. All three address an im-
portant design decision taken in the UD project,
namely to encode content words as heads.

We choose these because they are highly fre-
quent in all the languages considered here and
there is preliminary work discussing their impact

2The main goal of Kohita et al. (2017) was to increase
parsing accuracy for UD parsing, thus making a back-
conversion necessary. We, instead, are interested in a com-
parison of the learnability of the different schemes and thus
can skip the back-conversion step.

3We do not use pretrained word embeddings in the exper-
iments but learn the embeddings from the training data.

on statistical parsing (Schwartz et al., 2012; Marn-
effe et al., 2014), claiming that encoding content
words as heads has a negative impact on parsing
accuracy, as has the UD way of encoding coordi-
nations.

To compare the impact on parsing scores across
different languages, we develop a conversion algo-
rithm that transforms the original UD trees (figure
1, trees above) into a function-head style encoding
(figure 1, trees below).4 We first use our conver-
sion algorithm to transform the encodings for in-
dividual constructions (copula, prepositions, co-
ordinations) and the combination of all the three
(c-p-c) and then transform the converted trees
back to the original encoding, using our conver-
sion method. We then evaluate the trees that have
been converted back and forth between UD style
and function-head style against the original UD
gold trees.

Table 1 shows results for a back-and-forth con-
version of the original gold UD trees for 15 lan-
guages. Languages are ordered according to how
many tokens in the test set are affected by the con-
version. This ranges from 20.9% for Chinese (zh)
to 45.7% for Farsi (fa), with an average of 34.7%
over all 15 languages.5 We can see that at least
for gold trees, our conversion algorithm is able to
transform between the two encodings without sub-
stantial loss of information.6

Errors in the back-conversion are partly due to
inconsistencies in the annotations that are not al-
ways compliant with the UD scheme. Some of
these issues have already been addressed in the

4Our code is available for download at
http://wisscamp.de/en/research-2/resources.

5For comparison, the average ratio of converted tokens in
the study of Kohita et al. (2017) is 6.3%.

6An exception is Farsi, where we observe a slightly higher
LAS error rate, in particular for the conversion of coordina-
tions.
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LAS UAS % affected
size cop prep coord c-p-c c-p-c c-p-c

Chinese zh 3,997 100.0 100.0 99.9 99.9 100.0 20.9
Estonian et 14,510 99.9 100.0 100.0 99.9 100.0 23.6
Turkish tr 3,948 99.9 99.8 99.8 99.4 99.8 27.9
Russian-SynTagRus ru 48,171 100.0 100.0 100.0 100.0 100.0 30.6
German de 14,118 99.8 100.0 99.8 99.6 100.0 33.2
Czech cs 68,495 100.0 100.0 99.7 99.7 100.0 35.3
Romanian ro 7,141 99.9 99.9 99.8 99.7 100.0 36.4
English en 12,543 100.0 99.8 99.9 99.6 99.9 37.6
Croatian hr 5,792 100.0 100.0 99.8 99.8 100.0 38.5
French fr 14,554 100.0 99.8 99.9 99.8 99.9 38.5
Catalan ca 13,123 99.9 99.5 99.9 99.4 99.8 38.8
Italian it 12,837 100.0 100.0 99.9 100.0 100.0 40.3
Spanish es 14,187 99.8 99.9 99.9 99.6 99.9 40.3
Bulgarian bg 8,907 100.0 100.0 99.9 99.9 100.0 43.7
Farsi fa 4,798 99.6 100.0 98.8 98.4 100.0 45.7
avg. 16,475 99.9 99.9 99.8 99.6 99.9 35.4

Table 1: LAS (excluding punctuation) on the test sets after round-trip conversion for individual trans-
formations and for the combination of all (c-p-c: copula, prep, coord), evaluated against the original
UD trees, and UAS for all conversions (c-p-c) (languages are ordered according to the amount of tokens
affected by the combination of all conversions; zh: 20.9% – fa: 45.7%).

new release of the UD 2.0.7 Other errors are
due to language-specific constructions. A case
in point are compositional preposition in Cata-
lan (e.g. per a) where both parts are attached to
the same head, while other sequences of preposi-
tions have a chain-like attachment. Our conver-
sion algorithm does not pay attention to language-
specific properties that are neither encoded on the
pos level nor in the dependency labels. It would,
however, be straightforward to extend the algo-
rithm to include these.

A final cause of errors in the back-conversion
concerns coordinations with more than two con-
juncts, where we have embedded coordinated con-
stituents of the type (A and B and (C and D)). Here
the back-conversion from the chain-like represen-
tation to UD looses information. In practice, how-
ever, these structures are not very frequent. For
instance, in the English test set less than 0.8% of
all sentences include a coordination of that partic-
ular type.

4 Experiments

We now want to use our conversion method to
assess the impact of the content-head encoding
in general and of individual, construction-specific

7The sixth release of the Universal Dependencies tree-
banks, v2.0, is available at http://universaldependencies.org.

encodings on parsing accuracies across different
languages. In contrast to Kohita et al. (2017),
our objective is not to improve UD parsing ac-
curacies by using the conversion before parsing
to increase the learnability of the representations
and then convert the parser output back to the UD
scheme. Our main goal is to use the conversion
on gold trees in order to compare the impact it
has for different languages and thus learn more
about how to encode languages with different ty-
pological properties to improve monolingual de-
pendency parsing results.

To rule out the influence of extrinsic factors
such as data size or text type, we do not compare
results across different treebanks and languages
but modify specific annotation decisions and com-
pare parsing accuracies for the original treebanks
with the ones obtained on modified versions of the
same treebank. Figure 1 illustrates the UD encod-
ing (trees above) and the modified trees with func-
tion words as heads and a chain-like encoding of
coordinations (trees below).

4.1 Data and setup

The data we use in our experiments comes from
the UD treebanks (Nivre et al., 2016) v1.3. The se-
lected 15 languages cover different language fam-
ilies and a range of typological properties. We
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LAS CNC
IMS RBG HSEL IMS RBG HSEL

germanic de 84.3 83.8 82.0 79.7 78.9 77.1
en 86.4 86.3 86.0 82.8 82.2 82.3

iranian fa 83.4 83.1 83.9 80.5 79.5 80.8

romance

ca 89.5 88.8 89.1 84.0 82.7 83.6
es 85.6 85.2 85.2 78.6 77.5 78.0
fr 85.6 84.4 85.2 79.4 77.6 78.6
it 89.6 88.8 89.3 84.3 82.9 83.9
ro 79.9 79.6 78.6 75.4 74.6 73.3

slavic
bg 86.9 84.9 85.6 83.7 80.8 81.7
cs 87.8 86.1 85.7 86.1 83.9 83.5
hr 79.9 80.7 78.1 77.2 77.6 74.9
ru 89.5 89.5 86.8 88.0 87.8 84.4

sinitic zh 81.8 79.4 80.4 80.6 77.9 79.1
finnic et 84.1 83.9 75.3 83.0 82.6 73.0
turkic tr 73.5 75.1 62.5 71.9 73.4 59.1

Table 2: LAS (excluding punctuation) and CNC (content dependencies only) on the test sets of the
original treebanks.

choose three different non-projective parsers to as-
sess the impact of specific parsing frameworks on
the results, namely the graph-based RBG parser
(Lei et al., 2014), the transition-based IMSTrans
parser of Björkelund and Nivre (2015) (IMS), and
our reimplementation of the head-selection parser
of Zhang et al. (2017) (HSEL).

The RBG parser uses tensor decomposition and
greedy decoding and the IMSTrans parser imple-
ments the (labeled) ArcStandard system, including
a swap transition that can generate non-projective
trees. The head-selection parser generates unla-
beled trees by identifying the most probable head
for each token in the input and then assigns labels
to each head-dependent pair in a post-processing
step. In contrast to the other two parsers, the
head-selection parser does not use any predefined
feature templates but selects the most probable
head for each token based on word representa-
tions learned by a bidirectional long-short mem-
ory model (LSTM) (Hochreiter and Schmidhuber,
1997). Despite its simplicity and the lack of global
optimisation, Zhang et al. (2017) report compete-
tive results for English, Czech, and German.

For the first two parsers, we use default set-
tings and the provided feature templates (for the
RBG parser we use the standard setting without
pretrained word embeddings), with no language-
specific parameter optimisation.8 We use the
coarse-grained universal POS (Petrov et al., 2012)
for all languages. The RBG and IMSTrans parser

8Please note that our goal is not to improve, or compare,
results for individual languages but to assess the impact of
different encoding decisions on the parsing accuracy for one
language.

are trained on gold POS and morphological fea-
tures provided by the UD project, the head-
selection model is trained without morphologi-
cal information, using word and POS embeddings
only.

We choose the head-selection model to test
whether a potential positive impact of the conver-
sion might simply be a bias introduced by the fea-
ture templates, which might favour one particular
encoding scheme. If we see the same improve-
ments for all three parsers, we can be sure that the
results are robust and not just an artefact of the
feature templates used in the experiments.

For our experiments we systematically modify
the input data and run parsing experiments on the
original and on the converted treebanks. We have
15 settings per language (3 parsers x 5 treebank
versions x 15 languages), which results in a total
of 225 experiments. We hypothesize that the dif-
ferent modifications have a different effect on each
language, which will be reflected in the changes
in parsing accuracy when training and testing the
parser on the different treebank versions.

4.2 Results for the original treebanks

Table 2 shows results for the three parsers on the
original treebanks. We use the CNC metric pro-
posed by Nivre (2016) and Nivre and Fang (2017)
for UD evaluation. The metric excludes function
words and punctuation from the evaluation and re-
ports results only for core and non-core grammat-
ical functions, thus providing a more informative
and also more robust evaluation across different
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IMS RBG HSEL
lang CNC ∆ CNC ∆ CNC ∆

ger de 81.0 1.3 81.2 2.3 78.0 0.9
en 83.6 0.8 83.4 1.2 83.6 1.3

ira fa 84.2 3.7 83.4 3.9 83.6 2.8

rom

ca 85.6 1.6 85.0 2.3 84.9 1.3
es 80.5 1.9 80.8 3.3 79.9 1.9
fr 81.9 2.5 80.7 3.1 80.4 1.8
it 86.1 1.8 86.1 3.2 85.5 1.6
ro 75.7 0.3 75.3 0.7 73.6 0.3

sla
bg 85.4 1.7 83.8 3.0 83.8 2.1
cs 87.3 1.2 85.2 1.3 84.2 0.7
hr 77.4 0.2 77.3 -0.3 73.2 -1.7
ru 89.2 1.2 88.7 0.9 82.1 -2.3

sin zh 81.9 1.3 78.9 1.0 79.2 0.1
fin et 84.4 1.4 82.8 0.2 74.7 1.7
tur tr 71.6 -0.3 71.8 -1.6 58.3 -0.8

Table 3: CNC for the converted treebanks and dif-
ferences ∆ to the CNC obtained on the original
treebanks.

languages.9 Our evaluation does not provide a fair
comparison between the parsers, as the different
parsers do not have access to the same informa-
tion (the head-selection parser, for instance, has
no access to morphological information) and were
not optimised for specific languages. Instead, our
goal is to test whether the results of our conversion
are robust across different languages and parsing
models.

From the table we can see that the parsers per-
form differently well on the different treebanks.
The transition-based parser provides best results
for most languages and is only outperformed by
the tensor-based RBG parser on Turkish (tr) and
Croatian (hr) and by the head-selection parser on
Farsi (fa), all three languages with rather small
training sets.

It comes at not surprise that the head-selection
parser, which has no access to morphological in-
formation or subword representations, has prob-
lems with Turkish (tr) and Estonian (et), which
are both agglutinative languages. Despite the sim-
plicity of the head-selection model, however, the
parser produces competetive results for many lan-
guages and even outperforms the other two parsers
on Farsi (fa).10

9Please note that the CNC metric considers the same num-
ber of tokens for evaluation in the original and converted tree-
banks, which is crucial for comparability.

10The head-selection model can easily be extended to in-
clude character-based embeddings or morphological embed-
dings, which will increase its performance on morphologi-
cally rich languages, but this is out of scope of the present
study.

metric orig cop prep coord c-p-c ∆
Turkish

with punc 77.4 76.9 76.6 76.7 76.4 -1.0
w/o punc 75.1 74.4 74.1 74.2 73.8 -1.3
CNC 73.4 72.9 72.6 71.9 71.8 -1.6
core 65.9 65.3 65.9 64.7 67.1 +1.2
non-core 75.5 74.9 74.4 73.9 73.2 -2.3
func 85.6 84.2 83.4 88.2 86.0 +0.4

Croatian
with punc 80.2 78.7 79.4 81.0 80.1 -0.1
w/o punc 80.7 79.0 80.0 81.5 80.5 -0.2
CNC 77.7 75.5 76.9 78.6 77.3 -0.4
core 81.1 81.5 81.0 81.7 81.9 +0.7
non-core 76.8 74.0 75.9 77.8 76.1 -0.9
func 88.5 87.9 87.9 89.1 88.7 +0.2

Table 4: Results for different label sets for Turkish
and Croatian (RBG parser) and difference (∆) be-
tween original and converted treebank (cop-prep-
coord).

4.3 Results for the converted treebanks

We now want to assess the impact of our conver-
sions on the different languages. Table 3 shows
CNC scores for the three parsers trained on the
converted treebanks as well as the difference (∆)
to the results we get when training on the original
treebanks.11

Our results confirm previous results from the
literature (Schwartz et al., 2012; Marneffe et al.,
2014) and show that our conversions are beneficial
for nearly all languages. One exception is Turkish
where CNC scores for all three parsers decrease.
For Croatian, we observe only a minor increase
for the IMSTrans parser and a decrease in results
for the other two parsers.

To better understand the results for Turkish, we
compare accuracies for the different label sets for
the RBG parser which obtained best results on the
Turkish treebank (Table 4). Most interestingly, we
see that our conversions do indeed increase results
for the core arguments (+1.2% labelled accuracy;
improvements for csubj and ccomp) and also for
the function tags (+0.4%), but all three conver-
sions result in lower scores for the non-core depen-
dency labels, especially for coordinations. These
results highlight the importance of a detailed er-
ror analysis and show that overall parsing scores
might be misleading.

Considering the small size of the Turkish tree-
bank and the fact that the data has been converted
automatically without manual correction, we can

11LAS and CNC scores for all parsers and each individual
conversion are shown in table 7 in the appendix.
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not rule out that the negative impact of the conver-
sion on the non-core dependencies is merely an
artefact of low data quality. This issue requires
further investigation.

Looking at the results for Croatian, we see that
the chain-like encoding of coordinations in our
conversion experiments brings improvements for
all subsets of grammatical functions. The other
two conversions, however, result in a decrease
in accuracy, which is also reflected in the re-
sults for the combined conversion (c-p-c). While
for Turkish all three conversions on their own
seem to decrease results and only the combina-
tion of all three converted encodings yields an
improvement, for Croatian we get best results
when changing the annotation of coordinations
only and keeping the remaining representations in
UD style. This increases CNC scores for RBG
from 77.7% to 78.6% (+0.9). Our last finding sug-
gests that a language-specific optimisation of an-
notation schemes for parsing might be worthwhile,
and that there is a complex interaction between en-
coding styles, data properties (e.g. the size of the
treebank) and language properties.

We also observe a correlation between language
family and the degree to which the conversion
improves performance. For all three parsers, we
observe a similar ranking.12 At the top is Farsi
which benefits most from the conversion, while for
Croatian and Turkish the results decrease. In gen-
eral, the romance languages (fr, es, it, ca) seem to
profit more from the transformations than the ger-
manic and slavic languages. Romanian, however,
an easter romance language, seems to behave dif-
ferent from the italo-western romance languages
and shows only a slight increase in CNC.

In the next section, we turn to the question
what it is that determines whether and how much
a particular language will benefit from a specific
choice of encoding. To that end, we focus on
two language-specific properties, namely on de-
pendency length and on the direction of the rela-
tions, i.e. head-initial versus head-final dependen-
cies.

4.4 Dependency length

Previous work has discussed the different fac-
tors that might impact parsing accuracies across

12We obtain highly significant results for Spearman’s rank
correlation, computed on the differences ∆ in CNC (see table
3), between all possible parser pairs (IMS-RBG, IMS-HSEL,
RBG-HSEL) (all p < 0.0006).

Lang orig cop prep coord c-p-c

ger de 3.4 0.98 1.01 1.03 1.03
en 2.9 1.00 1.04 1.03 1.07

ira fa 3.5 0.97 0.99 1.02 0.97

rom

ca 3.1 1.00 1.06 1.03 1.09
es 2.8 0.99 1.07 1.04 1.11
fr 2.8 0.99 1.07 1.03 1.09
it 2.7 1.00 1.05 1.02 1.08
ro 2.7 1.00 1.04 1.04 1.07

sla
bg 2.5 1.01 1.05 1.02 1.08
cs 2.8 1.00 1.58 1.03 1.06
hr 2.8 1.00 1.03 1.04 1.08
ru 2.7 1.00 1.02 1.03 1.05

sin zh 3.6 1.00 0.98 1.01 1.00
fin et 2.6 1.00 1.00 1.03 1.02
tur tr 2.6 1.00 1.01 1.01 1.02

Table 5: Avg. dependency length in the original
treebank and DLM ratio for each modification

languages, such as word order properties, the
high amount of unknown words for morphologi-
cally rich languages, ambiguity due to case syn-
cretism, non-projectivity, ambiguity in head di-
rection, and dependency length (Tsarfaty et al.,
2010; Schwartz et al., 2012; Gulordava and Merlo,
2016).

Gulordava and Merlo (2016) have investigated
the influence of dependency length and arc direc-
tion entropy on parsing results, using artificially
created treebanks. We adopt their measures to
find out more about the impact of different encod-
ings on natural languages. Following Gulordava
and Merlo (2016), we compute the overall ratio of
Dependency Length Minimisation (DLM) in the
modified treebanks (as compared to the original
treebanks), based on the data in the training set,
as follows.

DLMRatio =
∑
s

DLs

|s|2
/
∑
s

ModDLs

|s|2
(1)

The dependency length DL for each sentence
s in the original treebank is calculated as the sum
of the length of all arcs in the tree for sentence
s,13 and ModDL refers to the dependency length
in the modified treebank. A DLM ratio above 1
means that the treebank conversion resulted in a
decreased dependency length in the data.14

13For the rightmost UD tree in Figure 1 DLs is 7 while the
length for the modified tree (ModDLs) is 5.

14Please note that in contrast to Gulordava and
Merlo (2016), who computed the DLM ratio between
the original treebanks and an artificially created version
of the same data where the order of the tokens had been
modified, we compute the DLM ratio between two different
encodings of the same data and thus their DLM ratios are not
directly comparable to ours.
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We can see that the modifications have quite a
different effect on the average dependency length
in the different treebanks (Table 5). While for
many languages the combination of all modifi-
cations results in a minimisation of dependency
length, this does not hold for Farsi and Chinese,
and only slightly for Turkish, German and Esto-
nian. It does not seem that the minimisation in
dependency length is the responsible factor for the
improvements in CNC. To test this, we fitted a lin-
ear regression model to the data and, as expected,
did not find a significant correlation between de-
pendency length and the changes in CNC accuracy
for any of the parsers (IMSTrans: p=0.604, RBG:
p=0.463, HSEL: p=0.943).15

We were thus not able to replicate the findings
of Gulordava and Merlo (2016) who optimised UD
trees for dependency length, thus generating arti-
ficial trees that were allowed to violate language-
specific word order restrictions. They concluded
that an increase in dependency length has, in gen-
eral, a negative impact on parsing scores. This
conclusion does not hold for our data. However,
Gulordava and Merlo (2016) also found that min-
imising dependency length e.g. for German did
not improve parsing accuracies the same way as it
did for other languages.

Even if our conversion does result in a minimi-
sation of dependency length in the treebanks, we
conclude that the improvements in parsing accu-
racy are not due to the shorter dependencies. This
raises the question what it is that makes the con-
verted trees easier to learn and whether the differ-
ences are due to typological properties or merely
reflect idiosyncrasies in the treebanks.

4.5 Arc direction entropy

We now look at the variation in the linear ordering
between a head and its dependent as a potential
factor that might impact parsing accuracy. Lan-
guages can be distinguished with regard to the pro-
portion of head-initial versus head-final dependen-
cies, which reflect typological differences between
language families (Liu, 2010). Different treebank
annotation schemes, however, can also influence
the variation in arc direction, independent from the
specific language of the treebank content.

To quantify this variation, we compute arc-
direction entropy (ADE) (Gulordava and Merlo,

15We used R’s lm function to predict the changes in CNC
for each modified treebank version, based on the DLMratio.

lang ∆ cop ∆ prep ∆ coord ∆ c-p-c

ger de -0.26 -0.03 0.03 -0.23
en -0.56 -0.19 -0.01 -0.72

ira fa -0.73 0.07 0.02 -0.60

rom

ca 0.09 0.07 -0.01 0.16
es -0.19 -0.19 0.02 -0.36
fr -0.16 -0.15 0.04 -0.27
it -0.22 -0.11 0.02 -0.29
ro -0.13 0.17 0.04 0.09

sla
bg -0.31 -0.10 0.05 -0.34
cs -0.30 0.20 0.07 0.03
hr 0.16 0.21 0.03 0.41
ru 0.17 0.19 0.05 0.41

sin zh -0.25 -0.00 0.03 -0.19
fin et -0.37 0.16 0.04 -0.16
tur tr 0.19 0.28 0.03 0.50

Table 6: Difference (∆) between avg. unlexi-
calised arc direction entropy (ADE) in the original
treebank and in the modified treebanks

2016) in a treebank by iterating over all depen-
dents in each individual arc and summing up the
probability of the arc, represented by the POS of
the dependent, the relation and the POS of the
head, times the conditional entropy of the head
direction, given the arc (Equation (2)).16 An in-
crease in ADE means that a particular modifica-
tion introduced more variation with respect to the
linear order of head and dependent for a specific
relation.

H(Dir|Rel,H,D) =
∑

rel,h,d

p(rel, h, d)H(Dir|rel, h, d)

(2)

For most languages, the conversion from
content-head to function-head dependencies de-
creases ADE (Table 6). For some languages, we
see a slight increase (Czech, Romanian, Cata-
lan) while for Croatian, Russian and Turkish, the
increase in entropy is substantial with 0.4 and
0.5, respectively. When fitting a linear regression
model to the data, this time we see a significant ef-
fect on parsing accuracy (CNC) for the IMSTrans
parser (p = 0.01) and the RBG parser (p = 004).
For the head-selection parser, the correlation is
even stronger with p = 0.0002.

We also experimented with lexicalised arc en-
tropy but found no improvement over the unlex-
icalised model, probably due to data sparseness
(see the discussion in Futrell et al. (2015)).

16Futrell et al. (2015) discuss a methodological prob-
lem for using entropy for estimating word order properties,
namely its sensitivity to sample size. We adress this by mea-
suring variation in arc direction over n equally-sized random
samples from each treebank (with replacement, n = 1000),
and then report the average over all samples.
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5 Discussion

Our findings suggest that it is not so much an in-
crease in dependency length that goes along with
the content-head representation implemented in
the UD treebanks, but rather the increase in en-
tropy for the position of the head that causes the
loss in parsing accuracy when training a parser on
UD-style dependencies.

Kohita et al. (2017) also discuss another prop-
erty, namely the head word vocabulary entropy,
as a potential factor that impacts parsing scores.
Their measure is an implementation of an idea de-
scribed in Schwartz et al. (2012). However, Kohita
et al. (2017) did not observe a significant corre-
lation between improvements in parsing accuracy
(obtained by the RBG parser) and head word vo-
cabulary entropy.

Our results show that the improvements we
get through the conversion of content-head to
function-head dependencies are not only due to
the feature templates used by the parsers, which
might introduce a bias towards one particular en-
coding, as we get similar improvements for the
head-selection parser, a neural parser which does
not use any predefined feature templates but learns
its features directly from the input representations.

6 Conclusions

We presented a systematic investigation of the im-
pact of specific annotation design decisions for
statistical dependency parsing. We showed that
claims that have been made for English (Schwartz
et al., 2012) also hold for many other languages,
but that the effect strength varies considerably.

We also showed that the UD encoding of ad-
positions, coordination and copula increases de-
pendency length for all the languages we inves-
tigated except Persian and Chinese. This increase,
however, does not directly translate to lower pars-
ing scores. Head direction entropy, on the other
hand, seems to have a stronger impact on pars-
ing. This finding is consistent with the observa-
tions of Gulordava and Merlo (2016) obtained on
artificially created data and their suggestion that
at least for German, word order variability might
have a higher impact on parsing difficulty than de-
pendency length.

Finally, our results suggest that there is an inter-
action between typological properties and the ef-
fect strength of the improvments obtained by the
treebank conversion. This provides interesting av-

enues for future research, as language generalisa-
tions might help us to design treebank encoding
schemes that are optimised for specific languages,
without having to repeat the same effort for each
individual language.
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Appendix A. Supplemental Material

IMS (LAS) IMS (CNC)
orig cop prep coord c-p-c orig cop prep coord c-p-c

germanic de 84.3 85.0 84.3 84.9 85.2 79.7 80.9 79.9 80.5 81.0
en 86.4 86.0 86.5 87.0 86.7 82.8 82.5 83.2 83.5 83.6

iranian fa 83.4 85.6 84.6 84.5 86.4 80.5 83.0 81.9 82.0 84.2

romance

ca 89.5 89.5 89.2 90.1 89.9 84.0 84.3 84.1 85.3 85.6
es 85.6 85.4 85.6 86.7 86.8 78.6 78.2 78.7 80.3 80.5
fr 85.6 86.1 85.3 86.1 87.0 79.4 80.6 79.2 80.2 81.9
it 89.6 89.9 90.1 90.7 90.5 84.3 85.0 85.1 86.0 86.1
ro 79.9 79.4 79.6 80.7 80.0 75.4 74.8 75.1 76.4 75.7

slavic
bg 86.9 87.6 87.0 87.5 88.0 83.7 84.8 84.0 84.5 85.4
cs 87.8 88.2 88.2 88.2 88.8 86.1 86.5 86.6 86.5 87.3
hr 79.9 79.8 79.5 82.2 80.4 77.2 77.0 76.8 79.3 77.4
ru 89.5 89.5 89.8 90.6 90.6 88.0 88.0 88.3 89.2 89.2

sinitic zh 81.8 81.5 82.3 82.1 82.9 80.6 80.5 81.1 80.9 81.9
finnic et 84.1 84.9 84.1 84.8 85.5 83.0 83.8 83.0 83.7 84.4
turkic tr 73.5 73.8 74.0 73.3 73.6 71.9 72.3 72.5 71.1 71.6

RBG (LAS) RBG (CNC)
orig cop prep coord c-p-c orig cop prep coord c-p-c

germanic de 83.8 84.2 84.0 84.0 85.4 78.9 79.6 79.3 79.0 81.2
en 86.3 86.0 86.2 86.4 86.8 82.2 82.1 82.5 82.5 83.4

iranian fa 83.1 84.6 83.8 83.3 86.1 79.5 81.2 80.6 79.9 83.4

romance

ca 88.8 88.6 88.9 89.4 89.6 82.7 82.5 83.6 83.9 85.0
es 85.2 85.4 85.9 85.8 86.8 77.5 77.9 78.9 79.0 80.8
fr 84.4 85.1 84.8 85.6 86.3 77.6 78.9 78.5 78.8 80.7
it 88.8 89.1 89.7 89.3 90.8 82.9 83.3 84.3 83.6 86.1
ro 79.6 79.1 79.3 79.8 79.9 74.6 74.1 74.4 74.9 75.3

slavic
bg 84.9 85.2 85.5 85.3 86.9 80.8 81.4 81.8 81.4 83.8
cs 86.1 86.0 86.3 85.9 87.1 83.9 83.9 84.2 83.8 85.2
hr 80.7 79.0 80.0 81.5 80.5 77.7 75.5 76.9 78.6 77.3
ru 89.5 88.8 89.4 90.0 90.1 87.8 87.1 87.8 88.3 88.7

sinitic zh 79.4 78.7 79.6 78.6 80.2 77.9 77.3 78.4 77.0 78.9
finnic et 83.9 83.3 83.4 84.2 84.1 82.6 81.9 82.2 83.0 82.8
turkic tr 75.1 74.4 74.1 74.2 73.8 73.4 72.9 72.6 71.9 71.8

HSEL (LAS) HSEL (CNC)
orig cop prep coord c-p-c orig cop prep coord c-p-c

germanic de 82.0 82.6 82.2 82.5 82.8 77.1 78.0 77.2 77.6 78.0
en 86.0 86.2 86.1 86.5 86.8 82.3 82.7 82.6 82.9 83.6

iranian fa 83.9 85.2 84.3 84.3 86.1 80.8 82.4 81.3 81.2 83.6

romance

ca 89.1 89.4 89.1 89.9 89.6 83.6 84.1 83.8 84.9 84.9
es 85.2 85.6 86.0 85.8 86.3 78.0 78.7 79.3 79.1 79.9
fr 85.2 86.2 85.3 85.7 86.2 78.6 80.1 78.8 79.5 80.4
it 89.3 89.5 89.4 89.7 90.4 83.9 84.0 83.8 84.3 85.5
ro 78.6 78.2 78.1 79.2 78.7 73.3 73.2 72.7 74.2 73.6

slavic
bg 85.6 86.5 85.9 86.0 87.0 81.7 83.3 82.2 82.6 83.8
cs 85.7 86.1 85.8 86.0 86.5 83.5 83.8 83.5 83.7 84.2
hr 78.1 75.4 77.9 79.6 76.8 74.9 72.4 74.9 76.7 73.2
ru 86.8 86.6 86.6 87.6 84.7 84.4 84.2 84.2 85.2 82.1

sinitic zh 80.4 79.7 80.7 79.7 80.4 79.1 78.5 79.4 78.6 79.2
finnic et 75.3 76.5 74.9 75.8 77.0 73.0 74.3 72.7 73.4 74.7
turkic tr 62.5 61.7 62.3 62.3 62.2 59.1 58.4 59.0 58.2 58.3

Table 7: LAS (excluding punctuation) and CNC (content dependencies only) on the test sets for the orig-
inal UD treebanks and for individual conversions (cop: copula, prep: prepositions, coord: coordination,
c-p-c: combination of all three conversions).
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