
Proceedings of the Third Workshop on Discourse in Machine Translation, pages 99–109,
Copenhagen, Denmark, September 8, 2017. c©2017 Association for Computational Linguistics.

Lexical Chains meet Word Embeddings in Document-level Statistical
Machine Translation

Laura Mascarell
Institute of Computational Linguistics, University of Zürich
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Abstract

The phrase-based Statistical Machine
Translation (SMT) approach deals with
sentences in isolation, making it difficult
to consider discourse context in transla-
tion. This poses a challenge for ambiguous
words that need discourse knowledge to be
correctly translated. We propose a method
that benefits from the semantic similar-
ity in lexical chains to improve SMT out-
put by integrating it in a document-level
decoder. We focus on word embeddings
to deal with the lexical chains, contrary
to the traditional approach that uses lex-
ical resources. Experimental results on
German→English show that our method
produces correct translations in up to 88%
of the changes, improving the translation
in 36%-48% of them over the baseline.

1 Introduction

Current phrase-based Statistical Machine Transla-
tion (SMT) systems translate sentences in a docu-
ment independently (Koehn et al., 2003), ignoring
document context. This sentence-level approach
causes wrong translations when discourse knowl-
edge is needed. Therefore, many methods that in-
tegrate discourse features have been proposed to
improve lexical choice.

Documents are a set of sentences that function
as a unit. When we translate at document-level
we take into account document properties that help
to improve the quality of the translation, not only
locally, but also in the context of the document.
Coherence and cohesion are terms that describe
properties of texts. Coherence concerns the se-
mantic meaningfulness of the text, whereas cohe-
sion has to do with relating the sentences through
reference, ellipsis, substitution, conjunction, and

the use of semantically-similar words. Often,
these words are related sequentially in the docu-
ment, defining the topic of the text segment that
they cover. These sequences of words are lexical
chains, and they have been successfully used in
research areas such as information retrieval (Stair-
mand, 1996; Rinaldi, 2009) and document sum-
marization (Barzilay and Elhadad, 1997; Pourvali
and Abadeh, 2012). However, they have received
little attention in Machine Translation (MT).

Galley and McKeown (2003) introduce a
method to detect lexical chains using WordNet
(Miller, 1995). The method first builds a represen-
tation of all words in the document and all their
senses, creating semantic links such as synonym,
hypernym, hyponym, and sibling between them. It
then uses the semantic links to disambiguate each
word and builds the lexical chains accordingly.

The performance of the method is evaluated
on a sense disambiguation task. Indeed, lexical
chains help to disambiguate the sense of poly-
semic words by looking at the words in the chain.
Despite the problems of word senses (Kilgarriff,
1997, 2006; Hanks, 2000), it shows the poten-
tial that lexical chains have to improve the lexical
choice of words with multiple translations in MT.

In this paper, we present a method that uses
word embeddings instead of lexical resources to
detect the lexical chains in the source and also
to maintain their semantic similarity on the target
side. We focus on the German→English transla-
tion and integrate our model into the document-
level SMT decoder Docent (Hardmeier et al.,
2013). We perform a manual evaluation of the out-
put, which shows that our method improves the
translation over the baseline, with a tendency to
consistently translate the words in the chain. Fur-
thermore, experimental results reveal that the use
of word embeddings in lexical chain detection out-
performs lexical resources on the translation task.
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2 Related Work

The one-sense-per-discourse hypothesis (Gale
et al., 1992) is applied in MT, revealing lexical
choice errors when words in a document are incon-
sistently translated (Carpuat, 2009). As a conse-
quence, several approaches improve lexical choice
by enforcing consistency throughout the docu-
ment. Tiedemann (2010) and Gong et al. (2011)
use cache-models for this purpose, and Xiao et al.
(2011) apply a three-steps procedure that consist
of identifying the ambiguous words in a docu-
ment, obtaining a set of consistent translation for
each of them, and generating a new translation
of the document, where the identified words are
translated consistently. Pu et al. (2017) also study
consistency in translation and train classifiers on
syntactic and semantic features to predict how to
consistently translate pairs of nouns in a docu-
ment. More specifically, Mascarell et al. (2014)
and Pu et al. (2015) benefit from text dependen-
cies to improve the translation of words that refer
back to compounds.

Guillou (2013) analyses when (i.e. genre) and
where (i.e. part-of-speech) lexical consistency is
desirable. The results suggest that nouns should be
encouraged to be translated consistently through-
out the document, across all genres. Addition-
ally, consistent translation of verbs and adjectives
is beneficial for technical and public information
documents, respectively.

Garcia et al. (2017) implement a feature for
the document-level decoder Docent that uses word
embeddings to translate repeated words consis-
tently. The manual evaluation reveals that 60% of
the time the output improves over the baseline and
20% of the time is equivalent or equal.

Word embeddings have also been proposed for
Word Sense Disambiguation (WSD) (Iacobacci
et al., 2016). Previously, other approaches were
introduced to utilise embeddings for supervised
(Zhong and Ng, 2010; Rothe and Schütze, 2015;
Taghipour and Ng, 2015) and knowledge-based
WSD (Chen et al., 2014).

Other approaches focus on including topic mod-
elling and topic distributions for disambiguation
(Hasler et al., 2014). Xiong and Zhang (2013)
translate the coherence chain of the source doc-
ument and use it to produce a coherent translation.

Xiong et al. (2013) are the first to explore the
benefits of using lexical chains in MT. They in-
troduce lexical chain based cohesion models in a

hierarchical phrase-based SMT system (Chiang,
2005) trained on Chinese→English. To do so, they
first use Galley and McKeown (2003)’s method
to detect the lexical chains in the source and next
generate the target lexical chains that are used by
their cohesion models. To generate these target
lexical chains, they train MaxEnt classifiers — one
per unique source chain word — that predict the
translation of each word given the previous and
the next word in the chain and the immediate sur-
rounding context. This machine learning approach
results in limitations concerning chain words from
the test set that are infrequent or even missing in
the training data. Later, Xiong and Zhang (2014)
integrate a sense-based translation model also us-
ing MaxEnt classifiers.

3 A Lexical Chain Model for SMT

This section describes the proposed method to im-
prove the quality of translation in SMT utilising
lexical chains. The method works as follows: it
first detects the lexical chains in the source doc-
ument (Section 3.1) and feeds them into the Lex-
ical Chain Translation Model (LCTM), which is
integrated into the document-level decoder Docent
(Hardmeier et al., 2013). The model then gets their
counterpart in the target through word alignment
and computes the LCTM score that contributes to
the overall translation score in the SMT system
(Section 3.2). The reminder of this section de-
scribes the method in more detail.

3.1 Detecting Source Lexical Chains

Our automatic method to detect and build lex-
ical chains from a document is inspired by the
approach proposed by Morris and Hirst (1991).
Their approach consists of manually detecting
those lexical chains using a thesaurus to find the
similarity between words. Our method imple-
ments the manual algorithm, detecting and build-
ing the lexical chains automatically.

Instead of using a thesaurus, we use word
embeddings to compute the semantic similarity.
Word embeddings are representations of words in
a vector-space, which are commonly exploited to
compute similarity between words (Mikolov et al.,
2013) (See discussion in Section 3.3).

The method works as follows. It processes sen-
tences in a given document sequentially. For each
content word c (i.e. nouns, verbs, and adjectives)
in every sentence, it checks whether c is semanti-
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ihr nächstes smartphone wird zwei betriebssysteme beherrschen.
Die amerikaner rechnen für die zukunft mit einem handy, auf dem der benutzer durch drücken einer
einzigen taste zwischen verschiedenen betriebssystemen umschalten kann.
Die vorgelegten Pläne sehen vielversprechend aus.

Lexical Chain1: {umschalten (“switch”), betriebssystemen (“operating system”), benutzer (“user”),
betriebssysteme (“operating system”)}
Lexical Chain2: {handy (“cell phone”), smartphone (“smart phone”)}

Figure 1: Output of our lexical chain detection method on three sentences from newstest2010.

cally related to the previous content words c’ in a
span of five sentences, as suggested by Morris and
Hirst (1991). If c and c’ are semantically related,
we proceed as follows:

• If c and c’ do not belong to any chain, we
create a new chain consisting of c and c’.

• If c’ is in a chain chi, we append c to chi.

• If c and c’ belong to two different chains, we
then merge both chains.

The detected lexical chains preserve the seman-
tic link between related content words, creating
also one-transitive links. That is, ci links to ci+l

by transitivity if ci links to ci+k and ci+k to ci+l,
where i<k<l (Morris and Hirst, 1991).

Every link to a word in the lexical chain gives
context to disambiguate the word itself. There-
fore, the more links are created, the better. One-
transitive links are safe to consider, because they
are still semantically related as indicated by Mor-
ris and Hirst (1991), but further than that leads to
errors. As an example, they point to the follow-
ing lexical chain: {cow, sheep, wool, scarf, boots,
hat, snow}. Here, we observe that while consecu-
tive words in the chain like wool and scarf are se-
mantically related, cow and snow are not. Figure 1
shows the lexical chains detected with our method
on three sentences extracted from the document
idnes.cz/2009/12/11/76504 in newstest2010.1

3.2 The Lexical Chain Translation Model
In order to improve translation quality utilising
lexical chains, we develop a model that favours
document translations where the words in the tar-
get lexical chain are semantically related. The tar-
get lexical chains are the corresponding counter-
part of the source lexical chains detected, and they

1http://www.statmt.org/wmt16/
translation-task.html

are obtained by the LCTM through word align-
ment.

3.2.1 Integration into Docent
The LCTM is integrated as an additional feature
function in the document-level decoder Docent as
a standard SMT model:

f(s, t) =
∑

k

λkhk(s, t), (1)

where hk are feature functions scores and λk

their corresponding weight, obtained with the
MERT optimisation technique (Och, 2003).

To understand how the model is integrated into
Docent, we summarise how Docent works. Do-
cent implements a search procedure based on
local search. At every stage of the search,
the decoder randomly applies a state operation
such as change-phrase-translation (re-
places the translation of a phrase with another
from the phrase table), swap-phrases (ex-
changes phrases), move-phrases (randomly
moves phrases in the sentence), and resegment
(changes the segmentation of the source phrase).
The search algorithm accepts then a new state (i.e.
a new translation of the document), when its docu-
ment score computed by Equation 1 is higher than
the last accepted. To compute the document score,
it considers the score obtained from each feature
function. The initial translation of the whole doc-
ument is either randomly generated or a translation
from Moses (Koehn et al., 2007).

The LCTM is implemented as one of the feature
functions in Docent, and therefore it contributes to
the overall document score. Consider the example
in Figure 2. This example shows two hypothet-
ical Docent states when applying the state oper-
ation change-phrase-translation on the
German word Preis (English “price” or “award”)
from Diesen Preis haben heute . . . davongetragen.
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State q: This award was received today by . . .
State r: This price was received today by . . .

Chain: {Nobelpreis, Preis, Preisträger}
Figure 2: Translation output of two differ-
ent Docent states after applying the operation
change-phrase-translation. Each state
considers a different translation candidate of the
German word Preis.

Since Preis is linked to Nobelpreis (“Nobel
Prize”) and Preisträger (“prize winner”) in the
source lexical chain, the semantic similarity of its
counterpart lexical chain in the target is higher
when Preis is translated into award. This leads to
a higher LCTM score that contributes to a higher
document score. The State q is then preferred
by the decoder. Note that in this case, the lan-
guage model also increases in State q. That is
because received has a higher probability together
with award than with price.

3.2.2 Computation of the Model Score
Each lexical chain is a chain of words connected
by their semantic similarity, which is also com-
puted using word embeddings. We define the
model score as the mean of the semantic similar-
ity scores of each target lexical chain in a docu-
ment translation. To compute the semantic simi-
larity simi of a lexical chain chi, we average the
semantic similarity of all links in chi as in the fol-
lowing Equation

simi =
1
m

m∑
j=1

SemLinkij , (2)

where every link is comprised of two words, and
its semantic similarity SemLink is the cosine sim-
ilarity between their embeddings. In the experi-
ments, we use German in the source, which is a
language rich in compounds. These compounds
have multiword equivalents in English and can
be detected as part of a lexical chain (e.g. Nord-
wand is translated into the English north face). To
deal with such cases, simi is the maximum sim-
ilarity score obtained from each content word in
the translation of a compound and the rest of the
words in the lexical chain.

Every lexical chain has a different relevance in
the computation of the LCTM score, which de-
pends on three factors introduced by Morris and

Hirst (1991): length (λ), repetition (β), and den-
sity (ρ). The later is defined as the ratio of words
in the lexical chain to all words in the fragment
of text that it covers. Accordingly, the longer, the
denser the lexical chain is and the more repetition
it has, the higher its weight is in the computation
of the overall model score. These factors have not
been addressed in the literature when dealing with
lexical chains. Morris and Hirst (1991) define the
strength of lexical chains, but they do not use it in
their experiments.

To compute the length, density, and repetition
of every lexical chain (i.e. λchi

, ρchi
and βchi

) we
proceed as follows. Let rel be the total number of
semantic relations in a lexical chain chi, rep the
total number of repetitions, and span the number
of words in the fragment of the document between
the head and the tail of chi. ρchi

and βchi
are then

computed by the following two Equations

ρchi
=

rel

span
, (3)

βchi
=

rep

span
. (4)

Finally, the length λchi
is the ratio of rel to the

number of relations of the longest lexical chain
detected. The longest lexical chain gets therefore
the highest length value (i.e. 1.0) among all lexical
chains in the document.

After computing all factor values for each lexi-
cal chain, the model computes the weight for each
of them. The weight of a chain wchi

is then the
average of ρchi

, λchi
and βchi

, where ρchi
, λchi

,
βchi

, and wchi
are all values between 0 and 1.2

Finally, the overall LCTM score is computed by

LCTM =
1
n

n∑
i=1

wchi ·
1
mi

mi∑
j=1

SemLinkij . (5)

3.3 Computation of Semantic Similarity
Dictionaries have been described in the literature
to deal not only with lexical chains (Galley and
McKeown, 2003), but with any task related to se-
mantics such as WSD. However, it is unrealistic
to assume that the fine-grained classification of

2We evaluated the impact of length, density, and repetition
on translation by allowing tunable weights (0.0, 0.5, or 1.0)
to each parameter and computing wchi as the weighted aver-
age. The translation differences between the configurations
were small, and the best performance was obtained when all
of them had the maximum weight (1.0).
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senses in dictionaries is adequate for any NLP ap-
plication (Kilgarriff, 2006). Even the classification
itself has been questioned in terms of cognitive va-
lidity (Kilgarriff, 1997, 2006; Hanks, 2000).

As Firth (1957) stated “You shall know a word
by the company it keeps”. That is, words that
are used and occur in the same contexts tend to
have similar meanings. Essentially, word embed-
dings are vector representations of words in a vec-
tor space that are learned based on the immedi-
ate context in which they occur. Our method uses
word embeddings as a means to compute seman-
tic similarity between words independently of dic-
tionary senses to detect the lexical chains in the
source and to compute the LCTM score.

The coverage and the quality of the lexical
chains are the most important factors in our ap-
proach to improve translation. Words that are not
in any lexical chain are not considered for im-
provement at the decoding stage by our LCTM.
Word embeddings detect words as semantically re-
lated when they occur in similar context, even if
they do not have a hypernym, hyponym or sib-
ling relation. Halliday and Hasan (2014) define
the words that do not have a traditional sense re-
lation, but belong to the notion of lexical cohe-
sion as collocations. The lexical chain detection
method includes them in the same lexical chain,
since they also help to disambiguate the transla-
tion of a word. For example, the word climber can
be related to mountain with word embeddings, but
not with Galley and McKeown (2003)’s approach.

The main problem of word embeddings arises
from words with multiple senses that are not dis-
ambiguated in the training phase. That is, each
word has only one vector representation, including
those polysemic words. For example, consider the
English word play, which appears in different con-
texts such as to perform on a musical instrument,
to take part in a sport or game, and to interpret
a role. The word embedding then represents all
senses together. Consequently, the semantic simi-
larity between play and guitar is low, because the
similarity is computed between guitar and all the
senses of play together.

Word senses need to be disambiguated in the
training phase to generate distinct vector repre-
sentations for each sense. We therefore employ a
method introduced by Thater et al. (2011), which
uses the syntactic information to build contextual-

Training Tuning LM

Lines 400K 5K 570K
Tokens ∼ 11M ∼ 125K ∼ 15M

Table 1: Total of segments per language pair from
Europarl and News Commentary used to train the
German→English phrase-based SMT system.

ized embeddings.3 Consider again the word play,
which appears in the sentences we play the pi-
ano, we play the guitar, we play tennis, they play
football, and they play Hamlet. Following the ap-
proach proposed by Thater et al. (2011), we ex-
tract all the syntactic relations such as subject or
object and group sentences in the same context
by computing the semantic similarity between the
context words (e.g. piano and guitar). As a result,
we obtain (1) we play the piano, we play the gui-
tar; (2) we play tennis, they play football; and (3)
they play Hamlet. Lastly, we build the correspond-
ing word embeddings play piano for play the pi-
ano and the guitar, play tennis for play tennis and
football, and play Hamlet.

Finally, to compute the semantic similarity of
two words, our method computes the cosine sim-
ilarity between their vector representation. The
closer to 1.0 the resulting value is, the more sim-
ilar they are. We set a threshold of 0.45 to dis-
tinguish between similar and non-similar words.
This threshold is manually picked by looking at
how different values impact on the resulting lexi-
cal chains. A lower threshold introduces too many
words that are mostly related by their part-of-
speech. A higher threshold results in semantically
strong lexical chains, but it misses out on words
that are also related.

4 Task Setup

We conducted several experiments to prove the ef-
ficacy of the lexical chain detection and LCTM in
SMT. Lexical chains are difficult to evaluate in iso-
lation, and therefore their quality is usually evalu-
ated on the basis of the application for which they
are used. Thus, we assess the performance of the
method on the German→English translation task.

We then compare it to the algorithm presented
by Galley and McKeown (2003), which uses exter-
nal resources instead of word embeddings to build

3Any method that disambiguates the word senses and
computes their word embeddings accordingly could be used.
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the lexical chains. To build the lexical chains fol-
lowing Galley and McKeown (2003)’s method, we
use GermaNet (Hamp and Feldweg, 1997) as ex-
ternal resource on the German side. The detected
lexical chains are automatically annotated in the
MMAX format4 and then fed into Docent.

The data comes from the shared WMT’16 trans-
lation task.5 We build a German→English phrase-
based SMT system with Moses using standard set-
tings (Koehn et al., 2003), 5-gram language model
KenLM (Heafield, 2011) and GIZA++ (Och and
Ney, 2003). The system is trained on Europarl, a
parallel corpus of the proceedings of the European
Parliament and News Commentary in equal parts
(see Table 1). We use the first 17 documents of
newstest2011 (554 segments), newstest2012 (684
segments), and newstest2013 (1,053 segments) for
testing and newstest2010 (375 segments) as a de-
velopment set of the LCTM and LCTMbase.

The method uses word embeddings to detect the
source lexical chains. We therefore train a skip-
gram 300-dimensional model in German using
the word2vec tool.6 The texts come mainly from
SdeWaC (Faaß and Eckart, 2013) (∼768M words)
and Common Crawls (∼775M words). The rest
of the data is from Europarl (∼47M words) and
News Commentary (∼6M words). The LCTM
model also needs to compute the similarity of the
words in the target lexical chains. For this purpose,
we employ a skip-gram 300-dimensional model
trained on English Google News (∼100 billion
words).6

5 Experimental Results

In this section, we present the results obtained
through the combination of lexical chain detection
(using word embeddings and GermaNet) and the
LCTM. The LCTM takes into account the rele-
vance (i.e. strength) of every lexical chain to com-
pute the overall score. We also perform a third ex-
periment that ignores this fact to assess its impact
in the translation quality. To do so, we develop a
model that behaves like the LCTM, except that it
assigns the maximum strength value (i.e. 1.0) to
all lexical chains. We refer to this new model in
the following as LCTMbase.

The baseline BLEU scores (Papineni et al.,
2002) of the test sets newstest2010, newstest2011,

4http://mmax2.sourceforge.net
5http://www.statmt.org/wmt16/

translation-task.html
6https://code.google.com/p/word2vec

Chain politik→ politischer
Input ich bin ein neuling in der prager politik
Ref. i’m a novice in prague politics

Base. i am a newcomer in the prague policy
LC i am a newcomer in the prague politics

Chain erklärt→ meint→ meint
Input “hier geht niemand vor gericht”, meint . . .
Ref. “nobody will sue them here,” said. . .

Base. “here is no one in court”, . . .
LC “here is no one in court”, says. . .

Chain rakete→ rakete→ motor
Input . . . technische schäden an der rakete
Ref. . . . technical damage to the missile

Base. . . . technical damage to the rocket
LC . . . technical damage to the missile

Chain erhöht→ lohn→ lohnerhöhungen
Input . . . mehr als sie für lohn spenden.
Ref. . . . more than it spends on salaries.

Base. . . . more than they for wage donations.
LC . . . more than they for pay donations.

Figure 3: In these examples, the method pro-
duces a correct translation of the ambiguous word
Politik, forces the translation of the German verb
meint, and generates another good translation of
Rakete. In the last example, the presented method
incorrectly translates lohn into pay, despite the
context given by the lexical chain: ehöht (“in-
crease”) and lohnerhöhungen (“wage increases”).

and newstest2013 are 12.44, 12.18, and 17.64, re-
spectively. The results of the experiments show
between 20 to 30 translation changes in every test
set due to lexical chains. We observe that the trans-
lation changes are often correct although they do
not use the same terms as in the reference. There-
fore, the fluctuations in BLEU scores are small
(±0.1), and so BLEU does not provide sufficient
insight into the performance.

We then perform a manual evaluation to assess
the results of the experiments. The annotation is
carried out by two annotators who judge the qual-
ity of the translation changes due to the lexical
chains. Specifically, the annotators obtain for each
translation change the source sentence, the base-
line (i.e. the translation ignoring lexical chains),
the translation produced by the method we want
to evaluate, and the reference. They then anno-
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newstest2011 newstest2012 newstest2013

+ − ++ + − ++ + − ++
Word Emb. & LCTM (1) 0.81 0.19 0.48 0.88 0.12 0.36 0.83 0.17 0.39
GermaNet & LCTM (2) 0.71 0.29 0.38 0.62 0.38 0.31 0.65 0.35 0.35
Word Emb. & LCTMbase (3) 0.64 0.36 0.22 0.67 0.33 0.18 0.61 0.39 0.16

Table 2: Manual evaluation results of the presented method (1) compared to using GermaNet for lexical
chain detection (2). The analysis shows the percentage of correct (+), wrong translations (-), and the
improvement over the baseline (++). There are a total of 20 to 30 translation changes in every test set due
to the lexical chains. We observe that the method (1) outperforms the approach that uses GermaNet (2).
It also performs better than the method that ignores length, density, and repetition for the computation of
the strength of each lexical chain in the overall score (3).

tate whether the word that changes due to lexical
chains is better than the one produced by the base-
line, equally good or worse. The Cohen’s Kappa
coefficient of inter-rater agreement between the
two annotators is 0.77 (Cohen, 1960). We then
compute from the annotations the percentage of
incorrect and good translations and the improve-
ment over the baseline.

Table 2 shows the results of the manual evalu-
ation. We observe that the combination of lexi-
cal chain detection using word embeddings with
our LCTM performs best. In particular, 81%-
88% of the changes are correct translations, and
among them, 36%-48% are improvements over the
baseline. Only 12%-19% of the changes are in-
correct. With GermaNet to detect lexical chains,
the correctness decreases between 10% and 26%.
Word embeddings may work better than lexical
resources as they capture contextual information
from the text, without relying on whether is de-
fined in a resource. In those cases, where the re-
source does not provide a relation for two given
words such as in idiomatic or metaphoric uses, the
lexical chain cannot benefit from them.

The parameters length, density, and repetition
have an impact on translation when using them to
compute the strength of each lexical chain in the
overall LCTM score. We see that the correctness
of the translation output decreases approximately
by 20% in all test sets when using the LCTMbase

(i.e. the model that gives the highest strength value
to all lexical chains, ignoring the mentioned pa-
rameters) instead of the LCTM. Furthermore, the
percentage of the improvements over the baseline
decrease by half.

Some translation examples using our method
are illustrated in Figure 3. In the first example,

the ambiguous German noun Politik gets correctly
translated into politics. Politik is connected to
politischer (“political”) in the lexical chain, and
therefore politics is semantically more related to
political than policy. Our method is also good at
enforcing the translation of all words in the lexical
chain, since an untranslated word will decrease the
score of the translated lexical chain, and accord-
ingly, the overall LCTM score (see Example 2).
In the last example, the method produces a wrong
translation of the German word lohn (“wage”,
“salary”), whereas the baseline translates it cor-
rectly. The word lohn is linked to erhöht (“in-
crease”) and lohnerhöhungen (“wage increases”)
in the lexical chain. Both words provide good con-
text for the translation. However, our method in-
correctly translates it into pay, whereas the base-
line translates it correctly into wage.

In the third example, we observe that the
method produces a different but equally good
translation compared to the baseline. In the lex-
ical chain, the German word Rakete is linked to
another occurrence of the same word that is trans-
lated into missile. Since the highest similarity
score is obtained when both translations are the
same, our method encourages consistency, trans-
lating both into missile (Carpuat, 2009; Carpuat
and Simard, 2012). Consistency is possible since
we assume that there is only a unique sense per
word in each document (Gale et al., 1992).

Figure 4 illustrates the benefits and issues of
consistent translation. These are special cases,
where the word in the lexical chain is linked only
to other occurrences of the same word.

In the first example, we observe that the base-
line translates the wrong sense of the word wahl
(i.e. choice). Here, wahl is linked to another oc-
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Input er entschloss . . . , sich an der wahl vor der letzten hauptversammlung zu beteiligen
Ref. he decided to participate in the elections before the last general meeting . . .

Base. he decided . . . , the choice of the last hauptversammlung to participate
LC he decided . . . , the election of the last hauptversammlung to participate

Linked to:
Input . . . für die heutigen probleme mit der wahl die euphorie verantwortlich ist . . .
Ref. . . . current problems with elections are caused by the euphoria there was . . .
LC . . . for today’s problems, with the election of the euphoria is responsible . . .

Input das verhältnis der länge der beiden erwähnten finger . . .
Ref. the ratio of the length of those two fingers . . .

Base. the ratio of the length of the two . . .
LC the relationship between the length of the two . . .

Linked to:
Input . . . dennoch halte er das verhältnis zwischen der fingerlänge und dem krebsrisiko . . .
Ref. . . . but in his opinion the relationship between the length of the fingers and the cancer . . .
LC . . . but it the relationship between the fingerlänge and the risk of cancer . . .

Figure 4: These examples show how the presented method behaves when a word in the lexical chain
is linked to the same word in the text. In the first example, the German word wahl is linked to another
occurrence of wahl in the text. The later is correctly translated into election, and therefore the LCTM gets
a higher score when the first sentence is translated into the same term. This produces an improvement
over the baseline that wrongly translates it into choice. In the second example, both senses of the word
verhältnis occur in the same document, forcing the first occurrence to be incorrectly translated.

currence of the same word in the lexical chain,
which is translated into the other sense election.
Since the method obtains the highest score when
the translations are the same, it either encour-
ages both occurrences to be translated into elec-
tion or choice. The LCTM score competes with
other models such as language and translation
model. The overall score when using the transla-
tion choice is then lower than when using election
due to the other models, since choice does not fit
in the local context of the other sentence.

In the second example, however, the method
translates the wrong sense of verhältnis. That is
because the two senses of the word verhältnis (“ra-
tio” and “relationship”) are in the same document.
This fact violates the one-sense-per-discourse hy-
pothesis, and when the only context provided by
the lexical chain is the word itself, the method can-
not disambiguate the senses.

6 Summary and Conclusions

We present a method that utilises lexical chains to
improve the quality of document-level SMT out-
put, showing that the translation improves when

discourse knowledge is considered. Specifically,
the method improves the translation of the words
in the chains, keeping the semantic similarity from
the source to the translation. Each lexical chain
captures a portion of the cohesive structure of a
document. It is therefore essential to ensure that
the words in the lexical chains are well translated.

The method is divided into two steps that con-
sist of detecting the lexical chains in the source
and preserving the semantic similarity among the
words in their counterpart target lexical chains.
We therefore implement an automatic detection
of the lexical chains based on a manual approach
proposed by Morris and Hirst (1991) and a fea-
ture function in the document-level decoder Do-
cent (i.e the LCTM) that preserves the semantic
similarity in the translated chains.

Our method uses word embeddings instead of
external lexical resources to deal with word simi-
larity. To detect the similarity between polysemic
words, we need to disambiguate words in the train-
ing phase. We therefore apply the approach de-
scribed by Thater et al. (2011), which relies on
syntactic information to differentiate a word that
appears in different contexts.
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We assess the performance of the lexical chain
detection on the translation task. The manual
evaluation of the results show that the proposed
method improves between 36% and 48% of the
changes over a baseline that does consider lexical
chains or any document-level knowledge. The re-
sults of the method are also evaluated against the
method proposed by Galley and McKeown (2003),
which uses a dictionary instead.

The method shows a bias for consistently trans-
lating the words in the chain. Since we assume the
one-sense-per-discourse hypothesis (Gale et al.,
1992), this is the preferred behaviour. Here,
the method has the advantage that during decod-
ing the LCTM competes with other feature func-
tions. Therefore, the decoder favours the consis-
tent translation of the repeated words in a chain
that fits in all their contexts, avoiding consistently
translating the wrong sense.

When the one-sense-per-discourse hypothesis
does not hold, different senses of the same word
may be linked in the same lexical chain. This
poses a problem when each sense has a different
translation in the target language. The method
cannot distinguish between different senses and
incorrectly translates them in the same way.

The lexical chains detected in the source dif-
fer from each other in length, density, and total
of repetitions. To ensure that they have a differ-
ent degree of impact on translation depending on
their strength in the document, the LCTM takes
that into account in the computation of the model
score. To assess the importance of distinguishing
between lexical chains, we implement a simpli-
fied version of the LCTM (LCTMbase) that gives
the same strength value to all chains in the doc-
ument. The experimental results show that the
method that uses the LCTMbase performs worse
that LCTM in all test sets.
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