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Abstract

Knowledge of the association between as-
sessment questions and the skills required
to solve them is necessary for analysis of
student learning. This association, often
represented as a Q-matrix, is either hand-
labeled by domain experts or learned as
latent variables given a large student re-
sponse data set. As a means of automat-
ing the match to formal standards, this pa-
per uses neural text classification meth-
ods, leveraging the language in the stan-
dards documents to identify online text for
a proxy training task. Experiments involve
identifying the topic and crosscutting con-
cepts of middle school science questions
leveraging multi-task training. Results
show that it is possible to automatically
build a Q-matrix without student response
data and using a modest number of hand-
labeled questions.

1 Introduction

In both traditional and online contexts, fine grain
diagnostic information can play a crucial role in
employing formative assessment to improve stu-
dent learning outcomes as observed by National
Research Council (2012), and for creating scal-
able systems that provide individualized instruc-
tion (Barnes, 2005). A key requirement for this
inference is association of each of the assessment
tasks, which we will refer to as questions, with at-
tributes, which are the skills (knowledge, concepts
and/or strategies) needed to solve the tasks. The
association of skills to questions is represented as
a Q-matrix (Tatsuoka, 1983).

Hand crafted Q-matrices are created by domain
experts who label each assessment task with the
required skill(s). While this provides an inter-

pretable matrix for educators, in the sense that the
skills are associated with a documented standard
or cognitive model, the question annotation pro-
cess is time consuming and not scalable. When
standards change, the old question annotation is
no longer useful. The cost of question annotation
is a key issue with the domain models in intelli-
gent tutoring systems (ITS), which are created by
experts for each subject area and grade level, lim-
iting reusability (Burns et al., 2014).

As an alternative, there has been work on au-
tomated discovery of an association of (latent)
skills to questions using student response data
(Lan et al., 2014; Barnes, 2005; Desmarais, 2010).
While these unsupervised automated methods can
provide a good fit for the student response data,
they are limited by the requirement of a large data
set of student scores on a given test, which is
not available for individual classroom assessments
and hard to obtain for standardized testing. In ad-
dition, the latent skills offer limited interpretabil-
ity for teachers. The results cannot easily be used
to identify practice questions to help a student im-
prove in areas of weakness.

It was observed in a report by National Research
Council (2001) that fine grained diagnostic models
are not widely used due to scalability, reusability
and/or interpretability issues, which is still a prob-
lem today as stated by National Research Council
(2012).

This work aims to develop interpretable and au-
tomatic methods for mapping science assessment
tasks to underlying skills by using text classifica-
tion methods that leverage the language in stan-
dards documents and teacher training materials.
The experiments here use the Framework for K-
12 Science education laid out in the framework by
National Research Council (2012), but the method
is designed to work for any well documented stan-
dard and the questions used in this study are not
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explicitly designed for that standard.
Specifically, we look at the core disciplinary

ideas (topics) and crosscutting concepts described
in the standard as the attributes needed to respond
to assessment tasks. A multi-task convolutional
neural network is designed to jointly label topics
and concepts. The greater challenge is in recog-
nizing concepts, for which there is no annotated
data available. A key contribution is in the use of
standards documentation to automate training an-
notation and obtain online text for use as a proxy
task in an intermediate training stage.

The rest of the paper is organized as follows.
Sec. 2 provides a detailed task description, which
is followed in Sec. 3 by an overview of prior text
classification work that we build on. Experiment
details are provided in Sec. 4 with results in Sec.
5. Related work leveraging question text in latent
skill learning is discussed in Sec. 6. Findings and
open questions are summarized in Sec. 7.

2 Task

From the perspective of formal standards, student
learning is measured along specified content areas
and concepts. The goal of both classroom teach-
ing and online instruction systems is to ultimately
increase proficiency in these areas. This work con-
siders the Framework for K-12 science education
presented by National Research Council (2012),
and the associated Next Generation Science Stan-
dard (NGSS Lead States, 2013). The framework
measures student learning along three dimensions:
i) disciplinary core areas, ii) crosscutting concepts,
and iii) science and engineering practices. For this
work, we aim to identify the core content areas
(topics) and crosscutting concepts associated with
a question. The dimension of science and engi-
neering practices is reflected more in the text of
student response, hence we do not consider it here.

NGSS provides content and learning progres-
sion descriptions for each dimension. The stan-
dard specifies a hierarchy of disciplinary core
ideas from physical sciences (PS), life sciences
(LS), earth and space sciences (ESS), and engi-
neering, technology and application of sciences
(ETS).1 Our study operates at the middle level of
the hierarchy, with 12 topics, focusing on the mid-
dle school level. Seven crosscutting concepts are

1https://www.nextgenscience.org/
get-to-know, Appendices E and J

described.2 Examples of descriptions in the stan-
dard are given below.

Topic: ESS3 Earth and human activity - Human
activities have altered the biosphere, sometimes
damaging it, although changes to ...

Concept: Energy and Matter Tracking energy
and matter flows, into, out of, and within systems
helps one understand their systems behavior.

The specific task addressed in this work is:
given a question, identify the topic and concepts
associated with that question. For example, the
question:

What happens to the sun’s energy in the
greenhouse effect?

would be be associated with the topic ESS3 and
the concept “Energy and Matter.” Topic labeling
corresponds to a multi-class decision (which one
of 12 topics), and concept labeling involves 7 bi-
nary decisions. It is possible for a question to in-
volve none of the concepts in the inventory.

More examples of topic and concept descrip-
tions with sample questions are provided in sup-
plementary materials.

3 Text Classification

Text classification is an established problem, with
many different techniques available, including
naive Bayes, support vector classifiers, decision
trees and k nearest neighbors, which are summa-
rized in (Ikonomakis et al., 2005). For longer doc-
uments, a bag-of-words approach is often used,
but sequence models can be more useful for clas-
sifying sentences or short documents. A variety of
neural techniques have been proposed, including
(Wiener et al., 1995; Ruiz and Srinivasan, 1998;
Nam et al., 2014; Lai et al., 2015). In our study, we
build on the convolutional neural network (CNN)
presented in (Kim, 2014), which achieves high ac-
curacy for short texts. We briefly describe the
model below.

The model takes a sequence of pre-trained word
embeddings as input: each word xi is represented
by a k dimensional embedding vector, xi ∈ Rk. A
sequence of n word embeddings are concatenated
to form a n×k matrix that is input to the network.

The concatenated sequence is convolved with
filters that span the entire embedding and h words.

2https://www.nextgenscience.org/
get-to-know, Appendix G
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A h× k filter wl is convolved with a concatenated
sequence of h words, generating an n−h+1 length
output sequence, where the ith element of the se-
quence is given by

ci(l) = f(wl ◦ xi:i+h−1 + bl). (1)

where ◦ indicates a Hadamard product, and f is
a non-linear or piece-wise linear function such as
a rectified linear unit (ReLU). Using max-pooling
over time results in one feature produced by one
filter:

ĉ(l) = max{c1(l), c2(l), ..., cn−h+1(l)} (2)

The output from max-pooling for each filter is
concatenated into a feature set, resulting in an m
dimensional feature vector for m filters.

z = [ĉ(1), ĉ(2), ..., ĉ(m)] (3)

The output used to predict the label is given by

y = g(Y z + b) (4)

where g is a non-linear function, e.g. softmax for
multi-class problems.

4 Methods

This section first describes the different data sets
used in training and testing, and then the modifi-
cations to the above CNN for identifying question
attributes.

4.1 Data
For our work we consider three sets of resources:
science questions, Wikipedia science and math-
ematics articles, and standard related resources.
Middle school science questions are the main
training and testing data. Wikipedia articles pro-
vide a supplemental source of data for pre-training
and for a proxy task for concepts. Standard re-
lated resources include descriptions of disciplinary
core ideas and crosscutting concepts laid out in
the standard, and question templates developed to
aid teachers in assessing crosscutting concept pro-
ficiency.

The main data consists of 14,985 middle school
science questions (Kembhavi et al., 2017), with
questions divided into 629 generic science mod-
ules. This data represents a generic set of middle
school science questions, and is not aligned with
the dimensions of NGSS. For our study, the mod-
ules were hand-labeled as belonging to one of the

12 topics using NGSS descriptions, and topic la-
bels for questions were determined based on the
module label. All questions have module labels.
The test data consists of 750 questions (5% of
the total data); the rest is for training and valida-
tion. Only the test data is hand-labeled with cross-
cutting concepts.

In order to obtain concept labels for the train-
ing data, we used question templates that have
been developed for each of the seven concepts,3

which were designed to aid teachers in implement-
ing these concepts into their own assessments. For
example, one of the templates for the Patterns
concept is:

What patterns do you observe in the
data presented above in the chart?

We pick keywords from each of the templates
(e.g. “patterns”, “presented”, “observe”, “data”
and “chart” in the above question), and search for
questions in the training data that contain at least
two keywords associated with a concept. This re-
sults in labels for 890 questions, approximately
6% of the training set, of which 44 questions are
assigned multiple concept labels. Keyword match-
ing returned few matches since the questions have
not been developed to test for crosscutting con-
cepts specifically. Twenty percent of the results
from the keyword search were randomly sampled
and hand checked to ensure they matched the as-
signed concepts, and found to be correct.

The distribution of topics and counts of con-
cepts in the question training and test sets are
shown in tables 1 and 2, respectively. Both ta-
bles indicate that the class distributions are not bal-
anced. This is expected, since the topics and con-
cepts are designed for all grades (K-12), and some
skills are more applicable to high school science
curriculum.

Since only 6% of the training data has con-
cept labels, we use external data to create an ad-
ditional proxy training task for concepts. Using
phrases from the concept descriptions from NGSS
and the STEM Teaching Tools templates, we hand
selected 122 Wikipedia science articles associated
with the seven concepts, with 8 of these articles
spanning multiple concepts. Sample article titles
include:

3STEM teaching tools 2014-2017: http:
//stemteachingtools.org/
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Topic Train Test
Matter and its interactions 12.0% 10.7%
From molecules to organisms 30.2% 31.2%
Engineering design 2.0% 2.4%
Heredity 1.1% 0.9%
Earth’s place in the universe 13.7% 13.1%
Motion and stability 5.0% 4.3%
Earth and human activity 7.1% 6.7%
Waves and energy transfer 5.6% 5.6%
Earths systems 17.0% 18.6%
Energy 2.4% 2.0%
Ecosystems 3.1% 3.6%
Evolution 0.8% 0.9%

Table 1: Topic distribution in train and test sets

Concept Train Test
Stability & change (S&C) 46 5
Scale, proportion & quantity
(SP&Q)

150 77

Patterns (P) 166 93
Structure & function (S&F) 24 9
Systems & system models (Sys) 88 27
Cause & effect (C&E) 97 41
Energy & matter (E&M) 365 116

Table 2: Concept counts in train and test sets

Patterns: Patterns in nature, Taxonomy, Correla-
tion and dependence

System and system models: System, Systems
modeling, System design

The articles are split into smaller “documents”
based on linebreaks, yielding a set of 16,892 docu-
ments with concept labels. These documents cor-
respond to paragraphs, section heads, related links
and references, so they are not a good match to the
style of a science question but they provide train-
ing examples of important keywords and phrases.

In addition to these sources, we use a pool of
40,000 general Wikipedia science and mathemat-
ics articles for pre-training word embeddings.

In summary, four data sources are used in train-
ing: questions labeled with both topic and con-
cept DTC , questions labeled with topic DT (a su-
perset of DTC), concept-labeled Wikipedia para-
graphs DC , and unlabeled Wikipedia articles DW ,
as shown in table 3.

Data Number of Samples
DTC 890 questions
DT 14,235 questions
DC 16,892 documents
DW 40,000 articles
Test set 750 questions with topic and

concept labels

Table 3: Data

4.2 Multi-task Topic-Concept Classification

Our use of the CNN for text classification involves
multiple outputs:

yt = gt(Ytz + bt) (5)

yc = gc(Ycz + bc) (6)

where z is the output of the max-pooling layer,
Yt ∈ Rm×nt , bt ∈ Rnt , Yc ∈ Rm×nc , and bc ∈
Rnc . For topics, gt is a softmax layer, giving the
per-class probabilities yti, from which the topic is
chosen according to argmaxi(yti). For detect-
ing multi-label concepts, gc is a sigmoid, which
outputs the concept probability without assuming
that concepts are mutually exclusive. The labels
are decided by thresholding the sigmoid output,
ci = {1yci(k)>thr}nc for k = 1, . . . , nc. As noted
earlier, there are 12 topics (nt = 12) and 7 con-
cepts (nc = 7). The CNN for multi-task training
is shown in figure 1.

The training loss function is multi-class cross-
entropy for the topic output and binary cross-
entropy for each of the concept outputs. Multi-
task training uses a sum of topic and concept loss.
10% of the training data was used for validation at
a time, using ten fold cross validation. This was
used to tune drop out, set number of filters and fil-
ter sizes. The entire labeled data set was then used
for training.

Training was done with both pre-trained and
randomly initialized word embeddings. We used
128 dimensional word embeddings, and a vocab-
ulary size of 75, 000. The filter lengths used were
[1, 3, 4, 5], with 64 filters for each size. Drop out
of 50% was used for regularization. For concept
classification, a threshold of 0.2 was set for posi-
tive label detection. This was empirically chosen
on the training data.

Experiments are conducted to compare: i) ran-
dom initialization vs. pre-training, ii) independent
vs. multi-task training, and iii) different methods
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Figure 1: CNN for Multi-task Classification

of using the labeled training sets. Pre-training is
based on DW for both multi-task and independent
classifiers.

For independent classifier training, DT is used
for topics, and DTC is used for concepts. In ad-
dition, we explored a two-stage approach to train-
ing the concept model, using DC in a first pass of
training, followed by DTC for fine tuning (C →
TC).

For multi-task training, three alternatives are ex-
plored:

• Stage 1: run single task training (with DT ).
Stage 2: run multi-task training with DTC .
Do not use DC . (T → TC)

• Stage 1: alternate between batches of single
task training (with DT and DC), starting with
DT . Stage 2: run multi-task training with
DTC . (T/C → TC)

• Alternate between batches of the different la-
beled sets, starting with DT and ending with
DTC . (T/C/TC)

All multi-task models are pre-trained using DW .

5 Results and Discussion

Results for the different training schemes are
shown in table 4. The first four rows correspond to
systems with topic and concept classifiers trained
separately, and the last three involve multi-task
training. The first row indicates baseline perfor-
mance using n-gram features in an SVM. Com-
paring the next two rows in the table shows that

pre-training word embeddings with the unlabeled
Wikipedia articles benefits both topic and con-
cept classifiers, so it was used in all subsequent
experiments with multi-task training. The fourth
row uses the two-stage concept training, which
slightly hurts performance. All the different op-
tions for multi-task training (rows 5-7) improve
over learning independent classifiers (row 3 for
the case with pre-training). Unlike the indepen-
dent training case, the proxy concepts represented
by the Wikipedia article paragraphs benefit both
topic and concept labeling when used in multi-task
training.

The precision, recall and F1 scores for crosscut-
ting concepts are shown in table 5. As expected,
the best performance is observed for the class that
dominates the training data. The topic confusion
matrix also shows that topics which are well repre-
sented in the training data tend to be more reliably
identified.

In order to ensure that the independent CNN
classifiers provided a strong baseline, we also ran
experiments with other approaches using the same
training data. Specifically, we implemented an
SVM with n-gram features (n = 1, 2, 3) and a
k-nearest neighbor classifier using a vector space
representation of questions based on latent seman-
tic analysis (LSA). Two independent SVMs were
trained, one using DT for topic classification, and
one using DTC for concept classification. Perfor-
mance on topic classification was slightly worse
than the CNN result, but results for concept recog-
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Training Initialize Topic Concept
SVM - 73.4 14.2
Separate T, TC Random 81.3 34.7
Separate T, TC Pre-train 84.1 38.2
C → TC Pre-train - 35.8
T → TC Pre-train 84.5 41.2
T/C/TC Pre-train 84.5 44.4
T/C → TC Pre-train 86.2 57.7

Table 4: Classifier Performance: Topic (accuracy)
and concept (macro F1 score)

nition with the best macro F1 being 14.2 with an
SVM. The LSA-based model gave much worse re-
sults when trained using DTC and tested for con-
cept accuracy; presumably topic factors dominate
this unsupervised representation.

An additional factor that impacts performance
for concept labeling is ignoring the data in figures
accompanying the questions. Generally, for cross-
cutting concepts, some information is presented
graphically, which we are not using in the current
work. Hand annotating 200 questions from the test
set, we find that roughly a quarter of the questions
have associated images. Not all crosscutting con-
cepts are impacted by the presence of an accom-
panying image. The categories that do worse are
scale proportion and quantity, where questions are
accompanied by graphs, energy and matter flows,
with questions related to water, carbon and nitro-
gen cycles, and system and system models, which
have associated block diagrams. It would be pos-
sible to achieve higher accuracy by combining in-
formation from the text and features from associ-
ated figures, since using text alone is not always
enough to identify the correct concept. Consider
the following question: ”Which gas is represented
by letter F?” Without the accompanying figure
that depicts the carbon cycle, it is not possible to
identify the underlying concept of matter and en-
ergy flow.

6 Related Work

As noted earlier, automated discovery of latent
skills to question mapping provide a good fit to
student response data, but the skills are abstract
and cannot be easily used by teachers. In (Barnes,
2005; Lan et al., 2014), this problem is addressed
by hand-labeling questions with topics and associ-
ating the latent concepts learned the different top-
ics that are most frequently represented in the cor-

Concept F1
Score

Precision Recall

S&C 54.54 50.00 60.00
SP&Q 55.62 51.08 61.03
P 60.96 60.63 61.29
S&F 66.67 66.67 66.67
Sys 43.47 52.63 37.03
C&E 50.57 47.82 61.03
E&M 72.16 60.00 90.51

Table 5: Per-Concept Classification Performance

responding data. Interpretation of the latent fac-
tors is in terms of these topic combinations. This
requires hand labeling of training data. The re-
sults may generalize to other data, but this was not
evaluated. In related work, (Lan et al., 2013) uses
multi-objective optimization to learn both skill-
to-item and student-to-skill proficiency mappings,
as well finding a list of keywords associated with
each estimated skill. While both solutions add to
the interpretability of the model, the skills are not
aligned with formal standards or cognitive models.

Non-negative matrix factorization is used by
(Desmarais, 2010) to associate questions with
skills using student response data. The data sets
consist of 4 subject (mathematics, biology, world
history and French). The number of latent skills
are 4, the hypothesis is that matrix factorization
should separate student proficiency in the four
subjects. This work does not provide fine grained
proficiency within individual subjects. The model
achieves 72% accuracy on all four subjects, and
96% on only mathematics and French, which are
the most separable. Results on a set of trivia ques-
tions are also reported, where latent skill to topic
matching achieves an accuracy of 35% for 4 top-
ics.

7 Conclusion

In summary, this work provides a method for iden-
tifying skills required to solve specific science
questions based on the text of the question, where
skills associated with documented standards are
characterized with a relatively small amount of
manual annotation. We use state-of-the-art text
classification methods that are made more effec-
tive by: i) leveraging standards documentation to
harvest and automatically annotate training data,
and ii) applying multi-task learning to jointly clas-
sify both topics and concepts. The best case mod-
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els achieve 86% topic accuracy and 57.7 concept
F1 score. Compared to current data driven mod-
els that are unsupervised and do not provide an
explicit connection to standards, our approach is
interpretable. In addition, it does not require stu-
dent response data and can be used with any ques-
tion set. Compared to frameworks that require hu-
man experts to align questions with attributes, our
approach is scalable to large question sets. It en-
ables teachers to leverage a variety of assessment
materials and provide more individualized feed-
back to students. While the experiments described
here are based on NGSS documentation, the meth-
ods are general and can be used with any well-
documented standard or cognitive model.

The ability to automatically build a Q-matrix is
promising for student learning evaluation and sta-
tistical models for online systems, particularly in-
telligent tutoring systems. Aligning the Q-matrix
to elements of learning outcomes specified in stan-
dards gives the ability to automatically adapt exist-
ing material to new standards and curricula with-
out extensive input from domain experts, improv-
ing reusability of tutoring system material. It
can also provide new tools for educators analyz-
ing learning across larger populations. In partic-
ular, the concept annotation work can help edu-
cators study learning progression along crosscut-
ting concepts, which is largely undocumented at
this point as stated in the report by National Re-
search Council (2012). It can also provide a com-
plementary tool that may be useful for interpret-
ing unsupervised analyses based on large student
response data sets. For example, it may be in-
teresting to look for factors that are predictive of
question difficulty based on classifier predictions
or confidence of different skills.

Whether the level of accuracy is sufficient for
downstream tasks is an open question, since good-
ness of fit is generally evaluated using student
response data, which is not used in the current
work. However, there are multiple opportunities
for improvement, particularly for concept classi-
fication. For example, semantic similarity can be
leveraged in using question templates to select ar-
ticles associated with concepts, and the data could
be filtered to exclude sections that are not well
matched to questions. Semi-supervised training
could increase the number of actual questions used
in training. In addition, the use of information in
tables and figures represents an important direc-

tion for future work. Neural classifiers are well
suited to integrating features from different modal-
ities, and we expect that significant gains may be
possible with this approach.
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