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Abstract

We summarize the involvement of
our CEMI team in the “NLI Shared
Task 2017”, which deals with both textual
and speech input data. We submitted the
results achieved by using three differ-
ent system architectures; each of them
combines multiple supervised learning
models trained on various feature sets. As
expected, better results are achieved with
the systems that use both the textual data
and the spoken responses. Combining
the input data of two different modalities
led to a rather dramatic improvement
in classification performance. Our best
performing method is based on a set
of feed-forward neural networks whose
hidden-layer outputs are combined to-
gether using a softmax layer. We achieved
a macro-averaged F1 score of 0.9257 on
the evaluation (unseen) test set and our
team placed first in the main task together
with other three teams.

1 Native Language Identification

We think of learning a second language L2 by peo-
ple with their native language L1. The Native Lan-
guage Identification (NLI) task is to recognize the
L1 of an L2 author’s text or speech. Most work in
the NLI field has focused on identifying the native
language of students learning English as a second
language, which is also reflected in the very first
experiments with written responses and spoken re-
sponses, see (Koppel et al., 2005) and (Schuller
et al., 2016), respectively.

With respect to the form of analyzed responses,
written ones and spoken ones, we distinguish be-
tween text-based NLI and speech-based NLI, re-
spectively. In text-based NLI, all experiments per-

formed so far are based on searching patterns in
texts that are common to groups of speakers of the
same L1. This idea naturally arises from general
awareness that L1 speakers use typical grammat-
ical constructions or make typical mistakes when
using L2.

Speech-based NLI is naturally being ap-
proached differently, mainly by analyzing the
acoustic properties of a speech utterance by the
acoustic signal processing methods. Very re-
cently (Schuller et al., 2016) organized the Native
Language Sub-Challenge with spoken responses.

While most NLI research has focused on En-
glish as L2, there is also a growing trend to apply
the techniques to other L2 languages, e.g. Norwe-
gian (Malmasi et al., 2015a), Chinese (Malmasi
and Dras, 2014a), Finnish (Malmasi and Dras,
2014b).

NLI has a wide variety of potential applica-
tions and both its techniques and findings can be
used in areas such as Second-Language Acquisi-
tion (Ortega, 2009), author profiling (Rangel et al.,
2013), and authorship contribution (Halvani et al.,
2016). Typically, NLI is employed as a starting
point for investigations into crosslinguistic influ-
ence, see e.g. (Jarvis and Paquot, 2012).

In this paper, we summarize the involvement
of the CEMI team in the NLI Shared Task 2017
co-located with the 12th Workshop on Innovative
Use of NLP for Building Educational Applications
held in September 2017 in Copenhagen, Denmark.
The NLI task is typically framed as a classification
problem where the set of L1s is known a priori.
The NLI Shared Task 2017 deals with 11 output
classes C = {ARA, CHI, FRE, GER, HIN, ITA,
JPN, KOR, SPA, TEL, TUR},1 and defines three
sub-tasks that differ in data sources available:

1The classes correspond to 11 different L1 languages,
namely Arabic, Chinese, French, German, Hindi, Italian,
Japanese, Korean, Spanish, Telugu, and Turkish, respectively.
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ICLEv2 Lang-8 TOEFL11
Granger et al. (2009) Mizumoto et al. (2011) Blanchard et al. (2013)

number of documents 6,085 154,702 12,100
average document length 617 150 348
number of L1s 16 65 11
number of topics variation variation 8
proficiency level inter, high variation low, inter, high

Table 1: Some of the NLI English textual datasets.

• ESSAY Task – the L1 identification is based
solely on the written essays

• SPEECH Task – the L1 identification is
based on the speech utterances (their tran-
scripts and/or extracted i-vectors captur-
ing the acoustic properties of the recorded
speech)

• (Main) FUSION Task – the NLI system is al-
lowed to use both sources listed above

We participated in each track and used only the
available labelled data. The data collection con-
sists of 13,200 English essays (written texts) and
spoken responses (written transcriptions and pre-
processed i-vectors) and its pairwise disjoint sub-
sets of 11,000 training examples, 1,100 devel-
opment test examples, and 1,100 evaluation test
examples. Both training and development test
sets were provided to the shared task participants,
while the evaluation test set was the unseen data
portion kept only for the final evaluation per-
formed by the organizers. The i-vectors are com-
puted from 45-second audio files corresponding to
orthographic transcriptions. The results of the NLI
Shared Task 2017 are reported in Malmasi et al.
(2017).

In the rest of this paper, we first review related
works in Section 2. Other works on feature en-
gineering inspired us to choose features for our
experiments. More details about the features we
used are provided in Section 3. Our approach
focuses mainly on different machine learning al-
gorithms explained in Section 4. We design a
two-step procedure consisting of training stand-
alone classifiers (see Section 4.1), and training
additional parameters of fused models (see Sec-
tion 4.2). In total, we submitted three different
system architectures described in Section 4.3. In
Section 5 we present and discuss our results, and
in the last Section 6 we make some final com-
ments.

2 Related work

Text-based NLI has been addressed since 2005
and speech-based NLI since 2016. We give a pic-
ture of which results have been produced since the
very beginning to date. Given the scope of the NLI
Shared Task 2017, we focus on studies having En-
glish as a second language.

2.1 Text-based NLI

An exhaustive overview of NLI until 2014 has
been provided by Massung and Zhai (2016). In
Table 1 we show the basic characteristics of the
datasets widely used so far. Now we mention only
some works with respect to three milestones.

The very beginning Koppel et al. (2005) im-
plemented a fully automated method to address
text-based NLI for the first time ever. They ex-
perimented with the sub-part of the ICLEv2 cor-
pus containing only five L1s.2 Their feature set
included relative frequencies of function words,
character n-grams, error types and rare POS bi-
grams so that each document was represented as
a vector of 1,035 features. Their SVM-based
method achieved just above 80% accuracy.

Seven years later There were three papers alone
on text-based NLI at the COLING 2012 confer-
ence: Brooke and Hirst (2012) developed a ro-
bust model that works with 79.3% accuracy when
used across the ICLEv2 and Lang-8 corpora. They
extracted a set of 800,000 features,3 which was
extremely large in comparison to the set used
by Koppel et al. (2005). They also discuss the
inadequacy of ICLEv2 as a training corpus and
recommended to pay more attention to the over-
all validity of NLI experiments, rather than to

2Bulgarian, Czech, French, Russian, Spanish
3Function words, character {1-3}-grams, word {1-2}-

grams, POS {1-3}-grams, context-free grammar production
rules, dependencies, proper nouns.
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specific technical approaches. Bykh and Meur-
ers (2012) experimented with ICLEv2 as well
but their seven target classes were different from
those used in (Brooke and Hirst, 2012). They
explored recurring word and POS n-grams and
they achieved 89.71% accuracy that was later sur-
passed by Tetreault et al. (2012) who used (Kop-
pel et al., 2005)’s feature set enriched with the
Tree Substitution Grammar features (Swanson and
Charniak, 2012), the Stanford dependency fea-
tures (de Marneffe et al., 2006) and language
model perplexity scores to achieve an accuracy of
90.1%.

The TOEFL11 corpus available The First
Native Language Identification Shared Task in
2013 (Tetreault et al., 2013) marks an important
stage in the text-based NLI research mainly be-
cause of making available the TOEFL11 corpus.
This corpus consists of essays on eight different
topics written by non-native speakers of three pro-
ficiency levels (low/medium/high); the essays’ au-
thors have 11 different native languages listed in
Section 1. The corpus contains 1,100 essays per
language with an average of 348 word tokens per
essay. A corpus description and the motivation
to build such corpus can be found in (Blanchard
et al., 2013). The report by Tetreault et al. (2013)
summarizes the techniques used and the results
achieved by the competing teams in the shared
task.

TOEFL11 has become a common evaluation re-
source for the text-based NLI task. Nicolai et al.
(2013) used a subset of the corpus with only five
L1s to train probabilistic graphical models.4 Bykh
and Meurers (2014) systematically explored non-
lexicalized and lexicalized context-free grammar
production rules. They combined them with word-
based and POS-based n-grams and they achieved
accuracy of 84.8%, the best result reported by that
time. Later on, Ionescu et al. (2014) obtained a
new state-of-the-art result, 85.3% accuracy, so that
they combined several string kernels using multi-
ple kernel learning to do feature selection. Their
method is completely language independent, and
texts are treated as a sequence of characters.

Krı́ž et al. (2015) measure similarity between
general English and English used by L1 speak-
ers using cross-entropy scores, which then serve as
features for an SVM classifier. It requires 12 lan-
guage models of English – one model of general

4Chinese, French, German, Japanese, and Turkish.

System # features Acc.

1 (Malmasi and Dras, 2017) ? 85.3
2 (Bykh and Meurers, 2016) ? 85.4?

3 (Gebre et al., 2013) 73,626 84.6
4 (Jarvis et al., 2013) 400K 84.5
5 (Ionescu et al., 2014) ? 84.1

. . . . . . . . .
(Krı́ž et al., 2015) 55 82.4

Table 2: Top 5 written NLI systems on TOEFL11,
and for comparison the system with the lowest
number of (entropy-based) features. A 10-fold
cross-validation accuracy is provided (Acc. in %).
?The authors report the 85.4% accuracy on the
evaluation test set.

English based on Wikipedia data and eleven spe-
cial models, each based on a particular L1 group.
The best classification accuracy of 82.4% has been
achieved by a combination of language models
built upon four different n-gram types -– tokens,
characters, suffixes, and POS tags. These 44 (=
4x11) cross-entropy scores completed with other
nine numerical and two categorical features result
in the final set of 55 features. In fact, this compact
feature set comprises a big amount of statistical in-
formation about a huge number of n-grams hidden
in the language models consisting of smoothed lin-
ear n-grams combinations.

In contrast, (Malmasi and Cahill, 2015) ex-
tracted a much bigger feature set and they focused
on measuring association between two feature sets
through classification errors.

The very last work on text-based NLI focuses
on systematic examination of ensemble methods
for addressing NLI with three L2s, namely En-
glish, Norwegian, and Jinan Chinese (Malmasi
and Dras, 2017).

Table 2 presents the top 5 text-based NLI sys-
tems on TOEFL11. We also provide the same fig-
ures for the system (Krı́ž et al., 2015) with an ex-
tremely low number of features. Here is a brief de-
scription of the algorithms and the features used:

• (Malmasi and Dras, 2017) – ensemble clas-
sifier, bagging, linear discriminant analysis;
n-grams of lemmas, words, function words,
POS tags, dependencies, CFG rules, Adaptor
Grammar, TSG fragments

• (Bykh and Meurers, 2016) – ensemble clas-
sifier; n-grams of lemmas, words, POS tags
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where 1 ≤ n ≤ 10, dependencies, suffixes,
verb subcategorization patterns

• (Gebre et al., 2013) – SVM; tf-idf of word
unigrams and bigrams, df ≥ 5, normalized
feature vectors

• (Jarvis et al., 2013) – SVM; {1,2,3}-grams
of words, lemmas, POS tags, df≥ 2, normal-
ized feature vectors

• (Ionescu et al., 2014) – Kernel-based learn-
ing; character {5-8}-grams

• (Krı́ž et al., 2015) – SVM; entropy-based
features using language modeling (tokens,
characters, POS, suffixes)

Malmasi et al. (2016) analyze the results of
the Discriminating between Similar Languages
shared task and they state that numerous teams
attempted to use new deep learning-based ap-
proaches, and that most of them ended with a
poor performance compared to traditional classi-
fiers. To the best of our knowledge, there has been
no published paper on using deep learning in text-
based NLI yet. We can only speculate that re-
searchers have already applied deep learning tech-
niques to text-based NLI but they did not beat tra-
ditional classifiers.

2.2 Speech-based NLI
The speech-based NLI shared task was orga-
nized under the name Native Language Sub-
challenge as one of the subtasks of the IN-
TERSPEECH 2016 Computational Paralinguistics
Challenge (Schuller et al., 2016).

The ETS Corpus of Non-native Spoken English
was provided for the task consisting of 5,132 ex-
amples in total – 3,300 examples were selected
for training, 965 examples for the development
test set, and 867 examples for the evaluation test
set. The corpus includes spoken responses from
non-native speakers of English drawn from 11 dif-
ferent L1 backgrounds that are identical to the
TOEFL11 L1s. The recorded utterances are 45-
second long for each speaker. The participants
were provided with the audio files (amplitude nor-
malized) and were also pointed to the toolkit that
was used to extract the audio features for the base-
line system provided by the sub-challenge orga-
nizers. It is obvious that the extracted features did
not reflect only the actual content of the utterances
but also – and possibly more prominently – the

System UAR (%)

1 (Abad et al., 2016) 84.6
2 (Shivakumar et al., 2016) 78.6
3 (Gosztolya et al., 2016) 70.7
4 (Huckvale, 2016) 69.8
5 (Senoussaoui et al., 2016) 68.4
6 (Keren et al., 2016) 61.5
7 (Jiao et al., 2016) 52.2
8 (Rajpal et al., 2016) 39.8

baseline 45.1

Table 3: Spoken NLI systems submitted to the
2016 NLI shared task. UAR stands for Un-
weighted Average Recall.

acoustic properties of the speech that are suppos-
edly and significantly influenced by the speaker’s
native language. Given the usual background of
the INTERSPEECH attendees, it is only natural
that most participants of the sub-challenge had a
strong background in speech signal processing and
(at least the top teams) concentrated on their own
sophisticated methods for feature extraction.

According to our knowledge, no transcriptions
of the recorded utterances were provided and none
of the participants attempted to use an automatic
speech recognition system in order to create tran-
scripts that could be used as the source of textual
features. Given the poor performance of the sys-
tem based solely on the (manual) speech transcrip-
tions in the NLI Shared Task 2017, it seems that
ignoring the textual content of the utterances was
a wise decision.

Table 3 presents the systems submitted to the
sub-challenge. Since the top two teams, whose
systems outperformed the rest by a large margin,
employed the i-vector feature representation, the
organizers have decided to provide the i-vectors
directly to the NLI Shared Task 2017 participants,
supposedly in order to lower the entry thresh-
old for participants without the speech processing
background. A short high-level description of the
i-vector principles is given in Section 3.

3 Feature extraction

Textual features Since our work concentrates
mainly on the different machine learning algo-
rithms (described in detail in the later sections),
we did not perform any sophisticated feature
engineering. Instead, we picked the textual
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features that have been proven to be effective in
the experiments performed by other researchers
previously, being mostly inspired by Gebre et al.
(2013). We have employed n-grams of various
lengths from the following “data streams”:

• Word unigrams, bigrams and trigrams ex-
tracted from both essays and speech tran-
scriptions.

• Character n-grams with n ranging from 3 to
5, extracted from the essays only.

• POS n-grams with n ranging from 1 to 5, also
extracted only from the essays.

All features were weighted using the well-
known tf-idf weighting scheme, with the sublinear
tf scaling and the standard idf, that is, the weight
w of each feature i in the document j is given by:

wi,j = (1 + log(tf i,j)) · log
N

ni
(1)

where N denotes the total number of documents
and ni the number of documents containing the
feature i. Then the resulting feature vectors are
normalized to unit length. Quick experiments on
the development data have shown that:

• Sublinear tf scaling substantially outper-
forms the unscaled tf.

• The number of n-gram based-features used
in the classification can be reduced to top
30,000 features (ordered by decreasing tf )
without hurting the performance.5 The fea-
ture vector dimension was thus limited to 30k
for all textual features described above.

Speech features Here we did not have any other
choice than using the i-vectors provided by the
Shared Task organizers. The i-vectors were orig-
inally developed as a representation of speech ut-
terances in a low-dimensional subspace, which ef-
ficiently conveys speaker’s “vocal” characteristics
and is therefore suitable for speaker recognition
(Dehak et al., 2011). The i-vectors of course con-
tain also the information about the acoustic envi-
ronment, transmission channel or phonetic content
of the utterance. Intuitively, the phonetic content
appears to be an important factor distinguishing

5Note that the total number of features would exceed 2.5
million in the case of word trigrams.

the L1 of the speaker as the native language nat-
urally influences the way the speaker pronounces
English phonemes. The i-vectors were extracted
from the 45-second audio files by the task orga-
nizers, employing a state-of-the-art approach and
using the Kaldi6 toolkit. The dimension of the i-
vectors is 800, reduced by factor analysis from su-
pervector of statistics accumulated on the univer-
sal background model with 1,024 components.

Several experiments (and the description of the
the state-of-the-art NLI in (Malmasi and Dras,
2017)) confirmed our intuition that simply con-
catenating the individual feature vectors and train-
ing a single classifier does not yield the best re-
sults. We therefore concentrated mainly on the de-
velopment of the fused (ensemble) classifiers, de-
scribed in details in the following section.

Finally, let us point out that we have decided
not to use the character and POS n-grams from the
speech transcription data in our final systems. The
reason is the fact that 1) word n-grams are by far
the best performing textual features, yet their per-
formance was rather poor on the speech transcrip-
tions, and 2) any performance gain from charac-
ter and POS n-grams was clearly overshadowed
by the i-vectors contribution in both speech and
fusion tasks.

4 Prediction model

We used multiple supervised models to process
each type of input features. Then, we fused the
predictions of such models, i.e. we combined the
outputs of the classifiers instead of combining the
input features and training one joint model. This
approach consists of two steps: (1) training the
stand-alone classifiers, and (2) training the addi-
tional parameters of the fused model. Optionally,
the step (2) could employ additional retraining of
the stand-alone classifiers.

4.1 Stand-alone classifiers

The term “stand-alone classifiers” is herein used
for the systems whose internal parameters are
trained with a standard supervised machine learn-
ing algorithm (e.g., gradient descent) and which
take the input feature vector and output a vector
of |C| probabilities. The decision about the class
membership is then determined solely by the index
of the maximum value of such output vector.

6http://kaldi-asr.org
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Linear models To perform the classification us-
ing textual features, we widely used linear mod-
els. The training procedure of such model var-
ied – we experimented with a linear SVM and
stochastic gradient descent training implemented
using the LinearSVC and SGDClassifier
classes from the scikit-learn toolkit (Pedregosa
et al., 2011). Both implementations support sparse
feature representation and therefore in our experi-
ments the full feature vector could be used.

Non-linear models We also used non-linear
models implemented as feed-forward neural net-
works (FFNN) containing hidden layers with non-
linear functions. In our experiments we also tried
the very deep architectures such as ResNets and
DenseNets, but they were outperformed by a rel-
atively simple FFNN with one hidden layer. This
is probably caused by a relatively low number of
training examples and a high number of parame-
ters of deeper networks. The FFNNs were used to
classify both textual and speech-related features.
The size of the textual feature vectors was reduced
to 30k as explained in Section 3. The FFNNs
were implemented in the Keras system (Chollet
et al., 2015). To optimize the FFNNs, we used
the ADAM algorithm (Kingma, 2015) with a cat-
egorical cross-entropy loss.

Probabilistic Linear Discriminant Analysis
(PLDA) is a state-of-the-art system for i-vector
based speaker verification (Kenny, 2005) and can
by easily used for representation of another infor-
mation, the L1 in our case. I-vectors also con-
tain some noisy information not relevant to the
L1 identity (e.g. influence of the channel, speaker
etc.). If structured training data (more than one
session for each L1) are available, PLDA can be
trained to model L1 and session variability sepa-
rately. Then, only the L1 domain is used for iden-
tification. Moreover, the PLDA model itself can
be used as a powerful tool for compute the simi-
larity between two i-vectors (only in L1 domain).
In our case, the test i-vector is compared to |C|
L1 i-vectors representing the models of particu-
lar L1 languages. The similarities are normalized
to sum up to one. The L1 i-vector is computed
as the mean of all i-vectors belonging to a given
class. The PLDA classifier was used to classify
i-vector features in the ensemble systems used in
the SPEECH and FUSION tasks.

4.2 Model combinations

To combine the outputs of the stand-alone clas-
sifiers, we experimented with three different
schemas: (1) discriminative logistic regression,
(2) softmax combination of hidden layer’s outputs,
and (3) softmax combination of classifier’s out-
puts. Since the development data set provides an
additional valuable source of labelled data, special
attention has to be paid to the correct estimation of
the fusion parameters, as described below.

Discriminative logistic regression for fusing
system’s outputs was implemented using an
open-source FoCal Multi-class toolkit (Brümmer,
2007). This MATLAB toolkit allows evaluation,
calibration and fusion of, and decision-making
with, multi-class statistical pattern recognition
scores. This toolkit is different from, but similar
in design principles to the original FoCal Toolkit
that was used by several NIST Speaker Recogni-
tion Evaluation 2006 participants to fuse and cali-
brate their scores (Brümmer et al., 2007). For the
fusion we used the tool based on calibration and
discriminative logistic regression of K classifiers

ŷ(x) =
K∑

k=1

αkyk(x) + β, (2)

where yk(x) ∈ <|C| is a vector of posterior proba-
bilities obtained from k-classifier, ŷ(x) is a vector
of fused probabilities and vectors α ∈ <K and
β ∈ <|C| are parameters of the fusion. These
parameters were first estimated on the held-out
data (data not used to train the stand-alone classi-
fiers), then the classifiers were retrained to employ
all available labelled data (train and development)
and the previously estimated vectorsα and β were
used.

Softmax combination The softmax combina-
tion is implemented as a neural network without
hidden layers. The vector of fused probabilities
ŷ(x) is given by:

a(x) = W ·

y1(x)
...

yK(x)

 + b (3)

ŷ(x) = softmax(a(x)) (4)

where W is a weight matrix and b is a bias vec-
tor. The values of W and b are optimized using
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Figure 1: Architecture of the homogeneous neural network for the FUSION task.

the ADAM algorithm and the categorical cross-
entropy loss. We experimented with two different
choices of yk:

• The output of the hidden layer from the
FFNN corresponding to a specific feature set.
In this case, we merged the trained stand-
alone FFNNs to form a fused FFNN ac-
cording to Figure 1 and the parameters of
the stand-alone FFNNs were trained using
the back-propagation errors. The stand-alone
FFNNs and the fused FFNN were trained on
the union of train and development datasets.

• The |C|-dimensional output of the stand-
alone classifier. For the linear models the out-
put consists of the values of decision func-
tions, for the FFNN such output is the po-
tential of the output layer before applying
the softmax activation. In this case, we
first trained the stand-alone classifiers on the
train dataset, and then we trained just the fu-
sion parameters W and b on the development
dataset.

4.3 Submitted systems
Based on the experiments with the development
data set, we finally decided to submit three dif-
ferent system architectures. Each architecture is a
combination of multiple systems trained on differ-
ent features, even in the ESSAY and SPEECH tasks.

• Classical model ensemble (“ensemble”) con-
sists of different stand-alone models trained

separately and combined using the discrimi-
native logistic regression.

• Homogeneous FFNN (“homogeneous”) uses
a set of stand-alone FFNNs trained sepa-
rately. The number of hidden layers, num-
ber of neurons in hidden layers, and activa-
tion functions are identical for each stand-
alone FFNN. The outputs of hidden layers in
the trained FFNNs are combined using soft-
max combination. The resulting network is
retrained. To avoid overfitting, we used the
dropout layer before the softmax layer.

• Heterogeneous FFNN (“heterogeneous”)
employs a set of FFNNs with different
architectures. The stand-alone classifiers
are trained separately using different objec-
tives. The |C|-dimensional outputs are then
combined using softmax combination. The
resulting network is not retrained during
estimating the softmax weights and biases.

For different tasks we used the following different
sets of features and classifiers:

ESSAY task – the ensemble system used
word, char and POS features and FFNN and
SGDClassifier models for each feature set (=
3×2 stand-alone models). The homogeneous sys-
tem used word, char and POS features and FFNN
with 1 hidden layer containing 100 neurons. The
heterogeneous system used the same features and
SGDClassifier only.
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Figure 2: Architecture of the heterogeneous neural
network for the SPEECH task.

SPEECH task – the ensemble system used
FFNN classifiers trained on word and char features
extracted from transcripts and PLDA and FFNN
trained from i-vectors. The homogeneous system
used word features from transcripts and i-vectors
and FFNN (1 hidden layer, 100 neurons). The het-
erogeneous system contained SGDClassifier
trained from transcript word features and FFNN
(1 hidden layer, 100 neurons) trained on i-vectors
(see Figure 2).

FUSION task – for each system we used a com-
bination of the stand-alone classifiers used in the
ESSAY and SPEECH tasks. An example of such a
combination for the homogeneous system is given
in Figure 1.

5 Results and discussion

The final results of the submitted systems mea-
sured on the unseen evaluation test set are shown
in Table 4. In this paper, all F1 values are macro-
averaged over all 11 output classes. It should be
noted that the relatively low number of test exam-
ples combined with a higher number of classes re-
sulted in quite wide confidence intervals. For ex-
ample, we evaluated the F1 measure for the ho-
mogeneous system on the FUSION task. Using
the development data set and a bootstrapping ap-
proach with 550 samples and 1,000 repetitions we
found that the resulting average F1 0.9112 has as-
sociated a 95 % confidence interval of <0.8850;

Task System F1

ensemble 0.8536
ESSAY homogeneous 0.8491

heterogeneous 0.8464

ensemble 0.8570
SPEECH homogeneous 0.7987

heterogeneous 0.8607

ensemble 0.9238
FUSION homogeneous 0.9257

heterogeneous 0.9244

Table 4: Summary of the results for each task and
our three architectures. The macro-averaged F1
value was measured on the unseen evaluation test
set by the shared task organizers.

Figure 3: Confusion matrix for the FUSION task,
homogeneous system. Measured on the unseen
evaluation test set.

0.9345> (!). Even the variations caused by the
random seed selection are noticeable: for ten dif-
ferent seeds the F1 value varies between 0.9075
and 0.9166. For proper perspective, it is important
to keep in mind that the difference of 0.001 in F1
evaluated on test data means that the systems mis-
match in approximately 1 correctly classified test
example.

Table 4 also shows another interesting fact
that the F1 value in the SPEECH task is higher
than in the ESSAY task. We assume this is
caused by the availability of two modalities – the
speech alone (i-vectors) and the lexical informa-
tion (transcripts). On the development test set, the
stand-alone classifier trained solely on i-vectors
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achieved an F1 value of only 0.8080, while the
classifier trained solely on transcribed text fea-
tures achieved only 0.5787. In this case, the
combination of a relatively weak predictor with a
strong model further improved the performance to
0.8610. We also observed that training classifiers
on the union of the training and development data
sets consistently improves performance – the in-
crease in the F1 value (evaluated on the unseen
test data) is approximately 0.004. To illustrate the
performance on different feature types, we eval-
uated the stand-alone classifiers of the homoge-
neous system trained for the FUSION task on the
development data. The results are summarized in
Table 5.

We also used the Local Interpretable Model-
agnostic Explanations (LIME) method (Ribeiro
et al., 2016) to extract the most informative fea-
tures for a given L1 class. The results showed
that just the presence of certain words very of-
ten leaks significant information about the L1 lan-
guage (this effect was already observed by (Ge-
bre et al., 2013)) – for example essays labelled as
JPN contain words Japan, Japanese, KOR men-
tion Korea and Korean. Also, there are some ty-
pos that have origin in the L1 language (e.g., ITA:
pubblic from Italian pubblico – 52 examples in the
training data, FRE: exemple from French exemple
– 174 examples). The confusion matrix in Fig-
ure 3 shows that 40 % of all errors are confusions
between the HIN and TEL classes. This is proba-
bly caused by the fact that the L1 speakers of these
languages have gone through the same educational
system of India. In addition, the geographic refer-
ences mentioned above do not allow to discrimi-
nate between them. During the system develop-
ment, we also experimented with the advanced
architectures of neural networks, such as convo-
lutional networks, recurrent networks, ResNets,
DenseNets and pretrained word embeddings but
none of them performed better than the linear
SVM baseline.

6 Conclusion

Malmasi et al. (2015b) previously showed that
even NLI systems working with just written es-
says can outperform human decisions. Our exper-
iments revealed that adding information extracted
from the spoken responses of non-native English
speakers results into a substantial improvement in

Features F1

word 0.8151
ESSAY char 0.8025

POS 0.5012

SPEECH
transcript words 0.5591
i-vectors 0.7962

Table 5: Performance of five stand-alone classi-
fiers used in the homogeneous FUSION system
measured on the development test set. The stand-
alone classifiers are FFNNs, 1 hidden layer with
100 neurons. In the FUSION model they were fur-
ther trained by the softmax combination training.

classification performance (about 5 % relative7). It
corroborates our initial intuition that the textual
and spoken data really complement well as the
source of information about the L1 language.

To sum up our results measured on the un-
seen evaluation test set, we attained the following
macro-averaged F1 scores:

• ESSAY task: 0.8536
– shared second place in the task,

• SPEECH task: 0.8607
– shared first place in the task,

• main FUSION task: 0.9257
– shared first place in the task.

Let us stress out that those results were achieved
by rather straightforward (yet at the same time in-
formed and careful) application of state-of-the-art
machine learning algorithms, using feature extrac-
tion methods that have already been proven effi-
cient both in previous NLI shared tasks and in our
NLP and speech processing research.
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