
Proceedings of the First Workshop on Building Linguistically Generalizable NLP Systems, pages 19–26
Copenhagen, Denmark, September 8, 2017. c©2017 Association for Computational Linguistics

Massively Multilingual Neural Grapheme-to-Phoneme Conversion

Ben Peters
Saarland University

Saarbrücken, Germany
benzurdopeters@gmail.com

Jon Dehdari and Josef van Genabith
DFKI & Saarland University

Saarbrücken, Germany
firstname.lastname@dfki.de

Abstract

Grapheme-to-phoneme conversion (g2p)
is necessary for text-to-speech and auto-
matic speech recognition systems. Most
g2p systems are monolingual: they require
language-specific data or handcrafting of
rules. Such systems are difficult to ex-
tend to low resource languages, for which
data and handcrafted rules are not avail-
able. As an alternative, we present a neu-
ral sequence-to-sequence approach to g2p
which is trained on spelling–pronunciation
pairs in hundreds of languages. The sys-
tem shares a single encoder and decoder
across all languages, allowing it to utilize
the intrinsic similarities between different
writing systems. We show an 11% im-
provement in phoneme error rate over an
approach based on adapting high-resource
monolingual g2p models to low-resource
languages. Our model is also much more
compact relative to previous approaches.

1 Introduction

Accurate grapheme-to-phoneme conversion (g2p)
is important for any application that depends on
the sometimes inconsistent relationship between
spoken and written language. Most prominently,
this includes text-to-speech and automatic speech
recognition. Most work on g2p has focused on
a few languages for which extensive pronuncia-
tion data is available (Bisani and Ney, 2008; No-
vak et al., 2016; Rao et al., 2015; Yao and Zweig,
2015, inter alia). Most languages lack these re-
sources. However, a low resource language’s writ-
ing system is likely to be similar to the writing sys-
tems of languages that do have sufficient pronun-
ciation data. Therefore g2p may be possible for
low resource languages if this high resource data

can be properly utilized.
We attempt to leverage high resource data by

treating g2p as a multisource neural machine
translation (NMT) problem. The source sequences
for our system are words in the standard orthogra-
phy in any language. The target sequences are the
corresponding representation in the International
Phonetic Alphabet (IPA). Our results show that the
parameters learned by the shared encoder–decoder
are able to exploit the orthographic and phonemic
similarities between the various languages in our
data.

2 Related Work

2.1 Low Resource g2p

Our approach is similar in goal to Deri and Knight
(2016)’s model for adapting high resource g2p
models for low resource languages. They trained
weighted finite state transducer (wFST) models on
a variety of high resource languages, then trans-
ferred those models to low resource languages, us-
ing a language distance metric to choose which
high resource models to use and a phoneme dis-
tance metric to map the high resource language’s
phonemes to the low resource language’s phoneme
inventory. These distance metrics are computed
based on data from Phoible (Moran et al., 2014)
and URIEL (Littell et al., 2017).

Other low resource g2p systems have used a
strategy of combining multiple models. Schlippe
et al. (2014) trained several data-driven g2p sys-
tems on varying quantities of monolingual data
and combined their outputs with a phoneme-level
voting scheme. This led to improvements over the
best-performing single system for small quantities
of data in some languages. Jyothi and Hasegawa-
Johnson (2017) trained recurrent neural networks
for small data sets and found that a version of their
system that combined the neural network output

19



with the output of the wFST-based Phonetisaurus
system (Novak et al., 2016) did better than either
system alone.

A different approach came from Kim and Sny-
der (2012), who used supervised learning with
an undirected graphical model to induce the
grapheme–phoneme mappings for languages writ-
ten in the Latin alphabet. Given a short text in
a language, the model predicts the language’s or-
thographic rules. To create phonemic context fea-
tures from the short text, the model naı̈vely maps
graphemes to IPA symbols written with the same
character, and uses the features of these symbols
to learn an approximation of the phonotactic con-
straints of the language. In their experiments,
these phonotactic features proved to be more valu-
able than geographical and genetic features drawn
from WALS (Dryer and Haspelmath, 2013).

2.2 Multilingual Neural NLP

In recent years, neural networks have emerged as
a common way to use data from several languages
in a single system. Google’s zero-shot neural ma-
chine translation system (Johnson et al., 2016)
shares an encoder and decoder across all language
pairs. In order to facilitate this multi-way transla-
tion, they prepend an artificial token to the begin-
ning of each source sentence at both training and
translation time. The token identifies what lan-
guage the sentence should be translated to. This
approach has three benefits: it is far more efficient
than building a separate model for each language
pair; it allows for translation between languages
that share no parallel data; and it improves re-
sults on low-resource languages by allowing them
to implicitly share parameters with high-resource
languages. Our g2p system is inspired by this ap-
proach, although it differs in that there is only one
target “language”, IPA, and the artificial tokens
identify the language of the source instead of the
language of the target.

Other work has also made use of multilingually-
trained neural networks. Phoneme-level polyglot
language models (Tsvetkov et al., 2016) train a
single model on multiple languages and addition-
ally condition on externally constructed typolog-
ical data about the language. Östling and Tiede-
mann (2017) used a similar approach, in which
a character-level neural language model is trained
on a massively multilingual corpus. A language
embedding vector is concatenated to the input at

each time step. The language embeddings their
system learned correlate closely to the genetic re-
lationships between languages. However, neither
of these models was applied to g2p.

3 Grapheme-to-Phoneme

g2p is the problem of converting the orthographic
representation of a word into a phonemic repre-
sentation. A phoneme is an abstract unit of sound
which may have different realizations in different
contexts. For example, the English phoneme /p/
has two phonetic realizations (or allophones):

• [ph], as in the word ‘pain’ [ph eI n]

• [p], as in the word ‘Spain’ [s p eI n]

English speakers without linguistic training of-
ten struggle to perceive any difference between
these sounds. Writing systems usually do not dis-
tinguish between allophones: [ph] and [p] are both
written as 〈p〉 in English. The sounds are written
differently in languages where they contrast, such
as Hindi and Eastern Armenian.

Most writing systems in use today are glot-
tographic, meaning that their symbols encode
solely phonological information1. But despite
being glottographic, in few writing systems do
graphemes correspond one-to-one with phonemes.
There are cases in which multiple graphemes rep-
resent a single phoneme, as in the word the in En-
glish:

th e
D @

There are cases in which a single grapheme rep-
resents multiple phonemes, such as syllabaries, in
which each symbol represents a syllable.

In many languages, there are silent letters, as in
the word hora in Spanish:

h o r a
- o R a

There are more complicated correspondences,
such as the silent e in English that affects the pro-
nunciation of the previous vowel, as seen in the
pair of words cape and cap.

It is possible for an orthographic system to have
any or all of the above phenomena while remain-
ing unambiguous. However, some orthographic

1The Chinese script, in which characters have both phono-
logical form and semantic meaning, is the best-known excep-
tion.

20



systems contain ambiguities. English is well-
known for its spelling ambiguities. Abjads, used
for Arabic and Hebrew, do not give full represen-
tation to vowels.

Consequently, g2p is harder than simply replac-
ing each grapheme symbol with a corresponding
phoneme symbol. It is the problem of replacing a
grapheme sequence

G = g1, g2, ..., gm

with a phoneme sequence

Φ = φ1, φ2, ..., φn

where the sequences are not necessarily of the
same length. Data-driven g2p is therefore the
problem of finding the phoneme sequence that
maximizes the likelihood of the grapheme se-
quence:

Φ̂ = arg max
Φ′

Pr(Φ′ | G)

Data-driven approaches are especially useful
for problems in which the rules that govern them
are complex and difficult to engineer by hand.
g2p for languages with ambiguous orthographies
is such a problem. Multilingual g2p, in which the
various languages have similar but different and
possibly contradictory spelling rules, can be seen
as an extreme case of that. Therefore, a data-
driven sequence-to-sequence model is a natural
choice.

4 Methods

4.1 Encoder–Decoder Models

In order to find the best phoneme sequence, we
use a neural encoder–decoder model with atten-
tion (Bahdanau et al., 2014). The model consists
of two main parts: the encoder compresses each
source grapheme sequence G into a fixed-length
vector. The decoder, conditioned on this fixed-
length vector, generates the output phoneme se-
quence Φ.

The encoder and decoder are both implemented
as recurrent neural networks, which have the ad-
vantage of being able to process sequences of ar-
bitrary length and use long histories efficiently.
They are trained jointly to minimize cross-entropy
on the training data. We had our best results
when using a bidirectional encoder, which consists
of two separate encoders which process the input

Enc. & dec. model type LSTM
Attention General

Enc. & dec. layers 2
Hidden layer size 150

Source embedding size 150
Target embedding size 150

Batch size 64
Optimizer SGD

Learning rate 1.0
Training epochs 13

Table 1: Hyperparameters for multilingual g2p
models

in forward and reverse directions. We used long
short-term memory units (Hochreiter and Schmid-
huber, 1997) for both the encoder and decoder.
For the attention mechanism, we used the general
global attention architecture described by Luong
et al. (2015).

We implemented2 all models with OpenNMT
(Klein et al., 2017). Our hyperparameters, which
we determined by experimentation, are listed in
Table 1.

4.2 Training Multilingual Models

Presenting pronunciation data in several languages
to the network might create problems because dif-
ferent languages have different pronunciation pat-
terns. For example, the string ‘real’ is pronounced
differently in English, German, Spanish, and Por-
tuguese. We solve this problem by prepending
each grapheme sequence with an artificial token
consisting of the language’s ISO 639-3 code en-
closed in angle brackets. The English word ‘real’,
for example, would be presented to the system as

<eng> r e a l

The artificial token is treated simply as an element
of the grapheme sequence. This is similar to the
approach taken by Johnson et al. (2016) in their
zero-shot NMT system. However, their source-
side artificial tokens identify the target language,
whereas ours identify the source language. An
alternative approach, used by Östling and Tiede-
mann (2017), would be to concatenate a language
embedding to the input at each time step. They
do not evaluate their approach on grapheme-to-
phoneme conversion.

5 Data

In order to train a neural g2p system, one needs a
large quantity of pronunciation data. A standard

2https://github.com/bpopeters/mg2p

21



dataset for g2p is the Carnegie Mellon Pronounc-
ing Dictionary (Lenzo, 2007). However, that is a
monolingual English resource, so it is unsuitable
for our multilingual task. Instead, we use the mul-
tilingual pronunciation corpus3 collected by Deri
and Knight (2016) for all experiments. This cor-
pus consists of spelling–pronunciation pairs ex-
tracted from Wiktionary. It is already partitioned
into training and test sets. Corpus statistics are
presented in Table 2.

In addition to the raw IPA transcriptions ex-
tracted from Wiktionary, the corpus provides an
automatically cleaned version of transcriptions.
Cleaning is a necessary step because web-scraped
data is often noisy and may be transcribed at
an inconsistent level of detail. The data clean-
ing used here attempts to make the transcriptions
consistent with the phonemic inventories used in
Phoible (Moran et al., 2014). When a transcrip-
tion contains a phoneme that is not in its lan-
guage’s inventory in Phoible, that phoneme is re-
placed by the phoneme with the most similar ar-
ticulatory features that is in the language’s inven-
tory. Sometimes this cleaning algorithm works
well: in the German examples in Table 3, the raw
German symbols /X/ and /ç/ are both converted
to /x/. This is useful because the /X/ in Ans-
bach and the /ç/ in Kaninchen are instances of the
same phoneme, so their phonemic representations
should use the same symbol. However, the clean-
ing algorithm can also have negative effects on the
data quality. For example, the phoneme /ô/ is not
present in the Phoible inventory for German, but it
is used in several German transcriptions in the cor-
pus. The cleaning algorithm converts /ô/ to /l/ in
all German transcriptions, whereas /r/ would be
a more reasonable guess. The cleaning algorithm
also removes most suprasegmentals, even though
these are often an important part of a language’s
phonology. Developing a more sophisticated pro-
cedure for cleaning pronunciation data is a direc-
tion for future work, but in this paper we use the
corpus’s provided cleaned transcriptions in order
to ease comparison to previous results.

6 Experiments

We present experiments with two versions of our
sequence-to-sequence model. LangID prepends
each training, validation, and test sample with

3https://drive.google.com/drive/
folders/0B7R_gATfZJ2aWkpSWHpXUklWUmM

Split Train Test
Languages 311 507

Words 631,828 25,894
Scripts 42 45

Table 2: Corpus Statistics

Lang. Script Spelling Cleaned IPA Raw IPA
deu Latin Ansbach a: n s b a: x "ansbaX
deu Latin Kaninchen k a: n I n x @ n ka"ni:nç@n

eus Latin untxi u n” t” S I "un.
>
tSi

Table 3: Example entries from the Wiktionary
training corpus

an artificial token identifying the language of the
sample. NoLangID omits this token. LangID and
NoLangID have identical structure otherwise. To
translate the test corpus, we used a beam width of
100. Although this is an unusually wide beam and
had negligible performance effects, it was neces-
sary to compute our error metrics.

6.1 Evaluation
We use the following three evaluation metrics:

• Phoneme Error Rate (PER) is the Lev-
enshtein distance between the predicted
phoneme sequences and the gold standard
phoneme sequences, divided by the length of
the gold standard phoneme sequences.

• Word Error Rate (WER) is the percentage of
words in which the predicted phoneme se-
quence does not exactly match the gold stan-
dard phoneme sequence.

• Word Error Rate 100 (WER 100) is the per-
centage of words in the test set for which the
correct guess is not in the first 100 guesses of
the system.

In system evaluations, WER, WER 100, and
PER numbers presented for multiple languages are
averaged, weighting each language equally (fol-
lowing Deri and Knight, 2016).

It would be interesting to compute error metrics
that incorporate phoneme similarity, such as those
proposed by Hixon et al. (2011). PER weights all
phoneme errors the same, even though some errors
are more harmful than others: /d/ and /k/ are usu-
ally contrastive, whereas /d/ and /d”/ almost never
are. Such statistics would be especially interest-
ing for evaluating a multilingual system, because

22



different languages often map the same grapheme
to phonemes that are only subtly different from
each other. However, these statistics have not been
widely reported for other g2p systems, so we omit
them here.

6.2 Baseline

Results on LangID and NoLangID are compared
to the system presented by Deri and Knight
(2016), which is identified in our results as wFST.
Their results can be divided into two parts:

• High resource results, computed with wFSTs
trained on a combination of Wiktionary pro-
nunciation data and g2p rules extracted from
Wikipedia IPA Help pages. They report high
resource results for 85 languages.

• Adapted results, where they apply various
mapping strategies in order to adapt high re-
source models to other languages. The final
adapted results they reported include most of
the 85 languages with high resource results,
as well as the various languages they were
able to adapt them for, for a total of 229 lan-
guages. This test set omits 23 of the high re-
source languages that are written in unique
scripts or for which language distance met-
rics could not be computed.

6.3 Training

We train the LangID and NoLangID versions of
our model each on three subsets of the Wiktionary
data:

• LangID-High and NoLangID-High: Trained
on data from the 85 languages for which Deri
and Knight (2016) used non-adapted wFST
models.

• LangID-Adapted and NoLangID-Adapted:
Trained on data from any of the 229 lan-
guages for which they built adapted mod-
els. Because many of these languages had
no training data at all, the model is actually
only trained on data in 157 languages. As is
noted above, the Adapted set omits 23 lan-
guages which are in the High test set.

• LangID-All and NoLangID-All: Trained on
data in all 311 languages in the Wiktionary
training corpus.

In order to ease comparison to Deri and
Knight’s system, we limited our use of the training
corpus to 10,000 words per language. We set aside
10 percent of the data in each language for valida-
tion, so the maximum number of training words
for any language is 9000 for our systems.

6.4 Adapted Results

On the 229 languages for which Deri and Knight
(2016) presented their final results, the LangID
version of our system outperforms the baseline by
a wide margin. The best performance came with
the version of our model that was trained on data
in all available languages, not just the languages
it was tested on. Using a language ID token im-
proves results considerably, but even NoLangID
beats the baseline in WER and WER 100. Full
results are presented in Table 4.

Model WER WER 100 PER

wFST 88.04 69.80 48.01

LangID-High 74.99 46.18 42.64
LangID-Adapted 75.06 46.39 41.77
LangID-All 74.10 43.23 37.85

NoLangID-High 82.14 50.17 54.05
NoLangID-Adapted 85.11 48.24 55.93
NoLangID-All 83.65 47.13 51.87

Table 4: Adapted Results

6.5 High Resource Results

Having shown that our model exceeds the perfor-
mance of the wFST-adaptation approach, we next
compare it to the baseline models for just high
resource languages. The wFST models here are
purely monolingual – they do not use data adap-
tation because there is sufficient training data for
each of them. Full results are presented in Table 5.
We omit models trained on the Adapted languages
because they were not trained on high resource
languages with unique writing systems, such as
Georgian and Greek, and consequently performed
very poorly on them.

In contrast to the larger-scale Adapted results,
in the High Resource experiments none of the
sequence-to-sequence approaches equal the per-
formance of the wFST model in WER and PER,
although LangID-High does come close. The
LangID models do beat wFST in WER 100. A
possible explanation is that a monolingual wFST

23



model will never generate phonemes that are not
part of the language’s inventory. A multilingual
model, on the other hand, could potentially gener-
ate phonemes from the inventories of any language
it has been trained on.

Even if LangID-High does not present a more
accurate result, it does present a more compact
one: LangID-High is 15.4 MB, while the com-
bined wFST high resource models are 197.5 MB.

Model WER WER 100 PER

wFST 44.17 21.97 14.70

LangID-High 47.88 15.50 16.89
LangID-All 48.76 15.78 17.35

NoLangID-High 69.72 29.24 35.16
NoLangID-All 69.82 29.27 35.47

Table 5: High Resource Results

6.6 Results on Unseen Languages

Finally, we report our models’ results on unseen
languages in Table 6. The unseen languages are
any that are present in the test corpus but absent
from the training data. Deri and Knight did not
report results specifically on these languages. Al-
though the NoLangID models sometimes do better
on WER 100, even here the LangID models have a
slight advantage in WER and PER. This is some-
what surprising because the LangID models have
not learned embeddings for the language ID to-
kens of unseen languages. Perhaps negative asso-
ciations are also being learned, driving the model
towards predicting more common pronunciations
for unseen languages.

Model WER WER 100 PER

LangID-High 85.94 58.10 53.06
LangID-Adapted 87.78 68.40 65.62
LangID-All 86.27 62.31 54.33

NoLangID-High 88.52 58.21 62.02
NoLangID-Adapted 91.27 57.61 74.07
NoLangID-All 89.96 56.29 62.79

Table 6: Results on languages not in the training
corpus

7 Discussion

7.1 Language ID Tokens
Adding a language ID token always improves
results in cases where an embedding has been
learned for that token. The power of these em-
beddings is demonstrated by what happens when
one feeds the same input word to the model with
different language tokens, as is seen in Table 7.
Impressively, this even works when the source se-
quence is in the wrong script for the language, as
is seen in the entry for Arabic.

Language Pronunciation
English d Z u: æI s
German j U t s @
Spanish x w i T efl
Italian d Z u i t S e

Portuguese Z w i s ĩ
Turkish Z U I d” Z E
Arabic j u: i s

Table 7: The word ‘juice’ translated by the
LangID-All model with various language ID to-
kens. The incorrect English pronunciation rhymes
with the system’s result for ‘ice’

7.2 Language Embeddings
Because these language ID tokens are so useful,
it would be good if they could be effectively es-
timated for unseen languages. Östling and Tiede-
mann (2017) found that the language vectors their
models learned correlated well to genetic relation-
ships, so it would be interesting to see if the em-
beddings our source encoder learned for the lan-
guage ID tokens showed anything similar. In a few
cases they do (the languages closest to German
in the vector space are Luxembourgish, Bavarian,
and Yiddish, all close relatives). However, for the
most part the structure of these vectors is not in-
terpretable. Therefore, it would be difficult to esti-
mate the embedding for an unseen language, or to
“borrow” the language ID token of a similar lan-
guage. A more promising way forward is to find a
model that uses an externally constructed typolog-
ical representation of the language.

7.3 Phoneme Embeddings
In contrast to the language embeddings, the
phoneme embeddings appear to show many reg-
ularities (see Table 8). This is a sign that our
multilingual model learns similar embeddings for

24



phonemes that are written with the same grapheme
in different languages. These phonemes tend to be
phonetically similar to each other.

Perhaps the structure of the phoneme embed-
ding space is what leads to our models’ very
good performance on WER 100. Even when the
model’s first predicted pronunciation is not cor-
rect, it tends to assign more probability mass to
guesses that are more similar to the correct one.
Applying some sort of filtering or reranking of the
system output might therefore lead to better per-
formance.

Phoneme Closest phonemes
b ph, B, F
@ ã, ĕ, W
th t:, t, t”
x X, G, è
y y:, Y, I
ô RG, r”, R

Table 8: Selected phonemes and the most similar
phonemes, measured by the cosine similarity of
the embeddings learned by the LangID-All model

7.4 Future Work

Because the language ID token is so beneficial to
performance, it would be very interesting to find
ways to extend a similar benefit to unseen lan-
guages. One possible way to do so is with tokens
that identify something other than the language,
such as typological features about the language’s
phonemic inventory. This could enable better
sharing of resources among languages. Such typo-
logical knowledge is readily available in databases
like Phoible and WALS for a wide variety of lan-
guages. It would be interesting to explore if any of
these features is a good predictor of a language’s
orthographic rules.

It would also be interesting to apply the arti-
ficial token approach to other problems besides
multilingual g2p. One closely related application
is monolingual English g2p. Some of the ambi-
guity of English spelling is due to the wide vari-
ety of loanwords in the language, many of which
have unassimilated spellings. Knowing the origins
of these loanwords could provide a useful hint for
figuring out their pronunciations. The etymology
of a word could be tagged in an analogous way to
how language ID is tagged in multilingual g2p.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. ArXiv preprint
1409.0473. http://arxiv.org/abs/1409.0473.

Maximilian Bisani and Hermann Ney. 2008. Joint-
sequence models for grapheme-to-phoneme conver-
sion. Speech communication 50(5):434–451.

Aliya Deri and Kevin Knight. 2016. Grapheme-to-
phoneme models for (almost) any language. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics. volume 1, pages
399–408.

Matthew S. Dryer and Martin Haspelmath, editors.
2013. WALS Online. Max Planck Institute for Evo-
lutionary Anthropology, Leipzig. http://wals.info/.

Ben Hixon, Eric Schneider, and Susan L Epstein. 2011.
Phonemic similarity metrics to compare pronunci-
ation methods. In Twelfth Annual Conference of
the International Speech Communication Associa-
tion (INTERSPEECH). Florence, Italy, pages 825–
828.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Melvin Johnson, Mike Schuster, Quoc V. Le,
Maxim Krikun, Yonghui Wu, Zhifeng Chen,
Nikhil Thorat, Fernanda B. Viégas, Martin Wat-
tenberg, Greg Corrado, Macduff Hughes, and Jef-
frey Dean. 2016. Google’s multilingual neu-
ral machine translation system: Enabling zero-
shot translation. ArXiv preprint 1611.04558.
http://arxiv.org/abs/1611.04558.

Preethi Jyothi and Mark Hasegawa-Johnson. 2017.
Low-resource grapheme-to-phoneme conversion us-
ing recurrent neural networks. In Proc. ICASSP.

Young-Bum Kim and Benjamin Snyder. 2012. Uni-
versal grapheme-to-phoneme prediction over Latin
alphabets. In Proceedings of the 2012 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning. Association for Computational Linguis-
tics, pages 332–343.

G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M.
Rush. 2017. OpenNMT: Open-Source Toolkit
for Neural Machine Translation. ArXiv preprint
https://arxiv.org/abs/1701.02810.

Kevin Lenzo. 2007. The CMU pronouncing dictionary.

Patrick Littell, David Mortensen, Ke Lin, Katherine
Kairis, Carlisle Turner, and Lori Levin. 2017. Uriel
and lang2vec: Representing languages as typolog-
ical, geographical, and phylogenetic vectors. In
EACL 2017. Valencia, Spain, pages 8–14.

25



Minh-Thang Luong, Hieu Pham, and Christo-
pher D. Manning. 2015. Effective approaches to
attention-based neural machine translation. CoRR
abs/1508.04025. http://arxiv.org/abs/1508.04025.

Steven Moran, Daniel McCloy, and Richard Wright,
editors. 2014. PHOIBLE Online. Max Planck
Institute for Evolutionary Anthropology, Leipzig.
http://phoible.org .

Josef Robert Novak, Nobuaki Minematsu, and Keikichi
Hirose. 2016. Phonetisaurus: Exploring grapheme-
to-phoneme conversion with joint n-gram models in
the WFST framework. Natural Language Engineer-
ing 22(6):907–938.

Robert Östling and Jörg Tiedemann. 2017. Continuous
multilinguality with language vectors. EACL 2017
page 644.

Kanishka Rao, Fuchun Peng, Haşim Sak, and
Françoise Beaufays. 2015. Grapheme-to-phoneme
conversion using long short-term memory recurrent
neural networks. In International Conference on
Acoustics, Speech and Signal Processing (ICASSP).
pages 4225–4229.

Tim Schlippe, Wolf Quaschningk, and Tanja Schultz.
2014. Combining grapheme-to-phoneme converter
outputs for enhanced pronunciation generation in
low-resource scenarios. In International Work-
shop on Spoken Language Technologies for Under-
resourced Languages (SLTU). pages 139–145.

Yulia Tsvetkov, Sunayana Sitaram, Manaal Faruqui,
Guillaume Lample, Patrick Littell, David
Mortensen, Alan W Black, Lori Levin, and Chris
Dyer. 2016. Polyglot neural language models: A
case study in cross-lingual phonetic representation
learning. In NAACL 2016. San Diego, California,
pages 1357–1366.

Kaisheng Yao and Geoffrey Zweig. 2015. Sequence-
to-sequence neural net models for grapheme-to-
phoneme conversion. ArXiv preprint 1506.00196.
http://arxiv.org/abs/1506.00196.

26


