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Abstract

Encoder-decoder neural networks have
been used for many NLP tasks, such as
neural machine translation. They have
also been applied to constituent parsing
by using bracketed tree structures as a tar-
get language, translating input sentences
into syntactic trees. A more commonly
used method to linearize syntactic trees
is the shift-reduce system, which uses
a sequence of transition-actions to build
trees. We empirically investigate the effec-
tiveness of applying the encoder-decoder
network to transition-based parsing. On
standard benchmarks, our system gives
comparable results to the stack LSTM
parser for dependency parsing, and signifi-
cantly better results compared to the afore-
mentioned parser for constituent parsing,
which uses bracketed tree formats.

1 Introduction

Neural networks have achieved the state-of-the-
art for parsing under various grammar formalisms,
including dependency grammar (Dozat and Man-
ning, 2017), constituent grammar (Dyer et al.,
2016) and CCG (Xu et al., 2016). For transition-
based parsing, Chen and Manning (2014) em-
ployed a feed-forward neural network with cube
activation functions for local action modeling,
archiving better results compared to MaltParser
(Nivre et al., 2007). Subsequent work extend this
method by investigating more complex representa-
tions of configurations (Dyer et al., 2015; Balles-
teros et al., 2015) and global training with beam
search (Zhou et al., 2015; Andor et al., 2016).

Borrowing ideas from neural machine trans-
lation (NMT) (Bahdanau et al., 2015), a line
of work utilizes a bidirectional RNN to en-

code input sentences, using it for feature extrac-
tion, and observing improved performances for
both transition-based (Kiperwasser and Goldberg,
2016; Dyer et al., 2016) and graph-based (Kiper-
wasser and Goldberg, 2016; Dozat and Manning,
2017) parsers. In particular, using such encoder
structure, the graph-based parser of Dozat and
Manning (2017) achieves the state-of-the-art re-
sults for dependency parsing.

The success of the encoder structure can be
attributed to the use of multilayer bidirectional
LSTMs to induce non-local representations of
sentences. Without manual feature engineering,
such architecture automatically extracts complex
features for syntactic representation. For neural
machine translation, such encoder structure has
been connected to a corresponding LSTM de-
coder, giving the state-of-the-art for sequence-
to-sequence learning. Compared to carefully de-
signed feature representations, such as the parser
of Chen and Manning (2014) and the stack-LSTM
structure of Dyer et al. (2015), the encoder-
decoder structure is conceptually simpler, and
more general, which can be used across differ-
ent grammar formalisms without redesigning the
stack representation. Vinyals et al. (2015) applied
the encoder-decoder structure to constituent pars-
ing, generating the bracketed syntactic trees as the
output token sequence without model combina-
tion. However, their model achieves relatively low
accuracies.

The advantage of using a decoder LSTM is
that it leverages a recurrent structure for captur-
ing full sequence information in the output. Un-
like greedy or CRF decoders (Durrett and Klein,
2015), which capture only local label dependen-
cies, LSTM decoder models global label sequence
relations. Vinyals et al. (2015) use bracketed syn-
tactic trees as the output token sequence, which re-
quires strong constraints to ensure that the output
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strings correspond to valid dependency trees. On
the other hand, a more commonly used sequen-
tial representation of syntactic structures is the
transition-action sequences in shift reduce parsers.
For both constituent (Sagae and Lavie, 2005;
Zhang and Clark, 2009) and dependency (Ya-
mada and Matsumoto, 2003; Nivre, 2003) pars-
ing, output syntactic structures can be built using
a sequence of inter-dependent shift-reduce actions,
which convey incremental structural information.

Motivated by the above, we study the effective-
ness of a highly simple encode-decoder structure
for shift-reduce parsing. In particular, the encoder
is used to represent the input sentence and the de-
coder is used to generate a sequence of transi-
tion actions for constructing the syntactic struc-
ture. We additionally use the attention over the
input sequence (Vinyals et al., 2015), but with a
slight modification, taking separate attentions to
represent the stack and queue, respectively.

On standard PTB evaluation, our final model
achieves 93.1% UAS for dependency parsing,
which is comparable to the model of Dyer
et al. (2015), and 90.5% on constituent parsing,
which is 2.2% higher compared to Vinyals
et al. (2015). We release our source code at
https://github.com/LeonCrashCode/
Encoder-Decoder-Parser.

2 Transition-based parsing

Transition-based parsers scan an input sentence
from left to right, incrementally performing a se-
quence of transition actions to predict its parse
tree. Partially-constructed outputs are maintained
using a stack, and the next incoming words are or-
dered in a queue. The initial state consists of an
empty stack and a queue containing the whole in-
put sentence. At each step, a transition action is
taken to consume the input and construct the out-
put. The process repeats until the input queue is
empty and the stack contains only one element,
e.g. a ROOT for dependency parsing, and S for
constituent parsing and CCG parsing.

In this paper, we investigate both dependency
parsing and constituent parsing, which are shown
in Figure 1(a) and (b), respectively. As can be
seen in the figure, the two formalisms render syn-
tactic structures from different perspectives. Cor-
respondingly, the stack structures for transition-
based dependency parsing and constituent parsing
are different. For dependency parsing, the stack
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red tomatoes
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Tom

red tomatoeslikesTom

(a) Constituent tree (b) Dependency tree

.

.

amod
nsubj dobj
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Figure 1: Constituent structure and dependency
structure of the sentence “Tom likes red tomatoes.”

contains words directly, while for constituent pars-
ing, the stack contains constituent nodes, which
cover spans of words in a sentence. In addition, the
set of transition actions for building dependency
and constituent structures are highly different, as
shown by the examples in sections 2.1 and 2.2,
respectively. Traditional approaches, such as the
stack LSTM of Dyer et al. (2015, 2016), build dif-
ferent representations of the stack for dependency
and constituent parsing. In contrast, our method is
agnostic to the stack structure, using an encoder-
decoder structure to “translate” input sentences to
output sequences of shift-reduce actions. To this
term, each grammar formalism is reminiscent of a
unique foreign language.

2.1 Dependency parsing
We employ the arc-standard transition system
(Nivre et al., 2007). Formally, a parsing state is
denoted as a tuple (S,Q,L), where S is the stack
[..., s2, s1, s0], Q is the queue containing coming
words, and L is a set of dependency arcs that have
been built. At each step, the parser chooses one of
the following actions:

• SHIFT: pop the front word off the queue, and
push it onto the stack.

• LEFT-ARC(l): add an arc with label l be-
tween the top two trees on the stack (s1 ←
s0) and remove s1 from the stack.

• RIGHT-ARC(l): add an arc with label l be-
tween the top two trees on the stack (s1 →
s0) and remove s0 from the stack.

The arc-standard parser can be summarized as the
deductive system in Figure 2a. For a sentence
with size n, parsing stops after performing ex-
actly 2n − 1 actions. Given a sentence of Figure
1, the sequence of actions SHIFT, SHIFT, LEFT-
ARC(nsubj), SHIFT, SHIFT, LEFT-ARC(amod),
RIGHT-ARC(dobj), SHIFT, RIGHT-ARC(punct),
can be used to construct its dependency tree.
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Initial State (φ,Q, φ)
Final State (s0, φ, L)

Induction Rules:

SHIFT
(S,q0|Q,L)
(S|q0,Q,L)

LEFT-ARC(L)
(S|s1|s0,Q,L)

(S|s0,Q,L∪s1←s0)

RIGHT-ARC(L)
(S|s1|s0,Q,L)

(S|s1,Q,L∪s1→s0)
(a) Arc-standard dependency parsing.

Initial State (φ,Q, 0)
Final State (s0, φ, 0)

Induction Rules:

SHIFT
(S,q0|Q,n)
(S|q0,Q,n)

NT(X)
(S,Q,n)

(S|e(x),Q,n+1)

REDUCE
(S|e(x)|sj |...|s0,Q,n)

(S|e(x,sj ,...,s0),Q,n−1)

(b) Top-down constituent parsing.

Figure 2: Deduction systems

2.2 Constituent parsing

We employ the top-down transition system of
Dyer et al. (2016) for constituent parsing. For-
mally, a parsing state is denoted as a tuple
(S,Q, n), where S is the stack [..., s2, s1, s0].
Each element in S can be a open nonterminal1,
a completed constituent, or a terminal, Q is the
queue, and n is the number of open nonterminals
on the stack. At each step, the parser chooses one
of the following actions:

• SHIFT: pop the front word off the queue, and
push it onto the stack.

• NT(X): open a nonterminal with label X on
top of the stack.

• REDUCE: repeatedly pop completed subtrees
or terminal symbols from the stack until an
open nonterminal is encountered, and then
this open NT is popped and used as the la-
bel of a new constituent that has the popped
subtrees as its children. This new completed

1An open nonterminal in top-down parsing is a nontermi-
nal waiting to be completed
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Figure 3: Structure of stack-LSTM with depen-
dency and constituent composition, respectively.

constituent is pushed onto the stack as a sin-
gle composite item.

The top-down parser can be summarized as the de-
ductive system in Figure 2b. Given the sentence in
Figure 1, the sequence of actions NT(S), SHIFT,
NT(V P ), SHIFT, NT(NP ), SHIFT, SHIFT, RE-
DUCE, REDUCE, SHIFT, REDUCE, can be used to
construct its constituent tree.

2.3 Generalization
Both transition systems above can be treated as
examples of a general sequence-to-sequence task.
Formally, given a sentence x1, x2, ..., xn where
xi is the ith word in the sentence, the goal is
to generate a corresponding sequence of actions
a1, a2, ..., am, which correspond to a syntactic
structure. Other shift-reduce parser systems, such
as CCG (Zhang and Clark, 2011a), can be re-
garded as instantiation of this.

3 Baseline

We take two baseline neural parsers, namely the
parser of Dyer et al. (2015, 2016) and the parser
of Vinyals et al. (2015). The former is used to
study the effect of our formalism-independent rep-
resentation, while the latter is used to demon-
strate the advantage of transition action sequences
over bracketed tree structures for encoder-decoder
parsing. We briefly describe the parsers of Dyer
et al. (2015, 2016) in this section, and the struc-
ture of Vinyals et al. (2015) in Sections 4.1 and
4.2.

As shown in Figure 3(a), the parser of Dyer
et al. (2015) consist of three main components:
1) a stack of partial outputs, implemented using
a stack-LSTM, 2) the queue of incoming words
using an LSTM and 3) a list of actions that has
been taken so far encoded by an LSTM. The stack-
LSTM is implemented left to right, the queue

107



LSTM is implemented right to left, and the action
history LSTM in the first-to-last order. The last
hidden states of each LSTM is concatenated and
fed to a softmax layer to determine the next action
given the current state:

p(act) = softmax(W [hs;hq;ha] + b),

where hs, hq and ha denote the last hidden states
of the stack LSTM, the queue LSTM and the ac-
tion history LSTM, respectively.

The stack-LSTM parser represents states on the
stack by task-specific composition functions. We
give the composition by using task-specific com-
position functions for dependency parsing (Dyer
et al., 2015) and constituent parsing (Dyer et al.,
2016) respectively below.

Dependency parsing The composition func-
tion models the dependency arc between a head
and its dependent (i.e., head r→ dep), when a RE-
DUCE action is applied, as shown in Figure 3(b):

comp = tanh(Wcomp[hshead
;hsdep

; e(r)]+bcomp),

where hsh
is the value of the head, hsd

is the value
of the dependent and e(r) is the arc relation em-
bedding. After a LEFT-ARC(r) action is taken,
hsh

and hsd
are removed from the stack-LSTM,

and then comp is push onto the stack-LSTM.
Constituent parsing The composition func-

tion models the constituent spanning their children
(i.e., (l (c2) (c1) (c0))), when a REDUCE action is
applied, as shown in Figure 3(c):

comp = BI-LSTMcomp([hsc2
, hsc1

, hsc0
, e(l)]),

where hsc2
, hsc1

and hsc0
are the value of the chil-

dren on stack, and e(l) is the constituent label em-
bedding. After a REDUCE action is taken, hsc2

,
hsc1

and hsc0
are removed from the stack-LSTM,

and then comp is push onto the stack-LSTM.
It is worth noting that the stack contains over-

lapping information with the action history. This
is because the content of the stack can be inferred
when the action history is given. As a result, the
stack structure of the parser by Dyer et al. (2015)
can be regarded as redundant, serving to extract
the same source of information as features from
a different perspective, given the sequence of ac-
tions that have been applied. Our parser models
only the action sequence, relying on the model to
infer necessary information about the stack auto-
matically.

4 Model

As shown in Figure 4, our model structure con-
sists of two main components, namely encoder
and decoder. The encoder is a bidirectional re-
current neural network, representing information
of the input sentence; the decoder is a different re-
current neural network, used to output a sequence
of transition actions. The encoder can be further
divided into a stack and a queue, respectively, for
transition-based parsing.

4.1 Encoder

We follow Dyer et al. (2015), representing
each word using three different types of em-
beddings including pretrained word embedding,
ewi , which are not fine-tuned during training of
the parser, randomly initialized embeddings ewi ,
which are fine-tuned, and randomly initialized
part-of-speech embeddings epi , which are fine-
tuned. The three embeddings are concatenated,
and then fed to nonlinear layer to derive the final
word embedding:

xi = f(Wenc[epi ; ewi ; ewi ] + benc),

where Wenc and benc are model parameters, wi

and pi denote the form of the POS of the ith input
word, respectively, and f is a nonlinear function.
In this paper, we use ReLu for f .

The encoder is based on bidirectional peephole
connected LSTM (Greff et al., 2016), which takes
sequence of the word embeddings xi as input, and
output the sequence of hidden state hi. Bi-LSTM
is adopted in our models:

hi = [hli ;hri ] = BI-LSTM(xi).

The sequence of hi is fed to the decoder.

4.2 Vanilla decoder

As shown in Figure 4(a), the decoder structure is
similar to that of the decoder of neural machine
translation. It applies an LSTM to generate se-
quences of actions:

sj = g(Wdec[sj−1; eaj−1 ;hattj ] + bdec),

where Wdec and bdec are model parameters, aj−1

is previous action, eaj−1 is the embedding of aj−1,
sj−1 is the LSTM hidden state for aj−1, and sj
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h1 h2 h3 h4 h5 h6 s1 s2 s3

encoder decoder

stack queue softmax

a2

a1x2 x5x1 x3 x4 x6
ach=3

h1 h2 h3 h4 h5 h6 s1 s2 s3

encoder decoder

softmax

a2

a1x2 x5x1 x3 x4 x6

(a) (b)

Figure 4: Encoder-decoder structure for parsing. (a) vanilla decoder; (b) Stack-queue decoder, where
the stack and the queue are differentiated by ach, which is initialized to the beginning of the sentence
(ach = 0), meaning the stack is empty and queue contains the whole sentence.

is the current LSTM state, from which aj is pre-
dicted. hattj is the result of attention over the en-
coder states h1...hn using the jth decoder state:

hattj = attention(1, n) =
n∑

i=1

αihi (1)

where

αi =
exp(βi)∑n

k=1 exp(βk)
,

and the weight scores β are calculated by using
the previous hidden state sj−1 and corresponding
encoder hidden state h:

βi = UT tanh(Watt · [hi; sj−1] + batt).

sj is used to predict the current action aj :

p(aj |sj) = softmax(Wout ∗ sj + bout)).

Here Watt, batt, Wout, bout are model parameters,
g is a nonlinear activation function. We use the
ReLU for g. For the encoder, the initial hidden
states are randomly initialized model parameters;
For the decoder, the initial LSTM state s0 is the
last the encoder hidden state [hln ;hr1 ].

This vanilla encoder decoder structure is identi-
cal to the method of Vinyals et al. (2015). The only
difference is that we use shift-reduce action as the
output, while Vinyals et al. (2015) use bracketed
string of constituent trees as the output.

4.3 Stack-Queue decoder

We extend the vanilla decoder, using two sepa-
rate attention models over encoder hidden state to
represent the stack and the queue, respectively, as
shown in Figure 4(b). In particular, for a given
state, the encoder is divided into two segments,

with the left segment (i.e. stack segment) contain-
ing words form x1 to the word on top of the stack
xt, and the right segment (i.e. queue segment) con-
taining words from the front of the queue xt+1 to
xn.

Attention is applied to the stack and the queue
segments, respectively. In particular, the represen-
tation of the stack segment is:

hlattj
= attention(1, t) =

t∑
i=1

αihi,

and the representation of the queue segment is:

hrattj
= attention(t+ 1, n) =

n∑
i=t+1

αihi,

where the function attention is the same with
equation (1). Similar with the vanilla decoder, the
hidden unit sj is calculated using:

sj = g(Wdec[sj−1; eaj−1 ;hlattj
;hrattj

] + bdec).

Where g is the same nonlinear function as in
vanilla decoder.

4.4 Training
Our models are trained to minimize a cross-
entropy loss objective with an l2 regularization
term, defined by

L(θ) = −
∑

i

∑
j

log paij +
λ

2
||θ||2,

where θ is the set of parameters, paij is the proba-
bility of the jth action in the ith training example
given by the model and λ is a regularization hyper-
parameter. λ = 10−6. We use stochastic gradient
descent with Adam (Kingma and Ba, 2015) to ad-
just the learning rate.
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Parameter Value

Encoder LSTM Layer 2
Decoder LSTM Layer 1
Word embedding dim 64
Fixed word embedding dim 100
POS tag embedding dim 6
Label embedding dim 20
Action embedding dim 40
encoder LSTM input dim 100
encoder LSTM hidden dim 200
decoder LSTM hidden dim 400
Attention hidden dim 50

Table 1: Hyper-parameters.

5 Experiments

5.1 Data

We use the standard WSJ sections in PTB (Mar-
cus et al., 1993), where the sections 2-21 are taken
for training data, section 22 for development data
and section 23 for test for both dependency pars-
ing and constituent parsing. For dependency pars-
ing, the constituent trees are converted to Stanford
dependencies (v3.3.0) using the Stanford parser2.
We adopt the pretrained word embeddings gener-
ated on the AFP portion of English Gigaword.

5.2 Hyper-parameters

The hyper-parameter values are chosen according
to the performance of the model on the develop-
ment data for dependency parsing, and final val-
ues are shown in Table 1. For constituent parsing,
we use the same hyper-parameters without further
optimization.

5.3 Development experiments

Table 2 shows the development results on depen-
dency parsing. To verify the effectiveness of at-
tention, we build a baseline using average pooling
instead (SQ decoder + average pooling). We ad-
ditionally build a baseline (SQ decoder + treeL-
STM) that is aware of stack structures, by using a
tree-LSTM (Tai et al., 2015) to derive head node
representations when dependency arcs are built.
Attention on the stack sector are applied only on
words on the stack, but not for their dependents.
This representation is analogous to the stack rep-
resentation of Dyer et al. (2015) and Watanabe and
Sumita (2015).

Results show that the explicit construction of
stack does not bring significant improvements

2https://nlp.stanford.edu/software/lex-parser.shtml

Model UAS (%)

Dyer et al. (2015) 92.3
Vanilla decoder 88.5
SQ decoder + average pooling 91.9
SQ decoder + attention 92.4
SQ decoder + treeLSTM 92.4

Table 2: Dependency parsing dev results.
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Figure 5: Accuracy against sentence length in
bins of size 10, where 20 contains sentences with
length [10, 20).

over our stack-agnostic attention model, which
confirms our observation in Section 3 that the ac-
tion history information is sufficient for inferring
the stack structure. Our model achieved this goal
to some extent. The SQ decoder with average
pooling achieves a 3.4% UAS improvement, com-
pared to the vanilla decoder (Section 4.2). The
SQ decoder with attention achieves a further 0.5%
UAS improvement, reaching comparable results to
the stack-LSTM parser.

5.4 Comparison to stack-LSTM

We take a range of different perspectives to an-
alyze the errors distribution of our parser, com-
paring them with stack-LSTM parser (Dyer et al.,
2015). The parsers show different empirical per-
formances over these measures.

Figure 5 shows the accuracy of the parsers rel-
ative to the sentence length. The parsers perform
comparatively better in short sentences. The stack-
LSTM parser performs better on relatively short
sentences (≤ 30), while our parser performs bet-
ter on longer sentences. The composition function
is applied in the stack-LSTM parser to explicitly
represent the partially-constructed trees, ensuring
high precision of short sentences. On the other
hand, errors are also fully represented and accu-
mulated in long sentences. As the sentence grows
longer, it is difficult to capture the stack structure.
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Figure 6: Accuracy against part-of-the-speech tags.
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Figure 7: Arc precision against dependency
length. The length is defined as the absolute differ-
ence between the indices of the head and modifier.

With stack-queue sensitive attention, SQ decoder
implicitly represent the structures.

Figures 6 and 7 show comparison on various
POS and dependency lengths, respectively. While
the error distributions of the two parsers on the
fine-grained metrics are slightly different, with
our model being stronger on arcs that take rela-
tively more steps to build, the main trends of the
two models are consistent, which shows that our
model can learn similar information compared to
the parser of Dyer et al. (2015), without explicitly
modeling stack information. This verifies the use-
fulness of the decoder on exploiting action history.

5.5 Contrast with Vinyals et al. (2015)

For constituent parsing, our models outperforms
the parser of Vinyals et al. (2015) by differentiat-
ing stack and queue and generating transition ac-
tions instead. This shows the advantage of shift-
reduce actions over bracketed syntactic trees as
decoder outputs. Using the settings tuned on the
dependency development data directly, our model
achieves a F1-score of 90.5, which is comparable
to the models of Zhu et al. (2013) and Socher et al.
(2013). By using the rerankers of Choe and Char-
niak (2016) under the same settings, we obtain a
92.7 F1-score with fully-supervised reranking and
a 93.4 F1-score with semi-supervised reranking.

Model UAS (%) LAS (%)

Graph-based
Kiperwasser and Goldberg (2016) 93.0 90.9
Dozat and Manning (2017) 95.7 94.1
Transition-based
Chen and Manning (2014) 91.8 89.6
Dyer et al. (2015) 93.1 90.9
Kiperwasser and Goldberg (2016)† 93.9 91.9
Andor et al. (2016) 92.9 91.0
Andor et al. (2016)* 94.6 92.8
SQ decoder + attention 93.1 90.1

Table 3: Results for dependency parsing, where *
use global training, † use dynamic oracle.

5.6 Attention visualization

We visualize the attention values during parsing,
as shown in Figure 8. The parser can implicitly
extract the structure features by assigning different
attention value to the elements on stack. In Figure
8(a), “Jones” on the top of stack and “industrials”
on the front of queue dominates the prediction of
SHIFT action. In Figure 8(b), “The” on the top of
stack and “closed” on the front of queue contribute
more to the prediction of LEFT-ARC, which con-
structs an left arc from “industrials” to “The” to
complete dependency of the word “industrials”. In
Figure 8(c), “said” on the top of stack determines
the prediction of NT(SBAR) for a clause. In Fig-
ure 8(d), “of” on the front of queue suggests to
complete the noun phrase of “most”. In Figure
8(e), “their major institutional” on top of the stack
needs the word “investor” on the front of queue to
complete a noun phrase.

Interestingly, these attention values capture in-
formation not only from nodes on the stack, but
also their dependents, achieving similar effects
as the manually defined features of Chen and
Manning (2014) and Kiperwasser and Goldberg
(2016). In addition, the range of features that
our attention mechanism models is far beyond the
manual feature templates, since words even on the
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stack
The Dow Jones industrials closed at 2569.26 .

queue

Shift

Left-Arc

The

Dow Jones

industrials closed at 2569.26 .

…

(a)

(b)

(c) NP

Traders

said most of their major(VP(S institutional

NT(SBAR)

…said of their major institutional(SBAR (NP… … most investors

,major institutional(PP (NP… of investorstheir

(d)

Reduce

on the …

Shift

(e)

Figure 8: Output examples to visualize attention
values. The grey scale indicates the value of the
attention. (a) (b) are for dependency parsing, and
(c) (d) (e) are for constituent parsing.

bottom of the stack can sometimes influence the
decision, as shown in Figure 8(b). These are worth
noting given that our model does not explicitly
model the stack structure.

The decoder is used to model sequences of ac-
tions globally, and is less influenced by error prop-
agation.

5.7 Final results

We compare the final results with previous re-
lated work under the fully-supervised setting (ex-
cept for pretrained word embeddings), as shown
in Table 3 for dependency parsing, and Table 4
for constituent parsing. For dependency parsing,
our models achieve comparable UAS to the ma-
jority of parsers (Dyer et al., 2015; Kiperwasser
and Goldberg, 2016; Andor et al., 2016).

6 Related work

LSTM encoder structures have been used in both
transition-based and graph-based parsing. Among
transition-based parsers, Kiperwasser and Gold-
berg (2016) use two-layer encoder to encode in-
put sentence, extracting 11 different features from
a given state in order to predict the next transition
action, showing that the encoder structure lead to
significant accuracy improvements over the base-
line parser of Chen and Manning (2014). Among
graph-based parsers, Dozat and Manning (2017)
exploit 4-layer LSTM encoder over the input, us-
ing conceptually simple biaffine attention mecha-
nism to model dependency arcs over the encoder,
resulting in the stat-of-the-art accuracy in depen-

Model F1 (%)

Vinyals et al. (2015) 88.3
Socher et al. (2013) 90.4
Zhu et al. (2013) 90.4
Shindo et al. (2012) 91.1
Dyer et al. (2016) 91.2
Liu and Zhang (2017b) 91.7
Liu and Zhang (2017a) 91.8
Choe and Charniak (2016) + rerank 92.4
Dyer et al. (2016) + rerank 93.3
Liu and Zhang (2017a) + rerank 93.6
SQ decoder + attention 90.5
SQ decoder + attention + rerank 92.7
SQ decoder + attention + semi-rerank 93.4

Table 4: Results for constituent parsing.

dency parsing. Their success forms a strong moti-
vation of our work.

Vinyals et al. (2015) can also be understood
as building a language model over bracket con-
stituent trees. A similar idea is proposed by Choe
and Charniak (2016), who directly use LSTMs to
model such output forms. The language model
is used to rerank candidate trees from a baseline
parser, and trained over large automatically pars-
ing data using tri-training, achieving a current best
results for constituent parsing. Our work is simi-
lar in that it can be regarded as a form of language
model, over shift-reduce actions rather than brack-
eted syntactic trees. Hence, our model can poten-
tially be used for under tri-training settings also.

There has also been a strand of work apply-
ing global optimization to neural network parsing.
Zhou et al. (2015) and Andor et al. (2016) ex-
tend the parser of Zhang and Clark (2011b), using
beam search and early update training. They set
a max-likelihood training objective, using proba-
bility mass in the beam to approximate partition
function of CRF training. Watanabe and Sumita
(2015) study constituent parsing by using a large-
margin objective, where the negative example is
the expected score of all states in the beam for
transition-based parsing. Xu et al. (2016) build
CCG parsing models with a training objective of
maximizing the expected F1 score of all items in
the beam when parsing finishes, under a transition-
based system. More relatedly, Wiseman and Rush
(2016) use beam search and global max-margin
training for the method of Vinyals et al. (2015). In
contrast, we use a greedy local model; our method
is orthogonal to these techniques.
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7 Conclusion

We adopted a simple encoder-decoder neural net-
work with slight modification for shift-reduce
parsing, regarding the task as translating a sen-
tence into a shift-reduce action sequence, achiev-
ing comparable results to the current state-of-the-
art neural parsers under the same settings. One
advantage of our model is that NMT techniques,
such as scheduled sampling (Bengio et al., 2015),
residual networks (He et al., 2016) and ensemble
mechanisms (Luong et al., 2015), can be directly
applied.
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