
W-NUT 2017

The Third Workshop on
Noisy User-generated Text

(W-NUT 2017)

Proceedings of the Workshop

September 7, 2017
Copenhagen, Denmark

c©2017 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-945626-94-4

ii

Introduction

The W-NUT 2017 workshop focuses on a core set of natural language processing tasks on top of
noisy user-generated text, such as that found on social media, web forums and online reviews. Recent
years have seen a significant increase of interest in these areas. The internet has democratized content
creation leading to an explosion of informal user-generated text, publicly available in electronic format,
motivating the need for NLP on noisy text to enable new data analytics applications. The workshop
is an opportunity to bring together researchers interested in noisy text with different backgrounds and
encourage crossover. The workshop this year features a shared task on Emerging and Rare entity
recognition.

The workshop received 27 main track submissions, 17 of which were accepted, in addition to 6 system
description papers for the shared task and a task overview paper. There are 3 invited speakers, Bill
Dolan, Dirk Hovy and Miles Osborne with each of their talks covering a different aspect of NLP for
user-generated text. We would like to thank the Program Committee members who reviewed the papers
this year. We would also like to thank the workshop participants.

Leon Derczynski, Wei Xu, Alan Ritter and Tim Baldwin
Co-Organizers

iii

Organizers:

Leon Derczynski, The University of Sheffield
Wei Xu, The Ohio State University
Alan Ritter, The Ohio State University
Tim Baldwin, The University of Melbourne

Program Committee:

Anietie Andy (Howard University/UPenn)
Su Lin Blodgett (UMass Amherst)
Colin Cherry (National Research Council Canada)
Paul Cook (University of New Brunswick)
Marina Danilevsky (IBM Research)
Seza Doğruöz (Tilburg University)
Heba Elfardy (Columbia University)
Dan Garrette (Google Research)
Weiwei Guo (LinkedIn)
Masato Hagiwara (Duolingo)
Hua He (University of Maryland)
Yulan He (Aston University)
Dirk Hovy (University of Copenhagen)
Jing Jiang (Singapore Management University)
Nobuhiro Kaji (Yahoo! Research)
Piroska Lendvai (University of Göttingen)
Wuwei Lan (Ohio State University)
Jessy Li (UPenn / UT Austin)
Sujian Li (Peking University)
Jiwei Li (Stanford University)
Chen Li (University of Texas at Dallas)
Patrick Littell (Carnegie Mellon University)
Huan Liu (Arizona State University)
Zhiyuan Liu (Tsinghua University)
Wei-Yun Ma (Academia Sinica)
Héctor Martínez Alonso (INRIA)
Chandra May (Johns Hopkins University)
Rada Mihalcea (University of Michigan)
Preslav Nakov (Qatar Computing Research Institute)
Eric Nichols (Honda Research Institute)
Brendan O’Connor (Umass Amherst)
Naoaki Okazaki (Tohoku University)
Siddharth Patwardhan (Apple)
Ellie Pavlick (University of Pennsylvania)
Bryan Perozzi (Google Research)
Barbara Plank (University of Groningen)
Daniel Preoţiuc-Pietro (University of Pennsylvania)
Preethi Raghavan (IBM Research)
Afshin Rahimi (The University of Melbourne)
Roi Reichart (Technion) v

Alla Rozovskaya (City University of New York)
Mugizi Rwebangira (Howard University)
Djamé Seddah (University Paris-Sorbonne)
Hiroyuki Shindo (NAIST)
Richard Sproat (Google Research)
Veselin Stoyanov (Facebook)
Jeniya Tabassum (Ohio State University)
Marlies van der Wees (University of Amsterdam)
Svitlana Volkova (Pacific Northwest National Laboratory)
Byron Wallace (Northeastern University)
Diyi Yang (Carnegie Mellon University)
Yi Yang (Georgia Tech)
Guido Zarrella (MITRE)

Invited Speakers:

Bill Dolan, Microsoft Research
Dirk Hovy, University of Copenhagen
Miles Osborne, Bloomberg

vi

Table of Contents

Boundary-based MWE segmentation with text partitioning
Jake Williams . 1

Towards the Understanding of Gaming Audiences by Modeling Twitch Emotes
Francesco Barbieri, Luis Espinosa Anke, Miguel Ballesteros, Juan Soler and Horacio Saggion . .11

Churn Identification in Microblogs using Convolutional Neural Networks with Structured Logical Knowl-
edge

Mourad Gridach, Hatem Haddad and Hala Mulki . 21

To normalize, or not to normalize: The impact of normalization on Part-of-Speech tagging
Rob van der Goot, Barbara Plank and Malvina Nissim . 31

Constructing an Alias List for Named Entities during an Event
Anietie Andy, Mark Dredze, Mugizi Rwebangira and Chris Callison-Burch 40

Incorporating Metadata into Content-Based User Embeddings
Linzi Xing and Michael J. Paul . 45

Simple Queries as Distant Labels for Predicting Gender on Twitter
Chris Emmery, Grzegorz Chrupała and Walter Daelemans . 50

A Dataset and Classifier for Recognizing Social Media English
Su Lin Blodgett, Johnny Wei and Brendan O’Connor . 56

Evaluating hypotheses in geolocation on a very large sample of Twitter
Bahar Salehi and Anders Søgaard . 62

The Effect of Error Rate in Artificially Generated Data for Automatic Preposition and Determiner Cor-
rection

Fraser Bowen, Jon Dehdari and Josef Van Genabith . 68

An Entity Resolution Approach to Isolate Instances of Human Trafficking Online
Chirag Nagpal, Kyle Miller, Benedikt Boecking and Artur Dubrawski .77

Noisy Uyghur Text Normalization
Osman Tursun and Ruket Cakici . 85

Crowdsourcing Multiple Choice Science Questions
Johannes Welbl, Nelson F. Liu and Matt Gardner . 94

A Text Normalisation System for Non-Standard English Words
Emma Flint, Elliot Ford, Olivia Thomas, Andrew Caines and Paula Buttery 107

Huntsville, hospitals, and hockey teams: Names can reveal your location
Bahar Salehi, Dirk Hovy, Eduard Hovy and Anders Søgaard . 116

Improving Document Clustering by Removing Unnatural Language
Myungha Jang, Jinho D. Choi and James Allan . 122

Lithium NLP: A System for Rich Information Extraction from Noisy User Generated Text on Social Media
Preeti Bhargava, Nemanja Spasojevic and Guoning Hu . 131

vii

Results of the WNUT2017 Shared Task on Novel and Emerging Entity Recognition
Leon Derczynski, Eric Nichols, Marieke van Erp and Nut Limsopatham. .140

A Multi-task Approach for Named Entity Recognition in Social Media Data
Gustavo Aguilar, Suraj Maharjan, Adrian Pastor López Monroy and Thamar Solorio 148

Distributed Representation, LDA Topic Modelling and Deep Learning for Emerging Named Entity Recog-
nition from Social Media

Patrick Jansson and Shuhua Liu . 154

Multi-channel BiLSTM-CRF Model for Emerging Named Entity Recognition in Social Media
Bill Y. Lin, Frank Xu, Zhiyi Luo and Kenny Zhu. .160

Transfer Learning and Sentence Level Features for Named Entity Recognition on Tweets
Pius von Däniken and Mark Cieliebak . 166

Context-Sensitive Recognition for Emerging and Rare Entities
Jake Williams and Giovanni Santia . 172

A Feature-based Ensemble Approach to Recognition of Emerging and Rare Named Entities
Utpal Kumar Sikdar and Björn Gambäck . 177

viii

Conference Program

September 7

9:00–9:05 Opening

9:05–9:50 Invited Talk: Common Sense Knowledge as an Emergent Property of Neural
Conversational Models (Bill Dolan)

9:50–10:35 Oral Session I

9:50–10:05 Boundary-based MWE segmentation with text partitioning
Jake Williams

10:05–10:20 Towards the Understanding of Gaming Audiences by Modeling Twitch Emotes
Francesco Barbieri, Luis Espinosa Anke, Miguel Ballesteros, Juan Soler and Hora-
cio Saggion

10:20–10:35 Churn Identification in Microblogs using Convolutional Neural Networks with
Structured Logical Knowledge
Mourad Gridach, Hatem Haddad and Hala Mulki

10:35–11:00 Coffee Break

11:00–12:30 Oral Session II

11:00–11:15 To normalize, or not to normalize: The impact of normalization on Part-of-Speech
tagging
Rob van der Goot, Barbara Plank and Malvina Nissim

11:15–11:30 Constructing an Alias List for Named Entities during an Event
Anietie Andy, Mark Dredze, Mugizi Rwebangira and Chris Callison-Burch

11:30–11:45 Incorporating Metadata into Content-Based User Embeddings
Linzi Xing and Michael J. Paul

11:45–12:00 Simple Queries as Distant Labels for Predicting Gender on Twitter
Chris Emmery, Grzegorz Chrupała and Walter Daelemans

ix

September 7 (continued)

12:00–12:15 A Dataset and Classifier for Recognizing Social Media English
Su Lin Blodgett, Johnny Wei and Brendan O’Connor

12:15–12:30 Evaluating hypotheses in geolocation on a very large sample of Twitter
Bahar Salehi and Anders Søgaard

12:30–14:00 Lunch

14:00–14:45 Invited Talk: Tweets in Finance (Miles Osborne)

14:45–14:55 Lightning Talks

The Effect of Error Rate in Artificially Generated Data for Automatic Preposition
and Determiner Correction
Fraser Bowen, Jon Dehdari and Josef Van Genabith

An Entity Resolution Approach to Isolate Instances of Human Trafficking Online
Chirag Nagpal, Kyle Miller, Benedikt Boecking and Artur Dubrawski

Noisy Uyghur Text Normalization
Osman Tursun and Ruket Cakici

Crowdsourcing Multiple Choice Science Questions
Johannes Welbl, Nelson F. Liu and Matt Gardner

A Text Normalisation System for Non-Standard English Words
Emma Flint, Elliot Ford, Olivia Thomas, Andrew Caines and Paula Buttery

Huntsville, hospitals, and hockey teams: Names can reveal your location
Bahar Salehi, Dirk Hovy, Eduard Hovy and Anders Søgaard

Improving Document Clustering by Removing Unnatural Language
Myungha Jang, Jinho D. Choi and James Allan

x

September 7 (continued)

Lithium NLP: A System for Rich Information Extraction from Noisy User Generated
Text on Social Media
Preeti Bhargava, Nemanja Spasojevic and Guoning Hu

14:55–15:30 Shared Task Session

14:55–15:10 Results of the WNUT2017 Shared Task on Novel and Emerging Entity Recognition
Leon Derczynski, Eric Nichols, Marieke van Erp and Nut Limsopatham

15:10–15:20 A Multi-task Approach for Named Entity Recognition in Social Media Data
Gustavo Aguilar, Suraj Maharjan, Adrian Pastor López Monroy and Thamar Solorio

15:20–15:30 Distributed Representation, LDA Topic Modelling and Deep Learning for Emerging
Named Entity Recognition from Social Media
Patrick Jansson and Shuhua Liu

Multi-channel BiLSTM-CRF Model for Emerging Named Entity Recognition in So-
cial Media
Bill Y. Lin, Frank Xu, Zhiyi Luo and Kenny Zhu

Transfer Learning and Sentence Level Features for Named Entity Recognition on
Tweets
Pius von Däniken and Mark Cieliebak

Context-Sensitive Recognition for Emerging and Rare Entities
Jake Williams and Giovanni Santia

A Feature-based Ensemble Approach to Recognition of Emerging and Rare Named
Entities
Utpal Kumar Sikdar and Björn Gambäck

xi

September 7 (continued)

15:30–16:30 Poster Session

16:30–17:15 Invited Talk: Modeling Language as a Social Construct (Dirk Hovy)

17:15–17:30 Closing and Best Paper Awards

xii

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 1–10
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

Boundary-Based MWE Segmentation With Text Partitioning

Jake Ryland Williams
Drexel University
30 N. 33rd Street

Philadelphia, PA 19104
jw3477@drexel.edu

Abstract

This work presents a fine-grained, text-
chunking algorithm designed for the task of
multiword expressions (MWEs) segmentation.
As a lexical class, MWEs include a wide vari-
ety of idioms, whose automatic identification
are a necessity for the handling of colloquial
language. This algorithm’s core novelty is its
use of non-word tokens, i.e., boundaries, in
a bottom-up strategy. Leveraging boundaries
refines token-level information, forging high-
level performance from relatively basic data.
The generality of this model’s feature space al-
lows for its application across languages and
domains. Experiments spanning 19 different
languages exhibit a broadly-applicable, state-
of-the-art model. Evaluation against recent
shared-task data places text partitioning as
the overall, best performing MWE segmen-
tation algorithm, covering all MWE classes
and multiple English domains (including user-
generated text). This performance, coupled
with a non-combinatorial, fast-running design,
produces an ideal combination for implemen-
tations at scale, which are facilitated through
the release of open-source software.

1 Introduction

Multiword expressions (MWEs) constitute a
mixed class of complex lexical objects that often
behave in syntactically unruly ways. A unifying
property that ties this class together is the lexical-
ization of multiple words into a single unit. MWEs
are generally difficult to understand through gram-
matical decomposition, casting them as types of
minimal semantic units. There is variation in
this non-compositionality property (Bannard et al.,
2003), which in part may be attributed to differ-
ences in MWE types. These range from multi-
word named entities, such as Long Beach, Califor-
nia, to proverbs, such as it takes one to know one,
to idiomatic verbal expressions, like cut it out
(which often contain flexible gaps). For all
of their strangeness they appear across natural

languages (Jackendoff, 1997; Sag et al., 2002),
though generally not for common meanings, and
frequently with opaque etymologies that confound
non-native speakers.

1.1 Motivation

There are numerous applications in NLP for which
a preliminary identification of MWEs holds great
promise. This notably includes idiom-level ma-
chine translation (Carpuat and Diab, 2010); re-
duced polysemy in sense disambiguation (Fin-
layson and Kulkarni, 2011); keyphrase-refined in-
formation retrieval (Newman et al., 2012); and
the integration of idiomatic and formulaic lan-
guage in learning environments (Ellis et al., 2008).
Parallel to these linguistically-focused applica-
tions is the possibility that MWE identification
can positively affect machine learning applications
in text analysis. Regardless of algorithm com-
plexity, a common preliminary step in this area
is tokenization. Having the “correct” segmenta-
tion of a text into words and MWEs results in a
meaning-appropriate tokenization of minimal se-
mantic units. Partial steps in this direction have
been taken through recent work focusing on mak-
ing the bag of phrases framework available as a
simple improvement to the bag of words. How-
ever, that work (Handler et al., 2016) utilized only
noun phrases, leaving the connection between
MWEs and a comprehensive bag of phrases frame-
work yet to be acknowledged. With the specific
focus of MWEs on idiomaticity, a comprehensive
bag of words and phrases framework would be
possible, provided the MWE identification task is
resolved.

1.2 Task description

Despite the variety that exist, studies often only
focus on a few MWEs classes, or on only specific
lengths (Tsvetkov and Wintner, 2011). In fact,

1

named entity extraction may be thought of as satis-
fying the MWE identification task for just this one
MWE class. The problem has a broader framing
when all classes of MWEs are considered. Fur-
thermore, since a mixed tokenization of words and
phrases as minimal semantic units is a desired out-
come, it is helpful to consider this task as a kind of
fine-grained segmentation. Thus, this work refers
to its task as MWE segmentation, and not iden-
tification or extraction. In other words, the spe-
cific goal here is to delimit texts into the smallest
possible, independent units of meaning. Schneider
et al. (2014b) were the first to treat this problem as
such, when they created the first data set compre-
hensively annotated for MWEs. From this data set,
an exemplar annotated record is:1

My wife had taken1 her 07’2 Ford2 Fusion2 in1
for a routine oil3 change3.

whose segmentation is an example of the present
focus of this work. Note that the present study
focuses only on MWE tokens, does not aim to ap-
proach the task of MWE class identification, and
does not attempt to disambiguate MWE meanings.
For detailed descriptions of these other MWE-
related tasks, Baldwin and Kim (2010) provide an
extensive discussion.

1.3 Existing work

The identification of MWEs and collocations is
an area of study that has seen notable focus in
recent years (Seretan, 2008; Pecina, 2010; New-
man et al., 2012; Ramisch, 2015; Schneider et al.,
2014a), and has a strong history of attention (both
directly and through related work) in the liter-
ature (Becker, 1975; Church and Hanks, 1990;
Sag et al., 2002). It has become commonplace
for approaches to leverage well-studied machine
learning algorithms such as structured percep-
trons (Schneider et al., 2014a) and conditonal ran-
dom fields (Constant and Sigogne, 2011; Hos-
seini et al., 2016). The flexibility of these algo-
rithms allow researchers to mix a variety of fea-
ture types, ranging from tokens to parts of speech
to syntax trees. Juxtaposed to these relatively-
complex models exist the simpler and more-
heuristic (Cordeiro et al., 2015). Some rely sin-
gularly on MWE dictionaries, while others incor-
porate multiple measures or are rule-based, like

1 Note that color/indices redundantly indicate separate
MWEs, with the colored box highlighting an MWE’s gap,
and black, unnumbered text tokenized simply as words.

those present in the suite available through mwe-
toolkit (Ramisch, 2015) or jMWE (Kulkarni and
Finlayson, 2011).

MWEs have been the focus of considerable
attention for languages other than English, too.
Hungarian MWE corpora focusing on light verb
constructions have been under development for
some time (T. et al., 2011). In application to
the French language, part-of-speech tagging has
seen benefit (Constant and Sigogne, 2011) through
awareness and relativity to MWEs. Recently,
Savary et al. (2017) conducted a shared task for
the identification of verbal MWEs with a data set
spanning 18 languages (excluding English). While
extending this area of work to a large variety of
languages, this task saw notable multilingual algo-
rithmic developments (Saied and Candito, 2017),
but did not approach the identification of all MWE
classes, comprehensively. On the other hand, a Se-
mEval 2016 shared task (Schneider et al., 2016)
covered English domains and all MWE classes,
bearing the greatest similarity to the present work.
In general, these shared tasks have all highlighted
a need for the improvement of algorithms.

2 Algorithms

2.1 Text partitioning
Text partitioning is a physical model developed
recently (Williams et al., 2015) for fine-grained
text segmentation. It treats a text as a dichotomous
squence, alternating between word (wi) and non-
word (bi) tokens:

(· · · , bi−1, wi, bi, wi+1, bi+1 · · ·)
The key feature of text partitioning is its treat-
ment of non-word, i.e., “boundary”, tokens. Act-
ing like glue, these may take one of two distinct
states, s ∈ {0, 1}, identifying if a non-word token
is bound (b1

i) or broken (b0
i). A non-word token

in the bound state binds words together. Thus,
a text partitioning algorithm is a function that de-
termines the states of non-word tokens.

In its original development, text partitioning
was studied simplistically, with space as the only
non-word token. In that work, a threshold proba-
bility, q, was set. For each space, bi, in a text, a
uniform random binding probability, qi, would be
drawn. If qi > q, bi would be bound, and other-
wise it would be broken. As a parameter, q thus al-
lowed for the tuning of a text into its collection of
words (q = 1), clauses (q = 0), or, for any value,

2

q ∈ (0, 1), a randomly-determined collection of
N -grams. While non-deterministic, this method
was found to preserve word frequencies, (unlike
the sliding-window method), and made possible
the study of Zipf’s law for mixed distributions of
words and N -grams.

The present work utilizes the parameter q to de-
velop a supervised machine learning algorithm for
MWE segmentation. A threshold probability, q, is
still set, and the supervised component is the de-
termination of the binding probabilities (qi) for a
text’s non-word tokens. Provided a gold-standard,
MWE-segmented text:

(· · · , bsi−1

i−1 , wi, b
si
i , wi+1, b

si+1

i+1 · · ·)
let f(wi, b

si
i , wi+1) denote the frequency at which

a boundary bi is observed between wi and wi+1 in
the state si. Provided this, a binding probability is
defined as:

qi =
f(wi, b

1
i , wi+1)

f(wi, b1
i , wi+1) + f(wi, b0

i , wi+1)
.

This basic, 2-gram text partitioning model makes
the binding probabilities a function of bound-
aries and their immediately-surrounding words.
In principle, this might be extended to a more-
nuanced model, with binding probabilities refined
by larger-gram information.

2.1.1 Extensions
Some MWEs consist of non-contiguous spans
of words. These varieties are often referred to
as “gappy” expressions, an example of which is
shown in Sec. 1.2. Text partitioning may easily be
extended to handle gappy MWEs by instituting a
unique boundary token,2 e.g.,

b = GAP

that indicates the presence of a gap. For example,
to handle the gappy MWE out of control in the
statement:

The situation was out1 of1 their control1 .

a binding probability for b (as above) between
words w5 = of and w7 = control would be com-
puted from the state frequencies f(w5, b

{0,1}, w7).
Since gappy MWEs are relatively sparse as com-
pared to other MWEs, a single gap-boundary to-
ken is used for all gap sizes. This is designed

2 Note that the exact form for b that is used to indicate
a gap is not important, but that it just needs to be unique to
compute state frequencies and binding probabilities.

for a flexible handling of variable gap sizes, given
the relatively small amount of gold-standard data
that is presently available. However, this may in
principle be refined to particular gap-sized speci-
fications, possibly ideal for higher precision in the
presence of larger quantities of gold-standard data.

A number of MWE types, such as named en-
tities, are entirely open classes. Often occurring
only once, or as entirely emergent objects, these
pose a significant challenge for MWE segmenta-
tion, along with the general sparsity and size of the
current gold-standards. For their inclusion in the
gold-standard datasets and the general quality of
automated taggers, part-of-speech (POS) informa-
tion may generally be leveraged to increase recall.
These data are utilized in a parallel text partition-
ing algorithm, swapping tokens for tags,3 so that
binding probabilities, qi,tok and qi,POS, are com-
puted for both data types. Two thresholds are then
used to determine states via a logical disjunction,
i.e., bi binds if qi,tok > qtok ∨ qi,POS > qPOS.

Algorithm 1 Pseudocode for the longest first de-
fined (LFD) algorithm. Here, a candidate MWE’s
tokens are pruned from left to right for the longest
referenced in a training lexicon, lex. When no
form is found in lex, the first token is automati-
cally pruned, (accepting it as an expression), leav-
ing the algorithm to start from the next. Note that
the “_” symbol indicates a concatenation opera-
tion in line 10, where the current form is placed
onto the end of the lexemes array.

1: procedure LFD(tokens)
2: lexemes← (·)
3: N ← length(tokens)
4: while N do
5: indices← (N + 1) : 1
6: for i in indices do
7: form← join(tokens[0 : i])
8: remaining ← tokens[i : N]
9: if form ∈ lex or not i− 1 then

10: lexemes← lexemes_form
11: if length(tokens) = 1 then
12: tokens← (·)
13: else
14: tokens← remaining

15: break
16: N ← length(tokens)
17: return lexemes

3 Note that this requires the inclusion of a special POS
tag, e.g., “SP”, for the space character.

3

2.2 The longest first defined

In the presented form, text partitioning only fo-
cuses on information immediately local to bound-
aries (surrounding word pairs). This has positive
effects for recall, but can result in lower preci-
sion, since there is no guarantee that a sequence
of bound tokens is an MWE. For example, if pre-
sented with the text:

“I go for take out there, frequently.”

the segment take out there might be bound, since
take out and out there are both known MWE
forms, potentially observed in training. To bal-
ance this, a directional, lookup-based algorithm
is proposed. Referred to as the longest first de-
fined (LFD) algorithm (see Alg. 1), this algo-
rithm prunes candidates by clipping off the longest
known (MWE) references along the reading di-
rection of a language. This requires knowledge
of MWE lexica, which may be derived from
both gold-standard data and external sources (see
Sec. 3). Continuing with the example, if the
text partitioning algorithm outputs the candidate,
take out there, it would next be passed to the LFD.
The LFD would find take out there unreferenced,
and check the next-shortest (2-word) segments,
from left to right. The LFD would immediately
find take out referenced, output it, and continue on
the remainder, there. With only one term remain-
ing, the word there would then be trivially output
and the algorithm terminated. While this algo-
rithm will likely fail when confronted with patho-
logical expressions, like those in “garden path”
sentences, e.g., “The prime number few.”, direc-
tionality is a powerful heuristic in many languages
that may be leveraged for increased precision.

3 Materials

3.1 Gold standard data

Treating MWE segmentation as a supervised ma-
chine learning task, this work relies on several
recently-constructed MWE-annotated data sets.
This includes the business reviews contained in the
Supersense-Tagged Repository of English with a
Unified Semantics for Lexical Expressions, anno-
tated by Schneider et al. (2014b; 2015). These
data were harmonized and merged with the Rit-
ter and Lowlands data set of supersense-annotated
tweets (Johannsen et al., 2014) for the SemEval
2016 shared task (#10) on Detecting Minimal
Semantic Units and their Meanings (DIMSUM),

conducted by Schneider et al. (2016). The DIM-
SUM data set additionally possesses token lem-
mas and gold-standard part of speech (POS) tags
for the 17 universal POS categories. In addition to
the shared task training data of business reviews
and tweets, the DIMSUM shared task resulted
in the creation of three domains of testing data,
which spanned business reviews, tweets, and TED
talk transcripts. All DIMSUM data are compre-
hensive in being annotated for all MWE classes.

To evaluate against a diversity of languages this
work also utilizes data produced by the multi-
national, European Cooperation in Science and
Technology’s action group: PARSing and Multi-
word Expressions within a European multilingual
network (PARSEME) (Savary et al., 2015). In
2017, the PARSEME group conducted a shared
task with data spanning 18 languages4 (Savary
et al., 2017), focusing on several classes of ver-
bal MWEs. So, while the PARSEME data are not
annotated for all MWEs classes, they do provide
an assessment against multiple languages. How-
ever, the resources gathered for the 18 languages
exhibit a large degree of variation in overall size
and numbers of MWEs annotated, leading to ob-
servable differences in identifiability.

The gold standard data sets were produced with
variations in annotation formats. The DIMSUM
data set utilizes a variant of the beginning in-
side outside (BIO) scheme (Ramshaw and Mar-
cus, 1995) used for named entity extraction. Ad-
ditionally, their annotations indicate which tokens
are linked to which, as opposed to the PARSEME
data set, which simply identifies tokens to indexed
MWEs. Note that this has implications to task
evaluation: the PARSEME evaluations can only
assess tokens’ presence inside of specific MWEs,
while the DIMSUM evaluations can focus on spe-
cific token-token attachments/separations. Eval-
uations against the DIMSUM datasets are there-
fore more informative of segmentation, than iden-
tification. Additionally, the DIMSUM data sets
use lowercase BIO tags to indicate the presence

4 While the shared task was originally planned to cover
21 languages, corpus release was only achieved for Bulgarian
(BG), Czech (CS), German (DE), Greek (EL), Spanish (ES),
Farsi (FA), French (FR), Hebrew (HE), Hungarian (HU), Ital-
ian (IT), Lithuanian (LT), Maltese (MT), Polish (PL), Brazil-
ian Portuguese (PT), Romanian (RO), Slovene (SL), Swedish
(SV), and Turkish (TR). No sufficiently available native an-
notators were found for English (EN), Yiddish (YI), and
Croatian (HR). High-level data (including POS tags) were
provided for all of the 18 languages, except BG, HE, and LT.

4

of tokens inside of the gaps of others. How-
ever, the DIMSUM data sets provide no informa-
tion on the locations of spaces in sentences, un-
like the PARSEME data sets, which do. Since
the present work relies on knowledge of spaces
to identify token-token boundaries for segmenta-
tion, the DIMSUM data sets had to first be pre-
processed to infer the locations of spaces. This is
done in such a way as to preserve comparability
with the work others, (discussed in Sec. 4.1).

3.2 Support data

The gold-standard data sets (DIMSUM, and
PARSEME) exhibit variations in size, domain,
language, and in the classes of annotated MWEs.
Ideally, each of these data sets would cover all
MWE classes. Since the English data sets do,
and many are open classes (e.g., the named en-
tity class readily accepts new members), gold stan-
dards cannot be expected to cover all MWE forms.
So, to produce segmentations that identify rare
MWEs, like those that occur once in the gold stan-
dard data, this work relies on support data. Note
that because the PARSEME data set covers a re-
stricted set of MWE types (verbal MWEs, only),
type-unrestricted lexical resources, such as Wik-
tionary and Wikipedia, can be expected to substan-
tially hurt precision while helping recall. Thus,
the support data described below are only used for
the English language experiments, i.e., the DIM-
SUM data sets. Enhancement by support data for
the PARSEME task and extension to the identifi-
cation of MWE types are thus left for future devel-
opment, together.

Since this work approaches the problem as a
segmentation task, information is needed on MWE
edge-boundaries. Thus, support data must present
MWEs in their written contexts, and not just as
entries in a lexicon. Example usages of dictionary
entries provide this detail, and are leveraged from
Wiktionary (data accessed 1/11/16) and Word-
net (Miller, 1995). These exemplified dictionary
entries help to fill gold standard data gaps, but still
lack many noun compounds and named entities.
Outside of dictionaries, MWEs such as these may
be found in encyclopedias. Thus, the Wikipedia
hyperlinks present in all Wikipedia (data accessed
5/1/16) articles are utilized. Specifically, the exact
hyperlink targets are used (not the displayed text),
and without using any term extraction measures
for filtering, as opposed to the data produced by

Hartmann et al. (2012). This results in data that are
noisy, with many entities that may not actually be
classifiable as MWEs. However, their availability
and broad coverage offset these negative proper-
ties, which is exhibited by this work’s evaluation.

4 Methods

4.1 Pre-processing

None of the gold standard data sets explicitly iden-
tify the locations of spaces in their annotations.
This is a challenge for the present work, since it
focuses on word-word boundaries (of which space
is the most common) to identify the separations
between segments. This turns out to not be an is-
sue with the PARSEME data sets, which indicate
when a given token is not followed by a space.
However for the DIMSUM data sets, the locations
of spaces had to be inferred. To resolve this is-
sue, a set of heuristic rules are adopted with a de-
fault assumption of space on both sides of a to-
kens. Exceptions to this default include, group
openings (e.g., brackets and parentheses) and odd-
indexed quotes (double, single, etc.), for which
space is only assumed at left; and punctuation to-
kens (e.g., commas and periods), group closures
(e.g., brackets and parentheses), and even-indexed
quotes (double, single, etc.), for which space is
only assumed at right. While these heuristics
will certainly not correctly identify all instances
of space, they make the data sets more faithful to
their original texts. Furthermore, since the anno-
tations and evaluation procedures only focus on
links between non-space tokens, the data may be
re-indexed during pre-processing so as to allow
for any resulting evaluation to be comparable to
those of the data set authors’ and shared task par-
ticipants’. Thus, the omission of space characters
and their inference in this work only negatively
impacts text partitioning’s evaluation. In other
words, if this work were applied to annotated data
that properly represents space, higher performance
might be exhibited.

4.2 Evaluation

It is reasonably straightforward to measure preci-
sion, recall, and F1 for exact matches of MWEs.
However, this strategy is unreasonably coarse,
failing to represent partial credit when algorithms
get only portions of MWEs correct. Thus, the de-
velopers of the different gold standard data sets
have established other evaluation metrics that are

5

more flexible. Utilizing these partial credit MWE
evaluation metrics provides refined detail into the
performance of algorithms. However, these are
not the same across the gold standard data sets. So,
to maintain comparability of the present results,
this work uses the specific strategies associated to
each shared task.

In application to the PARSEME data sets, pre-
cision, recall, and F1 describe tokens’ presence
in MWEs. Alternatively, DIMSUM-style metrics
measure link/boundary-based evaluations. Specif-
ically, this strategy checks if the links between
tokens are correct. Note that this latter (DIM-
SUM) evaluation is better aligned to the formu-
lation of text partitioning, but leaves the number
evaluation points at one fewer per MWE than the
PARSEME scheme. Thus, PARSEME evaluations
favor longer MWEs more heavily.

4.3 Experimental design

The basic text partitioning model relies on the
single threshold parameter, q, and integration of
POS tags relies on a second. So, optimization ul-
timately entails the determination of parameters
for both tokens, qtok, and POS tags qPOS. To
balance both precision and recall, these parame-
ters are determined through optimization of the F1

measure. In the absence of the LFD, F1-optimal
pairs, (qtok, qPOS), are first determined via a full
parameter scan over

(qtok, qPOS) ∈ {0, 0.01, · · · , 0.99, 1}2.

For a given threshold pair, LFD-enhancement can
then only increase precision, while decreasing re-
call. So, subsequent optimization with the LFD is
accomplished through scanning values of qtok and
qPOS in the parameter space no less than those pre-
viously determined for basic, non-LFD model.

The different experiments were conducted in
accordance with the protocols established by the
designers of data sets and shared tasks, and in
all cases, an eight-fold cross-validation was con-
ducted for optimization. Exact comparability was
achieved for the DIMSUM and PARSEME ex-
periments as a result of the precise configura-
tions of training and testing data from the shared
tasks. Moreover, since an evaluation script was
provided for each, metrics reported for DIMSUM
and PARSEME experiments are in complete ac-
cord with the results of the shared tasks. For
the DIMSUM experiments, results should be com-

pared to the open track (external data was uti-
lized), and for the PARSEME experiments, results
should be compared to the closed track (no exter-
nal data was utilized).

5 Results

Evaluations spanning the variety of languages (19,
in total) showed high levels of performance, espe-
cially in application to English, where there was
a diversity of domains (business reviews, Tweets,
and TED talk transcripts), along with comprehen-
sive MWE annotations. Moreover, these results
were generally observed for text partitioning both
with, and without the LFD. As expected, applica-
tion of the LFD generally led to increased preci-
sion. While integration of POS tags was found to
generally improve MWE segmentation in all En-
glish experiments, this was frequently not the case
in applications to other languages. However, this
observation should be taken with consideration for
the restriction to the fewer MWE classes (verbal
MWEs, only) annotated in the PARSEME (non-
English) shared task languages, and additionally
the fact that no external data were used. Detailed
results for all DIMSUM and PARSEME experi-
ments are recorded in Tab. 1.

For the DIMSUM experiments, final param-
eterizations were determined as (qtok, qPOS) =
(0.5, 0.71) for text partitioning, alone, and
(qtok, qPOS) = (0.74, 0.71) for the LFD-enhanced
model. Comparing the base and LFD-enhanced
models, higher overall performance was always
achieved with the LFD (increasing F1 by as many
as 12 points). Including text partitioning in the
shared-task rankings (for a total of 5 models)
placed the LFD-enhanced model first at all do-
mains but Twitter, for which third was reached
(though within 3 F1-points of first). However,
combining all three domains into a single exper-
iment placed the LFD-enhanced text partitioning
algorithm as first, making it the best-performing
algorithm, overall. In application to the user-
reviews domain, text partitioning maintained first-
place status, even without the LFD enhancement.
For all other domains the base model ranked third.

For the PARSEME experiments, final param-
eterizations varied widely. This is not surpris-
ing, considering the significant variation in data
set annotations and domains across the 18 lan-
guages. Additionally, POS tags were found to
be of less-consistent value to the text partition-

6

Experiment LFD qtok qPOS P R F1 Rank F1-range
DIMSUM

EN N 0.5 0.71 0.5396 0.5507 0.5451 3/5 0.1348 – 0.5724
EN Y 0.74 0.71 0.6538 0.5606 0.6036 1/5 -

Tweets N 0.5 0.71 0.5897 0.5226 0.55542 3/5 0.1550 – 0.6109
Tweets Y 0.74 0.71 0.6667 0.5185 0.5833 3/5 -

Reviews N 0.5 0.71 0.5721 0.5584 0.5626 1/5 0.0868 – 0.5408
Reviews Y 0.74 0.71 0.6742 0.5823 0.6249 1/5 -

TED N 0.5 0.71 0.3984 0.6108 0.4823 3/5 0.2011 – 0.5714
TED Y 0.74 0.71 0.5810 0.6228 0.6012 1/5 -

PARSEME
BG N 0.79 N/A 0.7071 0.5141 0.5954 2/3 0.5916 – 0.6615
BG Y 0.83 N/A 0.8534 0.4309 0.5727 3/3 -
CS N 0.73 0.0 0.7849 0.6655 0.7203 3/5 0.2352 – 73.65
CS Y 0.9 0.59 0.8363 0.6324 0.7202 3/5 -
DE N 0.82 0.0 0.5582 0.2788 0.3719 4/6 0.283 – 0.4545
DE Y 0.98 0.78 0.6892 0.2010 0.3112 5/6 -
EL N 0.78 0.0 0.3931 0.3815 0.3872 5/6 0.3871 – 0.4688
EL Y 0.99 0.66 0.5755 0.3314 0.4206 4/6 -
ES N 0.64 0.71 0.7473 0.4098 0.5293 2/6 0.3093 – 0.5839
ES Y 0.99 0.71 0.7526 0.4371 0.5530 2/6 -
FA N 0.57 0.68 0.7040 0.8313 0.7624 3/3 0.8536 – 0.9020
FA Y 0.93 0.68 0.7028 0.8266 0.7597 3/3 -
FR N 0.73 0.0 0.6589 0.3836 0.4849 4/7 0.1 – 0.6152
FR Y 0.88 0.0 0.9045 0.3592 0.5142 3/7 -
HE N 0.78 N/A 0.5969 0.2107 0.3115 2/3 0.0 – 0.313
HE Y 1.0 N/A 0.9714 0.1812 0.3056 2/3 -
HU N 0.97 0.66 0.7221 0.6612 0.6903 2/6 0.6226 – 0.7081
HU Y 0.97 0.66 0.7208 0.6568 0.6873 3/6 -
IT N 0.85 0.0 0.5497 0.3174 0.4024 2/5 0.1824 – 0.4357
IT Y 0.97 0.92 0.6503 0.2804 0.3919 2/5 -
LT N 0.79 N/A 0.6567 0.1803 0.2830 1/3 0.0 – 0.2533
LT Y 1.0 N/A 0.6471 0.1352 0.2237 2/3 -
MT N 0.86 0.0 0.1591 0.1538 0.1564 2/5 0.0 – 0.1629
MT Y 0.98 0.0 0.2126 0.1138 0.1483 2/5 -
PL N 0.66 0.0 0.8962 0.5966 0.7164 2/5 0.0 – 0.7274
PL Y 0.66 0.0 0.9623 0.5966 0.7366 1/5 -
PT N 0.79 0.0 0.7518 0.4921 0.5948 4/5 0.3079 – 0.7094
PT Y 0.95 0.0 0.8717 0.4605 0.6027 3/5 -
RO N 0.71 0.0 0.8350 0.7850 0.8092 3/5 0.7799 – 0.8358
RO Y 0.87 0.0 0.8766 0.7832 0.8272 2/5 -
SL N 0.7 0.0 0.6606 0.4504 0.5356 1/5 0.3320 – 0.4655
SL Y 0.76 0.0 0.7192 0.3959 0.5107 1/5 -
SV N 1.0 0.95 0.0949 0.7771 0.1691 5/5 0.2669 – 0.3149
SV Y 1.0 0.95 0.1013 0.7751 0.1792 5/5 -
TR N 0.87 0.0 0.3852 0.3706 0.3778 5/5 0.4550 – 0.5528
TR Y 0.9 0.91 0.3814 0.4037 0.3922 5/5 -

Table 1: Evaluation results, including data sets (Experiment); the LFD’s application (LFD); token (qtok) and POS (qPOS)
thresholds; precision (P), recall (R), and F-measure (F1); shared-task rank (Rank); and shared task F1 ranges (F1-Range).
DIMSUM experiments spanned three domains: Twitter (Tweets), business reviews (Reviews), and TED talk transcripts (TED),
with combined evaluation under EN. PARSEME language experiments are identified by ISO 639-1 two-letter codes.

ing algorithm, particularly when the LFD was
not applied. Indeed, cross-validation of the base
model resulted in qPOS = 0 as optimal for 11 out
of the 15 languages where POS tags were made
available. However, cross-validation of the LFD-
enhanced algorithm resulted in only 6 parameteri-
zations having qPOS = 0 as optimal. First place
status was achieved for three out of the 18 lan-

guages (LT, PL, and SL), and for all languages
aside from SV and TR, mid-to-high ranking F1

values were achieved.5 In contrast to the DIM-

5 Note that anomalous MWEs were observed in the DE
HU data sets, where large portions of the annotated MWEs
consisted of only a single token. While the PARSEME an-
notation scheme includes multiword components that span a
single token, e.g., “don’t” in don’t talk the talk, those ob-
served in DE and HU were found outside of the annotation

7

SUM data sets, application of the LFD improved
F1 scores in only roughly half of the experiments.

6 Discussion

Evaluation against the comprehensively-annotated
English data sets has shown text partitioning to be
the current highest overall ranking MWE segmen-
tation algorithm. This result is upheld for two out
of the three available test domains (business re-
views and TED talk transcripts), with a close third
place achieved against data from Twitter. This ex-
hibits the algorithms general applicability across
domains, and especially in the context of noisy
text. Combined with the algorithm’s fast-running
and non-combinatorial nature, this makes text par-
titioning ideal for large-scale applications to the
identification of colloquial language, often found
on social media. For these purposes, the presented
algorithms have been made available as open-
source tools as the Python “Partitioner” module,
which may be accessed through Github6 and the
Python Package Index7 for general use.

Unfortunately, the PARSEME experiments did
not provide an evaluation against all types of
MWEs. However, they did exhibit the general
applicability of text partitioning across languages.
So, while the PARSEME data are not sufficient for
comprehensive MWE segmentation, trained mod-
els have also been made available for the 18 non-
English languages through the Python Partitioner
module. Across the 18 PARSEME shared-task
languages text partitioning’s F1 values were found
to rank as mid to high, with the notable exception
of SV. While the SV data is peculiar in being quite
small (with its training set smaller than its testing
set), models entered into the PARSEME shared
task achieved roughly twice the F1 score for SV,
indicating the possibility that text partitioning re-
quires some critical mass of training data in order
to achieve high levels of performance. Thus, for
general increases in performance and for extension
to comprehensive MWE segmentations, future di-
rections of this work will likely do well to seek the

format. This included 27.2% of all MWEs annotated in the
DE test records and 64.8% of all in the HU test records. Since
text partitioning identifies segment boundaries, it cannot han-
dle these anomalous MWEs, unlike the models entered into
the PARSEME shared task. So to accommodate these and
maintain comparability, a separate algorithm was employed.
This simply placed lone MWE tags on tokens that were ob-
served as anomalous 50% or more of the time in training.

6 https://github.com/jakerylandwilliams/partitioner
7 https://pypi.python.org/pypi/partitioner

collection of larger and more-comprehensive data
sets.

As defined, text partitioning is subtly different
from a 2-gram model: it focuses on non-word
boundary tokens, as opposed to just word-word
pairs. Because this algorithm relies on knowledge
of boundary token states, it cannot be trained well
on MWE lexica, alone. Fort this model to achieve
high precision, boundaries commonly occurring as
broken must be observed as such, even if they are
necessary components of known MWEs. Thus,
the use of boundary-adjacent words for prediction
is a limitation of the present model. This may
possibly be overcome through use of more dis-
tant words and boundaries. However, since gold-
standard data are still relatively small, they will
likely require significant expansion before such
models may be effectively implemented. Thus, fu-
ture directions with more nuanced text partition-
ing models highlight the importance of generating
more gold standard data, too.

Acknowledgments

The author thanks Sharon Williams for her
ongoing support and thoughtful conversations,
Chaomei Chen for his early inspiration of the
project, Andy Reagan for his collaboration on the
Python Partitioner module, Giovanni Santia for his
thoughtful conversations, and the anonymous re-
viewers for their thoughtful comments. The author
gratefully acknowledges research support from the
University of California, Berkeley’s School of In-
formation, along with Drexel University’s Depart-
ment of Information Science and College of Com-
puting and Informatics.

References
Timothy Baldwin and Su Nam Kim. 2010. Muilti-

word expressions. In Handbook of Natural Lan-
guage Processing. CRC Press, Boca Raton, USA,
pages 267–292.

Colin Bannard, Timothy Baldwin, and Alex Las-
carides. 2003. A statistical approach to the seman-
tics of verb-particles. In Proceedings of the ACL
2003 Workshop on Multiword Expressions: Analy-
sis, Acquisition and Treatment - Volume 18. pages
65–72.

Joseph D. Becker. 1975. The phrasal lexicon. In Pro-
ceedings of the 1975 Workshop on Theoretical Is-
sues in Natural Language Processing. TINLAP ’75,
pages 60–63.

8

Marine Carpuat and Mona Diab. 2010. Task-based
evaluation of multiword expressions: A pilot study
in statistical machine translation. In Human Lan-
guage Technologies: The 2010 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics. HLT ’10, pages 242–
245.

Kenneth W. Church and Patrick Hanks. 1990. Word
association norms, mutual information, and lexi-
cography. Computational Linguistics 16(1):22–29.
Http://dl.acm.org/citation.cfm?id=89086.89095.

Matthieu Constant and Anthony Sigogne. 2011. Mwu-
aware part-of-speech tagging with a crf model and
lexical resources. In Proceedings of the Workshop
on Multiword Expressions: From Parsing and Gen-
eration to the Real World. MWE ’11, pages 49–56.

Silvio Ricardo Cordeiro, Carlos Ramisch, and Aline
Villavicencio. 2015. Token-based mwe identifica-
tion strategies in the mwetoolkit. In Proceedings of
the PARSEME 4th general meeting.

Nick C. Ellis, Rita Simpson-Vlach, and Carson May-
nard. 2008. Formulaic Language in Native and Sec-
ond Language Speakers: Psycholinguistics, Corpus
Linguistics, and TESOL. TESOL Quarterly: A
Journal for Teachers of English to Speakers of Other
Languages and of Standard English as a Second Di-
alect 42(3):375–396.

Mark Alan Finlayson and Nidhi Kulkarni. 2011. De-
tecting multi-word expressions improves word sense
disambiguation. In Proceedings of the Workshop on
Multiword Expressions: From Parsing and Genera-
tion to the Real World. MWE ’11, pages 20–24.

Abram Handler, Matthew J. Denny, Hanna Wallach,
and Brendan OConnor. 2016. Bag of what? simple
noun phrase extraction for text analysis. In Proceed-
ings of the Workshop on Natural Language Process-
ing and Computational Social Science. pages 114–
124.

Silvana Hartmann, György Szarvas, and Iryna
Gurevych. 2012. Mining multiword terms from
wikipedia pages 226–258.

Mohammad Javad Hosseini, Noah A. Smith, and Su-In
Lee. 2016. UW-CSE at SemEval-2016 Task 10: De-
tecting multiword expressions and supersenses using
double-chained conditional random fields. In Pro-
ceedings of SemEval.

Ray S. Jackendoff. 1997. The Architecture of the Lan-
guage Faculty. MIT Press.

Anders Johannsen, Dirk Hovy, Hctor Martinez, Bar-
bara Plank, and Anders Sgaard. 2014. More or less
supervised super-sense tagging of twitter. In The 3rd
Joint Conference on Lexical and Computational Se-
mantics.

Nidhi Kulkarni and Mark Alan Finlayson. 2011. jmwe:
A java toolkit for detecting multi-word expressions.
In Proceedings of the Workshop on Multiword Ex-
pressions: From Parsing and Generation to the Real
World. MWE ’11, pages 122–124.

George A. Miller. 1995. Wordnet: A lexical database
for english. Commun. ACM 38(11):39–41.

David Newman, Nagendra Koilada, Jey Han Lau, and
Timothy Baldwin. 2012. Bayesian text segmenta-
tion for index term identification and keyphrase ex-
traction. In Proceedings of the 9th Workshop on
Multiword Expressions. pages 139–144.

Pavel Pecina. 2010. Lexical association mea-
sures and collocation extraction. Language
Resources and Evaluation 44(1-2):137–158.
Http://dx.doi.org/10.1007/s10579-009-9101-4.
https://doi.org/10.1007/s10579-009-9101-4.

Carlos Ramisch. 2015. Multiword Expressions
Acquisition: A Generic and Open Framework.
Springer Publishing Company, Incorporated.
https://doi.org/10.1007/978-3-319-09207-2.

Lance A. Ramshaw and Mitchell P. Marcus. 1995. Text
chunking using transformation-based learning. In
Proceedings of the Third ACL Workshop on Very
Large Corpora. pages 82–94.

Ivan A. Sag, Timothy Baldwin, Francis Bond, Ann
Copestake, and Dan Flickinger. 2002. Multiword
Expressions: A Pain in the Neck for NLP. Springer,
Berlin, Heidelberg. https://doi.org/10.1007/3-540-
45715-1 1.

Hazem Al Saied and Marie Candito. 2017. The atilf-llf
system for parseme shared task: a transition-based
verbal multiword expression tagger. In Proceedings
of the 13th Workshop on Multiword Expressions.
pages 127–132.

Agata Savary, Carlos Ramisch, Silvio Cordeiro, Fed-
erico Sangati, Veronika Vincze, Behrang Qasem-
iZadeh, Marie Candito, Fabienne Cap, Voula Giouli,
Ivelina Stoyanova, and Antoine Doucet. 2017. The
parseme shared task on automatic identification of
verbal multiword expression. In Proceedings of
the 13th Workshop on Multiword Expressions. pages
31–47.

Agata Savary, Manfred Sailer, Yannick Parmen-
tier, Michael Rosner, Victoria Rosén, Adam
Przepiórkowski, Cvetana Krstev, Veronika Vincze,
Beata Wójtowicz, Gyri Smørdal Losnegaard, Carla
Parra Escartı́n, Jakub Waszczuk, Matthieu Con-
stant, Petya Osenova, and Federico Sangati. 2015.
PARSEME – PARSing and Multiword Expressions
within a European multilingual network. In 7th Lan-
guage & Technology Conference: Human Language
Technologies as a Challenge for Computer Science
and Linguistics (LTC 2015).

9

Nathan Schneider, Emily Danchik, Chris Dyer, and
Noah A. Smith. 2014a. Discriminative lexical se-
mantic segmentation with gaps: Running the mwe
gamut. Transactions of the Association for Compu-
tational Linguistics 2:193–206.

Nathan Schneider, Dirk Hovy, Anders Johannsen, and
Marine Carpuat. 2016. SemEval-2016 Task 10: De-
tecting Minimal Semantic Units and their Meanings
(DiMSUM). In Proceedings of SemEval.

Nathan Schneider, Spencer Onuffer, Nora Kazour,
Emily Danchik, Michael T. Mordowanec, Henrietta
Conrad, and Noah A. Smith. 2014b. Comprehensive
annotation of multiword expressions in a social web
corpus. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC’14). pages 455–461.

Nathan Schneider and Noah A. Smith. 2015. A cor-
pus and model integrating multiword expressions
and supersenses. In Proceedings of the 2015 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies. The Association for Computa-
tional Linguistics, pages 1537–1547.

V. Seretan. 2008. Collocation Extraction Based on
Syntactic Parsing. Ph.D. thesis, University of
Geneva.

István Nagy T., Gábor Berend, György Móra, and
Veronika Vincze. 2011. Domain-dependent detec-
tion of light verb constructions. In RANLP Student
Research Workshop. pages 1–8.

Yulia Tsvetkov and Shuly Wintner. 2011. Identifica-
tion of multi-word expressions by combining mul-
tiple linguistic information sources. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing. EMNLP ’11, pages 836–845.

Jake Ryland Williams, Paul R. Lessard, Suma Desu,
Eric M. Clark, James P. Bagrow, Chris M. Danforth,
and Peter Sheridan Dodds. 2015. Zipf’s law holds
for phrases, not words. Scientific Reports 5.

10

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 11–20
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

Towards the Understanding of Gaming Audiences
by Modeling Twitch Emotes

Francesco Barbieri♦ Luis Espinosa-Anke♦ Miguel Ballesteros♠
Juan Soler-Company ♦ Horacio Saggion♦

♦ Large Scale Text Understanding Systems Lab, TALN Group
Universitat Pompeu Fabra, Barcelona, Spain
♠IBM T.J Watson Research Center, U.S

{name.surname}@upf.edu, miguel.ballesteros@ibm.com

Abstract

Videogame streaming platforms have be-
come a paramount example of noisy user-
generated text. These are websites where
gaming is broadcasted, and allows inter-
action with viewers via integrated chat-
rooms. Probably the best known platform
of this kind is Twitch, which has more
than 100 million monthly viewers. De-
spite these numbers, and unlike other plat-
forms featuring short messages (e.g. Twit-
ter), Twitch has not received much atten-
tion from the Natural Language Process-
ing community. In this paper we aim at
bridging this gap by proposing two im-
portant tasks specific to the Twitch plat-
form, namely (1) Emote prediction; and
(2) Trolling detection. In our experiments,
we evaluate three models: a BOW base-
line, a logistic supervised classifiers based
on word embeddings, and a bidirectional
long short-term memory recurrent neural
network (LSTM). Our results show that
the LSTM model outperforms the other
two models, where explicit features with
proven effectiveness for similar tasks were
encoded.

1 Introduction

Understanding the language of social media is a
mature research area in Natural Language Pro-
cessing (NLP) and Artificial Intelligence. Not
only for the challenges it poses from a linguistic
perspective, but also for being a task with a di-
rect impact in relevant sectors like politics, stock
market or health (Small, 2011; Bollen et al., 2011;
Culotta, 2010). The notion of understanding in
social media contexts may be divided in more spe-
cific AI tasks, including, among others, Sentiment

Analysis (Pang and Lee, 2008), Irony Detection
(Reyes et al., 2013b), or Event Summarization via
Twitter Streams (Chakrabarti and Punera, 2011),
as well as other subtasks such as Event (Weng and
Lee, 2011) or Stance Detection (Mohammad et al.,
2016) in Twitter.

While the study of language in social media
typically involves blog posts, comments or prod-
uct reviews, one of the most interesting areas
of research concerns those highly restrictive plat-
forms, e.g. enforcing character limits in each mes-
sage. One of these platforms, Twitter, has attracted
much attention due to its large user base as well as
the linguistic idiosyncrasies of its language. It is
interesting, therefore, to focus on another grow-
ing platform (in number of users) which shares
some of the features that made Twitter popular
in NLP. This platform is TWITCH.TV (henceforth,
Twitch), the largest videogame video streaming
service, currently a subsidiary of Amazon. Inc.

Twitch is used by a large community of indi-
vidual gamers to broadcast themselves playing a
game (Smith et al., 2013), but also by compa-
nies to broadcast live videogame and electronic
sports (competitive video gaming) events, as well
as releasing footage of new products, such as con-
soles or games. An outstanding feature of Twitch
broadcasts is that they run alongside a permanent
chat platform. Properly analyzing the content of
Twitch chat messages can be useful for under-
standing the opinion of the community towards
any industry product or stakeholder, in addition
to its industrial relevance (Kaytoue et al., 2012).
Moreover, analyzing this platform is fundamental
for informing a number of AI-related applications
such as behaviour prediction or Information Re-
trieval.

Interpreting Twitch language, however, is a
challenging problem, as it features a vast amount
of Internet memes, slang and gaming-related

11

lingo. In addition, Twitch language is character-
ized by combining short text messages with small
pictures known as emotes. These emotes gener-
ally serve a different communicative purpose than
most visual aids (e.g. Twitter emojis), and there-
fore require specific modeling.

In this paper, we put forward an approach for
the understanding of Twitch messages by means
of modeling the underlying semantics of Twitch
emotes, and a dataset of Twitch chat messages.
Building up on previous research on predicting
paralinguistic elements (e.g. emojis) (Barbieri
et al., 2017), we target the Emote Prediction prob-
lem, i.e. the task of, given a collection of chatroom
messages, predicting which emote the user is more
likely to use. Second, Trolling Detection, which
we reformulate as the task to detect a specific set of
emotes which are broadly used by Twitch users in
troll messages. For both tasks, we evaluate models
which consider sequences of words (bidirectional
recurrent neural networks (Graves and Schmidhu-
ber, 2005)), and compare against order-agnostic
baselines which have proven to be highly compet-
itive in similar tasks.

2 Twitch Language

An essential feature in a Twitch live broadcast is
the chatroom alongside the gameplay. This com-
ponent enables interaction among viewers and be-
tween viewers and streamers. This interaction is
in general expressed via short messages, although
in larger channels with higher activity, the major-
ity of users may only use emotes in their messages
for conveying emotions (Olejniczak, 2015). While
not entirely arbitrary, the language and the content
of conversations are remarkably diverse. In a very
short time span, users may comment on the game
that is being played, make an out-of-context joke,
or discuss an unrelated event like a football game.

2.1 Twitch Emotes

Twitch messages can be enhanced with Twitch
emotes, “small pictorial glyphs that fans pep-
per into text”1. These emotes range from the
more regular smiley faces, to others such as
game-specific, channel-specific, or even spon-
sored emotes which are introduced to the platform
during the promotion of an event or a videogame.
They constitute a core element in Twitch language

1http://www.cnet.com/news/learn-the-secret-language-
of-twitchs-rogue-emotes/

and therefore their interpretation is essential to
fully understand a message.

2.2 The kappa emote as a trolling indicator

The most used Twitch emote is known as ‘Kappa’
()2. It is a black and white emote based on
the face of a former Twitch employee, and is
freely available to any registered user (unlike other
emotes, which are behind a paywall). There is
wide agreement in the online community that this
emote “represents sarcasm, irony, puns, jokes, and
trolls alike”3.

3 Tasks

In this section we describe the two tasks we pro-
pose. Similarly to Barbieri et al. (2017) we focus
on, given a Twitch message, predicting its associ-
ated emote. We argue that predicting the emote
is similar to understanding the intended meaning
of the message (Hogenboom et al., 2013, 2015;
Castellucci et al., 2015), regardless of how it was
phrased.

3.1 Predicting Twitch Emotes

This is a generic task, consisting in predicting any
of the 30 most used emotes in our Twitch dataset.
Our aim is to classify messages that only include
one and only one type of emote, even if it appears
repeatedly, and which constitutes the classification
label.

3.2 Trolling Detection

The availability and general usage of the ‘kappa’
emote enables a potential test bed for performing
experiments on detecting troll messages in Twitch
chatrooms. We approach this task under the as-
sumption that adding ‘kappa’ at the end of a mes-
sage has a similar effect as it would be to add
#irony or #sarcasm at the end of a Twitter
message (see (Davidov et al., 2010; Reyes et al.,
2013b; Barbieri and Saggion, 2014) for extensive
research on irony and sarcasm detection in Twitter
under this assumption). Thus, for the trolling pre-
diction experiments, we benefit from this partic-
ularity and construct an evaluation dataset where
messages are split by considering presence or ab-
sence of this emote. In an additional experiment,
we further investigate the properties of derivations

2It is possible to track the usage of the most popular
Twitch emotes live at http://kappa.ws/.

3http://www.urbandictionary.com/define.php?term=Kappa

12

Dataset Chars Tokens Mentions
30 emotes 28,7M (57.4) 5,5M (10.9) 58M (0.12)
M-Kappa 22,7M (45.6) 4,4M (8.9) 68,5M (0.13)

Table 1: Statistics of the two datasets used in the
emote prediction experiments.

of the ‘kappa’ emote, e.g. ‘keepo’ , ‘kappaross’
or ‘kappapride’ .

4 Data Gathering and Preprocessing

Our Twitch corpus was gathered thanks to a
crawler of chat messages applied in the 300 most
popular Twitch channels from September 2015 to
February 2016. From this initial corpus, we only
keep messages from the streams of the five most
popular Twitch games4 at the time (by viewer
numbers).

For preprocessing, we benefit from a modified
version of the CMU TWEET TOKENIZER (Gimpel
et al., 2011), and removed all hyperlinks and non-
ASCII characters, and also lower cased all textual
content in order to reduce noise and sparsity. We
also removed messages that where sequentially re-
peated (a common spamming practice in Twitch).
We also remove messages with less than four to-
kens. This process yields a corpus of 62 million
messages (Counter-Strike 15M, Dota 6M, Hearth-
stone 15M, League 20M, and World of Worcraft
6M).

We restrict our dataset to chat messages with
one and only one emote.

The final dataset used in the experiments is ob-
tained by keeping only those messages including
one of the 30 most frequent emotes. From this
large corpus, two datasets were derived for the ex-
periments we report in this paper. The first one (30
Emote Dataset) is composed of 100,000 messages
per game that have only one type of emote, result-
ing in 500,000 messages in total. Messages were
randomly selected to avoid topic bias. The sec-
ond dataset (Multi Kappa dataset) is composed of
100,000 messages per game that contain ‘kappa’
emotes, hence a total of 500,000 messages. Due to
the similarity of some emotes to ‘kappa’ we con-
sidered five different emotes as ‘kappa’, namely
‘kappa’, ‘kappapride’, ‘keepo’, ‘kappaross’ and
‘kappaclaus’.

4These games are: Counter Strike: Global Offensive,
Dota 2, Hearthstone: Heroes of Warcraft, League of Legends
and World of Warcraft.

Table 1 displays statistics of the datasets. For
each dataset we show the total number of char-
acters, the total number of tokens, the total num-
ber of user mentions, and for each statistics we
also show in parenthesis the ratio per message.
We can see that the 30 Emotes Dataset includes
slightly longer messages (with in average 57.4
chars against 45.6 chars).

5 Models Description

In this section we describe the methodology fol-
lowed to construct the three models we evaluate,
namely (1) a bidirectional LSTM; (2) a BOW-
based classifier; and (3) a Skipgram classifier
based on vector average.

5.1 Bi-Directional LSTMs

Given the proven effectiveness of recurrent neu-
ral networks in different tasks (Chung et al., 2014;
Vinyals et al., 2015; Bahdanau et al., 2014, inter-
alia), which also includes modeling of tweets
(Dhingra et al., 2016; Barbieri et al., 2017), our
Emote prediction model is based on RNNs, which
are modeled to learn sequential data. We use
the word based B-LSTM architecture by Barbieri
et al. (2017), designed to model emojis in Twitter.

The forward LSTM reads the message from left
to right and the backward one reads the message
in the reverse direction.5 The learned vector of
each LSTM, is passed through a component-wise
rectified linear unit (ReLU) nonlinearity (Glorot
et al., 2011); finally, an affine transformation of
these learned vectors is passed to a softmax layer
to give a distribution over the list of emotes that
may be predicted given the Twitch chat message.

The inputs of the LSTMs are word embed-
dings (100 dimensions). We use a lookup table to
learn word representations. For out-of-vocabulary
words (OOVs), the system uses a fixed vector that
is handled as a separate word. In order to train the
fixed representation for OOVs, we stochastically
replace (with p = 0.5) each word that occurs only
once in the training data with the fixed representa-
tion in each training iteration.

5.2 Baselines

Two baselines were compared to the performance
of the B-LSTM model. We chose two common
algorithms for text classification, which unlike

5LSTM hidden states are of size 100, and each LSTM has
two layers.

13

LSTMs, do not take into account the entire se-
quence of words.

5.2.1 Bag of Words
We designed a Bag-of-Words (Bow) classifier as
such model has been successfully employed in
several classification tasks, like sentiment anal-
ysis and irony detection (Davidov et al., 2010;
Gonzalez-Ibanez et al., 2011; Reyes et al., 2013a).
We represent each message with a vector of the
most informative tokens (punctuation marks are
included as well). Words are selected using term
frequency-inverse document frequency (TF-IDF),
which is intended to reflect how important a word
is to a document (message) in the corpus. After
obtaining a vector for each message we classify
with a L2-regularized logistic regression classifier
to make the predictions6 with ε equal to 0.001.

5.2.2 Skip-Gram Vector Average
We employ the Skip-gram model (Mikolov et al.,
2013) learned from the 62M Twitch dataset (where
testing instances have been removed) to learn
Twitch semantic vectors. Then, we build a
model (henceforth, Vec-AVG) which represents
each message as the average of the vectors corre-
sponding to each word included in a given Twitch
message. After obtaining a representation of each
message, we train a L2-regularized logistic regres-
sion classifier, (with ε equal to 0.001).

6 Experimental Results

In this section, we describe the experimental setup
for each of the tasks, and present the results of our
proposed model.

6.1 Predicting Twitch Emotes

This is a multilabel classification task, where each
label corresponds to the 30 emotes listed in Table
3. We compare three models, namely the BoW and
Vec-AVG baselines and the B-LSTM model. We
report the performance of the models in Table 2,
where we also show the results of a majority base-
line (where all the prediction are equal to “kappa”
in this case).

We further investigate the behavior of the B-
LSTM model by analyzing its emote-wise perfor-
mance. Results are summarized in Table 3, where
we report Precision, Recall and F-Measure for

6We used the MatLab implementation of Multi-
core LIBLINEAR https://www.csie.ntu.edu.tw/
˜cjlin/libsvmtools/multicore-liblinear/

Model P R F1
Majority 0.06 0.25 0.10

BOW 0.35 0.33 0.29
Vec-AVG 0.46 0.38 0.32
B-LSTM 0.47 0.42 0.39

Table 2: Precision, Recall and F-Measure of the
two models in the 30 emotes prediction experi-
ment.

each emote, along with their Ranking and occur-
rences in the test set. The Ranking is the average
number of emotes with higher probability than the
gold emote in the probability distribution (in each
prediction) provided by the classifiers (softmax).
For example, a Ranking equal to 3.0 means that
the gold emote is selected, in average, as the third
option (the Ranking goes from 1 to X where X is
the number of emotes).

6.2 Trolling Detection

We perform two tasks. First, a Trolling VS Non-
Trolling experiment, which we frame as a classi-
fication problem consisting in discriminating be-
tween messages with any of the ‘kappa’-related
emotes, and those without. Second, in the Multi-
Kappa experiment, we aim at performing a finer-
grained classification among similar but different
ways of trolling, which Twitch users perform by
consciously selecting a specific variation of the
‘kappa’ emote.

6.2.1 Trolling VS Non-Trolling
We compare the performance of the three com-
peting models, namely BoW, Vec-AVG and B-
LSTMs. However, for the purpose of this exper-
iment, we perform modifications in the label set.
Our aim is to explicitly perform a coarse and a
fine-grained experiment on trolling detection by
clustering together labels which are generally used
for the same trolling purpose (all ‘kappa’-related
emotes). Note that the aim of the task is in all
cases the same, discerning between trolling and
non-trolling messages. The resulting label sets and
their associated datasets are:

• D1 This is the original dataset, with the orig-
inal 30 emote label set. In this configuration,
a true positive occurs when the model cor-
rectly assigns any ‘kappa’ label to a message
with a ‘kappa’-related emote. Similarly, true
negatives come from correctly predicting the

14

Emo Name P R F1 Rank Te Tr

kappa 0.38 0.78 0.52 1.78 25 127

4head 0.38 0.14 0.21 3 9.2 45

pogchamp 0.42 0.44 0.43 3.01 9.2 46

elegiggle 0.43 0.44 0.43 3.34 8.9 43

biblethump 0.39 0.36 0.37 4.41 5.3 25

dansgame 0.41 0.31 0.35 4.21 4.8 24

kreygasm 0.3 0.19 0.23 6.37 4.2 21

failfish 0.44 0.17 0.25 5.17 3.6 19

swiftrage 0.57 0.4 0.47 5.61 3.3 15

wutface 0.62 0.14 0.22 7.26 2.4 14

keepo 1 0 0.01 9.79 2.2 11

residentsleeper 0.54 0.3 0.38 7.66 2.2 10

kappapride 0.48 0.26 0.34 8.54 2.1 11

trihard 0.75 0.49 0.6 5.79 2.1 10

kappaross 0.61 0.2 0.3 8.38 1.7 8

babyrage 0.54 0.28 0.37 8.16 1.6 9

notlikethis 0.53 0.13 0.21 10.33 1.5 8

opieop 0.71 0.11 0.19 9.15 1.4 7

smorc 0.69 0.47 0.56 7.93 1.4 7

anele 0.42 0.57 0.49 6.38 1.2 6

seemsgood 0.75 0.33 0.46 9.83 1.2 6

brokeback 0.8 0.16 0.27 13.85 1.2 5

osfrog 0.7 0.48 0.57 8.36 1 6

mrdestructoid 0.64 0.42 0.5 9.98 0.7 4

heyguys 0.72 0.21 0.32 16.07 0.6 3

kappaclaus 0.92 0.21 0.34 14.42 0.6 3

datsheffy 0.72 0.48 0.57 9.65 0.5 2

coolcat 0.89 0.38 0.53 13.34 0.4 2

osrob 1 0.91 0.95 2.91 0.3 2

pjsalt 0.67 0.12 0.21 19.57 0.3 2

Table 3: Detailed results for each class in the
Emote prediction experiment. We report the re-
sults of the B-LSTMs model. We report Precision,
Recall, F-Measure, Rank and thousand of occur-
rences in the Test (Te) and in the Train (Tr) for
each emote.

absence of a non ‘kappa’ label in a message.

• D2 In this case, we replace all ‘kappa’ emotes
with an umbrella super-‘kappa’ emote, thus
forcing the model to learn a coarser-grained
class. Negative examples are the same as in
D1.

• D3 This is the coarsest of the three configu-
rations, where we train with a super-‘kappa’
positive class, and a superclass for negative

D Model Class P R F1
- Majority Avg 0.47 0.68 0.56

D1

BoW
Iro 0.41 0.73 0.53

Non-Iro 0.81 0.52 0.63
Avg 0.68 0.59 0.60

Vec-AVG
Iro 0.41 0.89 0.56

Non-Iro 0.89 0.40 0.55
Avg 0.73 0.55 0.55

B-LSTM
Iro 0.47 0.79 0.59

Non-Iro 0.86 0.59 0.70
Avg 0.74 0.66 0.67

D2

BoW
Iro 0.41 0.78 0.53

Non-Iro 0.82 0.47 0.60
Avg 0.69 0.57 0.58

Vec-AVG
Iro 0.39 0.92 0.55

Non-Iro 0.91 0.34 0.49
Avg 0.74 0.52 0.51

B-LSTM
Iro 0.45 0.85 0.59

Non-Iro 0.88 0.53 0.66
Avg 0.75 0.63 0.64

D1

BoW
Iro 0.44 0.29 0.35

Non-Iro 0.72 0.83 0.77
Avg 0.63 0.66 0.64

Vec-AVG
Iro 0.72 0.91 0.80

Non-Iro 0.52 0.22 0.31
Avg 0.66 0.69 0.65

B-LSTM
Iro 0.58 0.49 0.53

Non-Iro 0.78 0.83 0.81
Avg 0.72 0.72 0.72

Table 4: Results of the trolling prediction exper-
iments. The classes are two, trolling and non-
trolling.

cases (clustering all the non-‘kappa’ emotes
into a dummy negative label).

6.2.2 Multi-‘Kappa’
‘Kappa’-related emotes are used to express irony
or sarcasm and in general troll alike messages. We
are interested in investigating if there is a fine-
grained pattern in the usage of any of these emotes,
as the community does not seem to use them in-
terchangeably. Thus, we perform a multi-‘kappa’
experiment, i.e. an experiment designed to discern
among nuanced ironic messages.

In Table 5 we show comparative results of the
models under evaluation for this task, in terms of
Precision, Recall and F-Measure of the five classes
ordered by frequency, from the most frequent
(‘kappa’) to the rarest (‘kappaclaus’). Similarly as

15

Model Class P R F1
Majority Avg 0.60 0.78 0.68

BoW

kappa 0.81 0.98 0.88
kappapride 0.67 0.28 0.39

keepo 0.20 0.01 0.02
kappaross 0.60 0.19 0.28
kappaclaus 0.51 0.14 0.22

Avg 0.73 0.79 0.74

Vec-AVG

kappa 0.80 0.99 0.89
kappapride 0.76 0.23 0.36

keepo 1.00 0.01 0.02
kappaross 0.68 0.10 0.18
kappaclaus 0.77 0.16 0.27

Avg 0.81 0.80 0.74

B-LSTM

kappa 0.81 0.99 0.89
kappapride 0.78 0.32 0.46

keepo 0.00 0.00 0.00
kappaross 0.84 0.24 0.38
kappaclaus 0.82 0.20 0.32

Avg 0.75 0.81 0.76

Table 5: Results of the multi ‘kappa’ prediction
experiment.

in the previous experiment, the B-LSTM method
outperformed the baselines, this time, however,
with a smaller difference. We can see that the three
systems show similar F1 in the ‘kappa’ predic-
tion (0.74, 0.74 and 0.76). However the B-LSTM
works better on the other kappa emotes, suggest-
ing that the B-LSTM model is better at modeling
the inner semantic of the kappa emotes.

6.3 Discussion
In the first experiment, Predicting Twitch Emotes,
our B-LSTM model notably outperforms the base-
lines, showing a 10 point difference. Further anal-
ysis on the behavior of our model can be found in
Table 3. We observed that the emotes which are
best recognized (highest F-Measure) are not nec-
essarily the most frequent. For example, the best
predicted emotes are ‘osrob’, ‘osfrog’ and ‘dat-
sheffy’, with F-Measure scores of 0.95, 0.57 and
0.57 respectively. In contrast, the most difficult
emote to identify is ‘keepo’ (F-Measure of 0.01),
probably due to its semantic overlap with ‘kappa’.
On the other hand, specific emotes such as ‘tri-
hard’7, ‘mrdestructoid’8 or ‘smorc’9 are easier to

7It refers to the idea of ‘trying hard’, i.e. putting maxi-
mum effort in a task.

8General robot emoticon.
9Used in scenarios where ‘Orc’ characters are present.

predict, due to their stronger bound to a specific
topic and the univocity of their meaning.

However, we found that the model often pri-
oritizes the most frequent emotes. We look into
this observation by computing Pearson Correla-
tion (PC) between frequency and Ranking, which
yields -0.6, hence, if an emote shows high fre-
quency, it has low Ranking, and vice versa. How-
ever, in terms of Recall and F-Measure, these do
not show any correlation with frequency (PC of
0.3 and 0.1 respectively), nor Ranking. Finally,
let us highlight the fact that Precision is inversely
correlated to frequency, with a PC score of -0.54.
Again, the model may have high confidence in rare
emotes only in very specific cases, and it is then
when they are selected.

We provide a visualization of the model’s per-
formance with a confusion matrix (Figure 1). As
mentioned earlier, the B-LSTM has a bias towards
‘kappa’, the most frequent emote in Twitch. It
is also clear that ‘biblethump’, ‘elegiggle’, ‘krey-
gasm’ and ‘pogchamp’ are also very frequent in
Twitch language due to the large number of con-
fusions involving these emotes. ‘Elegiggle’ and
‘failfish’ are often confused. The main reason be-
hind this confusion might be that they are both
used in situations where the streamer has failed
(‘faifish’), and the audience finds this funny. In-
terestingly, ‘4head’, one of the most frequent
emotes, seems to not be the source of wrong pre-
dictions. The reason behind that is that the usual
usage of ‘4Head’ is to substitute the word fore-
head, which clearly restricts the communicative
contexts available for it being used. The emote
‘pogchamp’, moreover, is wrongly selected with
notable frequency. We have observed that the use
of ‘pogchamp’ and ‘kreygasm’ emotes is fairly in-
terchangeable, as in gaming, the notion of positive
surprise (‘pogchamp’) and ecstasy (‘kreygasm’)
are more strongly related to the same events or re-
actions.

Table 4 shows the performance of our model
on the task of differentiating between ironic and
non-ironic messages using three different training
strategies and comparing these performances with
a two baselines. It can be observed that once again
our model outperforms the baselines in every case
and that it achieves very competitive performance
when the system is trained by labeling every mes-
sage with a ‘kappa’ emote as trolling and every
message with a non-kappa emote as non-trolling.

16

Figure 1: Confusion Matrix of B-LSTMs of the 30 emotes prediction experiment

Even in the first two training strategies, where
the messages are labeled with a higher amount of
emotes (and as a result, the system can confuse
emotes that are used in similar scenarios), the per-
formance is high.

Once we differentiated between trolling and
non-trolling messages, we further explored a finer
grained classification process over the ‘kappa’
derivations. Table 5 presents the results in the clas-
sification of ‘kappa’ emotes of our system com-
pared again with the two baselines. From our re-
sults, it seems that there are indeed differences in
the usage of certain emotes. The emote ‘kappa’
is a sort of generalisation of each one of its other
derivations. Note that there are three cases where
the usage of emotes that are not ‘kappa’ have pat-
terns that are not equivalent: ‘kappaclaus’, which
is a version of kappa with a christmas theme, ‘kap-
papride’ which is a kappa face with the character-
istic colors of the rainbow flag of the LGBT move-
ment and ‘kappaross’, which is a Twitch homage
to the painter Bob Ross. Even if the underlying
intention of the mentioned emotes is trolls alike,
it is clear that their intended meaning is not the
same as ‘kappa’. On the other hand, ‘keepo’, the

‘kappa’ emote with cat ears, is always confused
with ‘kappa’, and thus we can conclude that both
emotes are used interchangeably.

7 Related Work

The most similar communicative phenomena to
emotes are emojis. Emojis are used by the vast
majority of Social Media services and instant mes-
saging platforms (Jibril and Abdullah, 2013; Park
et al., 2013, 2014). Emojis (like the older emoti-
cons) give the possibility to express a variety of
ideas and feelings in a visual, concise and appeal-
ing way that is perfectly suited for the informal
style of Social Media. Several recent works stud-
ied Emojis, focusing on emojis’ semantics and
usage (Aoki and Uchida, 2011; Barbieri et al.,
2016a,b,c; Eisner et al., 2016; Ljubesic and Fiser,
2016; Ai et al., 2017; Miller et al., 2017), and sen-
timent (Novak et al., 2015; Hu et al., 2017). Fi-
nally, (Barbieri et al., 2017) presented an emoji
prediction model for Twitter, where they use a
char based B-LSTM to detect the 20 most frequent
emojis.

Most work on irony and sarcasm detection in

17

Twitter has employed hashtags as labels for de-
tecting irony. This approach was introduced by
Tsur et al. (Tsur et al., 2010) and (Gonzalez-
Ibanez et al., 2011), who used the #sarcasm hash-
tag to retrieve sarcastic tweets. This technique was
later validated by various studies (Wang, 2013;
Sulis et al., 2016), which analyze the language as-
sociated to the use of irony-related hashtags (such
as #irony, and #not). Recent years have seen an
increase in models for detecting #irony and #sar-
casm. Many of these models adopted hand crafted
features (amoung others (Reyes et al., 2013a; Bar-
bieri and Saggion, 2014; Liu et al., 2014; Joshi
et al., 2015)), and others employed pretrained
word embeddings or deep learning systems such
as CNN or LSTMs (Joshi et al., 2016; Ghosh and
Veale, 2016; Poria et al., 2016; Amir et al., 2016).

8 Conclusions and Future Work

In this paper we have addressed the problem of
modeling the usage of Twitch emotes. This is
an important problem in social media text under-
standing, as the inherent noisy nature of these mes-
sages can be alleviated by having robust systems
that interpret the semantics of visual aids such as
Twitter emojis or Twitch emotes.

Emote understanding is approached in this pa-
per via different approaches, namely a BOW sys-
tem, a logistic regression classifier based on em-
bedding average, and a bidirectional LSTM. The
main conclusion that we draw from our experi-
ments is that the RNN model is more capable to
predict Twitch emotes than its competing base-
lines. In addition, we performed an analysis on
the usage of different trolling emotes and studied
their usage patterns and differences.

As future work we plan to incorporate more
context to the model, providing a representation
of previous chat messages where the emote ap-
pears. This would allow us to tackle the prob-
lem of the emote detection as a sequence mod-
eling task, and this will be more natural as it is
not easy to predict an emote of a message with no
context. Finally, as Barbieri et al. (2017) we plan
to investigate character-based approaches to rep-
resent words (Ling et al., 2015; Ballesteros et al.,
2015) and/or messages (Dhingra et al., 2016) since
Twitch data contain noisy text.

Acknowledgments

We thank the three anonymous reviewers for their
time and their useful suggestions. Francesco,
Luis and Horacio acknowledge support from
the TUNER project (TIN2015-65308-C5-5-R,
MINECO/FEDER, UE) and the Maria de Maeztu
Units of Excellence Programme (MDM-2015-
0502).

References
Wei Ai, Xuan Lu, Xuanzhe Liu, Ning Wang, Gang

Huang, and Qiaozhu Mei. 2017. Untangling emoji
popularity through semantic embeddings. In Inter-
national AAAI Conference on Web and Social Me-
dia, ICWSM. pages 2–11.

Silvio Amir, Byron C Wallace, Hao Lyu, and Paula
Carvalho Mário J Silva. 2016. Modelling context
with user embeddings for sarcasm detection in so-
cial media. arXiv preprint arXiv:1607.00976 .

Sho Aoki and Osamu Uchida. 2011. A method for
automatically generating the emotional vectors of
emoticons using weblog articles. In Proc. 10th
WSEAS Int. Conf. on Applied Computer and Applied
Computational Science, Stevens Point, Wisconsin,
USA. pages 132–136.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. CoRR .

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based parsing by model-
ing characters instead of words with lstms. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, Lisbon, Portugal,
pages 349–359. http://aclweb.org/anthology/D15-
1041.

Francesco Barbieri, Miguel Ballesteros, and Horacio
Saggion. 2017. Are Emojis Predictable? In Euro-
pean Chapter of the Association for Computational
Linguistics, EACL. ACL, Valencia, Spain.

Francesco Barbieri, Luis Espinosa Anke, and Hora-
cio Saggion. 2016a. Revealing Patterns of Twitter
Emoji Usage in Barcelona and Madrid. In 19 th In-
ternational Conference of the Catalan Association
for Artificial Intelligence. Barcelona, Spain, pages
326–332.

Francesco Barbieri, German Kruszewski, Francesco
Ronzano, and Horacio Saggion. 2016b. How Cos-
mopolitan Are Emojis? Exploring Emojis Usage
and Meaning over Different Languages with Dis-
tributional Semantics. In Proceedings of the 2016
ACM on Multimedia Conference. ACM, Amster-
dam, Netherlands, pages 531–535.

18

Francesco Barbieri, Francesco Ronzano, and Horacio
Saggion. 2016c. What does this emoji mean? a
vector space skip-gram model for twitter emojis.
In Language Resources and Evaluation conference,
LREC. Portoroz, Slovenia, pages 526–534.

Francesco Barbieri and Horacio Saggion. 2014.
Modelling Irony in Twitter. In Proceedings
of the EACL Student Research Workshop.
ACL, Gothenburg, Sweden, pages 56–64.
http://www.aclweb.org/anthology/E14-3007.

Johan Bollen, Huina Mao, and Xiaojun Zeng. 2011.
Twitter mood predicts the stock market. Journal of
Computational Science 2(1):1–8.

Giuseppe Castellucci, Danilo Croce, and Roberto
Basili. 2015. Acquiring a large scale polarity lexi-
con through unsupervised distributional methods. In
Natural Language Processing and Information Sys-
tems, Springer, pages 73–86.

Deepayan Chakrabarti and Kunal Punera. 2011. Event
summarization using tweets. International AAAI
Conference on Web and Social Media, ICWSM
11:66–73.

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. CoRR .

Aron Culotta. 2010. Towards detecting influenza epi-
demics by analyzing twitter messages. In Proceed-
ings of the first workshop on social media analytics.
ACM, pages 115–122.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010.
Semi-supervised recognition of sarcastic sentences
in twitter and amazon. In Proceedings of the
Fourteenth Conference on Computational Natural
Language Learning. Association for Computational
Linguistics, pages 107–116.

Bhuwan Dhingra, Zhong Zhou, Dylan Fitzpatrick,
Michael Muehl, and William W. Cohen. 2016.
Tweet2vec: Character-based distributed representa-
tions for social media. In Proceedings of the ACL.

Ben Eisner, Tim Rocktaschel, Isabelle Augenstein,
Matko Bosnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from
their description. In Proceedings of The Fourth
International Workshop on Natural Language Pro-
cessing for Social Media. Association for Computa-
tional Linguistics, Austin, TX, USA, pages 48–54.

Aniruddha Ghosh and Tony Veale. 2016. Fracking sar-
casm using neural network. In WASSA@ NAACL-
HLT . pages 161–169.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A Smith. 2011. Part-of-speech tagging
for twitter: Annotation, features, and experiments.

In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies: short papers-Volume 2. As-
sociation for Computational Linguistics, pages 42–
47.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Deep sparse rectifier neural networks. In Pro-
ceedings of the Conference on Artificial Intelligence
and Statistics (AISTATS).

Roberto Gonzalez-Ibanez, Smaranda Muresan, and
Nina Wacholder. 2011. Identifying sarcasm in twit-
ter: a closer look. In NAACL.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional
LSTM networks. In Proceedings of the Inter-
national Joint Conference on Neural Networks
(IJCNN).

Alexander Hogenboom, Daniella Bal, Flavius Frasin-
car, Malissa Bal, Franciska de Jong, and Uzay Kay-
mak. 2013. Exploiting emoticons in sentiment anal-
ysis. In Proceedings of the 28th Annual ACM Sym-
posium on Applied Computing. ACM, pages 703–
710.

Alexander Hogenboom, Daniella Bal, Flavius Frasin-
car, Malissa Bal, Franciska De Jong, and Uzay Kay-
mak. 2015. Exploiting emoticons in polarity classi-
fication of text. J. Web Eng. 14(1&2):22–40.

Tianran Hu, Han Guo, Hao Sun, Thuyvy Thi Nguyen,
and Jiebo Luo. 2017. Spice up your chat: The in-
tentions and sentiment effects of using emoji. arXiv
preprint arXiv:1703.02860 .

Tanimu Ahmed Jibril and Mardziah Hayati Abdul-
lah. 2013. Relevance of emoticons in computer-
mediated communication contexts: An overview.
Asian Social Science 9(4):201.

Aditya Joshi, Prayas Jain, Pushpak Bhattacharyya, and
Mark Carman. 2016. Who would have thought of
that!’: A hierarchical topic model for extraction
of sarcasm-prevalent topics and sarcasm detection.
arXiv preprint arXiv:1611.04326 .

Aditya Joshi, Vinita Sharma, and Pushpak Bhat-
tacharyya. 2015. Harnessing context incongruity for
sarcasm detection. In ACL (2). pages 757–762.

Mehdi Kaytoue, Arlei Silva, Loı̈c Cerf, Wagner
Meira Jr, and Chedy Raı̈ssi. 2012. Watch me play-
ing, i am a professional: a first study on video game
live streaming. In Proceedings of the 21st interna-
tional conference companion on World Wide Web.
ACM, pages 1181–1188.

Wang Ling, Chris Dyer, Alan Black, and Isabel
Trancoso. 2015. Two/too simple adaptations of
word2vec for syntax problems. In Proceedings of
the North American Chapter of the Association for
Computational Linguistics (NAACL).

19

Peng Liu, Wei Chen, Gaoyan Ou, Tengjiao Wang,
Dongqing Yang, and Kai Lei. 2014. Sarcasm de-
tection in social media based on imbalanced classi-
fication. In International Conference on Web-Age
Information Management. Springer, pages 459–471.

Nikola Ljubesic and Darja Fiser. 2016. A global anal-
ysis of emoji usage. In Proceedings of the 10th Web
as Corpus Workshop and the EmpiriST Shared Task.
Association for Computational Linguistics, Berlin,
Germany, pages 82–89.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013.
Exploiting similarities among languages for ma-
chine translation. arXiv preprint arXiv:1309.4168
.

Hannah Jean Miller, Daniel Kluver, Jacob Thebault-
Spieker, Loren G Terveen, and Brent J Hecht. 2017.
Understanding emoji ambiguity in context: The role
of text in emoji-related miscommunication. In Inter-
national AAAI Conference on Web and Social Me-
dia, ICWSM. pages 152–161.

Saif M Mohammad, Svetlana Kiritchenko, Parinaz
Sobhani, Xiaodan Zhu, and Colin Cherry. 2016.
Semeval-2016 task 6: Detecting stance in tweets. In
Proceedings of the International Workshop on Se-
mantic Evaluation, SemEval. volume 16.

Petra Kralj Novak, Jasmina Smailovic, Borut Sluban,
and Igor Mozetic. 2015. Sentiment of emojis. PloS
one 10(12):e0144296.

Jedrzej Olejniczak. 2015. A linguistic study of
language variety used on twitch.tv: Descriptive
and corpus-based approaches. In Proceedings
of Redefining Community in Intercultural Context
(RCIC15.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and trends in infor-
mation retrieval 2(1-2):1–135.

Jaram Park, Young Min Baek, and Meeyoung Cha.
2014. Cross-cultural comparison of nonverbal cues
in emoticons on twitter: Evidence from big data
analysis. Journal of Communication 64(2):333–
354.

Jaram Park, Vladimir Barash, Clay Fink, and Meey-
oung Cha. 2013. Emoticon style: Interpreting dif-
ferences in emoticons across cultures. In Interna-
tional AAAI Conference on Web and Social Media,
ICWSM.

Soujanya Poria, Erik Cambria, Devamanyu Hazarika,
and Prateek Vij. 2016. A deeper look into sarcas-
tic tweets using deep convolutional neural networks.
arXiv preprint arXiv:1610.08815 .

Antonio Reyes, Paolo Rosso, and Tony Veale. 2013a.
A multidimensional Approach for Detecting Irony in
Twitter. Language Resources and Evaluation pages
1–30.

Antonio Reyes, Paolo Rosso, and Tony Veale. 2013b.
A multidimensional approach for detecting irony
in twitter. Language resources and evaluation
47(1):239–268.

Tamara A Small. 2011. What the hashtag? a content
analysis of canadian politics on twitter. Information,
Communication & Society 14(6):872–895.

Thomas Smith, Marianna Obrist, and Peter Wright.
2013. Live-streaming changes the (video) game. In
Proceedings of the 11th european conference on In-
teractive TV and video. ACM, pages 131–138.

Emilio Sulis, Delia Irazú Hernández Farı́as, Paolo
Rosso, Viviana Patti, and Giancarlo Ruffo. 2016.
Figurative messages and affect in twitter: dif-
ferences between# irony,# sarcasm and# not.
Knowledge-Based Systems .

Oren Tsur, Dmitry Davidov, and Ari Rappoport. 2010.
Icwsm-a great catchy name: Semi-supervised recog-
nition of sarcastic sentences in online product re-
views. In International AAAI Conference on Web
and Social Media, ICWSM.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Proc. ICLR.

Po-Ya Angela Wang. 2013. #irony or #sarcasma quan-
titative and qualitative study based on twitter. 27th
Pacific Asia Conference on Language, Information,
and Computation .

Jianshu Weng and Bu-Sung Lee. 2011. Event detection
in twitter. International AAAI Conference on Web
and Social Media, ICWSM 11:401–408.

20

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 21–30
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

Churn Identification in Microblogs using Convolutional Neural Networks
with Structured Logical Knowledge

Mourad Gridach
Department of Computer Science

High Institute of Technology
Ibn Zohr University, Agadir

Morocco
m.gridach@uiz.ac.ma

Hatem Haddad
Department of Computer and Decision

Engineering, Université Libre de Bruxelles
Belgium

Hatem.Haddad@ulb.ac.be

Hala Mulki
Department of Computer Engineering

Selcuk University, Konya
Turkey

hallamulki@gmail.com

Abstract

For brands, gaining new customer is more
expensive than keeping an existing one.
Therefore, the ability to keep customers
in a brand is becoming more challenging
these days. Churn happens when a cus-
tomer leaves a brand to another competi-
tor. Most of the previous work consid-
ers the problem of churn prediction using
CDRs. In this paper, we use micro-posts
to classify customers into churny or non-
churny. We explore the power of CNNs
since they achieved state-of-the-art in var-
ious computer vision and NLP applica-
tions. However, the robustness of end-to-
end models has some limitations such as
the availability of a large amount of la-
beled data and uninterpretability of these
models. We investigate the use of CNNs
augmented with structured logic rules to
overcome or reduce this issue. We devel-
oped our system called Churn teacher
by using an iterative distillation method
that transfers the knowledge, extracted us-
ing just the combination of three logic
rules, directly into the weight of Deep
Neural Networks (DNNs). Furthermore,
we used weight normalization to speed
up training our convolutional neural net-
works. Experimental results showed that
with just these three rules, we were able

to get state-of-the-art on publicly avail-
able Twitter dataset about three Telecom
brands.

1 Introduction

Customer churn may be defined as the process of
losing a customer that recently switches from a
brand to another competitor. The churn problem
can be tackled from different angles: most of the
previous work used Call Detail Records (CDRs)
to identify churners from non-churners (Zaratiegui
et al., 2015). More recently, with more data
became available on the web, brands can use
customers opinionated comments via social net-
works, forums and especially Twitter to detect
churny from non-churny customers. We used the
churn dataset developed by (Amiri and Daumé III,
2015). This dataset was collected from Twitter
for three telecommunication brands: Verizon, T-
Mobile, and AT&T.

In recent years, deep learning models have
achieved great success in various domains
and difficult problems such as computer vi-
sion (Krizhevsky et al., 2012) and speech recogni-
tion (Dahl et al., 2012; Hinton et al., 2012). In nat-
ural language processing, much of the work with
deep learning models has involved language mod-
eling (Bengio et al., 2003; Mikolov et al., 2013),
sentiment analysis (Socher et al., 2013), and more
recently, neural machine translation (Cho et al.,
2014; Sutskever et al., 2014). Furthermore, these
models can use backpropagation algorithm for

21

training (Rumelhart et al., 1988).

Regardless of the success of deep neural net-
works, these models still have a gap compared to
human learning process. While the success came
from the high expressiveness, it leads them to pre-
dict results in uninterpretable ways, which could
have a negative side effects on the whole learn-
ing process (Szegedy et al., 2013; Nguyen et al.,
2015). In addition, these models require a huge
amount of labeled data, which is considered as
time consuming for the community since it re-
quires human experts in most applications (natu-
ral language and computer vision). Recent works
tackled this issue by trying to bridge this gap in
different applications: in supervised learning such
as machine translation (Wu et al., 2016) and unsu-
pervised learning (Bengio et al., 2015).

In the Natural Language Processing (NLP)
community, there has been much work to aug-
ment the training process with additional and use-
ful features (Collobert et al., 2011) which proved
its success in various NLP applications such as
Named Entity Recognition (NER) and Sentiment
Analysis. The majority of these works used pre-
trained word embeddings obtained from unlabeled
data to initialize their word vectors, which allow
them to improve the performance. Another solu-
tion came from integrating logical rules extracted
from the data directly into the weights of neu-
ral networks. (Hu et al., 2016) explored a distil-
lation framework that transfers structured knowl-
edge coded as logic rules into the weights of neural
networks. (Garcez et al., 2012) developed a neural
network from a given rule to do reasoning.

In this paper, we combine the two ideas: firstly,
we used unsupervised word representations to ini-
tialize our word vectors. We explored three differ-
ent pretraiend word embeddings and compared the
results with a randomly sampled one. Secondly,
we used three main logic rules, which were proven
to be useful and crucial. The “but” rule was ex-
plored by (Hu et al., 2016) in sentiment analysis
and we add two new rules: “switch to” and “switch
from”. (Amiri and Daumé III, 2016) showed that
the last two rules have a remarkable influence into
the churn classification problem.

Moreover, in order to accelerate training our
model on churn training dataset, we conduct an
investigation of using weight normalization (Sali-
mans and Kingma, 2016), which is a new recently
developed method to accelerate training deep neu-

ral networks.
Experiments on Twitter dataset built from a

large number of tweets about three Telecommu-
nication brands show that we were able to obtain
state-of-the-art results for churn classification in
microblogs. Our system, called Churn teacher,
is constructed by using a structured logical knowl-
edge expressed into three logic rules transferred
into the weights of convolutional neural networks.
We outperform the previous models based on hand
engineering features or also using recurrent neural
networks combined with minimal features. Our
system is philosophical close to (Hu et al., 2016),
which showed that combining deep neural net-
works with logic rules performed well on two NLP
tasks: NER and Sentiment Analysis.

The rest of this paper is structured as follows:
in section 2, we discuss the related work done
in churn prediction application. In section 3, we
present our churn prediction approach which is
based on structured logical knowledge transferred
into the weights of Convolutional Neural Net-
works (CNNs). In section 4, we discuss the impact
of pretrained word embeddings on the churn clas-
sification. The experimental results are presented
in section 5. Finally, we present the conclusion
with the future work in section 6.

2 Related Work

Churn prediction is an important area of focus
for sentiment analysis and opinion mining. In
the 2009, ACM Conference on Knowledge Dis-
covery and Datamining (KDD) hosted a compe-
tition on predicting mobile network churn using
a large dataset posted by Orange Labs, which
makes churn prediction, a promising application
in the next few years. We can divide the previ-
ous work on Customer churn prediction in two
research groups: the first group uses data from
companies such as Telecom providers, banks, or
other organizations. More recently, with the ex-
plosion of social networks, researchers are inter-
ested to use social networks such as Twitter to pre-
dict churners.

Using data from banks, (Keramati et al., 2016)
developed a system for a customer churn in elec-
tronic banking services. They used a decision tree
algorithm to build their classification model. The
main goal of this paper is studying the most rele-
vant features of churners in banking services such
as demographic variables (age, gender, career,

22

etc.), transaction data through electronic banking
portals (ATM, mobile bank, telephone bank, etc.),
and others. They used a method called CRISP-
DM which contains six phases: Business under-
standing, Data understanding, Data preprocessing,
Modeling, Evaluation and Deployment. At the
final stage, they used a decision tree method to
model the previous phases.

(Backiel et al., 2016) studied the impact of in-
corporating social network information into churn
prediction models. The authors used three dif-
ferent machine learning (ML) techniques: logistic
regression, neural networks and Cox proportional
hazards. To extract features to use with these ML
techniques, they built a call graph, which allowed
them to extract the relevant features.

(Li et al., 2016) developed a model based on
stacked auto-encoder as a feature extractor to de-
tect the most influential features in Telecom churn
prediction. In addition, they proposed a second
model where they augmented the previous model
with a Fishers ration analysis called Hybrid Stack
Auto-Encoder (HSAE). The models were evalu-
ated on Orange datasets. Experimental results
showed that the HSAE model outperformed all
the other models including Principal Component
Analysis (PCA).

More recently, researchers tackle the churn pre-
diction problem using data collected from mi-
croblogs. (Amiri and Daumé III, 2015) developed
a system for churn prediction in microblogs. They
investigated the machine learning models such as
support vector machines, and logistic regression
with the combination of extracted features. Fur-
thermore, they investigated the use of three differ-
ent churn indicators: demographic, content, and
context indicators. Experimental results showed
that the combination of the three indicators lead to
the best performance.

(Amiri and Daumé III, 2016) used the power
of Recurrent Neural Networks (RNN) as a repre-
sentation learning models in order to learn micro-
post and churn indicator representations. The ex-
periments on publicly available Twitter dataset
showed the efficiency of the proposed method
in classifying customers in churners and non-
churners. Moreover, authors showed that the
churn classification problem is different from clas-
sical sentiment analysis problem since the pre-
vious state-of-the-art sentiment analysis systems
failed to classify churny/non-churny customers.

In this work, we focus on churn prediction
in microblogs where we use a publicly available
Twitter dataset provided by (Amiri and Daumé III,
2015) to evaluate our system.

3 The Proposed System

In this section, we introduce our system that en-
ables a convolutional neural network to learn si-
multaneously from logic rules and labeled data in
order to classify customers as churners and non-
churners. The general architecture of our sys-
tem can be seen as the combination of the knowl-
edge distillation (Hinton et al., 2015) and the
posterior regularization method (Ganchev et al.,
2010). (Hu et al., 2016) explored this combination
to build two systems for English sentiment analy-
sis and named entity recognition. We show that
this framework can also be applied to customer
churn prediction by deriving more logic rules and
transfer the structured logical knowledge into the
weights of a convolutional neural network.

3.1 Problem Formulation

For the purpose of this paper, let us assume we
have x ∈ X is the input variable and y ∈ Y is the
target variable. Let us consider the training data
D = {(xn, yn)}Nn=1 which is a set of instantiations
of (x, y) and N is the number of training exam-
ples in our dataset. For the purpose and the clar-
ity of this paper, we focus on classification prob-
lem where the target y is a one-hot encoding of
the class labels. We consider a subset of the train-
ing data (X,Y) ⊂ (X ,Y) as a set of instances
of (x, y). A neural network defines a conditional
probability pθ(y|x) parameterized by θ.

3.2 Neural Network with Structured Logical
Knowledge

In this section, we describe the distillation method
that allowed our system to transfer the structured
logical knowledge into the weights of convolu-
tional neural networks to classify customers as
churners and non-churners.

Let us define the set of constraint functions fl
such that: fl ∈ X × Y → R, where l is the index
of a specific constraint function. In our problem,
the set of functions will be represented as logical
rules where the overall truth values are in the inter-
val [0, 1]. These functions will allow us to encode
the structured logical knowledge where the goal is

23

to satisfy (i.e., maximize by optimizing the predic-
tions y) with confidence weights λl ∈ R.

The construction of a structure-enriched teacher
network q at each iteration from the neural net-
work parameters is obtained by solving the fol-
lowing optimization problem:

min
q∈P

KL(q(Y)||pθ(Y |X))−C
∑
l

λl Eq[fl(X,Y)]

(1)

where P denotes the appropriate distribution
space; and C is the regularization parameter. In
this paper, the teacher is called Churn teacher
where its main goal is to teach the model to clas-
sify customers from churners and non-churners.
The closeness between our Churn teacher and
pθ, which represents the conditional probability
obtained by the softmax output layer of the con-
volutional neural network, is measured using the
Kullback-Leibler (KL) divergence where the aim
is minimizing it. We note that problem (1) is con-
vex and has a closed-form solution given by the
following:

q∗(Y) ∝ pθ(Y |X) exp {C
∑
l

λlfl(X,Y)} (2)

It should be noted that the normalization term
can be computed efficiently through direct enu-
meration of the chosen rule constraints. At each
iteration, the probability distribution of the neu-
ral network pθ is updated using the distillation ob-
jective (Hinton et al., 2015) that balances between
imitating soft predictions of our Churn teacher
q and predicting true hard labels:

θ(t+1) = arg min
θ∈Θ

1
N

∑
N
n=1(1− π)l(yn, σθ(xn))

+πl(sp(t)
n , σθ(xn))

(3)

where l denotes the cross entropy loss function
that we used in this paper; N is the training size;
σθ(x) is the softmax output of pθ on x; spn is the
soft prediction vector of the Churn teacher q on
training point xn at iteration t and π is the imita-
tion parameter calibrating the relative importance
of the two objectives. In addition to their teacher

q, (Hu et al., 2016) tested their results using a stu-
dent network p. Related to their experimental re-
sults, the teacher q always gives better results than
the student p. We decide to only use the teacher
network q called in our work the Churn teacher.

3.3 Neural Network Architecture
In this section, we give an overview of the con-
volutional neural network used in our work. The
main architecture of our CNN is depicted in Figure
1. We followed the convolutional neural network
architecture as proposed by (Kim, 2014).

In the first step, we initialize each word in a
sentence T with length n with pretrained word
representations learned from unannotated corpora.
Then, we add padding whenever it is necessary for
the model. T is represented as the following:

vn1 = v1 ⊕ v2 ⊕ ...⊕ vn (4)

where vi represents the word vector of the i−th
word in the sentence T and ⊕ represents the con-
catenation operator. We use successive filters w to
obtain multiples feature map. Each filter is applied
to a window of m words to get a single feature
map: Fi = φ(w.vi+m−1

i + b) where b is the bias
and φ denotes an elementwise nonlinearity where
we used ReLU (Rectified Linear Unit). In the next
step, we applied a max-over-time pooling opera-
tion (Collobert et al., 2011) to the feature map and
take the maximum value. The results are fed to a
fully connected softmax layer to get probabilities
over the sentences. Figure 1 illustrates the archi-
tecture of our system where we consider the sys-
tem is classifying the input sentence: “Damn thats
crud. You should switch to Verizon”.

3.4 Logic Rules
In the early stages of the expansion of artificial in-
telligence, (Minsky, 1983) argued that the cogni-
tive process of human beings learn from two dif-
ferent sources: examples as deep neural networks
are doing these days and also from rich experi-
ences and general knowledge. For this reason,
we will use both of the sources for churn predic-
tion in microblogs where the convolutional neural
network learns from examples and logic rules add
structured knowledge into the weights of CNN by
playing a role of a regularizer in the learning pro-
cess.

In this section, we present the three logic rules
that we used in our churn prediction system. We

24

Figure 1: The system architecture. The word vectors are initialized with pretrained word representa-
tions from one of the three models: GloVe, Skip-Gram or CBOW. We feed these word vectors to the
convolutional neural network as input sentences followed by a max-pooling overtime followed by a
fully-connected layer and softmax to get probabilities (FC with Softmax)

borrow the first logic rule from sentiment analy-
sis literature by using the conjunction word “but”.
It has been shown that “but” played a vital role
in determining the sentiment of a sentence where
the overall sentiment is dominated by the clauses
following the word “but” (Jia et al., 2009; Dadvar
et al., 2011; Hogenboom et al., 2011; Hu et al.,
2016). For a given sentence with “C1 but C2”, we
assume that the sentiment of the whole sentiment
will take the polarity of clause C2.

The second logic rule that we used is “switch
from” considered as a target-dependent churn
classification rule. (Amiri and Daumé III, 2016)
showed that “switch from” can have an important
role to classify if the customer will be churner or
non-churner. The last logic rule that we explored
in our work is similar to the second rule for be-
ing target dependent churn classification where we
substitute the preposition “from” to be the prepo-
sition “to” to obtain “switch to”. For a given
sentence with the form “C1 switch to C2”, it is
clear that the customer will choose to switch to the
brand present in clause C2.

Consider the two examples from the training
data:

• Damn thats crud. You should switch to Veri-
zon.

• Gonna switch from bad @verizon internet to
@comcast. @VerizonFiOS will never be in
my area and i bet @googlefiber will get here
first.

In the first example, the customer will switch to
the brand “Verizon” while for the second exam-
ple, the customer will leave the brand “Verizon”
to another competitor. Consequently, with respect
to the brand “Verizon”, the first tweet is classified
as “Non-churny” and the second tweet is classified
as “Churny”.

To encode these rules, we used soft logic (Bach
et al., 2015) where we can represent truth values
from the interval [0, 1]. The main Boolean opera-
tors are formulated as the following (Foulds et al.,
2015):

X&Y = max{X + Y − 1, 0}
X ∨ Y = min{X + Y, 1}
X1 ∧ ... ∧XN =

∑
i

Xi

N

¬X = 1−X

(5)

25

This logic rule “but” is written as follows:

has “C1-but-C2” structure(S) =⇒
[1(y = +) =⇒ σθ(C2)+ ∧ σθ(C2)+ =⇒
1(y = +)]

(6)

In the equation above, 1(.) represents an indica-
tor function that can take two values: 1 if the argu-
ment is true, and 0 otherwise. Class “+” represents
“positive”; and σθ(C2)+ is the element of σθ(C2)
for class “+”. Following the Equation 5, when S
has the “C1- but-C2” structure, the truth value of
the above logic rule equals to (1 + σθ(C2)+)/2
when y = “+”, and (2− σθ(C2)+)/2 otherwise.

For the two other logic rules “switch to” and
“switch from”, we followed the same structure of
the “but” rule with a slightly different settings:

has “C1-switch to/from-C2” structure(S) =⇒
[1(y = +) =⇒ σθ(C2)+ ∧ σθ(C2)+ =⇒
1(y = +)]

(7)

For the logic rule “switch to”, if we are classi-
fying the sentence S with respect to a brand in the
clause C2, then the argument will be true which
gives the formula: (1 + (σθ(C2)+)/2. The logic
rule “switch from” plays an opposite role where if
a brand is in clause C2, the overall sentiment will
be negative with respect to this brand, so we use
this formula: (2− σθ(C2)+)/2.

3.5 Training Details

Training is done using stochastic gradient de-
scent over mini-batches with the Adadelta up-
date rule (Zeiler, 2012). Word vectors are initial-
ized using pretrained word embeddings and fine-
tuned throughout training. At each iteration of
the training process, we enumerate the rule con-
straints (or a set of rules if we use them all at
once) in order to compute the soft predictions of
our Churn teacher q by using the equation 2.
During the experiments, we choose the imitation
parameter to be π(t) = 1 − 0.85t and the regu-
larization parameter to be C = 100. We set the
confidence levels of rules to be λl = 1. It should
be noted that we used the model results on devel-
opment set in order to select the best hyperparam-
eters. The training procedure is summarized in al-
gorithm 1.

Algorithm 1: Churn prediction using CNN with logic rules
Input: The training data D = {(xn, yn)}Nn=1

The rule set R = {(Rl, λl)}3l=1
Parameters: π - imitation parameter

C regularization strength
Initialize neural network parameters
Choose the rule Rl or a set of rules
do

Sample a minibatch (X, Y) ⊂ D
Build the Churn teacher network using Equation 2
Update pθ using Equation 3

while not converged
Output: Churn teacher q

3.6 The Effect of Weight Normalization
It should be noted that we use weight normaliza-
tion which is a new method introduced by (Sal-
imans and Kingma, 2016) to reparameterize the
weight vectors in a deep neural network in or-
der to decouple the length of those weight vec-
tors from their direction. Using this method, the
authors showed that they were able to improve
the conditioning of the optimization problem and
speed up convergence of stochastic gradient de-
scent. This method followed earlier work by (Ioffe
and Szegedy, 2015) where they introduced batch
normalization trying to normalize each neuron
output by the mean and standard deviation of the
outputs computed over a minibatch of examples.
More recently, this method was widely used in
deep learning architectures such as deep convolu-
tional neural networks, deep reinforcement learn-
ing, generative adversarial networks (GANs) and
others (Smith and Topin, 2016; Gehring et al.,
2017). Using weight normalization in training our
convolutional neural network allowed us to accel-
erate convergence of stochastic gradient descent.

4 Input Word Embeddings

The research in representations of words as contin-
uous vectors has a long history where many ideas
were proposed (Hinton et al., 1985). More re-
cently, (Bengio et al., 2003) proposed a model ar-
chitecture based on feedforward neural networks
for estimating neural network language model.
The most popular model for word representations
was developed by (Mikolov et al., 2013) called
word2vec where they used either of two model
architectures to produce a distributed representa-
tion of words: continuous bag-of-words (CBOW)
model or Skip-Gram (SG) model. Another pop-
ular model for word representations developed
by (Pennington et al., 2014) called “GloVe”
(Global Vectors). The main difference between

26

Base NN Word Embeddings Model F1 score
CNN Random embeddings 77.13
CNN Continuous bag-of-words 79.89
CNN Skip-Gram 79.55
CNN GloVe 80.67

Table 1: Results with different choices of pre-
trained word embeddings with a comparison with
randomly initialized ones on churn predicition in
microblogs

Brand Churny Non-Churny
Verizon 447 1543
T-Mobile 95 978
AT&T 402 1389

Table 2: Statistics and details about the churn mi-
croblog dataset.

this model and word2vec models is the represen-
tations of a word in vector space: word2vec mod-
els use a window approach while GloVe uses the
global statistics of word-word co-occurrence in the
corpus to be captured by the model.

(Hisamoto et al., 2013) used word embeddings
features for English dependency parsing where
they employed flat (non-hierarchical) cluster IDs
and binary strings obtained via sign quantization
of the vectors. For chunking, (Turian et al., 2010)
showed that adding word embeddings allows the
English chunker to increase its F1-score. (Huang
et al., 2014) showed that adding word embeddings
as features for English part-of-speech (POS) tag-
ging task helped the model to increase its per-
formance. (Bansal et al., 2014) argued that us-
ing word embeddings in parsing English text im-
proved the system performance. For English sen-
timent analysis, (Kim, 2014) showed that using
pretrained word embeddings helped their system
to improve its accuracy.

As in (Collobert et al., 2011), in order to test
the importance of pretrained word embeddings in
churn prediction for microblogs, we performed ex-
periments with different sets of publicly published
word embeddings, as well as a random sampling
method, to initialize word vectors in our model.
We investigate three different pretrained word em-
beddings: Skip-Gram, continuous bag-of-words
and Stanford’s GloVe model. Table 1 gives the
performance of three different word embeddings,
as well as the randomly sampled one. It should be
noted that the random embeddings are uniformly

sampled from range [−
√

3
dim ,+

√
3
dim], where

dim is the dimension of embeddings. According

Models Precision Recall F1
CNN 75.36 79 77.13
CNN + pretrained 79.28 82.11 80.67
CNN-pre + but 80.84 83.09 81.95
CNN-pre + switch from 79.74 82.14 80.92
CNN-pre + switch to 80.89 84.39 82.60
CNN-pre + all the 3 rules 82.56 85.18 83.85

Table 3: Results with the three logic rules com-
pared to the without and with word embeddings.
We test the model by using each rule indepen-
dently and after that we combine them in one ex-
periment.

to the results in Table 1, we see that using pre-
trained word embeddings obtain a significant im-
provement, about 3.54% in F1 score as opposed
to the ones using random embeddings. This is
consistent with results reported by previous work
done in other NLP tasks (Collobert et al., 2011;
Huang et al., 2015; Chiu and Nichols, 2015).

For different pretrained embeddings, Stanford’s
GloVe 300 dimensional embeddings achieves best
results, about 1.12% better than Skip-gram model
and 0.78% better than continuous bag-of-words
model. One possible reason that Word2Vec is not
as good as the Stanford’s GloVe model is because
of vocabulary mismatch, since Word2Vec embed-
dings were trained in case-sensitive manner, ex-
cluding many common symbols such as punctua-
tions and digits. Because we do not use any kind
of data pre-processing to deal with such common
symbols or rare words, it might be an issue for us-
ing Word2Vec.

5 Experimental Results

For the evaluation of our model, we use the dataset
provided by (Amiri and Daumé III, 2015). The au-
thors collected the data from twitter for three tele-
com brands: Verizon, T- Mobile, and AT&T. Ta-
ble 2 presents the details about the entries of this
dataset. We divide the experimental process into
two stages: the first stage concerns running the
experiments using the convolutional neural net-
work without and with different logic rules in or-
der to select the best achieved results. In the sec-
ond stage, we compare our best settings with the
previous state-of-art system in churn prediction in
microblogs.

Table 3 shows the churn classification results.
The first row represents the baseline where we
use only the convolutional neural network. In the
second row, we initialize our word vectors using

27

Rule Number of rules
in the training set

Number of rules
in the test set

But 358 83
Switch to 321 71
Switch from 62 11
Total 741 165

Table 4: Statistics about the three rules (but,
switch to and switch from) in the training and test
set.

pretrained word vectors using GloVe model since
it gives us the best results among the other pre-
trained word vectors. We get an improvement
around 2.5% in F1-score. We refer to this model
by “CNN-pre”. This results is consistent with the
fact that these pretrained word vectors are univer-
sal feature extractors that shown an important re-
sults in different NLP applications such as senti-
ment analysis, named entity recognition and Part-
of-speech tagging.

By transferring the knowledge extracted using
the “but” logic rule into the weights of the con-
volutional neural network, we were able to im-
prove the F1-score over the CNN-pre model by
1.28 points in F1-score. For the “switch from”
logic rule, we get a slight improvement over the
CNN-pre model by 0.25 points in F1-score. The
biggest improvement among the three logic rules
was obtained by the “switch to” rule where we
were able to improve the performance over the
CNN-pre model by 1.93 points in F1-score. The
last row in Table 3 concerns the results that we ob-
tained by using all the three logic rules where log-
ically we achieved best results and outperformed
the CNN-pre model by 3.18 points in F1-score.

While we do not have a complete explanation
why we got better results with “switch to” rule,
we believe that it is caused by the fact that there
321 sentences in the training data containing this
rule which represents around 8% sentences con-
tains the word “switch to”. Moreover, it will be
clear that customer will leave a specific brand to
another new brand. For the “switch from” rule, we
get slight improvement over the CNN-pre model
because few sentences containing this rule (around
2% sentences contains the word “switch from”).

Table 4 shows the statistics about the presence
of the three rules in the training data. For “but”
rule, we also get an important improvement over
the CNN-pre model which confirms the results ob-
tained by (Hu et al., 2016) using the same rule in
sentiment analysis. We note that around 9% sen-

Models F1 score
Unigram + Nb (Amiri and Daumé III, 2015) 73.42
(Amiri and Daumé III, 2016) 78.30
Churn teacher 83.85

Table 5: Comparison of our system with two pre-
vious systems.

tences contains the word “but”. In the last row, we
combine all the three rules and we were able to ob-
tain the best performance. We refer to this model
as “Churn teacher”. This is consistent with the
argument by (Hu et al., 2016) where they argued
that more rules will allow the system to improve
its performance over the base convolutional neural
network.

We test our model using this dataset and com-
pare the obtained results with two other sys-
tems. The state-of-the-art results were produced
by (Amiri and Daumé III, 2016) where they
achieved 78.30% in F1 score. They used a com-
bination of Bag of Words features and Recurrent
Neural Networks. The second system referenced
here as “Unigram + Nb” developed by (Amiri and
Daumé III, 2015) used different N-grams (n =
1, 2, 3) and their combination on both of the word
and character levels.

By adding three rules to the convolutional neu-
ral networks, we outperformed the “Unigram +
Nb” system by a large margin (10.43 points in F1-
score). Furthermore, our model also outperformed
the system developed by (Amiri and Daumé III,
2016) by a good margin (5.55 points in F1-score).
Table 5 shows a brief presentation of the exper-
imental results and the comparison with the two
other systems.

6 Conclusion

In this paper, we explored the problem of target-
dependent churn classification in microblogs. We
combine the power of convolutional neural net-
works with structured logic knowledge by con-
structing a churn teacher capable of classifying
customers into churners and non-churners. In
addition, we confirm that initializing word vec-
tors with pretrained word embeddings trained on
unannotated corpora improved the system perfor-
mance.

A key aspect of our system is that it explores
the transfer of the structured knowledge of logic
rules into the weights of convolutional neural net-
works for churn classification problem. By com-

28

bining three logic rules, our model largely outper-
formed all the previous models on publicly avail-
able Twitter dataset. We showed that “but” rule
is also useful for churn prediction to confirm the
results obtained for sentiment classification prob-
lem. We consider the two other rules (“switch
to” and “switch from”) as target-specific rules for
churn classification problem which helped the sys-
tem to improve its performance.

In the future work, we will explore the use of
character-level embeddings where we will repre-
sent word in a sentence by a word vector rep-
resenting the concatenation of two embeddings:
its equivalent word embeddings obtained from the
lookup table and the embeddings obtained from its
characters. Furthermore, we will explore the use
of named entity recognition to recognize differ-
ent organizations where we will focus on brands
which we believe could help us to a better churn
classification.

Acknowledgments

We thank the anonymous reviewers for their valu-
able comments. We would like to thank Doctor
Hadi Amiri and Doctor Hal Daume III for provid-
ing us with Twitter dataset for churn prediction in
microblogs.

References
Hadi Amiri and Hal Daumé III. 2015. Target-

dependent churn classification in microblogs. In
AAAI. pages 2361–2367.

Hadi Amiri and Hal Daumé III. 2016. Short text rep-
resentation for detecting churn in microblogs. In
AAAI. pages 2566–2572.

Stephen H Bach, Matthias Broecheler, Bert Huang,
and Lise Getoor. 2015. Hinge-loss markov random
fields and probabilistic soft logic. arXiv preprint
arXiv:1505.04406 .

Aimée Backiel, Bart Baesens, and Gerda Claeskens.
2016. Predicting time-to-churn of prepaid mobile
telephone customers using social network analy-
sis. Journal of the Operational Research Society
67(9):0.

Mohit Bansal, Kevin Gimpel, and Karen Livescu.
2014. Tailoring continuous word representations for
dependency parsing. In ACL (2). pages 809–815.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research
3(Feb):1137–1155.

Yoshua Bengio, Dong-Hyun Lee, Jorg Bornschein,
Thomas Mesnard, and Zhouhan Lin. 2015. Towards
biologically plausible deep learning. arXiv preprint
arXiv:1502.04156 .

Jason PC Chiu and Eric Nichols. 2015. Named en-
tity recognition with bidirectional lstm-cnns. arXiv
preprint arXiv:1511.08308 .

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259 .

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12(Aug):2493–2537.

Maral Dadvar, Claudia Hauff, and FMG De Jong. 2011.
Scope of negation detection in sentiment analysis .

George E Dahl, Dong Yu, Li Deng, and Alex Acero.
2012. Context-dependent pre-trained deep neural
networks for large-vocabulary speech recognition.
IEEE Transactions on Audio, Speech, and Language
Processing 20(1):30–42.

James Foulds, Shachi Kumar, and Lise Getoor. 2015.
Latent topic networks: A versatile probabilistic pro-
gramming framework for topic models. In Interna-
tional Conference on Machine Learning. pages 777–
786.

Kuzman Ganchev, Jennifer Gillenwater, Ben Taskar,
et al. 2010. Posterior regularization for structured
latent variable models. Journal of Machine Learn-
ing Research 11(Jul):2001–2049.

Artur S d’Avila Garcez, Krysia Broda, and Dov M
Gabbay. 2012. Neural-symbolic learning systems:
foundations and applications. Springer Science &
Business Media.

Jonas Gehring, Michael Auli, David Grangier, De-
nis Yarats, and Yann N Dauphin. 2017. Convolu-
tional sequence to sequence learning. arXiv preprint
arXiv:1705.03122 .

GE Hinton, DE Rumelhart, and RJ Williams.
1985. Learning internal representations by back-
propagating errors. Parallel Distributed Processing:
Explorations in the Microstructure of Cognition 1.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew
Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. 2012. Deep neural networks for
acoustic modeling in speech recognition: The shared
views of four research groups. IEEE Signal Process-
ing Magazine 29(6):82–97.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531 .

29

Sorami Hisamoto, Kevin Duh, and Yuji Matsumoto.
2013. An empirical investigation of word repre-
sentations for parsing the web. In Proceedings of
ANLP. pages 188–193.

Alexander Hogenboom, Paul Van Iterson, Bas Heer-
schop, Flavius Frasincar, and Uzay Kaymak. 2011.
Determining negation scope and strength in senti-
ment analysis. In Systems, Man, and Cybernet-
ics (SMC), 2011 IEEE International Conference on.
IEEE, pages 2589–2594.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard
Hovy, and Eric Xing. 2016. Harnessing deep
neural networks with logic rules. arXiv preprint
arXiv:1603.06318 .

Fei Huang, Arun Ahuja, Doug Downey, Yi Yang,
Yuhong Guo, and Alexander Yates. 2014. Learning
representations for weakly supervised natural lan-
guage processing tasks. Computational Linguistics
40(1):85–120.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991 .

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint
arXiv:1502.03167 .

Lifeng Jia, Clement Yu, and Weiyi Meng. 2009. The
effect of negation on sentiment analysis and retrieval
effectiveness. In Proceedings of the 18th ACM con-
ference on Information and knowledge management.
ACM, pages 1827–1830.

Abbas Keramati, Hajar Ghaneei, and Seyed Moham-
mad Mirmohammadi. 2016. Developing a predic-
tion model for customer churn from electronic bank-
ing services using data mining. Financial Innova-
tion 2(1):10.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882 .

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In Advances in neural
information processing systems. pages 1097–1105.

Ruiqi Li, Peng Wang, and Zonghai Chen. 2016. A
feature extraction method based on stacked auto-
encoder for telecom churn prediction. In Asian Sim-
ulation Conference. Springer, pages 568–576.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Marvin Minsky. 1983. Learning meaning. Artificial
Intelligence Laboratory, Massachusetts Institute of
Technology.

Anh Nguyen, Jason Yosinski, and Jeff Clune. 2015.
Deep neural networks are easily fooled: High con-
fidence predictions for unrecognizable images. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pages 427–436.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP. volume 14, pages 1532–
1543.

David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. 1988. Learning representations by back-
propagating errors. Cognitive modeling 5(3):1.

Tim Salimans and Diederik P Kingma. 2016. Weight
normalization: A simple reparameterization to ac-
celerate training of deep neural networks. In Ad-
vances in Neural Information Processing Systems.
pages 901–901.

Leslie N Smith and Nicholay Topin. 2016. Deep con-
volutional neural network design patterns. arXiv
preprint arXiv:1611.00847 .

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
Christopher Potts, et al. 2013. Recursive deep
models for semantic compositionality over a senti-
ment treebank. In Proceedings of the conference on
empirical methods in natural language processing
(EMNLP). volume 1631, page 1642.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems. pages 3104–3112.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2013. Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199 .

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In Proceedings of the
48th annual meeting of the association for compu-
tational linguistics. Association for Computational
Linguistics, pages 384–394.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144 .

Jaime Zaratiegui, Ana Montoro, and Federico Cas-
tanedo. 2015. Performing highly accurate pre-
dictions through convolutional networks for ac-
tual telecommunication challenges. arXiv preprint
arXiv:1511.04906 .

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701 .

30

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 31–39
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

To Normalize, or Not to Normalize:
The Impact of Normalization on Part-of-Speech Tagging

Rob van der Goot Barbara Plank Malvina Nissim
Center for Language and Cognition, University of Groningen, The Netherlands

{r.van.der.goot,b.plank,m.nissim}@rug.nl

Abstract

Does normalization help Part-of-Speech
(POS) tagging accuracy on noisy, non-
canonical data? To the best of our knowl-
edge, little is known on the actual impact
of normalization in a real-world scenario,
where gold error detection is not available.
We investigate the effect of automatic nor-
malization on POS tagging of tweets. We
also compare normalization to strategies
that leverage large amounts of unlabeled
data kept in its raw form. Our results show
that normalization helps, but does not add
consistently beyond just word embedding
layer initialization. The latter approach
yields a tagging model that is competitive
with a Twitter state-of-the-art tagger.

1 Introduction

Non-canonical data poses a series of challenges
to Natural Language Processing, as reflected in
large performance drops documented in a variety
of tasks, e.g., on POS tagging (Gimpel et al., 2011;
Hovy et al., 2014), parsing (McClosky, 2010; Fos-
ter et al., 2011) and named entity recognition (Rit-
ter et al., 2011). In this paper we focus on POS tag-
ging and on a particular source of non-canonical
language, namely Twitter data.

One obvious way to tackle the problem of pro-
cessing non-canonical data is to build taggers that
are specifically tailored to such text. A prime ex-
ample is the ARK POS tagger, designed especially
to process English Twitter data (Gimpel et al.,
2011; Owoputi et al., 2013), on which it achieves
state-of-the-art results. One drawback of this ap-
proach is that non-canonical data is not all of the
same kind, so that for non-canonical non-Twitter
data or even collections of Twitter samples from

JJ NN NN NNS
new pix comming tomoroe
JJ NNS VBG NN
new pictures coming tomorrow

Figure 1: Example tweet from the test data, raw
and normalized form, tagged with Stanford NLP.

different times, typically a new specifically dedi-
cated tool needs to be created.

The alternative route is to take a general purpose
state-of-the-art POS tagger and adapt it to success-
fully tag non-canonical data. In the case of Twitter,
one way to go about this is lexical normalization.
It is the task of detecting “ill-formed” words (Han
and Baldwin, 2011) and replacing them with their
canonical counterpart. To illustrate why this might
help, consider the following tweet: “new pix com-
ming tomoroe”. An off-the-shelf system such as
the Stanford NLP suite1 makes several mistakes
on the raw input, e.g., the verb ‘comming’ as well
as the plural noun ‘pix’ are tagged as singular
noun. Instead, its normalized form is analyzed
correctly, as shown in Figure 1.

While being a promising direction, we see at
least two issues with the assessment of normal-
ization as a successful step in POS tagging non-
canonical text. Firstly, normalization experiments
are usually carried out assuming that the tokens
to be normalized are already detected (gold er-
ror detection). Thus little is known on how nor-
malization impacts tagging accuracy in a real-
world scenario (not assuming gold error detec-
tion). Secondly, normalization is one way to go
about processing non-canonical data, but not the
only one (Eisenstein, 2013; Plank, 2016). Indeed,
alternative approaches leverage the abundance of
unlabeled data kept in its raw form. For instance,

1http://nlp.stanford.edu:8080/parser/
index.jsp, accessed June 1, 2017.

31

such data can be exploited with semi-supervised
learning methods (Abney, 2007). The advantage
of this approach is that portability could be suc-
cessful also towards domains where normalization
is not necessary or crucial. These observations
lead us to the following research questions:

Q1 In a real-world setting, without assuming
gold error detection, does normalization help
in POS tagging of tweets?

Q2 In the context of POS tagging, is it more ben-
eficial to normalize input data or is it better to
work with raw data and exploit large amounts
of it in a semi-supervised setting?

Q3 To what extent are normalization and semi-
supervised approaches complementary?

To answer these questions, we run a battery of
experiments that evaluate different approaches.
Specifically:

1. We study the impact of normalization on POS
tagging in a realistic setup, i.e., we compare
normalizing only unknown words, or words
for which we know they need correction; we
compare this with a fully automatic normal-
ization model (Section 3).

2. We evaluate the impact of leveraging large
amounts of unlabeled data using two ap-
proaches: a) deriving various word rep-
resentations, and studying their effect for
model initialization (Section 4.1); b) apply-
ing a bootstrapping approach based on self-
training to automatically derive labeled train-
ing data, evaluating a range of a-priori data
selection mechanisms (Section 4.2).

3. We experiment with combining the most
promising methods from both directions, to
gain insights on their potential complemen-
tarity (Section 5).

2 Experimental Setup

We run two main sets of POS tagging experiments.
In the first one, we use normalization in a variety
of settings (see Section 3). In the second one, we
leverage large amounts of unlabeled data that does
not undergo any normalization but is used as train-
ing in a semi-supervised setting (Section 4). For
all experiments we use existing datasets as well as
newly created resources, cf. Section 2.1. The POS
model used is described in Section 2.2.

Figure 2: Labeled data for POS and normalization.
Gray area: no gold normalization layer available.

2.1 Data

The annotated datasets used in this study origi-
nate from two sources: Owoputi et al. (2013)
and Han and Baldwin (2011), which we will re-
fer to as OWOPUTI and LEXNORM, respectively.
All datasets used in this study are annotated with
the 26 Twitter tags as described in (Gimpel et al.,
2011).2 OWOPUTI was originally annotated with
POS labels, whereas LEXNORM was solely anno-
tated for normalization. Li and Liu (2015) added a
POS tag layer to the LEXNORM corpus, and a nor-
malization layer to 798 Tweets from OWOPUTI,
which we split into a separate DEV and TEST part
of 249 and 549 Tweets, respectively, keeping the
original POS labels. We use DEV throughout all
experiments during development, and test our fi-
nal best system on the held-out test sets (both con-
taining 549 tweets). An illustration of the data is
given in Figure 2.

For the different improvements to our baseline
tagger, we need raw data from the target domain
(Twitter). In addition, the normalization model
needs unlabeled canonical data. We use a snap-
shot of English Wikipedia as unlabeled canonical
data source. To get raw data for the social me-
dia domain, we collected Tweets during the whole
year of 2016 by means of the Twitter API. We
only collected Tweets containing one of the 100
frequent words in the Oxford English Corpus3 as
a rough language filter. This resulted in a dataset
of 760,744,676 English Tweets. We do some very
basic pre-processing in which we replace urls and
usernames by<URL> and<USERNAME>, and
remove duplicate tweets. Because of different cas-
ing strategies, we always apply a simple postpro-
cessing step to ‘rt’ (retweet) tokens.

2Some tags are rare, like M and Y. In fact, M occurs only
once in TEST L; Y never occurs in DEV and only once in
TEST L and three times in TEST O. Therefore our confusion
matrices (over DEV and TEST O, respectively) have different
number of labels on the axes.

3https://en.wikipedia.org/wiki/Most_
common_words_in_English

32

2.2 Model

We use BILTY, an off-the-shelf bi-directional
Long Short-Term Memory (bi-LSTM) tagger
which utilizes both word and character embed-
dings (Plank et al., 2016). The tagger is trained
on 1,576 training tweets (Section 2.1). We tune
the parameters of the POS tagger on the devel-
opment set to derive the following hyperparam-
eter setup, which we use throughout the rest of
the experiments: 10 epochs, 1 bi-LSTM layer,
100 input dimensions for words, 256 for charac-
ters, σ=0.2, constant embeddings initializer,
Adam trainer, and updating embeddings during
backpropagation.4

3 To Normalize

First we evaluate the impact of normalization on
the POS tagger.

3.1 Model

We use an in-house developed normalization
model (van der Goot and van Noord, 2017).5 The
model is based on the assumption that differ-
ent normalization problems require different han-
dling. First, since unintentional disfluencies can
often be corrected by the use of a spell checker,
the normalization model exploits Aspell6. Sec-
ond, since intentional disfluencies typically have
a much larger edit distance, the normalization
system uses word embeddings (Mikolov et al.,
2013);7 words close to the non-canonical word in
the vector space are considered potential normal-
ization candidates. On top of that, the model uses a
lookup list generated from the training data, which
works especially well for slang.

Features originating from the ranking are com-
bined with uni- and bi-gram probabilities from
Wikipedia data as well as from raw Tweets (Sec-
tion 2.1). A random forest classifier (Breiman,
2001) is then used to rank the candidates for each
word. Note that the original word is also a can-
didate; this enables the model to handle error de-
tection, which is not always the case in models of
previous work.

4Adam was consistently better than sgd on this small
training dataset. More LSTM layers lowered performance.

5Available at: https://bitbucket.org/
robvanderg/monoise

6www.aspell.net
7Using the tweets from Section 2.1 and the follow-

ing parameters: -size 400 -window 1 -negative
5 -sample 1e-4 -iter 5

We train the normalization model on
2,577 tweets from Li and Liu (2014). Our
model (van der Goot and van Noord, 2017)
achieves state-of-art performance on the erro-
neous tokens (using gold error detection) on the
LexNorm dataset (Han and Baldwin, 2011) as
well as state-of-art on another corpus which is
usually benchmarked without assuming gold error
detection (Baldwin et al., 2015). We refer the
reader to the paper (van der Goot and van Noord,
2017) for further details.

To obtain a more detailed view of the effect of
normalization on POS tagging, we investigate four
experimental setups:

• normalizing only unknown words;

• considering all words: the model decides
whether a word should be normalized or not;

• assuming gold error detection: the model
knows which words should be normalized;

• gold normalization; we consider this a theo-
retical upper bound.

Traditionally, normalization is used to make the
test data more similar to the train data. Since we
train our tagger on the social media domain as
well, the normalization of only the test data might
actually result in more distance between the train
and test data. Therefore, we also train the tagger
on normalized training data, and on the union of
the normalized and the original training data.

3.2 Results
The effects of the different normalization strate-
gies on the DEV data are shown in Table 1.
Throughout the paper we report average accura-
cies over 5 runs including standard deviation.

The first row shows the effect of normalization
at test-time only. From these results we can con-
clude that normalizing all words is beneficial over
normalizing only unknown words; this shows that
normalization has a positive effect that goes be-
yond changing unknown words.

The results of using the gold normalization sug-
gest that there is still more to gain by improving
the normalization model. In contrast, the results
for gold error detection (GOLDED) show that er-
ror detection is not the main reason for this dif-
ference, since the performance difference between
ALL and GOLDED is relatively small compared to
the gap with GOLD.

33

↓ Train→ Test RAW UNK ALL GOLDED GOLD

RAW 82.16 (±.33) 83.44 (±.25) 84.06 (±.32) 84.67 (±.23) 86.71 (±.25)

ALL 80.42 (±.71) 81.99 (±.64) 83.87 (±.28) 84.05 (±.31) 86.11 (±.14)
UNION 81.54 (±.27) 83.11 (±.31) 84.04 (±.34) 84.42 (±.24) 86.35 (±.17)

Table 1: Results of normalization (N) on DEV (macro average and stdev over 5 runs). RAW: no normal-
ization, ALL: automatic normalization, UNK: normalize only unknown words, GOLDED: use gold error
detection, GOLD: use gold normalization (Oracle). Row: whether training data is normalized. UNION

stands for the training set formed by the union of both normalized and original raw data.

Considering the normalization of the training
data, we see that it has a negative effect. The table
suggests that training on the raw (non-normalized)
training data works best. Adding normalized data
to raw data (UNION) does not yield any clear
improvement over RAW only, but requires more
training time. For the test data, normalization is
instead always beneficial.

To sum up, normalization improved the base
tagger by 1.9% absolute performance on the devel-
opment data, reaching 84.06% accuracy. Overall,
our state-of-art normalization model only reaches
approximately 50% of the theoretical upper bound
of using gold normalization. We next investigate
whether using large amounts of unlabeled data can
help us to obtain a similar effect.

4 Or Not to Normalize

An alternative option to normalization is to leave
the text as is, and exploit very large amounts of
raw data via semi-supervised learning. The ratio-
nale behind this is the following: provided the size
of the data is sufficient, a model can be trained to
naturally learn the POS tags of noisy data.

4.1 Effect of Word Embeddings

An easy and effective use of word embeddings in
neural network approaches is to use them to ini-
tialize the word lookup parameters.

We train a skip-gram word embeddings model
using word2vec (Mikolov et al., 2013) on 760M
tweets (as described in Section 3.1). We also ex-
periment with structured skip-grams (Ling et al.,
2015), an adaptation of word2vec which takes
word order into account. It has been shown to
be beneficial for syntactically oriented tasks, like
POS tagging. Therefore we want to evaluate struc-
tured skip-grams as well.

The normalization model uses word embed-
dings with a window size of 1; we compare this

with the default window size of 5 for structured
skip-grams.

Results Table 2 shows the results of using the
different skip-gram models for initialization of the
word embeddings layer. Structured skip-grams
perform slightly better, confirming earlier find-
ings. Using a smaller window is more benefi-
cial, probably because of the fragmented nature of
Twitter data.

Structured skip-grams of window size 1 result
in the best embedding model. This results in an
improvement from 82.16% (Table 1) to 88.51%
accuracy. This improvement is considerably larger
than what obtained by normalization (82.16).

4.2 Effect of Self-training

We work with a rather small training set, which is
all that is available to us in terms of gold data. This
is due to the use of an idiosyncratic tagset (Gim-
pel et al., 2011). Adding more data could be ben-
eficial to the system. To get an idea of how much
effect extra annotated data could potentially have
on POS tag accuracy, we plot the performance us-
ing smaller amounts of gold training data in Fig-
ure 3. We can see that there is still a slight up-
ward trend; however, even when adding manually
annotated data, the performance sometimes drop,
especially after adding 55% of the training data.

To create more training data, we use an iterative
indelible self-training setup (Abney, 2007) to ob-
tain automatically labeled data. Specifically: 100

WINDOW SIZE

1 5

SKIPG. 88.14 (±.30) 87.56 (±.08)
STRUCT.SKIPG. 88.51 (±.24) 88.11 (±.49)

Table 2: Accuracy on raw DEV: various pre-
trained skip-gram embeddings for initialization.

34

Figure 3: Effect of increasing amounts of training
data (100% training data == 1,576 tweets).

tweets are tagged, they get added to the training
data, and after this a new model is trained.

While we do not adopt any filtering strategy
on the predictions (e.g., confidence thresholds),
we do explore different strategies of a-priori data
selection, from two corpora: raw tweets (Sec-
tion 3.1), and the English Web Treebank (Petrov
and McDonald, 2012).

For the English Web Treebank (EWT), we di-
rectly use raw text. Moreover, because the texts
in the EWT are distributed by domains, i.e., an-
swers, emails, weblogs, newsgroups, and reviews,
we preserve this information and keep the data
separate according to their domain to see whether
adding data from the different domains can pro-
vide a more useful signal.

For the raw tweets, we compare different strate-
gies of sampling. In addition to selecting random
tweets, we experimented with selections aimed at
providing the tagger with specific information that
we knew was missing or confusing in the origi-
nal training data. One strategy thus was to include
tweets that contained words occurring in the de-
velopment data but not in the training data. Note
that this would result in a very slow tagger in a
real-world situation, since the tagger needs to be
retrained for every new unknown word. Another
strategy was based on a preliminary analysis of er-
rors on the development data: from the confusion
matrix we observed that a frequently confounded
tag was proper noun. Considering named entities
as adequate proxies for proper nouns in this con-
text, we also experimented with adding tweets that
contained named entities. The detection of named
entities was performed using a Twitter-specific
named entity recognizer (Ritter et al., 2011). For
control and comparison, we also collect additional

training data where only tweets that do not con-
tain named entities are selected. Hence, we end up
with the following four sampling strategies:

• random sampling

• tweets containing words which occur in the
development data, but not in the training data

• tweets containing named entities

• tweets not containing named entities

Results Adding more automatically-labeled
data did not show any consistent improvement.
This holds for both selection methods regarding
named entities (presence/absence of NERs) and
different domains of the Web treebank. Therefore
we do not elaborate further here. We hypothesize
that post-selection based on e.g., confidence
sampling, is a more promising direction. We
consider this future work.

5 Normalizing and Not Normalizing

In the previous sections, we explored ways to
improve the POS tagging of Tweets. The most
promising directions were initializing the tagger
with pre-trained embeddings and using normaliza-
tion. Self-training was not effective. In this Sec-
tion, we report on additional experiments on the
development data aimed at obtaining insights on
the potential of combining these two strategies.

5.1 Consequences of Normalization

BILTY +NORM +VECS +COMB

CANONICAL 86.1 85.6 91.2 90.1
NON-CANON. 50.8 70.3 71.1 78.5

Table 3: Effect of different models on
canonical/non-canonical words.

Table 3 shows the effect of the two approaches
on the two subsets of tokens (canonical/non-
canonical) on the DEV set. Word embeddings have
a higher impact on standard, canonical tokens. It
is interesting to note that word embeddings and
normalization both have a similar yet complemen-
tary effect on the words to be normalized (non-
canonical). The improvements on non-canonical
words seem to be complementary. The combined
model additionally improves on words which need
normalization, whereas it scores almost 1% lower
on canonical words. This suggests that both strate-
gies have potential to complement each other.

35

Figure 4: Differences in numbers of errors on de-
velopment data between best normalization setting
and best word embeddings. Dark means normal-
ization makes more errors.

5.2 Performance per POS

We compare the type of errors made by the best
normalization setting versus the best word embed-
dings setting in a confusion matrix which displays
the difference in errors in Figure 4. To recall: the
best normalization setting was to use the raw train-
ing data, normalizing all words at test time; the
best word embeddings model was a structured skip
gram embeddings model with a window of 1.

In the confusion graph it becomes clear that nor-
malization results in over-predicting nouns (N),
which often get confused with verbs (V), adjec-
tives (A) and proper nouns (ˆ). Normalization
is better at recognizing prepositions (P), which it
confuses less with numerals ($) compared to the
embedding model. This is due to normalizing ‘2’
and ‘4’. Instead, the embedding model has bet-
ter predictions for proper nouns, nouns and verbs,
presumably due to the higher coverage.

6 Evaluation

In this section we report results on the test data, as
introduced in Section 2.1.

Our main aim is to compare different ap-
proaches for successfully applying a generic state-
of-the-art POS tagger to Twitter data. Therefore

! # $ & , @ A D E G L M N O P R S T U V X Y Z ^ ~

Gold label

!
#
$
&
,

@
A
D
E
G
L
M
N
O
P
R
S
T
U
V
X
Y
Z
^
~

P
re

d
ic

te
d
 l
a
b
e
l

20

15

10

5

0

5

10

15

20

Figure 5: Comparison of errors per POS between
our best model and the ARK tagger on TEST O;
darker means our system performs better.

we have to assess the contribution of the two meth-
ods we explore (normalization and using embed-
dings) and see how they fare, not only to each
other but also in comparison to a state-of-the-art
Twitter tagger. We use the ARK tagger (Owoputi
et al., 2013) and retrain it on our dataset for direct
comparison with our models. The ARK system is
a conditional random fields tagger, which exploits
clusters, lexical features and gazetteers.

Table 4 shows the performance of our best mod-
els and the ARK tagger on the test datasets.

Embeddings work considerably better than nor-
malization, which confirms what we found on the
DEV data. The combined approach yields the
highest accuracy over all evaluation sets, however,
it significantly differs from embeddings only on
TEST L. This can be explained by our earlier ob-
servation (cf. Table 3), which shows that COMB

yields the highest improvement on non-canonical
tokens, but the same does not hold for canonical
tokens. Notice that TEST L does indeed contain
the highest proportion of non-canonical tokens.

Our best results on all datasets are comparable
to the state-of-the-art results achieved by the ARK
tagger. In Figure 5 we compare the errors made
by our system (COMB in Table 4) and ARK on
TEST O, which is the test set on which both tag-

36

DEV TEST O TEST L

% non-canonical tokens 11.75% 10.95% 12.09%

BILTY 82.16 (±.33) 83.81 (±.23) 80.78 (±.32)
+NORM 84.06 (±.32) 84.73 (±.19) 84.61 (±.21)
+EMBEDS 88.51 (±.24) 90.02 (±.35) 88.53 (±.41)
+COMB 88.89 (±.25) 90.25 (±.19) 89.63 (±.13)

ARK 89.08 90.65 89.67

Table 4: Results on test data (average over 5 runs) compared to ARK-tagger (Owoputi et al., 2013).
Bold: best result (in case of multiple: no stat.significant difference according to randomization test).

gers obtain the highest performance.
The ARK tagger has difficulties with preposi-

tions (P), which are mistagged as numerals ($).
These are almost all cases of ‘2’ and ‘4’, which
represent Twitter slang for ‘to’ and ‘for’, respec-
tively. Our system performs a lot better on these,
due to the normalization model as already ob-
served earlier. Still regarding prepositions, ARK
is better at distinguishing them from adverbs (R),
which is a common mistake for our system. Our
tagger makes more mistakes on confusing proper
nouns (ˆ) with nouns (N) in comparison to ARK.

7 Related Work

Theoretically, this works fits well within the
debate on normalization vs domain adaptation
(Eisenstein, 2013). For a practical comparison,
the work most related to ours is that of Li and
Liu (2015). They propose a joint model for nor-
malization and POS tagging. The candidate lists
of six different normalization models, including
spell checkers and machine translation systems,
are combined with all their possible POS tags as
found by the ARK Twitter POS tagger. Note that
they use gold error detection, while we perform
fully automatic normalization. These combined
units of words and POS tags are then used to build
joint Viterbi decoding (Viterbi, 1973). The opti-
mal path in this decoding does not only contain
a sequence of normalized tokens, but also a se-
quence of POS tags. This joint model proves to be
beneficial for both tasks.

Work on normalization for improving POS tag-
ging has also been done on other languages. For
example, Ljubešić et al. (2017) show that perform-
ing normalization, in addition to using external re-
sources, can remove half of the errors of a stan-
dard POS tagger for South Slavic languages. Quite
surprisingly, instead, of all systems participating

in shared tasks on POS tagging of Twitter data
for both Italian (Bosco et al., 2016) and German
(Beißwenger et al., 2016), none of the participat-
ing systems incorporated any normalization strat-
egy before performing POS tagging.

Finally, normalization for POS tagging is cer-
tainly not limited to non-canonical data stemming
from social media. Indeed, another stream of re-
lated work is focused on historical data, usually
originating from the 15th till the 18th century. The
motivation behind this is that in order to apply cur-
rent language processing tools, the texts need to be
normalized first, as spelling has changed through
time. Experiments on POS tagging historical data
that was previously normalized have been inves-
tigated for English (Yang and Eisenstein, 2016),
German (Bollmann, 2013), and Dutch (Hupkes
and Bod, 2016; Tjong Kim Sang, 2016). In this
latter work, different methods of ‘translating’ his-
torical Dutch texts to modern Dutch are explored,
and a vocabulary lookup-based approach appears
to work best.8 In this paper we focused on normal-
ization and POS tagging for Twitter data only.

8 Conclusion

We investigated the impact of normalization on
POS tagging for the Twitter domain, presenting
the first results on automatic normalization and
comparing normalization to alternative strategies.
We compared a generic tagger to a tagger specifi-
cally designed for Twitter data.

Regarding Q1, we can conclude that normaliza-
tion does help. However, using large amounts of
unlabeled data for embedding initialization yields
an improvement that is twice as large as the one

8Interestingly, this work also resulted in a shared task on
normalization of historical Dutch, in which the secondary
evaluation metric was POS tagging accuracy: https://
ifarm.nl/clin2017st/.

37

obtained using normalization (Q2).
Combining both methods (Q3) does indeed

yield the highest scores on all datasets. This sug-
gests that the two approaches are complementary,
also because in isolation their most frequent errors
differ. However, the contribution of normalization
on top of embeddings alone is relatively small and
only significant on one test set, which was specifi-
cally developed for normalization and contains the
largest proportion of non-canonical tokens.

Overall, our best model is comparable to the
ARK tagger. As a general direction, our results
suggest that exploiting large amounts of unlabeled
data of the target domain is preferable. However,
if the data is expected to include a large propor-
tion of non-canonical tokens, it is definitely worth
applying normalization in combination with em-
beddings.

Our investigation was limited by the amount
of available training data. Adding data via self-
training did not help. We observed mixed results
for different types of a-priori filtering, but none
of them yielded a steady improvement. A more
promising direction might be post-selection, based
on confidence scores or agreement among differ-
ent taggers. Obviously another way to go is to add
manually labeled data, some of which is available
for more canonical domains. This would require
a mapping of tagsets, and might be another good
testbed to assess the contribution of normalization,
which we leave for future work.

All code and distributable data used in this pa-
per are available at https://github.com/
bplank/wnut-2017-pos-norm.

Acknowledgments

We want to thank Héctor Martı́nez Alonso and
Gertjan van Noord for valuable comments on ear-
lier drafts of this paper. We are also grateful to
the anonymous reviewers. This research has been
supported by the Nuance Foundation and the Uni-
versity of Groningen High Performance Comput-
ing center.

References
Steven Abney. 2007. Semisupervised learning for com-

putational linguistics. CRC Press.

Timothy Baldwin, Marie-Catherine de Marneffe,
Bo Han, Young-Bum Kim, Alan Ritter, and Wei Xu.
2015. Shared tasks of the 2015 workshop on noisy
user-generated text: Twitter lexical normalization

and named entity recognition. In Proceedings of the
Workshop on Noisy User-generated Text, pages 126–
135, Beijing, China. Association for Computational
Linguistics.

Michael Beißwenger, Sabine Bartsch, Stefan Evert,
and Kay-Michael Würzner. 2016. Empirist 2015:
A shared task on the automatic linguistic annotation
of computer-mediated communication and web cor-
pora. In Proceedings of the 10th Web as Corpus
Workshop (WAC-X) and the EmpiriST Shared Task.
Berlin, Germany, pages 44–56.

Marcel Bollmann. 2013. POS tagging for historical
texts with sparse training data. In Proceedings of the
7th Linguistic Annotation Workshop and Interoper-
ability with Discourse, LAW-ID@ACL 2013, August
8-9, 2013, Sofia, Bulgaria, pages 11–18. The Asso-
ciation for Computer Linguistics.

Cristina Bosco, Fabio Tamburini, Andrea Bolioli, and
Alessandro Mazzei. 2016. Overview of the evalita
2016 part of speech on twitter for italian task. In
Proceedings of Third Italian Conference on Compu-
tational Linguistics (CLiC-it 2016) & Fifth Evalua-
tion Campaign of Natural Language Processing and
Speech Tools for Italian. Final Workshop (EVALITA
2016). Associazione Italiana di Linguistica Com-
putazionale (AILC).

Leo Breiman. 2001. Random forests. Machine learn-
ing, 45(1):5–32.

Jacob Eisenstein. 2013. What to do about bad language
on the internet. In Proceedings of the 2013 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 359–369, Atlanta, Geor-
gia. Association for Computational Linguistics.

Jennifer Foster, Özlem Cetinoglu, Joachim Wagner,
Joseph Le Roux, Joakim Nivre, Deirdre Hogan, and
Josef van Genabith. 2011. From news to comment:
Resources and benchmarks for parsing the language
of web 2.0. In Proceedings of the 5th International
Joint Conference on Natural Language Processing
(IJCNLP).

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flani-
gan, and Noah A. Smith. 2011. Part-of-speech tag-
ging for twitter: Annotation, features, and experi-
ments. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguis-
tics: Human Language Technologies, pages 42–47,
Portland, Oregon, USA. Association for Computa-
tional Linguistics.

Rob van der Goot and Gertjan van Noord. 2017.
Monoise: Modeling noise using a modular normal-
ization system. Computational Linguistics in the
Netherlands Journal, 7.

38

Bo Han and Timothy Baldwin. 2011. Lexical normal-
isation of short text messages: Makn sens a #twit-
ter. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 368–378, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Dirk Hovy, Barbara Plank, and Anders Søgaard. 2014.
When pos data sets don’t add up: Combatting sam-
ple bias. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC-2014), pages 4472–4475.

Dieuwke Hupkes and Rens Bod. 2016. Pos-tagging
of historical dutch. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC 2016), Paris, France. European
Language Resources Association (ELRA).

Chen Li and Yang Liu. 2014. Improving text normal-
ization via unsupervised model and discriminative
reranking. In Proceedings of the ACL 2014 Student
Research Workshop, pages 86–93, Baltimore, Mary-
land, USA. Association for Computational Linguis-
tics.

Chen Li and Yang Liu. 2015. Joint POS tagging and
text normalization for informal text. In Proceedings
of the Twenty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, pages 1263–1269.

Wang Ling, Chris Dyer, Alan W Black, and Isabel
Trancoso. 2015. Two/too simple adaptations of
word2vec for syntax problems. In Proceedings of
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 1299–
1304, Denver, Colorado. Association for Computa-
tional Linguistics.

Nikola Ljubešić, Tomaž Erjavec, and Darja Fišer. 2017.
Adapting a state-of-the-art tagger for south slavic
languages to non-standard text. In Proceedings of
the 6th Workshop on Balto-Slavic Natural Language
Processing, pages 60–68, Valencia, Spain. Associa-
tion for Computational Linguistics.

David McClosky. 2010. Any domain parsing: auto-
matic domain adaptation for natural language pars-
ing. Ph.D. thesis, Brown University.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A.
Smith. 2013. Improved part-of-speech tagging for
online conversational text with word clusters. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,

pages 380–390, Atlanta, Georgia. Association for
Computational Linguistics.

Slav Petrov and Ryan McDonald. 2012. Overview of
the 2012 shared task on parsing the web. In Notes
of the First Workshop on Syntactic Analysis of Non-
Canonical Language (SANCL), volume 59.

Barbara Plank. 2016. What to do about non-standard
(or non-canonical) language in NLP. In KONVENS.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual part-of-speech tagging with
bidirectional long short-term memory models and
auxiliary loss. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 412–
418, Berlin, Germany. Association for Computa-
tional Linguistics.

Alan Ritter, Sam Clark, Mausam, and Oren Etzioni.
2011. Named entity recognition in tweets: An ex-
perimental study. In Proceedings of the 2011 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1524–1534, Edinburgh, Scotland,
UK. Association for Computational Linguistics.

Erik Tjong Kim Sang. 2016. Improving Part-of-Speech
Tagging of Historical Text by First Translating to
Modern Text. In 2nd IFIP International Work-
shop on Computational History and Data-Driven
Humanities. Springer Verlag.

A. Viterbi. 1973. Error bounds for convolutional codes
and an asymptotically optimum decoding algorithm.
IEEE Trans. Inform. Theory, 13(2):260–269.

Yi Yang and Jacob Eisenstein. 2016. Part-of-speech
tagging for historical english. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 1318–
1328, San Diego, California. Association for Com-
putational Linguistics.

39

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 40–44
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

Constructing an Alias List for Named Entities during an Event

Anietie Andy
aandy@seas.upenn.edu

University of Pennsylvania

Mark Dredze
mdredze@cs.jhu.edu

Johns Hopkins University

Chris Callison-Burch
ccb@cis.upenn.edu

University of Pennsylvania

Mugizi Rwebangira
rweba@scs.howard.edu

Howard University

Abstract

In certain fields, real-time knowledge from
events can help in making informed de-
cisions. In order to extract pertinent real-
time knowledge related to an event, it
is important to identify the named enti-
ties and their corresponding aliases related
to the event. The problem of identifying
aliases of named entities that spike has
remained unexplored. In this paper, we
introduce an algorithm, EntitySpike, that
identifies entities that spike in popularity
in tweets from a given time period, and
constructs an alias list for these spiked en-
tities. EntitySpike uses a temporal heuris-
tic to identify named entities with similar
context that occur in the same time period
(within minutes) during an event. Each en-
tity is encoded as a vector using this tem-
poral heuristic. We show how these entity-
vectors can be used to create a named en-
tity alias list. We evaluated our algorithm
on a dataset of temporally ordered tweets
from a single event, the 2013 Grammy
Awards show. We carried out various ex-
periments on tweets that were published in
the same time period and show that our al-
gorithm identifies most entity name aliases
and outperforms a competitive baseline.

1 Introduction

Twitter captures a large volume of discussions and
messages related to events and topics, in real-
time. Knowledge has been extracted from these
data streams in different domains to gain various
insights, for example, election results (Tumasjan
et al., 2010), democratic movements (Starbird and
Palen, 2012), tracking illnesses over time (Paul

and Dredze, 2011; Guo et al., 2013) and making
crucial real-time decisions such as earthquake de-
tection (Sakaki et al., 2010).

Twitter is an informal forum that imposes a limit
on the number of characters per tweet, hence, the
vocabulary used to express tweets are diverse. This
results in the prevalence of abbreviated or mis-
spelled words in tweets and aliases used to rep-
resent named entities. Entity name variation poses
a challenge to determining what or who a name
refers to (Andrews et al., 2014); identifying name
variations has been shown to help in different do-
mains such as community question answering sys-
tems (Andy et al., 2016b,a) and automatic para-
phrase acquisition (Shinyama et al., 2002). For
example, given the following tweets that occurred
in a 5-minute time period during an event:

• #Veep’s Julia Louis-Dreyfus wins for Lead
Actress in a Comedy Series #Emmys
• At least Selina Meyer is amazing at winning

#Emmys. #Veep
• How does Elaine keep winning these

awards?! #Emmys
• Is JLD ever NOT going to win for

Veep?#Emmys

where the actress Julia Louis-Dreyfus is referred
to as Selina Meyers — from her character in the
show, Veep, Elaine — from her character in the
show, Seinfield, and JLD — the abbreviation of
her name. Identifying these entity name variations
can be challenging; however, the context in which
the entities occurred and temporal information can
be used to determine the aliases of named entities.
The goal of our research is to construct an alias list
for entities that spike in popularity in a given time
period during a single event, by using a tempo-
ral heuristic to cluster entities with similar context.
This paper makes the following contributions:

• We formulate a temporal heuristic to identify

40

entities with similar context that occur in the
same time period during an event.
• We develop a novel algorithm, EntitySpike,

that uses this temporal heuristic to encode en-
tities as vectors and creates an alias list, if one
exists, for entities that spike in popularity in
a given time period.
• We present detailed experiments demonstrat-

ing that using temporal information identifies
most named entity aliases.

2 Background and Preliminaries

In tweets collected during an on going event, there
is a small window in time in which entities spike
in popularity, though they have occurrences during
the whole event (Dredze et al., 2016).

Figure 1: Name variations of entities that spike
in popularity at the same time in 10 minute bins
during the 2016 Emmy awards show

To investigate the validity of creating an alias
list for entities that spike, we use the Twitter
streaming API to collect 50,000 timestamped
and temporally ordered tweets and re-tweets
containing #emmys, while the 2016 Emmy
Awards show was going on (we intend to make
this dataset available to the research community).
We selected tweets that occurred in a randomly
selected 30 minutes time period and split these
tweets into bins of 10 minute time periods i.e.
each bin contained tweets that occurred in a 10
minute time interval. Figure 1 shows the entities
that spiked the most in this time period and their
name variations. We observed that when an entity
spikes in popularity in a given time period, some

of its aliases spike in popularity as well. Based
on these observations, we propose an algorithm,
EntitySpike, that creates an alias list for entities
that spike in a given time period.

Task Definition: Given a sequence of
tweets and entity mentions, denoted by X
=({e1,S1},{e2,S2},....{en,Sn}), where ei

represents a named entity that spikes in popularity
in a given time period e.g. Julia Louis-Dreyfus,
and Si represents the set of tweets that make
reference to this named entity, ei, during this
specified time period; the task is to create an alias
list for each ei, if one exists.

Candidate Entity Identification: Following pre-
vious work in entity linking (Liu et al., 2013; Guo
et al., 2013), we define an entity as a Wikipedia
title page. An entity mention is a sequence of to-
kens in a tweet that can potentially link to an en-
tity. The Grammy Awards show is mostly about
famous people and so we focus only on entities
belonging to the Person category. In order to con-
struct a Wikipedia lexicon, we collect 1.5 million
English Wikipedia title pages referring to Person
named entities and extracted the backlinks (in-
coming links to the Wikipedia title page) from
each of these Wikipedia title pages (we intend to
make this dataset available to the research commu-
nity).

Given a set of tweets {t1, t2, ..., tn}
that occur in a given time period (within minutes)
during the Grammy awards show, we extract all
k-grams of size ≤ k, from each tweet; we se-
lected k = 3. We select a k-gram as a candidate
entity mention if it is either an exact match of a
Wikipedia title page or backlink or if it is con-
tained in a Wikipedia title page or backlink, for
example ”Carrie” is contained in ”Carrie Under-
wood”.

3 Our Algorithm: EntitySpike

During an event, such as an award show, a large
volume of tweets related to the event are generated
by users, per minute. Most of these tweets contain
named entities and their aliases. Our algorithm,
EntitySpike identifies named entities that spike at
a certain time period and constructs an alias list
for these entities by using a temporal heuristic.

41

Exploiting Temporal Information about enti-
ties: While the award show is going on, artists
and celebrities - some of which have nicknames,
are showcased walking on the red carpet, per-
forming on stage, presenting awards, or sitting
in the audience. On social media platforms, such
as twitter, people publish tweets related to these
events, in real-time. Most of the generated tweets
refer to people or entities in the same context e.g.
their outfit, performance, actions etc. Some tweets
make reference to named entities by their aliases,
some of which look similar to their corresponding
named entity e.g. ”Jay Z” and ”Jay-Z” and some
look different e.g. ”Taylor Swift” and ”Tswizzle”.
Given tweets that occur at a certain time period
(within minutes), the context of most of the tweets
will be similar. For example, one may see a burst
of tweets published in the same 5-minute time pe-
riod that say: ”X just won a Grammy” or ”Y won
her first Grammy”. This suggests that X and Y re-
fer to the same person, regardless of how different
the names are. Based on this intuition, we propose
the Temporal Entity Similarity heuristic:

Temporal Entity Similarity: In tweets (related
to an event), collected sequentially, named entities
that occur at the same time period and have a sim-
ilar context are referring to the same named entity.

This temporal entity similarity heuristic helps
capture the temporal context in which entities are
mentioned and clusters entities that occur in a
similar context. In figure 2, we present an out-
line of EntitySpike which uses the temporal en-
tity similarity to create an alias list for named en-
tities that spike in popularity in a given time pe-
riod during an event. To measure the similarity be-
tween the named entities, we represent each entity
as a vector. To create the vector for each entity,
we select all the unique words in the EntitySpike,
({e1,S1},{e2,S2},...,{en,Sn}) and count the
frequency of occurrence of each word in tweets,
Si related to a named entity ei. Two named entities
refer to the same entity if the cosine similarity of
their vectors is greater than a threshold.

4 Experiments

4.1 Data

For our experiments, we evaluated EntitySpike on
the 2013 Grammy Awards Show dataset described

Algorithm 1 EntitySpike
Given X=({e1,S1},{e2,S2},....,{en,Sn}),
were X satisfies the temporal entity similarity
heuristic
Output Alias list for ei

1: procedure ENTITYSPIKE(X)
2: for each entity e in X do
3: create temporal vector, Ve

4: for each v in Ve,...,n do
5: Cosine Similarity(v, Ve,...,n)
6: if Cosine Similarity > threshold then
7: Insert into Aliaslist(Ve)
8: Return Aliaslist(Ve)

Figure 2: Temporal Entity Similarity Algorithm

in Dredze et al. (2016). The show lasted for ap-
proximately three and a half hours generating a lot
of tweets, most of which made reference to artists,
celebrities, and famous people - with entries in
Wikipedia, by their names and nicknames (Dredze
et al., 2016). To create this dataset, Dredze et al.
(2016) used the Twitter streaming API to collect
10,736 temporally ordered and unique tweets writ-
ten in English containing grammy (case insensi-
tive, and including #grammy) during the event.
Although these tweets were temporally ordered,
their timestamps were not saved, hence, we split
the dataset into equal size temporal bins (11 bins),
with each bin containing 976 temporally ordered
tweets. We represented each entity as a vector by
collecting the frequency of occurrence of each en-
tity in each bin i.e. each entity was represented as
a vector of size 11.

4.2 Baseline
Before carrying out experiments for EntitySpike,
we conducted preliminary experiments to show
that entities that frequently co-occur together
should have a high cosine similarity. The intuition
here is that entities with a cosine similarity above
a threshold could be referring to the same entity.
Based on this intuition, we represented each entity
as a vector by collecting the frequency of its occur-
rence in each bin. We calculated the cosine simi-
larity between all of the named entities and ranked
them. For each entity, we select the 10 highest
ranked similar entities. For evaluation of this algo-
rithm, we selected and labelled 40 named entities

42

and their known aliases in our dataset. On these
named entities and their aliases, this algorithm had
a precision of 68.25% and a recall of 43.1%.

This algorithm shows that some entities that fre-
quently occur in the same context at different time
periods are referring to the same entity. We use this
algorithm as our baseline.
Word2Vec Experiments: Given a named entity,
we used word2vec as implemented by Mikolov
et al. (2013) to find the top 10 most similar enti-
ties to the given entity. We observed that word2vec
found related words and entities to a given en-
tity, however, it found few entity aliases, some
of which are misspelled words and abbreviations.
Table 1 shows the top 2 related entities found by
word2vec for some named entities.

Named Entity Related Entities
Justin Timberlake Timberlake, Beyonce
Adam Levine Maroon 5, Rob Thomas
Taylor Swift Miley Cyrus, Justin Bieber
JayZ Music Beats, Young Joc

Table 1: Some named entities and related entities
identified by word2vec

4.3 EntitySpike Experiments
As stated in section 4.1, we split our dataset into
11 equal size bins. In each bin, we calculated the
frequency of occurrence of each entity and se-
lected the top u most frequently occuring entities.
We chose u = 15 because we wanted to compare
a relatively small set of entities. We represented
each of these entities using the method described
in section 3 and calculated the cosine similarity
between these entities. We selected an entity as an
alias to another entity if they had a cosine sim-
ilarity greater than a threshold (0.95). We evalu-
ated EntitySpike on the named entities that spiked
in each of the 11 bins. We labelled the aliases
of these spiked entities - that were found in the
dataset. We used the algorithm described in sec-
tion 4.2 as a baseline. Table 2 shows the precision
and recall (with respect to the spiked entities and
their aliases) of EntitySpike and the baseline.

Algorithm Precision Recall
EntitySpike 73% 65%
Baseline 65% 69%

Table 2: Precision and recall of EntitySpike and
baseline

Table 3 shows aliases of the named entities from
table 1, that EntitySpike identified. It can be seen
that EntitySpike found more aliases.

Named Entity Alias
Justin Timberlake Justin T, Timberlake
Adam Levine Adam Levin, Adam
Taylor Swift Taylor S,Taylor
JayZ Jay Z, Jay-Z

Table 3: Some named entities and their aliases
identified by our method

EntitySpike identified entities that spiked in a
given time period and created an alias list for these
entities. We conducted experiments that varied this
time period i.e. we combined bins, and we ob-
served that some spiked entities persisted across
bins and combining two adjoining bins gave opti-
mal results.

EntitySpike also identified related words. For
each entity that spiked, we used EntitySpike to cal-
culate the cosine similarity between them. Two en-
tities were related if they had a cosine similarity
above a threshold (0.89). For each spiked entity,
we compared the results from this experiment with
word2vec and Entity Spike found some of the re-
lated entities in Word2vec. For example, it identi-
fied that during the show, Jayz and Beyonce were
related and also, Chris Brown and Rihanna. Dur-
ing the event, some entities were more related than
usual; for example, Jay Z and Justin Timberlake
preformed together during the show and a lot of
tweets - referring to both of them were generated
at this time period. EntitySpike was able to identify
that these two entities were related at this particu-
lar time period. EntitySpike also identified some
named entities that did not occur in Wikipedia e.g.
”Kelly C” for ”Kelly Clarkson” and ”Rih” for ”Ri-
hanna”.

5 Conclusion and future work

In conclusion, we proposed an algorithm that cre-
ates an alias list for entities that spike. We con-
ducted experiments to show that our algorithm
finds most entity aliases by using a temporal
heuristic. In the future, we will research using tem-
poral information to detect how relationships be-
tween entities change over a period of time.

43

References

Nicholas Andrews, Jason Eisner, and Mark Dredze.
2014. Robust entity clustering via phylogenetic in-
ference. In ACL (1). pages 775–785.

Anietie Andy, Mugizi Rwebangira, and Satoshi Sekine.
2016a. An entity-based approach to answering re-
current and non-recurrent questions with past an-
swers. OKBQA 2016 page 39.

Anietie Andy, Satoshi Sekine, Mugizi Rwebangira, and
Mark Dredze. 2016b. Name variation in community
question answering systems. WNUT 2016 page 51.

Mark Dredze, Nicholas Andrews, and Jay DeYoung.
2016. Twitter at the grammys: A social media cor-
pus for entity linking and disambiguation. In Pro-
ceedings of the 4th Workshop on Natural Language
Processing and Social Media. pages 20–25.

Stephen Guo, Ming-Wei Chang, and Emre Kiciman.
2013. To link or not to link? a study on end-to-end
tweet entity linking. In HLT-NAACL. pages 1020–
1030.

Xiaohua Liu, Yitong Li, Haocheng Wu, Ming Zhou,
Furu Wei, and Yi Lu. 2013. Entity linking for
tweets. In ACL (1). pages 1304–1311.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Michael J Paul and Mark Dredze. 2011. You are
what you tweet: Analyzing twitter for public health.
Icwsm 20:265–272.

Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo.
2010. Earthquake shakes twitter users: real-time
event detection by social sensors. In Proceedings
of the 19th international conference on World wide
web. ACM, pages 851–860.

Yusuke Shinyama, Satoshi Sekine, and Kiyoshi Sudo.
2002. Automatic paraphrase acquisition from news
articles. In Proceedings of the second interna-
tional conference on Human Language Technology
Research. Morgan Kaufmann Publishers Inc., pages
313–318.

Kate Starbird and Leysia Palen. 2012. (how) will the
revolution be retweeted?: information diffusion and
the 2011 egyptian uprising. In Proceedings of the
acm 2012 conference on computer supported coop-
erative work. ACM, pages 7–16.

Andranik Tumasjan, Timm Oliver Sprenger, Philipp G
Sandner, and Isabell M Welpe. 2010. Predicting
elections with twitter: What 140 characters reveal
about political sentiment. ICWSM 10(1):178–185.

44

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 45–49
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

Incorporating Metadata into Content-Based User Embeddings

Linzi Xing and Michael J. Paul
University of Colorado, Boulder, CO 80309

{Linzi.Xing,Michael.J.Paul}@colorado.edu

Abstract

Low-dimensional vector representations
of social media users can benefit appli-
cations like recommendation systems and
user attribute inference. Recent work has
shown that user embeddings can be im-
proved by combining different types of in-
formation, such as text and network data.
We propose a data augmentation method
that allows novel feature types to be used
within off-the-shelf embedding models.
Experimenting with the task of friend rec-
ommendation on a dataset of 5,019 Twitter
users, we show that our approach can lead
to substantial performance gains with the
simple addition of network and geographic
features.

1 Introduction

A variety of social media tasks benefit from hav-
ing dense vector representations of users. For ex-
ample, “who to follow” recommendations can be
done by calculating cosine similarity between user
vectors. Recent work has experimented with neu-
ral embeddings of social media users, most com-
monly based on text content (Amir et al., 2016;
Wan et al., 2016), with some work combining in-
put features from other metadata, including social
network information (Li et al., 2015; Benton et al.,
2016; Yang et al., 2016).

Since social media like Twitter provide different
types of data (e.g., text, network, location), con-
structing user embeddings with appropriate fea-
tures can improve the performance based on the
target task’s requirements. For instance, for rec-
ommending tweets a user may be interested in, the
user’s text content will be a crucial feature. For
recommending users to follow, information about

the user’s current follow graph is likely to be im-
portant.

How to efficiently integrate diverse types of fea-
tures into user representations is a challenge we
address in this work. While “multiview” models
that combine different feature types have been pro-
posed for user embeddings, there is cost in adapt-
ing any particular model to a multiview setting. As
an alternative, we propose a simple solution that
treats all discrete features as “words,” but prepro-
cesses the data in a way that removes word order
effects from non-textual features. This approach
can be applied to most models of text content,
such as the popular paragraph2vec model (Le and
Mikolov, 2014), allowing diverse features without
constructing specialized models.

Our primary contributions are as follows:

• We describe a preprocessing step that allows
the inclusion of non-textual discrete features
(e.g., followers, locations) into off-the-shelf
text embedding methods. Our method is easy
to use, requiring no special implementation.

• We introduce a novel type of feature for
user embeddings—the geographic locations
of users’ friends—and show that this im-
proves performance over standard text and
network features on a new Twitter dataset.

• We find that jointly modeling all types of fea-
tures improves performance over combining
independent models of different feature sets,
offering evidence that there are informative
interactions between text content and meta-
data, and demonstrating that simply combin-
ing independent models is insufficient.

2 Previous Work

A number of recent studies have proposed mod-
els for constructing social media user embeddings.

45

Amir et al. (2016) generated user embeddings cap-
ture users’ individual word usage patterns with a
model similar to paragraph2vec. In this method,
only users’ tweets are taken into account. Wan
et al. (2016) proposed two neural network mod-
els, also based on paragraph2vec, to obtain users’
vector representations from word representations
obtained previously. Since their task was recom-
mending tweets to users, only text was considered
to construct user embeddings.

Other work has considered multiple types of
features, or “views.” Benton et al. (2016) pro-
posed an approach based on Weighted General-
ized Canonical Correlation Analysis (WGCCA)
to turn several aspects of user information into
low-dimensional vectors, including tweets and so-
cial network information. Before applying the
WGCCA model, each type of information is first
converted into an appropriate vector representa-
tion. Yang et al. (2016) considered text, social re-
lationships and mentioned entities as features for
user embeddings. This work used different mod-
els for learning each feature type. While trained
separately, once a representation was learned for
each feature type, a final user representation was
learned with a composition model that included
additional parameters to learn interactions be-
tween feature types. Li et al. (2015) proposed a
similar approach, which uses different models for
different types of user information, which are then
linearly combined into a full model. During train-
ing, the parameters are learned jointly.

The multiview models above all used different
view-specific models to capture the feature types.
In contrast, we use a simple input representation
that can be plugged into a single model.

3 Social Media Dataset

To motivate our methods, we will first describe
our dataset of over 5,000 Twitter users. We ran-
domly sampled users who follow American uni-
versities. Specifically, we collected the usernames
of up to 5,000 followers of 25 universities (the top
25 undergraduate programs ranked by US News).
Among the 5,000 followers of each university, we
randomly sampled 400 users, for a total of 10,000
users. After removing accounts that were private
or non-English (according to the tweet lang at-
tribute), we were left with 5,019 users.

From each user, we collected their 200 most re-
cent tweets (collected January 2017), as well as the

usernames and locations of up to 100 followees
by collecting the profiles of 100 randomly sam-
pled accounts that are followed by the user. Our
dataset contained an average of 155.4 tweets per
user (with an average of 6.7 tokens per tweet, after
pre-processing), and an average of 91.9 followees
per user (with an average of 32.0 followees for
whom we resolved a location).

3.1 Types of Metadata

In this work, we will train embeddings using two
types of features in addition to the tweet content
of each user: the users they follow, and the geo-
graphic locations of the users they follow. These
features were selected to support our experimental
task of friend recommendation (Section 5).

The motivation for the first type of feature is that
if two users’ followee lists have substantial over-
lap, then it indicates they are more likely to have
a connection. We implement this by including the
usernames of the accounts that each user follows.

The motivation for the second type of feature,
with which we opted to use the locations of each
user’s followees rather than the the user’s own
location, is perhaps less obvious. First, this at-
tribute is sparse (fewer than half of the users had a
valid location), so including their followees’ loca-
tions provides more information. Second, in many
cases, friends’ locations may be a more informa-
tive predictor of relationships. For example, sup-
pose Users A, B, and C live in Kansas. Many of A
and B’s friends are located in California, but most
C’s friends are from New York. In this scenario,
A and B may be more likely to have a relationship
than C, while if we only used the users’ own loca-
tions, then location would not differentiate them.

To extract high-precision locations, we ex-
tracted only locations from user profiles of the
form “City, State”, where the state had to match
a dictionary of US states. We used the dictionary
to rewrite state names in a canonical form (e.g.,
“California”→ “CA”).

4 User Embedding Model

This work uses paragraph2vec (Le and Mikolov,
2014) as our content embedding model. This is an
unsupervised model that encodes text sequences
(canonically, paragraphs) as low-dimensional vec-
tors. The model is related to word2vec (Mikolov
et al., 2013), with a modification that each para-
graph is given a unique paragraph token at the be-

46

word_1 word_2 … USRword_M USR@Larry USRUSR@DeborahUSR…USRLOC LOC Denver,CO LOCLOC Boston,MA…

Figure 1: We augment text features by concatenating each user’s input string with username and location
features, padded with “dummy” tokens to prevent word order effects for non-textual features. Since each
token’s probability in paragraph2vec depends on the k tokens before and k tokens after it, we separate the
username and location tokens with k dummy ‘USR’ and ‘LOC’ tokens so that no usernames or locations
will appear in the same window.

ginning, which is treated like other tokens in the
paragraph to help predict words. The result is a
vector for each paragraph, in addition to the word
vectors for each word. In our setting, we treat each
user’s concatenated stream of tweets as a single
“paragraph” and apply the model as is. The train-
ing objective for each user u under this model is:

1
M

M∑
i=1

log P (wi|u, wi−k, · · · , wi+k) (1)

where M is the number of tokens in the user
stream and k is the window size. u is the vec-
tor representation of the “paragraph” token that
uniquely corresponds to the user, and w are the
word tokens in the tweet stream.

4.1 Incorporating Metadata

We propose to add additional metadata features
by simply appending the text sequences (the user
tweet streams) with additional tokens for each
username and each location string, representing
the features described in Section 3.1. However,
doing this naively will not work as intended, be-
cause the order of the word tokens within each
window affects the probabilities, which is not ap-
propriate for features that have no ordering.

To address this, we format the text such that
two metadata features never appear within the
same window. We pad the features with “dummy”
tokens that appear before and after each user-
name (‘USR’) or location (‘LOC’). There are 2×k
dummy tokens in between each feature, where k
is the window size, as illustrated in Figure 1.

A side effect of this approach is that there
will be redundant metadata features from differ-
ent window positions that will always co-occur
(e.g., “LOC Seattle LOC” and “LOC LOC Seat-
tle”). This creates colinearity in the model, but this
does not diminish the predictive performance, nor
is this unusual when applying machine learning to
text (e.g., including different length n-grams).

5 Experiments

To evaluate our proposed approach, we experi-
ment with different vector representations of our
dataset for the task of friend recommendation
(Liben-Nowell and Kleinberg, 2007; Lo and Lin,
2006; Backstrom and Leskovec, 2011).

5.1 Implementation Details
We preprocessed the text to remove punctuation,
stop words, hyperlinks, and usernames. All tweets
were concatenated into one string. Additional fea-
tures were concatenated to the same string using
the padding procedure described in Section 4.1.

We used the paragraph2vec implementation
from the Python package, Gensim (Řehůřek and
Sojka, 2010), called doc2vec. The window size
and vector dimensionality were set to 3 and 100.

5.2 Experimental Design
For friend recommendation, we calculate the co-
sine similarity between all pairs of users based
on their vector representation. For each user, we
select the top k users with the highest similarity.
Using the user’s followee list as ground truth, we
measure the precision, recall, and mean reciprocal
rank for k in {10, 20, 30, 40, 50}.

Similar to the design of (Benton et al., 2016),
we used the most popular accounts as our test set.
Specifically, we selected 58 users who were fol-
lowed by more than 50 users in our dataset for
evaluation. These users were excluded when gen-
erating the username features described in 3.1.

We experimented with our paragraph2vec-
based embedding models with different feature
sets. We consider the model with only text fea-
tures to be our primary baseline, which we com-
pare against models that add username features as
well as both username and location features.

For our full model with all three feature types,
we compared three different approaches for com-
bining the features. In addition to training a single
paragraph2vec model on all features jointly, as we

47

k = 10 k = 20 k = 30 k = 40 k = 50
P R MRR P R MRR P R MRR P R MRR P R MRR

Random .022 .003 .056 .030 .010 .070 .046 .014 .083 .029 .019 .052 .021 .018 .053
TF-IDF .174 0.019 .192 .160 .033 .152 .137 .039 0.131 .120 .046 0.118 .110 .051 .104

Text only (T) .133 .013 .205 .121 .027 .159 .116 .033 .127 .111 .042 .116 .108 .051 .104
Text+Users (T+U) .168 .016 .210 .158 .031 .166 .148 .042 .129 .140 .053 .108 .135 .065 .108
T+U+L (Addition) .131 .013 .135 .121 .027 .123 .131 .038 .092 .115 .042 .087 .120 .057 .077
T+U+L (Concat.) .150 .014 .160 .146 .031 .112 .132 .038 .110 .128 .050 .088 .121 .061 .078

T+U+L (Joint) .193†‡ .019† .227‡ .171†‡ .033† .174‡ .162†‡ .046† .120‡ .153†‡∗ .059†∗ .114†‡ .150†‡∗ .071†‡∗ .110†‡

T+U+L (No padding) .165 .015 .203 .159 .029 .160 .150 .042 .115 .146 .052 .105 .138 .064 .102

Table 1: Overview of results with precision (P), recall (R), and mean reciprocal rank (MRR) at k. This
compares our non-embedding baselines with our embedding model using various feature sets: text only
(T), text and usernames (T+U), and text with usernames and locations (T+U+L), either jointly modeled
or independently combined by addition or concatenation. Markers indicate if the results of our joint
T+U+L model are significantly different (p<0.05) from the text only (†), concatenated T+U+L (‡), or
TF-IDF (∗) models.

proposed in Section 4.1, we also trained three sep-
arate paragraph2vec models on the three feature
types and then combined them, by adding the vec-
tors in one version and by concatenating the three
vectors in another. Since some prior work trained
independent models for different views (Section
2), it is important to understand how joint versus
independent training affects performance.

To understand the importance of padding the
metadata features with dummy tokens, we also
measured the performance of the full joint model
without using extra tokens, labeled as “No
padding” in the table.

Finally, we add two other baselines to put
our results in context. First is a random base-
line that randomly chooses k users in the rank-
ing, which gives an approximate lower bound on
performance. Second, we compare to a high-
dimensional bag-of-words representation of text
with TF-IDF weighting.

We measured the statistical significance of the
results using a paired t-test to compare our full
model to the baselines with close performance.

5.3 Results and Discussion

Results are shown in Table 1. The full joint model
outperforms all others at precision and recall in all
cases, and at MRR in a majority of cases.

There is a substantial improvement in the em-
bedding model using all three feature types com-
pared to the model using only text. The differences
in precision and recall are highly significant, with
p-values <0.001 in all cases. This demonstrates
that our proposed features are useful for friend rec-
ommendation, and that our simple method for en-
coding them is effective. We also find that train-

ing a representation using all three feature types
jointly gives significantly better performance than
combining independently trained representations.
Finally, we find that metadata features do improve
performance even without padding, but not as well
as when using padding.

While our full model outperformed the TF-IDF
baseline in most cases, most differences were not
significant, and the TF-IDF baseline outperformed
the paragraph2vec model using only text. We be-
lieve the strong performance of TF-IDF relative to
the paragraph2vec representations may be due to
the fairly small size of our dataset. Since our goal
was to investigate how to improve the quality of
embeddings, we primarily focus on the compari-
son other embedding models rather than TF-IDF,
but we present these results to show how the differ-
ent representation types compare on this dataset.

6 Conclusion

We have described and evaluated a simple method
for adding non-textual discrete features into a
text embedding model for constructing embed-
dings of social media users. We constructed a
novel geographic feature—the locations of a user’s
friends—and showed that the addition of network
and geographic features significantly improves
precision and recall over a text-only baseline up
to 0.06 and 0.02, respectively. We also showed
that including all feature types in one model leads
to significantly better performance than combin-
ing independently trained models of different fea-
tures. Our approach is based on modifying the in-
put rather than the model, therefore requiring no
special implementation and can be easily adapted
to other embedding models or feature types.

48

References
Silvio Amir, Byron C. Wallace, Hao Lyu, Paula Car-

valho, and Mario J. Silva. 2016. Modelling context
with user embeddings for sarcasm detection in social
media. arXiv preprint arXiv:1607.00976.

Lars Backstrom and Jure Leskovec. 2011. Super-
vised random walks: Predicting and recommending
links in social networks. In Fourth ACM Interna-
tional Conference on Web Search and Data Mining
(WSDM).

Adrian Benton, Raman Arora, and Mark Dredze. 2016.
Learning multiview embeddings of twitter users.
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics, pages 14–
19.

Quoc V. Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. Proceed-
ings of The 31st International Conference on Ma-
chine Learning, pages 1188–1196.

Jiwei Li, Alan Ritter, and Dan Jurafsky. 2015.
Learning multi-faceted representations of individu-
als from heterogeneous evidence using neural net-
works. arXiv preprint arXiv: 1510.05198.

David Liben-Nowell and Jon Kleinberg. 2007. The
link-prediction problem for social networks. Jour-
nal of the American Society for Information Science
and Technology 58(7):1019–1031.

Shuchuan Lo and Chingching Lin. 2006. WMR–
a graph-based algorithm for friend recommenda-
tion. In IEEE/WIC/ACM International Conference
on Web Intelligence.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. Advances in neural information processing sys-
tems, pages 3111–3119.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks. pages 45–50.

Xiaojun Wan, Yang Yu, and Xinjie Zhou. 2016. User
embedding for scholarly microblog recommenda-
tion. Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics, pages
449–453.

Yi Yang, Ming-Wei Chang, and Jacob Eisenstein.
2016. Toward socially-infused information extrac-
tion: Embedding authors, mentions, and entities.
Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1452–1461.

49

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 50–55
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

Simple Queries as Distant Labels for Predicting Gender on Twitter

Chris Emmery1,2 and Grzegorz Chrupała1 and Walter Daelemans2

1TiCC, Tilburg University, 5000 LE Tilburg, The Netherlands
2CLiPS, University of Antwerp, Prinsstraat 13, B-2000 Antwerpen, Belgium

{c.d.emmery, g.a.chrupala}@uvt.nl
walter.daelemans@uantwerpen.be

Abstract

The majority of research on extracting
missing user attributes from social media
profiles use costly hand-annotated labels
for supervised learning. Distantly super-
vised methods exist, although these gener-
ally rely on knowledge gathered using ex-
ternal sources. This paper demonstrates
the effectiveness of gathering distant la-
bels for self-reported gender on Twitter us-
ing simple queries. We confirm the reli-
ability of this query heuristic by compar-
ing with manual annotation. Moreover,
using these labels for distant supervision,
we demonstrate competitive model perfor-
mance on the same data as models trained
on manual annotations. As such, we of-
fer a cheap, extensible, and fast alternative
that can be employed beyond the task of
gender classification.

1 Introduction

The popularity of social media that rely on
rich self-representation of users (e.g. Facebook,
LinkedIn) make them a valuable resource for con-
ducting research based on demographic informa-
tion. However, the volume of personal informa-
tion users provide on such platforms is generally
restricted to their personal connections only, and
therefore off-limits for scientific research. Twitter,
on the other hand, allows only a restricted amount
of structured personal information by design. As a
result, their users tend to connect with people out-
side of their social circle more frequently, making
many profiles and communication publicly acces-
sible. A wide variety of research has long picked
up on the interesting characteristics of this micro-
blogging service, which is well facilitated by the
Twitter REST API.

The applied Natural Language Processing
(NLP) domain of author profiling aims to infer
unknown user attributes, and is therefore broadly
used to compensate for the lack thereof on Twitter.
While previous research has already proven to be
quite effective at this task using predictive mod-
els trained on manual annotations, the process of
hand-labelling profiles is costly. Even for the os-
tensibly straight-forward task of annotating gen-
der, a large portion of Twitter users purposefully
avoids providing simple indicators such as real
names or profile photos including a face. Conse-
quently, this forces annotators to either dive deep
into the user’s timeline in search for linguistic
cues, or to make decisions based on some personal
interpretation, for which they have shown to of-
ten incorrectly apply stereotypical biases (Nguyen
et al., 2014; Flekova et al., 2016).

We show that running a small collection of ad-
hoc queries for self-reports of gender once (“I’m a
male, female, man, woman” etc.) — provides dis-
tant labels for 6,610 profiles with high confidence
in one week worth of data. Employing these for
distant supervision, we demonstrate them to be an
accurate signal for gender classification, and form
a reliable, cheap method that has competitive per-
formance with models trained on costly human-
labelled profiles. Our contributions are as follows:

• We demonstrate a simple, extensible method
for gathering self-reports on Twitter, that
competes with expensive manual annotation.

• We publish the IDs, manual annotations, as
well as the distant labels for 6.6K Twitter pro-
files, spanning 16.8M tweets.

The data, labels, and our code to collect more
data and reproduce the experiments is made avail-
able open-source at https://github.com/
cmry/simple-queries.

50

2 Related Work

Author profiling applies machine learning to lin-
guistic features within a piece of writing to make
inferences regarding its author. The ability to
make such inferences was first discussed for gen-
der by Koppel et al. (2002), and initially applied to
blogs (Argamon et al., 2007; Rosenthal and McK-
eown, 2011; Nguyen et al., 2011). Later, the work
extended to social media — encompassing a wide
variety of attributes such as gender, age, personal-
ity, location, education, income, religion, and po-
litical polarity (Eisenstein et al., 2011; Alowibdi
et al., 2013; Volkova et al., 2014; Plank and Hovy,
2015; Volkova and Bachrach, 2016). Apart from
relevancy in marketing, security and forensics, au-
thor profiling has shown to positively influence
several text classification tasks (Hovy, 2015).

Gender profiling research on Twitter generally
takes a data-driven, open-vocabulary approach us-
ing bag of words, or bag of n-gram features
(Alowibdi et al., 2013; Ciot et al., 2013; Verhoe-
ven et al., 2016), applying supervised classifica-
tion using manually annotated profiles. However,
distant supervision has as of yet only looked at
non-textual cues for this task, unlike for example
age, personality, and mental health (e.g. Al Zamal
et al., 2012; Plank and Hovy, 2015; Coppersmith
et al., 2015). For gender, Burger et al. (2011) and
Li et al. (2014) collect links to external profiles,
whereas Al Zamal et al. (2012) and Li et al. (2015)
use a list with gender-associated names. Both of
these approaches rely on continuous monitoring of
streaming data, and utilize indicators that are typ-
ically easy cues for annotators, thereby omitting
profiles that would be costly to annotate. In con-
trast, our method only has to be repeated once a
week, and includes a different set of users where
sampling is not influenced by external resources.

3 Data Collection

To empirically compare distant labels (i.e. ob-
tained using heuristics) with manual annotations,
we require both data containing self-reports, and
corpora with hand-labelled Twitter profiles for
comparison.

Distant Labels The profiles in our corpus
were collected on March 6th, 2017 — using the
Twitter Search API1 to query for messages self-

1https://dev.twitter.com/rest/public/
search

filter N hand F F+R
none 1,456 .806 .806
rt 1,109 .873 .887
rt + " 1,059 .882 .896
rt + : 1,091 .887 .891
rt + " + : 1,045 .885 .900

Table 1: Several filter rules applied to the dis-
tant labels (effectively removing those matching
the rules), their impact on both data reduction (N
hand-labelled) and agreement increase. Agree-
ment is specified for: only applying these filters
(F), and in combination with the rules from Table 2
(F+R), and reflects the amount of correct distant
labels compared to the manual labels.

reporting gender: e.g. {I’ / I a}m a {man,
woman, male, female, boy, girl,
guy, dude, gal}. For each retrieved tweet,
the timeline of the associated author was collected
(up to 3,200 tweets) between Match 6th and 8th.
Note that the maximum retrieval history for the
Search API is limited to tweets from the past
week. Hence, our set of queries collected 19,307
profiles spanning results for one week only.

This method has some inherent advantages in
addition to the ones mentioned in Section 2: it
guarantees to a large extent that the profiles gath-
ered are primarily English (95% of all associated
tweets), collects data from active users (average of
2,500 tweets per timeline), and generally avoids
bots, or other spam profiles (0,2%2 of all profiles).
Finally, with gender profiling being considered a
binary male/female classification task for much of
the previous research and corpora, it also prevents
including users that might not identify with the bi-
nary framework in which gender is typically cast.3

Manual Evaluation To evaluate the accuracy of
our distant labels, a random sub-sample was man-
ually labelled for gender by two annotators using
a full profile view (κ = 0.78), resulting in 1,456
agreed on labels. Based on the initial results (see
Table 1), several rules were constructed to filter
(thereby removing) any profiles the query tweet
matched to. First, we observed that many tweets
(31%) contained rt — indicating a retweet. Sim-
ilar to tweets containing quotes (5%), or colons

2Bots were identified during annotation.
3Accordingly, this method could be applied in future re-

search tackling this long-standing issue by collecting and us-
ing self-reported non-binary representations of gender.

51

Location Rule set
anywhere according to, deep down
before query feel like, where, (as) if, hoping,

assume(s/d) (that), think, expect
(that), then, (that) means, imply-
ing, guess, think(s), tells me

Table 2: Rules applied to the distant labels to flip
the assumed gender. Their location can be any-
where in the tweet, or right before the query (e.g.
“Sometimes I think I’m a girl”).

(2%), these are generally not self-reports (e.g.
"random guy: I’m a man. . ."), and were there-
fore removed. Overall, the filters increased agree-
ment with our manual annotations, simultaneously
causing a decrease to 6,610 profiles. This method
however ensures a high accuracy of the distant la-
bels, which should outweigh the amount of data.

In addition to these filters, several rules were
constructed to deal with linguistic cues that make
it highly likely for the gender to be the opposite
of the literal report (see Table 2) — thus indi-
cating the label should be flipped. Examples in-
clude “according to the Internet, I’m a girl”, and
“Don’t just assume I’m a guy”. For a detailed
overview of their effect on the overall agreement,
see F+R in Table 1. The ad-hoc list presented
here improved agreement about .015. Note that
despite being constructed by manual inspection of
the mismatches between annotations and the dis-
tant labels, our filters, rules, and even the initial
query can be extended with some creativity.

Preparation To compare our distant labels to
annotated alternatives, we include Volkova et al.
(2014)’s crowd-sourced corpus, and the manually
labelled corpus by Plank and Hovy (2015). Hence-
forth, these external corpora will be referred to as
Volkova and Plank respectively. The timelines of
their provided user IDs where gathered between
April 1st and 7th 2017 (see Table 3 for further de-
tails on their sizes).

The timelines for all corpora—including our
Query corpus—were divided in batches of 200
tweets, as most related work follows this setup.
Afterwards, each batch is provided with either a
distant, or manual label, depending on the set of
origin. This implies that users with less than 200
tweets were excluded, as well as any consecutive
tweets that would not exactly fit into a batch of
200. The corpora were divided between a (gender

Volkova Plank Query
users 4,620 1,391 6,610
tweets 12,226,859 3,568,265 16,788,612
female 32,367 10,613 61,736
male 26,708 6,739 32,900
train 47,298 13,827 75,918
test 11,777 3,525 18,718

Table 3: Various metrics of the Twitter corpora
annotated with gender used in this research. The
train and test sizes reflect the amount of batches of
200 tweets.

stratified) train and a test set by user ID. This guar-
antees that there is no bleed of batches from any
user between any of the splits (refer to Table 3 for
the final split sizes). Other than tokenisation using
spaCy (Honnibal and Johnson, 2015), no special
preprocessing steps were taken. We removed pri-
marily non-English batches using langdetect4

(Shuyo, 2010), as well as the original query tweets
containing self-reports. The latter was done to
avoid our queries being most characteristic for
some batches.

4 Experiment

For document classification, fastText5 (Joulin
et al., 2016) was employed; a simple linear model
with one hidden embedding layer that learns sen-
tence representations using bag of words or n-
gram input, producing a probability distribution
over the given classes using the softmax func-
tion. It therefore follows the same architecture as
the continuous bag of words model from Mikolov
et al. (2013), replacing the middle word with a la-
bel. Joulin et al. (2016) demonstrate the model
performs well on both sentiment and tag predic-
tion tasks, significantly speeding up training and
test time compared to several recent models.

Gender predictions were made using a typical
set of n-gram features as input; token uni-grams
and bi-grams, and character tri-grams. We incor-
porate only those grams that occur more than three
times during training. As the corpora are quite
small, we use embeddings with only 30 dimen-
sions, a learning rate of 0.1, and a bucket size of
1M. All models are trained for 10 epochs. Given
that fastText uses Hogwild (Recht et al., 2011)

4https://github.com/Mimino666/
langdetect

5https://github.com/facebookresearch/
fastText

52

Train
Majority Lexicon Volkova Plank Query

Volkova .556 .796 .822 (0.001) .701 (0.007) .771 (0.007)

Te
st Plank .659 .740 .741 (0.005) .723 (0.003) .724 (0.009)

Query .674 .668 .730 (0.007) .689 (0.005) .756 (0.002)
Average .630 .735 .764 .704 .750

Table 4: Individual accuracy scores and averages for majority baseline (Majority), the lexicon of Sap
et al. (2014), and the three models (trained on Volkova, Plank, and our dataset respectively) evaluated on
the test set for each corpus. Standard deviation is reported after repeating the same experiment 20 times.

for parallelising Stochastic Gradient Descent, ran-
domness in the vector representations cannot be
controlled using a seed. To estimate the standard
deviation in the results, we ran each experiment 20
times. To evaluate how our distantly supervised
model compares to using manual annotations, we
trained all models in this same configuration for
all three corpora. Each model was then evaluated
on the test set for each corpus.

5 Results

Table 4 shows accuracy scores for this 3x3 experi-
mental design, as well as a majority baseline score
(always predicting female), and an average over
the three test sets for each model. We closely re-
produced the results from Volkova and Bachrach
(2016); despite the difference in user6 and tweet
samples, exact split order, and their use of more
features including style and part-of-speech tags,
our performance approaches their reported .84 ac-
curacy score. Plank and Hovy (2015) do not pro-
vide classification results for gender on their data.
For comparison to state-of-the-art gender classifi-
cation for English, the lexicon of Sap et al. (2014)
is included in the results. Their work also com-
pares with Volkova et al. (2014), and reports a
higher score (.90) for their random sample setup
than reproduced in our batch evaluation (.80).

Despite the fact that the model trained on the
Volkova corpus performs best on both annotated
corpora (Volkova and Plank), the difference is
fairly small compared to our distantly supervised
model — the latter of which somewhat expectedly
performs best on its associated test set. On av-
erage, the Query and Volkova trained models only
differ .014 in accuracy score, and the Query model
outperforms the lexicon approach by .015. How-
ever, the more significant comparison is the out
of sample performance for these two models and

6We could only retrieve 4,620 of the reported 4,998.

the lexicon model on the Plank test set. Here, re-
sults are comparable between Query and Volkova,
with a .017 difference, and higher standard devia-
tion. However, here the lexicon approach outper-
forms the Query model with .016. Not only does
this show our distant labels to be be comparable
with hand labels, our models also seems to yield
favourable performance over state of the art.

6 Conclusion

We use simple queries for self-reports to train
a gender classifier for Twitter that has competi-
tive performance to those trained on costly hand-
annotated labels — showing minimal differences.
These should be considered in light of the manual
effort put into gathering the annotations, however.
Labelling Twitter users with our set of queries
yields up to 45,000 hits per 15 minutes (API rate
limits considered), and therefore finishes in sev-
eral minutes. Retrieving the timelines for the ini-
tial 19,307 users took roughly 21 hours. Including
preprocessing (3 hours) and running fastText
(a few minutes) the entire pipeline is encourag-
ingly cheap, even considering time, and can fea-
sibly be repeated on a weekly basis.

Hence, through manual analysis, as well as ex-
perimental evidence, we demonstrate our distantly
supervised method to be a reliable and cheap al-
ternative. Moreover, we pose several ways of im-
proving this method by extending the queries, and
further fine-tuning the applied filters and rules for
a correct interpretation of the reports. By altering
the queries to match other types of self-reports, it
offers the possibility of quickly exploring its ef-
fectiveness for inferring other user attributes with
little effort. We hope to facilitate this for the re-
search community by providing our implementa-
tion. Our further work will focus on intelligently
expanding the queries and evaluating this method
on a larger scale with more attributes.

53

References
Faiyaz Al Zamal, Wendy Liu, and Derek Ruths. 2012.

Homophily and latent attribute inference: Infer-
ring latent attributes of twitter users from neighbors.
ICWSM 270.

Jalal S Alowibdi, Ugo A Buy, and Philip Yu. 2013.
Empirical evaluation of profile characteristics for
gender classification on twitter. In Machine Learn-
ing and Applications (ICMLA), 2013 12th Interna-
tional Conference on. IEEE, volume 1, pages 365–
369.

Shlomo Argamon, Moshe Koppel, James W Pen-
nebaker, and Jonathan Schler. 2007. Mining the
blogosphere: Age, gender and the varieties of self-
expression. First Monday 12(9).

John D Burger, John Henderson, George Kim, and
Guido Zarrella. 2011. Discriminating gender on
twitter. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing. Asso-
ciation for Computational Linguistics, pages 1301–
1309.

Morgane Ciot, Morgan Sonderegger, and Derek Ruths.
2013. Gender inference of twitter users in non-
english contexts. In EMNLP. pages 1136–1145.

Glen Coppersmith, Mark Dredze, Craig Harman, and
Kristy Hollingshead. 2015. From adhd to sad: An-
alyzing the language of mental health on twitter
through self-reported diagnoses. NAACL HLT 2015
page 1.

Jacob Eisenstein, Noah A Smith, and Eric P Xing.
2011. Discovering sociolinguistic associations with
structured sparsity. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume
1. Association for Computational Linguistics, pages
1365–1374.

Lucie Flekova, Jordan Carpenter, Salvatore Giorgi,
Lyle Ungar, and Daniel Preotiuc-Pietro. 2016. An-
alyzing biases in human perception of user age and
gender from text. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics, ACL. pages 843–854.

Matthew Honnibal and Mark Johnson. 2015. An im-
proved non-monotonic transition system for depen-
dency parsing. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics, Lisbon, Portugal, pages 1373–1378.

Dirk Hovy. 2015. Demographic factors improve clas-
sification performance. In ACL. pages 752–762.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759 .

Moshe Koppel, Shlomo Argamon, and Anat Rachel
Shimoni. 2002. Automatically categorizing writ-
ten texts by author gender. Literary and Linguistic
Computing 17(4):401–412.

Jiwei Li, Alan Ritter, and Eduard H Hovy. 2014.
Weakly supervised user profile extraction from twit-
ter. In ACL (1). pages 165–174.

Jiwei Li, Alan Ritter, and Dan Jurafsky. 2015.
Learning multi-faceted representations of individu-
als from heterogeneous evidence using neural net-
works. arXiv preprint arXiv:1510.05198 .

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Dong Nguyen, Noah A Smith, and Carolyn P Rosé.
2011. Author age prediction from text using lin-
ear regression. In Proceedings of the 5th ACL-
HLT Workshop on Language Technology for Cul-
tural Heritage, Social Sciences, and Humanities.
Association for Computational Linguistics, pages
115–123.

Dong-Phuong Nguyen, RB Trieschnigg, A Seza
Doğruöz, Rilana Gravel, Mariët Theune, Theo
Meder, and FMG de Jong. 2014. Why gender and
age prediction from tweets is hard: Lessons from a
crowdsourcing experiment. Association for Compu-
tational Linguistics.

Barbara Plank and Dirk Hovy. 2015. Personality traits
on twitter—or—how to get 1,500 personality tests
in a week. In Proceedings of the 6th Workshop
on Computational Approaches to Subjectivity, Sen-
timent and Social Media Analysis. pages 92–98.

Benjamin Recht, Christopher Re, Stephen Wright, and
Feng Niu. 2011. Hogwild: A lock-free approach
to parallelizing stochastic gradient descent. In Ad-
vances in Neural Information Processing Systems.
pages 693–701.

Sara Rosenthal and Kathleen McKeown. 2011. Age
prediction in blogs: A study of style, content, and
online behavior in pre-and post-social media genera-
tions. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies-Volume 1. Association
for Computational Linguistics, pages 763–772.

Maarten Sap, Gregory Park, Johannes C Eichstaedt,
Margaret L Kern, David Stillwell, Michal Kosinski,
Lyle H Ungar, and H Andrew Schwartz. 2014. De-
veloping age and gender predictive lexica over social
media .

Nakatani Shuyo. 2010. Language detection library for
java. Retrieved Jul 7:2016.

54

Ben Verhoeven, Walter Daelemans, and Barbara Plank.
2016. Twisty: a multilingual twitter stylometry cor-
pus for gender and personality profiling. In Pro-
ceedings of the 10th Annual Conference on Lan-
guage Resources and Evaluation (LREC 2016).
ELRA, ELRA, Portorož, Slovenia.

Svitlana Volkova and Yoram Bachrach. 2016. Inferring
perceived demographics from user emotional tone
and user-environment emotional contrast. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL.

Svitlana Volkova, Glen Coppersmith, and Benjamin
Van Durme. 2014. Inferring user political prefer-
ences from streaming communications. In ACL (1).
pages 186–196.

55

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 56–61
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

A Dataset and Classifier for Recognizing Social Media English

Su Lin Blodgett∗ Johnny Tian-Zheng Wei† Brendan O’Connor∗
University of Massachusetts Amherst, Amherst, MA

∗{blodgett, brenocon@cs.umass.edu} †jwei@umass.edu

Abstract

While language identification works well
on standard texts, it performs much worse
on social media language, in particular di-
alectal language—even for English. First,
to support work on English language iden-
tification, we contribute a new dataset of
tweets annotated for English versus non-
English, with attention to ambiguity, code-
switching, and automatic generation is-
sues. It is randomly sampled from all pub-
lic messages, avoiding biases towards pre-
existing language classifiers. Second, we
find that a demographic language model—
which identifies messages with language
similar to that used by several U.S. eth-
nic populations on Twitter—can be used
to improve English language identification
performance when combined with a tradi-
tional supervised language identifier. It in-
creases recall with almost no loss of pre-
cision, including, surprisingly, for English
messages written by non-U.S. authors.

Our dataset and identifier ensemble are
available online.1

1 Introduction and Related Work

Language identification is the task of deter-
mining the major world language a document
is written in. A range of supervised classi-
fication methods—often based on character n-
gram features—achieve excellent performance for
this problem on long, monolingual documents
(Hughes et al., 2006). But short documents are
much more challenging, such as Twitter messages
(Lui and Baldwin, 2012, 2014; Bergsma et al.,
2012; Williams and Dagli, 2017).

1http://slanglab.cs.umass.edu/TwitterLangID

Compounding the challenge is domain mis-
match: the types of casual language, dialectal lan-
guage, and Internet-specific constructs found in
social media are often not present in the standard-
ized genres of training data for existing language
identifiers. This is potentially especially problem-
atic for language by minority dialect speakers—
for example, Blodgett et al. (2016) found that cur-
rent language identification models had lower re-
call for tweets written in African-American En-
glish (AAE) than those in standard English. This
is not surprising given the domain mismatch—a
survey of recent language identifiers shows that
common sources of training data are Wikipedia,
newswire (e.g. the Leipzig corpora), and govern-
ment and legal documents such as EuroGov, Eu-
roParl, or the Universal Declaration of Human
Rights (Lui and Baldwin, 2012; King and Abney,
2013; Jaech et al., 2016; Kocmi and Bojar, 2017;
Lui and Cook, 2013).

A language identification system typically aims
to classify messages as one of a few hundred ma-
jor world languages, which are generally well-
resourced mainstream language varieties with offi-
cially recognized status by major political entities;
these language varieties typically have official ISO
639 codes assigned to them (which are returned by
language identification software APIs).2 Given the
high linguistic diversity of messages in social me-
dia, it is tempting to imagine fine-grained dialect
identification (for example, identifying messages
written in AAE), but at the same time, the tradi-
tional task of identifying major world languages
will continue to be useful (for example, an AAE
message could be reasonably analyzed with gen-
eral English language technologies). In this work
we maintain the paradigm of treating English as a
broad language category, but propose that the texts

2For example, langid.py, CLD2, Microsoft Azure, IBM
Watson, and Google Translation API all offer ISO-returning
language identification software or services.

56

that match it ought to be broadened to include non-
standard, social media, and dialectal varieties of
English.

If there was abundant language-annotated Twit-
ter data, it would be straightforward to train an in-
domain language identifier. But very little exists,
since it is inherently time-consuming and expen-
sive to annotate. Datasets are typically small, or
semi-automatically tagged (Bergsma et al., 2012),
which may bias them towards pre-existing stan-
dardized language.

A promising approach is to leverage large quan-
tities of non-language-labeled tweets to help adapt
a standard identifier to perform better on social
media. If the messages are treated as unlabeled,
this could be framed as unsupervised domain
adaptation problem, for which a number of ap-
proaches are available (Blitzer et al., 2006, 2007;
Plank, 2009; Yang and Eisenstein, 2016).

We focus on a unique, and different, large-scale
training signal—U.S. neighborhood-level demo-
graphics. There is considerable linguistic diversity
within the U.S., and its geographic patterns have
some rough correlation with different ethnic and
race populations. Blodgett et al. analyzed them
with a mixed membership model—for which mes-
sages written by authors living in areas heavy in
a particular demographic group were more likely
to use a unigram language model associated with
that group—in order to focus on AAE. But they
note their model found that non-English language
tended to gravitate towards one of the latent lan-
guage models, which was useful to better iden-
tify English spoken within the U.S. that a standard
identifier missed.

We hypothesize that this generalizes beyond
specific dialect populations within the U.S., test-
ing whether this soft signal from the demographic
model actually gives a better model of overall so-
cial media English. We evaluate as fairly and
completely as possible; we first annotate a new
dataset of uniformly sampled tweets for whether
they are English versus non-English (§2). In §3,
we apply Blodgett et al.’s model to infer U.S. de-
mographic language proportions in new tweets,
finding that when added as an ensemble to a
pre-existing identifier, performance improves—
including when paired with feature-based, neural
network, and proprietary identifiers. Such ensem-
bles perform better than in-domain training with
the largest available annotated Twitter dataset, and
also better than a self-training domain adaptation

Label Full Count Evaluation Count
English 5086 3758

Not English 4646 4608
Ambiguous 770 0

Total 10502 8366

Table 1: Dataset statistics for each language label;
the evaluation count refers to the subset used for
evaluation.

Label Count
Code-Switched 162

Ambiguous due to Named Entities 132
Automatically Generated 1371

Table 2: Dataset statistics for additional labels.

approach on the same dataset used to construct the
demographic language model—and the accuracy
increases for English messages from many differ-
ent countries around the world.

2 Dataset and Annotation

We sampled 10,502 messages from January 1,
2013 to September 11, 2016 from an archive of
publicly available geotagged tweets. We annotated
the tweets with three mutually exclusive binary la-
bels: English, Not English, and Ambiguous. These
tweets were further annotated with descriptive la-
bels:

• Code-switched: Tweets containing both text
in English and text in another language.

• Ambiguous due to named entities: Tweets
containing only named entities, such as Ve-
gas!, and therefore whose language could not
be unambiguously determined.

• Automatically generated: Tweets whose con-
tent appeared to be automatically generated,
such as I just finished running 15.21 km in
1h:17m:32s with #Endomondo #endorphins
https://t.co/bugbJOvJ31.

We excluded any usernames and URLs in a tweet
from the judgment of the tweet’s language, but in-
cluded hashtags. Tables 1 and 2 contain the statis-
tics for these labels in our annotated dataset. For
all our experiments, we evaluate only on the subset
of messages in the dataset not labeled as ambigu-
ous or automatically generated, which we call the
evaluation dataset.

57

3 Experiments

3.1 Training Datasets
We investigate the effect of in-domain and ex-
tra out-of-domain training data with two datasets.
The first is a dataset released by Twitter of 120,575
tweets uniformly sampled from all Twitter data,
which were first labeled by three different classi-
fiers (Twitter’s internal algorithm, Google’s Com-
pact Language Detector 2, and langid.py), then an-
notated by humans where classifiers disagreed.3

We reserve our own dataset for evaluation, but use
this dataset for in-domain training. This dataset
is only made available by tweet ID, and many of
its messages are now missing; we were able to re-
trieve 74,259 tweets (61.6%). For the rest of this
work, we call this the Twitter70 dataset (since it
originally covered about 70 languages).

In addition, following Jaech et al. (2016),
we supplemented Twitter70 with out-of-domain
Wikipedia data for 41 languages,4 sampling
10,000 sentences from each language.

3.2 Classifiers
We tested a number of classifiers on our anno-
tated dataset trained on a variety of domains, and
in some cases retrained.

• CLD2: a Naive Bayes classifier with a pre-
trained model from a proprietary corpus; it
offers no support for re-training.

• Twitter: the output of Twitter’s proprietary
language identification algorithm.

• langid.py: a Naive Bayes classifier for 97
languages with character n-gram features,
including a pretrained model based on text
from JRC-Acquis, ClueWeb 09, Wikipedia,
Reuters, and Debian i18n (Lui and Baldwin,
2012).

• Neural model: a hierarchical neural classi-
fier that learns both character and word rep-
resentations. It provides a training dataset
with 41,250 Wikipedia sentence fragments
in 33 languages (Jaech et al., 2016).5

Self-training We experimented with one simple
approach to unsupervised domain adaptation: self-
training with an unlabeled target domain corpus

3https://blog.twitter.com/2015/
evaluating-language-identification-performance

4https://sites.google.com/site/rmyeid/projects/polyglot
5Kocmi and Bojar (2017) offer an alternative neural

model for language identification.

(Plank, 2009) by using langid.py to label the cor-
pus of tweets–released by Blodgett et al.6 and the
same one used to train their demographic model–
then collecting those tweets classified with poste-
rior probability greater than or equal to 0.98. We
downsampled tweets classified as English to 1 mil-
lion, yielding a total corpus of 2.2 million tweets.
Since we did not have access to langid.py’s origi-
nal training data, we trained a new model on this
data, then combined it as an ensemble with the
original model, where a tweet was classified as En-
glish if either component classified it as English.

Demographic prediction ensemble Blodgett
et al. describes applying a U.S. demographically-
aligned language model as an ensemble classi-
fier, using a mixed membership model trained over
four demographic topics (African-American, His-
panic, Asian, and white). For this classifier, tweets
are first classified by an off-the-shelf classifier;
if it is classified as English, the classification is
accepted. Otherwise, the off-the-shelf classifier
is overriden and the tweet classified as English
if the total posterior probability of the African-
American, Hispanic, and white topics under the
demographic model was at least 90%. Table 3
lists these ensembles as “+ Demo”. Blodgett et al.
found the classifier seemed to improve recall, but
this work better evaluates the approach with the
new annotations.

3.3 Length-Normalized Analysis
From manual inspection, we observed that longer
tweets are significantly more likely to be cor-
rectly classified; we investigate this length effect
by grouping messages into five bins (shown in Ta-
ble 6) according to the number of words in the
message. We pre-processed messages by fixing
HTML escape characters and removing URLs, @-
mentions, emojis, and the “RT” token. For each
bin, we calculate recall of the langid.py and the
demographic ensemble classifier with langid.py.

4 Results and Discussion

We evaluated on the 8,366 tweets in our dataset
that were not annotated as ambiguous or automat-
ically generated. Table 3 shows the precision and
recall for each experiment. We focus on recall, as
Blodgett et al.’s analysis indicates that while preci-
sion is largely consistent across experiments, there
is a significant gap in recall performance across
different varieties of English.

6http://slanglab.cs.umass.edu/TwitterAAE

58

Model Training Precision Recall
CLD2 (1) Pre-trained 0.948 0.863

(2) + Demo. 0.946 0.924 (+ 6.1%)
Tw. (3) Pre-trained 0.979 0.866

internal (4) + Demo. 0.974 0.925 (+ 5.9%)
(5) Pre-trained 0.923 0.886
(6) + Vocab. 0.472 0.993
(7) Self-trained 0.924 0.894

langid.py (8) + Demo. 0.923 0.930 (+ 3.6%)
(9) Twitter70 0.927 0.940
(10) + Demo. 0.923 0.957 (+ 1.7%)
(11) Tw70 and Wiki. 0.946 0.903
(12) + Demo. 0.943 0.946 (+ 4.3%)
(13) Pre-trained 0.973 0.415
(14) + Demo. 0.976 0.773 (+ 35.8%)

Neural (15) Twitter70 0.949 0.840
(16) + Demo. 0.946 0.892 (+ 5.2%)

Table 3: English classification results on not
ambiguous, not automatically generated tweets.
“+ Demo.” indicates including in an ensemble with
the demographics-based English classifier.

Country En ∼En langid.py
Recall

Ens.
Recall

USA 2368 80 0.968 0.982
Brazil 42 945 0.833 0.833

Indonesia 161 707 0.764 0.767
Turkey 13 304 0.769 0.846
Japan 14 340 0.929 1.0

United Kingdom 401 18 0.962 0.980
Malaysia 90 174 0.833 0.833

Spain 28 263 0.75 0.821
Argentina 10 291 0.7 0.7

France 26 206 0.846 0.846
Mexico 25 162 0.76 0.76

Philippines 91 86 0.934 0.945
Thailand 14 111 0.643 0.786
Russia 9 129 0.667 0.778
Canada 96 7 0.979 0.990

Table 4: Language counts for countries with
at least 100 non-ambiguous, non-automatically
generated messages (out of 129 countries to-
tal), with English recall for the best-performing
langid.py model and that model in an ensemble
classifier.

Tweet
@username good afternoon and Happy Birthdayyyyyyyyyy *Turns on music* Time to partyyyyy
I miss you! #vivasantotomas #ust #goUST #igers #igdaily #igersasia #igersmanila #instagood
Sooo fucked yuuuuppp bouuutta start a figgght
catch mines you catch yours we both happy...
Go follow me on Instagram @username and like 5 pics for a goodmorningg post
Think me & my baddies getting rooms dis weekend!
@username HML if u do B
@username @username FR LIKE I CANT EVEN DEAL WITH PEOPLE LIKE THIS
I k you dont like me lowkey but hey
@username I DORN WVEN WTCH GIRL MEETS WORLDBUT IM WATCHINF THAT EPISODE

Table 5: Sample of tweets which were mis-classified as non-English by langid.py but correctly classified
by the demographic ensemble. @-mentions are shown as @username for display in the table.

Unsurprisingly, we found that training on Twit-
ter data improved classifiers’ English recall, com-
pared to their pre-trained models. In our experi-
ments, we found that recall was best when training
on the subset of the Twitter70 dataset containing
only languages with at least 1,000 tweets present
in the dataset. We also found that the additional
information provided by the demographic model’s
predictions still adds to the increased performance
from training on Twitter data. Notably, precision
decreased by no more than 0.4% when the demo-
graphic model is added.

We also noted that pre-processing improved re-
call by 1 to 5%.

Proprietary algorithms We found that neither
CLD2 nor Twitter’s internal algorithm was com-
petitive with langid.py out of the box, in line with

previous findings, but combining their predictions
with demographic predictions did increase recall.7

langid.py Self-training langid.py produced little
change compared to the original pre-trained model
(rows (5) vs. (7)), despite its use of 2.2 million
new tweets from self-training step. We observed
that even tweets that langid.py classified as non-
English with more than 0.98 posterior probabil-
ity were, in fact, generally English. This suggests
that tweets are sufficiently different from standard
training data that it is difficult for self-training to
be effective. In contrast, simple in-domain train-
ing was effective: retraining it with the Twitter70
dataset achieved substantially better recall with a

7We tried several times to run the Google Translate API’s
language identifier, but it returned an internal server error for
approximately 75% of the tweets.

59

5.4% raw increase compared to its out-of-domain
original pretrained model (rows (5) vs. (9)).

In all cases, regardless of the data used to
train the model, langid.py’s recall was improved
with the addition of demographic predictions;
for example, the demographic predictions added
to the pre-trained model brought recall close to
the model trained on Twitter70 alone, indicating
that in the absence of in-domain training data,
the demographic model’s predictions can make a
model competitive with a model that does have in-
domain training data (rows (8) vs. (9)). Of course,
in-domain labeled data only helps more (10).

Neural model Finally, the neural model per-
formed worse than langid.py when trained on the
same Twitter70 dataset (rows (9) vs. (15)), and its
performance lagged when trained on its provided
dataset of Wikipedia sentence fragments.8 As with
the other models, demographic predictions again
improve performance.

Table 5 shows a sample of ten tweets mis-
classified as non-English by langid.py and cor-
rectly classified by the demographic ensemble as
English. Several sources of potential error are ev-
ident; many non-conventional spellings, such as
partyyyyy and watchinf, do not challenge an En-
glish reader but might reasonably challenge char-
acter n-gram models. Similarly, common social
abbreviations such as hml and fr are challenging.

4.1 Improving English Recall Worldwide

We further analyzed our English recall results
according to messages’ country of origin, lim-
iting our analysis to countries with at least
100 non-ambiguous, non-automatically generated
messages in our dataset. For each country’s mes-
sages, we compared the recall from best stan-
dalone langid.py model (trained on Twitter70) and
the recall from same model combined with demo-
graphic predictions, as shown in Table 4. Sur-
prisingly, for ten of the fifteen countries we found
that using demographic predictions improved re-
call performance, suggesting that the additional
soft signal of “Englishness” provided by the de-
mographic model aids performance across tweets
labeled as English globally. In future work, we
would like to investigate linguistic properties of
these non-U.S. English tweets.

8Unfortunately, we were unable to train it on the same
Wikipedia data as in (11), which is a bit larger.

Message
Length

langid.py
Recall

Ensemble
Recall

English

t ≤ 5 80.7 91.9
5 < t ≤ 10 88.8 92.4
10 < t ≤ 15 91.9 93.0
15 < t ≤ 20 96.1 96.7
t ≥ 20 97.2 97.5
t ≤ 5 90.0 99.9

Non- 5 < t ≤ 10 95.2 99.5
English 10 < t ≤ 15 95.6 99.9

15 < t ≤ 20 95.2 1.0
t ≥ 20 95.2 1.0

Table 6: Percent of the messages in each bin clas-
sified correctly as English or non-English by each
classifier; t is the message length for the bin.

4.2 Improving Recall for Short Tweets
Our results from the length-normalized analy-
sis, shown in Table 6, demonstrate that recall
on short tweets, particularly short English tweets,
is challenging; unsurprisingly, recall increases as
tweet length increases. More importantly, for
short tweets the demographic ensemble classifier
greatly reduces this gap; while the difference in
langid.py’s recall performance between the short-
est and longest English tweets is 16.5%, the differ-
ence is only 5.6% for the ensemble classifier. The
gap is similarly decreased for non-English tweets.
We note also that precision is consistently high
across all bins for both langid.py and the ensemble
classifier. The experiment indicates that the demo-
graphic model’s signal of “Englishness” may aid
performance not only for global varieties of En-
glish, but also for short messages of any kind.

5 Conclusion

In this work, we presented a fully human-
annotated dataset and evaluated a range of lan-
guage identification models in a series of experi-
ments across training datasets and in-domain and
domain adaptation settings. We find that pre-
dictions from a partially supervised demographic
model aids in recall performance across tweets la-
beled as English drawn from a range of countries,
particularly in the absence of in-domain labeled
data; we hope that our dataset will aid research
in international varieties of English (Trudgill and
Hannah, 2008). In future work, we would like to
investigate other domain adaptation approaches;
in addition, we would like to adapt the demo-
graphic model to other languages where dialectal

60

variation might present similar challenges.

References
Shane Bergsma, Paul McNamee, Mossaab Bagdouri,

Clayton Fink, and Theresa Wilson. 2012. Language
identification for creating language-specific twitter
collections. In Proceedings of the second workshop
on language in social media, pages 65–74. ACL.

John Blitzer, Mark Dredze, Fernando Pereira, et al.
2007. Biographies, Bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classi-
fication. In ACL, volume 7, pages 440–447.

John Blitzer, Ryan McDonald, and Fernando Pereira.
2006. Domain adaptation with structural correspon-
dence learning. In Proceedings of EMNLP. ACL.

Su Lin Blodgett, Lisa Green, and Brendan O’Connor.
2016. Demographic dialectal variation in social me-
dia: A case study of African-American English. In
Proceedings of EMNLP, Austin, Texas. ACL.

Baden Hughes, Timothy Baldwin, Steven Bird, Jeremy
Nicholson, and Andrew MacKinlay. 2006. Recon-
sidering language identification for written language
resources. In Proceedings of LREC. European Lan-
guage Resources Association.

Aaron Jaech, George Mulcaire, Shobhit Hathi, Mari
Ostendorf, and Noah A. Smith. 2016. Hierarchical
character-word models for language identification.
In Proceedings of EMNLP, Austin, TX, USA. ACL.

Ben King and Steven P Abney. 2013. Labeling the lan-
guages of words in mixed-language documents us-
ing weakly supervised methods. In Proceedings of
NAACL-HLT.

Tom Kocmi and Ondřej Bojar. 2017. Lanidenn: Multi-
lingual language identification on character window.
To appear in Proceedings of EACL.

Marco Lui and T. Baldwin. 2012. langid. py: An off-
the-shelf language identification tool. In Proceed-
ings of the 50th Annual Meeting of the Association
for Computational Linguistics (ACL 2012), Demo
Session, Jeju, Republic of Korea.

Marco Lui and Timothy Baldwin. 2014. Accurate lan-
guage identification of twitter messages. In Pro-
ceedings of the 5th workshop on language analysis
for social media (LASM)@ EACL, pages 17–25.

Marco Lui and Paul Cook. 2013. Classifying english
documents by national dialect. In Proceedings of
the Australasian Language Technology Association
Workshop (ALTA).

Barbara Plank. 2009. A comparison of structural corre-
spondence learning and self-training for discrimina-
tive parse selection. In Proceedings of the NAACL
HLT Workshop on Semi-supervised Learning for
NLP. ACL.

Peter Trudgill and Jean Hannah. 2008. International
English: A guide to varieties of Standard English.
Routledge.

Jennifer Williams and Charlie Dagli. 2017. Twitter
language identification of similar languages and di-
alects without ground truth. In Proceedings of the
Fourth Workshop on NLP for Similar Languages,
Varieties and Dialects (VarDial). ACL.

Yi Yang and Jacob Eisenstein. 2016. Part-of-speech
tagging for historical English. In Proceedings of
NAACL-HLT, San Diego, California. ACL.

61

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 62–67
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

Evaluating hypotheses in geolocation on a very large sample of Twitter

Bahar Salehi and Anders Søgaard
bahar.salehi@gmail.com soegaard@di.ku.dk

Department of Computer Science
University of Copenhagen

Abstract

Recent work in geolocation has made
several hypotheses about what linguistic
markers are relevant to detect where peo-
ple write from. In this paper, we exam-
ine six hypotheses against a corpus con-
sisting of all geo-tagged tweets from the
US, or whose geo-tags could be inferred,
in a 19% sample of Twitter history. Our
experiments lend support to all six hy-
potheses, including that spelling variants
and hashtags are strong predictors of loca-
tion. We also study what kinds of com-
mon nouns are predictive of location after
controlling for named entities such as dol-
phins or sharks.

1 Introduction

Geolocation is interesting for several reasons. It
has applications to personalization, event extrac-
tion, fraud detection, criminology, privacy, etc.;
but it is also a method for studying how loca-
tion affects language use, as well as how linguistic
change interacts with geography.

The growth of social media has made large-
scale geolocation studies possible, and most re-
cent work on geo-location use social media data,
primarily from Twitter. On Twitter about 1% of
tweets are geo-tagged by the media users (Cheng
et al., 2010), and while this is a tiny fraction of the
full corpus, it enables us to query for millions of
geo-tagged tweets.

Geolocation models rely on various intuitions
about what linguistic constructions are predictive
of location. Specifically, many authors have used
city and country names as features for geolocation,
as well as Twitter hashtags and spelling variations.

In this paper, we study names, hashtags,
spelling variants, as well as a wide range of other

features, and evaluate their usefulness in geoloca-
tion at a very large scale. We discuss different fea-
ture groups and show, for example, what common
nouns are more predictive of location. One exam-
ple of such a noun could be earthquake, which is a
commonly used noun that refers to a natural disas-
ter, but obviously within a given time frame, such
natural disasters hit in very specific places, where
people are more likely to tweet about them.

This paper does not introduce a novel geoloca-
tion model, but uses more data than previous stud-
ies to examine the research hypotheses that have
guided recent work in the field.

Contributions (a) We evaluate common hy-
potheses about language and location on a much
larger scale than previously done. (b) We show,
as expected, that place names and hashtags are
predictive of location. (c) We also show that
spelling variation, out of vocabulary and non-
standard words such as feelinn are indicative of
location, even more so than the standard (in dic-
tionary) words. This seems to hold for British
spelling (in the US), abbreviations and phonolog-
ically motivated spelling. (d) We also analyze
what classes of common nouns are indicative of
location, discussing the problem of controlling for
named entities that are frequent members of some
of these classes. In social media, for example,
animal words such as dolphins and sharks, may
refer to cities’ sport teams. Best predictors after
controlling for named entities include natural phe-
nomena, occupations, and organizations. (e) We
show that the same findings also apply to geoloca-
tion of users around the world.

2 Related work

In text-based geolocation, researchers have used
KL divergence between the distribution of a users
words and the words used in geographic regions

62

(Wing and Baldridge, 2011; Roller et al., 2012),
regional topic distributions (Eisenstein et al.,
2010; Ahmed et al., 2013; Hong et al., 2012),
or feature selection/weighting to find words in-
dicative of location (Priedhorsky et al., 2014; Han
et al., 2012a, 2014; Wing and Baldridge, 2014).

Han et al. (2012b) showed that information
gain ratio is a useful metric for measuring how
location-indicative words are. They used a sam-
ple of 26 million tweets in their study, obtained
through the public Twitter API.

Salehi et al. (2017) evaluate nine name en-
tity types. Using various metrics, they find that
GEO-LOC, FACILITY and SPORT-TEAM are
more informative for geolocation than other NE
types.

Chi et al. (2016) specifically study the contribu-
tions of city and country names, hashtags, and user
mentions, to geolocation. Their results suggested
that a combination of city and country names,
as well as hashtags, are good location predictors.
They used a sample of 9 million tweets in their
study, obtained through the public Twitter API.

Pavalanathan and Eisenstein (2015) investigate
the potential demographic biases of using non-
standard words and entities. They show that
younger users are more likely to use geographi-
cally specific non-standard words, while old men
tend to use more location revealing entities.

In this study, we use more data than previous
studies to examine the research hypotheses and
linguistic features established in previous works
on geolocation. In addition, in order to exam-
ine the generalizability of our findings we exam-
ine them on a more geographically diverse dataset
covering tweets from all around the world.

3 Gathering Data

Our dataset is a fraction of a 19% random sample
of the entire history of Twitter (the union of two in-
dependent 10% samples), up until early 2016. We
consider the fraction of geo-located tweets with
US geo-coordinates, as well as tweets with low-
entropy location strings, for which we infer geo-
tagged fractional counts:

If a location string s is used more than n times,
we compute its distribution P (s | county) over
US counties. Non-geotagged instances of tweets
associated with s are then attributed to counties
based on this distribution as fractional counts. The
final corpus consists of roughly 120 billion tweets

and around 450 million of these had geo-tags. Us-
ing the inference methodology, were able to at-
tribute roughly 10 billion tweets.

We look at the distribution of words over US
counties in this corpus, limiting ourselves to the
most frequent 100,000 words. This is important to
ensure support, but also makes geolocation harder,
since rare words are generally more predictive of
location. On the other hand, the fact that we rely
on relatively frequent words makes our analysis
more widely applicable.

The corpus has 4.5B tokens of the 100,000 most
frequent words. So, on average we have 45,000
occurrences of each word. The minimum fre-
quency is 612 tokens; the most frequent word oc-
curs 138M times. The median is 1,742 occur-
rences.

4 Metrics

In this section, we introduce two metrics we use to
examine the degree of location informativeness of
words. Entropy and KL divergence.

KL divergence The Kullback-Leibler diver-
gence (KLD) (also known as information gain) is
used to measure the similarity between two distri-
butions. We use KLD to measure the similarity
between the distribution of a word (P) with the
distribution of all words (Q) across counties.

KLD(Pword, Q) =
∑

c∈counties

Pword(c) log
Pword(c)

Q(c)
.

Higher KLD shows less similarity to the distribu-
tion of all words and as a result higher location
predictiveness.

Entropy In information theory, entropy mea-
sures the unpredictability, where low entropy indi-
cates high predictability. In this study, we compute
entropy of each word as below:

H(word) = −
∑

c∈counties

Pword(c) log Pword(c)

where Pword(c) is the probability of observing
word in the county c. This is computed by di-
viding the frequency of that word in that county
by the total number of words in that county.

5 Experiments

5.1 Location Indicative Words
In this section, we examine the following 6 hy-
potheses using entropy and KLD metrics:

63

HYPOTHESIS (”>” = ”MORE PREDICTIVE THAN”) Ent1 Ent2 KLD1 KLD2 p-value
#0 Dictionary words > stopwords 5.67 7.74 0.74 0.12 < 0.001
#1 US English < British 5.59 5.13 0.63 0.94 < 0.05
#2 Dictionary words < geonames 5.67 4.62 0.74 1.79 < 0.001
#3 Dictionary words < OOV words 5.67 4.61 0.74 1.52 < 0.001
#4 Dictionary words < hashtags 5.67 4.25 0.74 1.82 < 0.001
#5 Dictionary words < emoticons 5.67 5.07 0.74 1.03 < 0.001
#6 Non-standard words > their normalized version 5.27 7.52 0.92 0.17 < 0.001

Table 1: Evaluating hypotheses by comparing average entropy/KLD scores of first group’s words
(Ent1/KLD1) with the words in second group (Ent2/KLD2). Lower entropy and higher KLD show
higher predictability. P-value shows the significance of the differences.

0. Stopwords are not good predictors compared
to other dictionary words.

1. British English is more location-specific than
American English (in the US).

2. Geonames are better predictors compared to
dictionary words.

3. Words not in dictionary (OOV) are better pre-
dictors than words in dictionary.

4. Hashtags are better predictors than dictionary
words.

5. Emoticons are better predictors than dictio-
nary words.

6. Non-standard spelling variants are better pre-
dictors than their standard spellings.

The results are shown in Table 1. The rest of
this section investigates each of the hypotheses in
more details.

Hypothesis #0: We use the NLTK stopword list
for English and found 143 unique stopwords in our
data.1 As expected, stopwords are the least loca-
tion predictive group of words.2 Among the stop-
words ain, wasn and wouldn are among the most
predictive ones. Note that wasn’t and wouldn’t are
also in our data, but they are not as location pre-
dictive.

Hypothesis #1: We also compare
words with spelling variations in British
and American English, using https:
//en.oxforddictionaries.com/
usage/british-and-american-terms
as our data source. Overall, in our data, we found

1http://www.nltk.org/data.html
2This experiment is more of a sanity check.

475 words that have different spellings in British
and American English.

We observe that British spellings are more pre-
dictive. For example, while harbor and har-
bour are mostly observed in coastal areas, har-
bour (British) is more often observed in eastern
coastal regions, while harbor (American) is dis-
tributed more diversely. However, the difference
between British and American words is not signif-
icant.

Hypothesis #2: City names and country names
are often said to be more predictive of loca-
tion. In this experiment, we use GeoNames3 to
find city/country names including their alternative
names. We found 23,701 geonames in our data.
We observe that on average, geonames are signifi-
cantly more location indicative than the rest of dic-
tionary words.

Hypothesis #3: Both metrics show that OOV
words are on average more predictive of loca-
tion than the dictionary words. Note that such
words are among the 100K most frequent words
and are not considered as random noise. We con-
sider words not found in WordNet for OOV words.
Overall, we found 31,049 dictionary words and
68,951 OOV words in our data.

Hypothesis #4: Our experiments show that
hashtags are significantly more predictive than the
dictionary words as well as the rest of the ex-
amined OOV words. In our data, #1 and #fail
are among the least predictive hashtags, while
the most predictive hashtags are mainly location
names and events such as #monett (a city name),
#disney366 and #zipsblackout. In our data, we
have 17,131 hashtags.

Hypothesis #5: Emoticons4 are the last group

3http://www.geonames.org/
4There was no emojis in our list of most frequent 100K

64

Synsets Examples After elimination Synsets Examples
indian.n.01 yuma, muskogee unit.n.03 usaf, sss
amerindian.n.01 yuma, muskogee, natural phenomenon.n.01 whiteout, earthquake
wood.n.01 hazelwood, tupelo alcohol.n.01 homebrew, oktoberfest,
agency.n.01 usaf, sss phenomenon.n.01 whiteout, earthquake,
extremity.n.04 terminus, skyline occupation.n.01 engineering, internship
plant material.n.01 hazelwood, tupelo symbol.n.01 emmys, phd,
traveler.n.01 trespasser, tourists region.n.01 aerospace, rooftop
person of color.n.01 yuma, muskogee worker.n.01 esthetician, hairstylist
fish.n.01 sharks, marlins implement.n.01 poker, nutcracker
administrative unit.n.01 usaf, sss inhabitant.n.01 peruvian, hoosiers
american.n.01 hoosiers, tarheels organization.n.01 friendlys, usaf
geological formation.n.01 seaside, canyon liquid.n.01 cocktails, espresso

Table 2: Most location predictive synsets before and after eliminating the location and sport team names.

Median distance error Accuracy (city) Accuracy (country)
In dictionary 860 10.85 77.93
OOV 667 14.96 79.95
Geonames 698 14.43 79.60
All 510 17.41 84.04

Table 3: Geolocation results on WORLD dataset

of OOV words in our analysis. We found 196
emoticons in our data. According to Table 1,
emoticons on average are more predictive than
dictionary words. Yet, they are among the least
predictive ones in the group of OOV words. Our
further analysis shows that :) and ;) are the least
predictive emoticons, while (ˆ-ˆ) and =) are among
the most predictive ones showing that emoticons
can also be location predictive. This is in line with
the work of (Park et al., 2013), where they ob-
served that people in Eastern countries prefer ver-
tical emoticons (based on eye shape style), while
Western countries prefer horizontal ones (based on
mouth style).

Hypothesis #6: Among the words not found in
dictionary, there exist non-standard words, which
are typos, ad hoc abbreviations, unconventional
spellings and phonetic substitutions (Han et al.,
2012a), such as 2mrw (i.e., tomorrow). Here, we
use (Han et al., 2012a) to compare these nonstan-
dard words with their normalized versions. Over-
all, we found 4,795 non-standard words, as well as
their normalized version in our data.

Using entropy and KLD, we show that the nor-
malized versions are not very location indicative,
yet, the non-standard words are significantly more
predictive than their normalized versions. This
shows that preferred styles to write words in a non-
standard way have implicit location information.

words.

5.2 Semantic Classes

In this section, we examine the semantic cat-
egories that are most location indicative using
WordNET. For each word, we extract all the pos-
sible hypernymes. The synsets with less than 10
samples are removed. For each synset, the me-
dian entropy and KLD of the respective samples
are calculated.

The synsets observed in both the top 20 synsets
using entropy and the top 20 synsets using KLD
are shown in Table 2. We noticed that the name of
sports teams and locations are among the top cat-
egories. For example, the samples of Wood.n.01,
such as hazelwood and tupelo, are also part of the
name of locations in the United States, and sharks
and marlins from fish.n.01 are part of sports team
names. Therefore, we removed the words which
are part of the names of US teams using DBPe-
dia and locations using geonames. This resulted
in a different top 20 categories, which are shown
under after elimination column. After eliminating
named entities of cities, countries and sport teams,
we observe that the best predictors are mostly nat-
ural phenomena, occupations, and organizations.

6 Geolocation

We also evaluated the above hypotheses in the
context of a geolocation experiment using the ge-
ographically diverse more dataset, WORLD (Han
et al., 2012c). The WORLD dataset covers 3,709
cities worldwide and consists of tweets from 1.4M

65

users, where 10,000 users are held out as devel-
opment set and 10,000 as test set. The task is to
predict the primary location of a new user based
on that person’s tweet history.

We use logistic regression as classifier to predict
the users location, following Rahimi et al. (2015).
The results (median distance error, city accuracy
and country accuracy) are shown in Table 3.

Similar to our findings in our analysis above,
we see that OOV words are better features than
dictionary words. Also geonames features, alone,
have high performance, even better than dictionary
words. The rest of the examined groups are not
performing as good, individually. The combina-
tion of all words (shown as All) results in the best
performance.

7 Conclusion

In this paper, we examined six hypotheses about
location-specific language use. We confirmed that
OOV words are more predictive of location than
dictionary words. Moreover, we showed that
spelling variants and hashtags are strong predic-
tors for location. Finally, we showed that our find-
ings are also applicable to geolocation of users
around the world.

Acknowledgments

This work was supported by the Data Trans-
parency Lab.

References
Amr Ahmed, Liangjie Hong, and Alexander J Smola.

2013. Hierarchical geographical modeling of user
locations from social media posts. In Proceedings
of the 22nd international conference on World Wide
Web. ACM, pages 25–36.

Zhiyuan Cheng, James Caverlee, and Kyumin Lee.
2010. You are where you tweet: a content-based
approach to geo-locating twitter users. In Proceed-
ings of the 19th ACM international conference on In-
formation and knowledge management. ACM, pages
759–768.

Lianhua Chi, Kwan Hui Lim, Nebula Alam, and
Christopher J Butler. 2016. Geolocation prediction
in twitter using location indicative words and textual
features. WNUT 2016 page 227.

Jacob Eisenstein, Brendan O’Connor, Noah A Smith,
and Eric P Xing. 2010. A latent variable model
for geographic lexical variation. In Proceedings of

the 2010 Conference on Empirical Methods in Nat-
ural Language Processing. Association for Compu-
tational Linguistics, pages 1277–1287.

Bo Han, Paul Cook, and Timothy Baldwin. 2012a.
Automatically constructing a normalisation dictio-
nary for microblogs. In Proceedings of the 2012
joint conference on empirical methods in natural
language processing and computational natural lan-
guage learning. Association for Computational Lin-
guistics, pages 421–432.

Bo Han, Paul Cook, and Timothy Baldwin. 2012b. Ge-
olocation prediction in social media data by finding
location indicative words. In Proceedings of COL-
ING. pages 1045–1062.

Bo Han, Paul Cook, and Timothy Baldwin. 2012c. Ge-
olocation prediction in social media data by finding
location indicative words. In Proceedings of COL-
ING. pages 1045–1062.

Bo Han, Paul Cook, and Timothy Baldwin. 2014. Text-
based twitter user geolocation prediction. Journal of
Artificial Intelligence Research 49:451–500.

Liangjie Hong, Amr Ahmed, Siva Gurumurthy,
Alexander J Smola, and Kostas Tsioutsiouliklis.
2012. Discovering geographical topics in the twit-
ter stream. In Proceedings of the 21st international
conference on World Wide Web. ACM, pages 769–
778.

Jaram Park, Vladimir Barash, Clay Fink, and Meey-
oung Cha. 2013. Emoticon style: Interpreting dif-
ferences in emoticons across cultures. In ICWSM.

Umashanthi Pavalanathan and Jacob Eisenstein. 2015.
Confounds and consequences in geotagged twitter
data. arXiv preprint arXiv:1506.02275 .

Reid Priedhorsky, Aron Culotta, and Sara Y Del Valle.
2014. Inferring the origin locations of tweets with
quantitative confidence. In Proceedings of the 17th
ACM conference on Computer supported coopera-
tive work & social computing. ACM, pages 1523–
1536.

Afshin Rahimi, Trevor Cohn, and Timothy Baldwin.
2015. Twitter user geolocation using a unified text
and network prediction model. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing of the
Asian Federation of Natural Language Processing
(ACL2015). The Association for Computational Lin-
guistics, pages 630–636.

Stephen Roller, Michael Speriosu, Sarat Rallapalli,
Benjamin Wing, and Jason Baldridge. 2012. Super-
vised text-based geolocation using language models
on an adaptive grid. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning. Association for Computational
Linguistics, pages 1500–1510.

66

Bahar Salehi, Dirk Hovy, Eduard Hovy, and Anders
Søgaard. 2017. Huntsville, hospitals, and hockey
teams: Names can reveal your location. In Proceed-
ings of the 3rd Workshop on Noisy User-generated
Text (WNUT). Copenhagen, Denmark.

Benjamin Wing and Jason Baldridge. 2014. Hierar-
chical discriminative classification for text-based ge-
olocation. In EMNLP. pages 336–348.

Benjamin P Wing and Jason Baldridge. 2011. Sim-
ple supervised document geolocation with geodesic
grids. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies-Volume 1. Association
for Computational Linguistics, pages 955–964.

67

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 68–76
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

The Effect of Error Rate in Artificially Generated Data for Automatic
Preposition and Determiner Correction

Fraser Bowen and Jon Dehdari and Josef van Genabith
University of Saarland

Deutsches Forschungsinstitut für Künstliche Intelligenz

Abstract

In this research we investigate the im-
pact of mismatches in the density and type
of error between training and test data
on a neural system correcting preposition
and determiner errors. We use syntheti-
cally produced training data to control er-
ror density and type, and ”real” error data
for testing. Our results show it is possible
to combine error types, although preposi-
tions and determiners behave differently in
terms of how much error should be artifi-
cially introduced into the training data in
order to get the best results.

1 Introduction

The field of Grammatical Error Correction (GEC)
is currently dominated by neural translation mod-
els, specifically sequence-to-sequence translation.
However, despite offering substantial improve-
ments on the well-established statistical machine
translation approach to GEC, neural networks
come with their own challenges.

Firstly, neural models require a large amount
of training data, however the amount of annotated
learner English consisting of source (original text)
and target (corrected text) is low. Models are at
risk of overfitting, simply because the volume of
data is not high enough. Secondly, the data that
has been used up until now does not generalise
very well across different test sets. This means
that there has been some success in correcting er-
rors, but only from test sets that are in some sense
similar to the training data. Thirdly, it is generally
unknown how erroneous the test data is, and if the
training data has a different distribution of errors,
it is likely that unwanted corrections will be made,
or required corrections will be missed.

Currently, there is research into generating arti-
ficial data for training neural models, specifically
data that resembles learner English (Cahill et al.,
2013; Rozovskaya and Roth, 2010; Felice, 2016;
Liu and Liu, 2016). The artificial data is gener-
ated from monolingual sentences of grammatical
English by systematically introducing noise into
it. This way, training data consisting of sentences
with both “incorrect” and “correct” versions can
be generated from monolingual data, which is eas-
ily accessible. There is also evidence that artifi-
cially generated data can generalise a GEC system
better than simply using manually procured cor-
rection data (Cahill et al., 2013).

A third advantage of synthetically introducing
noise into a corpus is the ability to control how
much noise, and which noise, is introduced. The
first main question of our research is how the
amount of noise introduced into the corpus af-
fects a neural model’s behaviour at test time with
respect to mismatches in error density and error
type between training and test data. Artificial data
lends itself to this kind of research, thanks to the
control over the corpus.

Up until now, the effect of the amount of errors
in the training corpus has only been explored with
prepositions specifically (Cahill et al., 2013). We
begin by extending this line of research to deter-
miners. The second research question is then: how
do two different types of error interact? It is quite
possible that introducing many types of frequent
grammatical errors one after the other would not
create convincing artificial learner data, because
several types of error can affect the same word,
and a neural model may not be able to learn to
combine them in this way.

68

2 Related Work

Currently the best results in GEC have used neu-
ral machine translation. Yuan and Briscoe (2016)
achieved the best scores using a 2-layer encoder-
decoder system with attention, trained on the
Cambridge Learner Corpus (CLC), a large data
set of two million correction Learner English sen-
tences. The CLC is not publicly available, which
has inspired the use of automatically generated
data with neural models. Liu and Liu (2016) have
done exactly this with 16 different types of errors.
Their success, although small compared to using
manually annotated supervised revision data, has
inspired our investigation into the particular ef-
fects of combining error types in an artificial cor-
pus.

One particularly interesting approach to gener-
ating artificial data is from Cahill et al. (2013),
who, focusing on preposition errors, creates con-
fusion sets for each preposition using supervised
revision data, and selects replacements at ran-
dom from these probability distributions. This ap-
proach was developed from Rozovskaya and Roth
(2010), who first suggested the idea of probabilis-
tically selecting likely error candidates. Interest-
ingly, the artificial data proved to make manually
annotated data more robust, meaning that it gen-
eralised better across different types of test sets,
despite the fact that the overall quality of correc-
tions was lowered. This was confirmed by Felice
(2016), who also found that this kind of probabilis-
tic error generation increases precision, and lowers
recall.

One main focus of our research is the effect
of the amount of errors in the training corpus on
the amount of corrections made at test time. Ro-
zovskaya et al. (2012) identify a useful technique
known as error inflation, where more errors are in-
troduced into the training data in order to improve
recall. This is further explored in our work.

3 Experimental Setup

3.1 Data

In our research, errors are systemically intro-
duced into “correct” English data. The correct
data comes from the NewsCrawl corpus in WMT-
2016.1 It is open domain, featuring a wide variety
of topics and writing styles, taken from recent ar-

1http://www.statmt.org/wmt16/
translation-task.html

ticles. We used 21,789,157 sentences for training,
and 5,447,288 held-out sentences from the same
source for a development set.

We follow the same methodology of Cahill et al.
(2013) to generate noise. Specifically, supervised
revision data is used to see how often particular
words are corrected into specific prepositions or
determiners. The revision data which is used for
our research is the Lang-8 corpus, which is avail-
able for academic purposes upon request.2 The
corpus is scraped from the Lang-8 website, where
crowd-sourced grammar corrections are posted for
non-native speakers of English. It is arguably
more reliable than Wikipedia, which contains van-
dalism, however, it is noticeably smaller than
Wikipedia.

The process of introducing errors into the WMT
data using the Lang-8 corpus is as follows:

1. Extract plain text versions of the Lang-8 cor-
pus, consisting solely of sentences with cor-
rections

2. Compare source sentence with corrections
using an efficient diff algorithm.3 Note that
this often included several steps of revisions.

3. Prepare a list of all prepositions/determiners.
This is taken from the tags of the WMT data
retrieved from the Stanford tagger.4

4. Remove all sentences that do not contain
a single revision involving a preposition or
a determiner. Using a hand-crafted set of
possible prepositions/determiners, it is deter-
mined for each sentence whether it involves
a deletion (eg. “for”→ “NULL”), an addition
(eg. “NULL”→ “the”), or a replacement (eg.
“on”→ “in”).

5. Generate confusion sets for each preposi-
tion/determiner by listing all the deletions
which are replaced by that word, and count-
ing the frequency of each specific revision.

2http://cl.naist.jp/nldata/lang-8
3http://code.google.com/p/

google-diff-match-patch
4Using word lists has the advantage of not relying on un-

supervised POS-tagging methods. However, there are cer-
tain ambiguities which are not addressed. In this research,
the preposition “to” is not included, due to confusion with
the infinitive particle. There are however other less frequent
ambiguous cases which are included, such as ”that” and ”be-
fore”, which can both appear as conjunctions. Future exper-
iments would benefit from a comparison of the performance
of POS tags against word lists.

69

From there, generate a probability distribu-
tion for each preposition/determiner.

6. Insert the target word itself into the distribu-
tion with a frequency relative to the error rate.
An 80% error rate for example means that
20% of the time, the same word is selected,
effectively leaving it in its “correct” form.

7. Prepositions/determiners in the WMT corpus
are systemically replaced by one of the op-
tions in their respective probability distribu-
tions, selected at random by a sampler.

3.2 Experiments
Cahill et al. (2013) have made their revision data
extracted from Wikipedia available for download,
which is why it is appropriate to compare it to
the revision data which is extracted from Lang-
8. Both sets of revision data are used to create
two separate confusion sets for prepositions. They
are then used to create two sets of error corpora in
which 20%, 40%, 60% and 80% of prepositions
are altered according to the error introduction pro-
cedure detailed above.

To compare, revision data extracted from Lang-
8 is also used to create error corpora containing the
same amounts of prepositional error. It is worth
noting that Cahill et al.’s research does not include
the empty “NULL” preposition, meaning that er-
rors in which a preposition is missing are not ac-
counted for. By contrast, in our work we include
every case in which a preposition is inserted, as
well as replaced, although we do not deal with
deletions. Deleting prepositions which were in-
serted in the revision data simply follows the same
procedure as replacements, where a preposition
is replaced with the null preposition. Inserting
prepositions which were deleted in the revision
data is much more difficult, as it is not clear where
in a sentence each preposition should be. The use
of context words before and after a deletion is be-
ing explored in more current research, but does
not feature in these experiments. This is neverthe-
less a major contribution, because insertions and
deletions make up a significant part of the errors.
In Lang-8, for example, there were 10054 correc-
tions of prepositions, of which 4274 were inser-
tions, and 2657 were deletions. This means that
replacements only consist of 31% percent of the
errors.

We also use determiner revision data extracted
from Lang-8 to create determiner errors in a sim-

ilar fashion, with 20%, 40%, 60% and 80% of er-
rors.

A final set of synthetic error data is then gener-
ated where both prepositions and determiners are
introduced into the same corpus, containing 20%,
40%, 60% and 80% of both kinds of error. This is
to investigate whether the GEC system is capable
of dealing with two types of error at once.

3.3 Evaluation

In order to test the effects of mismatching error
density and type between training and test data,
each model is tested on specially created test sets
with varying amounts of error in them. Cahill et al.
(2013) found that the highest scores came from
models both trained and tested on similar error
rates. Our research aims to build on this finding.

The first test set is made from Lang-8, which
is also used to create the confusion sets for the
training data. Specifically, only the sentences with
prepositions, determiners, and a mix of both in the
revisions are used. No other types of error are in-
cluded. These sentences are mixed with corrected
sentences (where the revised sentence is used as
both source and target) to varying degrees. In each
case, 1000 sentences of erroneous data are mixed
with either 4000, 1500, 666, or 250 sentences of
“correct” English, also taken from Lang-8. This
is in order to create test sets in which 20%, 40%,
60%, and 80% of sentences are erroneous, simi-
lar to the training data. Table 1 shows the test sets
created out of the Lang-8 corpus.

The NUCLE corpus (Ng et al., 2014) was used
as training and test sets for the CoNLL-2014
Shared Task (Ng et al., 2014) on GEC, and since
then has been commonly used in the field for com-
parison with previous work. The NUCLE corpus
is used in our research in order to generate test
sets from a different domain, despite those test
sets being smaller. Again, prepositions, determin-
ers and a combination of both are extracted and
mixed with corrected sentences from the same cor-
pus. Due to the smaller amount of relevant errors,
as many sentences containing each error as possi-
ble are taken. For prepositions, this amounts 332
sentences, for determiners, 595 sentences, and for
both, 169 sentences. Table 2 shows the test sets
created out of the NUCLE corpus.

For our experiments we use OpenNMT, an
open-source implementation of a bidirectional

70

Test sets Error type Error Rate Size
test-l8p20 Preposition 20% 5000
test-l8p40 Preposition 40% 2500
test-l8p60 Preposition 60% 1666
test-l8p80 Preposition 80% 1250
test-l8d20 Determiner 20% 5000
test-l8d40 Determiner 40% 2500
test-l8d60 Determiner 60% 1666
test-l8d80 Determiner 80% 1250
test-l8b20 Both 20% 5000
test-l8b40 Both 40% 2500
test-l8b60 Both 60% 1666
test-l8b80 Both 80% 1250

Table 1: Lang-8 Corpus test sets

RNN encoder–decoder network with attention5.
OpenNMT was chosen because of its ease of use,
and similarity to the architecture used by the cur-
rent state of the art results reported by Yuan and
Briscoe (2016). The selected evaluation metric is
the GLEU score, which has been shown to be the
most appropriate metric for GEC (Napoles et al.,
2015).

4 Results and Discussion

The first objective of our research is to see the dif-
ference between testing on Lang-8 and NUCLE
test sets when trained on data containing vary-
ing error densities created using data from Lang-
8. For prepositional errors, the GLEU scores of
the four different models are in Table 3, and the
results are plotted in Figure 4. When tested on
corpora with only 20% error, the GLEU score re-
mains the same on both test sets. However, the
higher the error rate in the test set, the better the
models perform on the NUCLE set in comparison
with the Lang-8 set. This is surprising, seeing as
the Lang-8 corpus was used to inform the process
of error generation in the training set.

In the tables cited in this paper, it is expected
that the highest scores will occur along the di-
agonal. A test set containing 20% error would
be best handled by training data which also con-
tains 20% error. Likewise with 40%, 60% and 80
%. Conversely, training data containing 80% er-
ror would not perform as well on test data con-
taining 40% as the training data which also has
40% error. This data shows, however that this is
not always the case. When testing on 80% er-

5http://opennmt.net/

Test sets Error type Error Rate Size
test-np20 Preposition 20% 1660
test-np40 Preposition 40% 830
test-np60 Preposition 60% 553
test-np80 Preposition 80% 415
test-nd20 Determiner 20% 2975
test-nd40 Determiner 40% 1487
test-nd60 Determiner 60% 992
test-nd80 Determiner 80% 744
test-nb20 Both 20% 845
test-nb40 Both 40% 423
test-nb60 Both 60% 282
test-nb80 Both 80% 211

Table 2: NUCLE Corpus test sets

ror, the models trained on 80% error density them-
selves obtain – as expected – the highest score, al-
though only slightly. Interestingly, however, the
80% models also perform better on the 40% and
60% test sets, which seems to confirm Rozovskaya
et al. (2012)’s “Error Inflation” idea. This is the
idea that putting more errors than needed into the
training data helps the model generalise more.

One interesting observation from the data is the
fact that all the models perform better on the 20%
test sets. This is likely because the models are ca-
pable of recognising that a sentence need not be
corrected, and doing so is simpler than finding a
correction of incorrect sentences.

Testing on determiner errors revealed similar re-
sults. The results are provided in Table 4, and
plotted in Figure 4. In this case, error inflation
does not seem to work, as the highest scoring re-
sults for each test set is more or less the training
set with the matching error density. This indicates
that systems that correct determiners have differ-
ent properties to those which correct prepositions.

71

Figure 1: Plot of the data in Table 3

Figure 2: Plot of the data in Table 4

Figure 3: Plot of the data in Table 5

The results of training models on data con-
taining a combination of both kinds of error on
combined preposition and determiner test data is
shown in Table 5 and Figure 4. The data is con-
sists of slightly lower scores in general, suggest-
ing that mixing error types does not have as high
a quality of correction as single errors. Also, the
NUCLE test scores in particular suffer in compari-
son with the singular error models, showing a fail-
ure to generalise across domains. Finally, “Error
Inflation” also does not appear to work here.

These results shed doubt on the “Error Infla-
tion” present in the preposition experiment. If it
were dependent on the type of error, and preposi-
tions were the kind which encouraged the use of
“Error Inflation”, then it follows that it should at
least be present in the combined models. Instead
of different error types subtly influencing the be-
haviour of the combined model in a cumulative
way, the behaviour seems more random. In one
case, the 20% combined model performs better on
the 40% NUCLE test set than the 40% one, which
suggests that reducing the amount of introduced
error would make an improvement.

Table 6 and Figure 4 show how well the com-
bined model performs on test sets with individ-
ual error types only. First of all, the scores are
lower than the respective values attained by mod-
els trained on individual errors on the same test
sets, but only slightly. Also, as seen in Tables 3,
4 and 5, the combined model testing on the com-
bined test set returns lower scores than the individ-
ual models testing on their respective test sets with
just one of the error types. However, the combined
models’ scores are better than those achieved by
the individual models on the combined test sets,
as shown in Table 7 and Figure 4. This indicates
that the combined model is better suited for tack-
ling both errors at once, and only a little worse at
tackling individual errors than the individual error
models. This is a predictable outcome, but the re-
duction in GLEU score suggests that combining
errors in an attempt to correct all errors will gen-
erate noise, and the more error types that are cov-
ered, the less likely that they will be correctly re-
vised at test time, which makes the idea of making
an generalised corrector for all errors less feasible.

It is also worth mentioning that correcting de-
terminers seems to result in higher scores than
correcting prepositions. This could be due to
the amount of possible prepositions that need to

72

be considered compared to the determiners. Al-
though many determiners are considered, the vast
majority of the cases involve the three articles “a”,
“an” and “the”, as well as the null determiner. This
is evidence for the need to consider the variation
between different errors types when generating er-
rors.

The final research question is whether the con-
fusion set generated from Wikipedia revisions by
Cahill et al. (2013) is much different from the one
generated from Lang-8. Table 8 and Figure 4
show the results of preposition models informed
by Wikipedia and Lang-8 tested on Lang-8 test
sets. Table 9 and Figure 4 show the results of
the same models on the NUCLE test sets. As ex-
pected, the errors generated from the confusion set
informed by Lang-8 performs better on the Lang-8
test sets than on the NUCLE test sets. What is in-
teresting, however, is that the Wikipedia revisions
performed significantly better not only on the NU-
CLE test sets, but also on the Lang-8 test sets. This
is surprising, because the Wikipedia revisions are
not necessarily in the same domain, whereas the
Lang-8 revisions are from the same dataset. Fur-
thermore, the Wikipedia revisions do not take in-
sertions or deletions into account. It is clear that
the amount of revisions considered makes a dif-
ference: there were 10054 Lang-8 revisions, and
303847 Wikipedia revisions, 30 times more. The
small amount of Lang-8 revisions could also ac-
count for the noise identified in the Lang-8 mod-
els, but this noise is also present in the Wikipedia
revisions, where “error inflation” appears to only
appear sometimes and not always.

Figure 4: Plot of the data in Table 6

Figure 5: Plot of the data in Table 7

Figure 6: Plot of the data in Table 8

Figure 7: Plot of the data in Table 9

73

5 Conclusion

Our research aims to shed light on the issue of
choosing how many errors to include in artificially
generated erroneous data by tackling two specific
error types. Results reveal some predictable out-
comes, such as that it is easier to deal with test cor-
pora which have smaller error rates, because leav-
ing correct sentences alone is easier for the model
to learn than making a good correction. Also, in
most cases, there is a correlation between the er-
ror rate of the training data and the test data. How-
ever, some of the results revealed unexpected out-
comes. Although it is possible that the data is
noisy, the results, particularly for the prepositions,
support a concept called “Error Inflation”, which
suggests that including more errors into the train-
ing data will lead to a higher GLEU score. This ef-
fect was not observed in the determiner and com-
bined models, suggesting that there might be vari-
ation between different error types depending on
the distribution of revisions made for that error
type. It is possible to combine two error types to-
gether into one training set, and tackle two error
types at once at test time, although the scores are
not as high as when solving only individual errors.
Also, the confusion set generated from Wikipedia
revisions proved to yield better results than that
generated from Lang-8, due to the significantly
larger number of revisions. Finally, this research
supports generating erroneous data as a valid ap-
proach to improving neural models for GEC, and
informs future researchers about the effects of er-
ror rate mismatches in training and test data.

Acknowledgments

We would like to thank Joel Tetreault for his ad-
vice and experience in Automatic Error Genera-
tion, as well as Mamoru Komachi of Lang-8 for
access to the Lang-8 dataset.

References
Aoife Cahill, Nitin Madnani, Joel Tetreault, and

Diane Napolitano. 2013. Robust systems for
preposition error correction using Wikipedia revi-
sions. In Proceedings of the 2013 Conference
of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Lan-
guage Technologies. Atlanta, Georgia, pages 507–
517. http://www.aclweb.org/anthology/N13-1055.

Mariano Felice. 2016. Artificial error generation
for translation-based grammatical error correc-

tion. Technical Report UCAM-CL-TR-895,
University of Cambridge, Computer Laboratory.
http://www.cl.cam.ac.uk/techreports/UCAM-CL-
TR-895.pdf.

Zhuoran Liu and Yang Liu. 2016. Exploit-
ing unlabeled data for neural grammatical er-
ror detection. ArXiv preprint 1611.08987.
http://arxiv.org/abs/1611.08987.

Courtney Napoles, Keisuke Sakaguchi, Matt Post, and
Joel Tetreault. 2015. Ground truth for grammati-
cal error correction metrics. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 2: Short Papers). Beijing, China, pages 588–
593. http://www.aclweb.org/anthology/P15-2097.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe,
Christian Hadiwinoto, Raymond Hendy Susanto,
and Christopher Bryant. 2014. The CoNLL-
2014 shared task on grammatical error correc-
tion. In Proceedings of the Eighteenth Confer-
ence on Computational Natural Language Learn-
ing: Shared Task. Baltimore, Maryland, pages 1–14.
http://www.aclweb.org/anthology/W14-1701.

Alla Rozovskaya and Dan Roth. 2010. Training
paradigms for correcting errors in grammar and
usage. In Human Language Technologies: The
2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics. Los Angeles, California, pages 154–162.
http://www.aclweb.org/anthology/N10-1018.

Alla Rozovskaya, Mark Sammons, and Dan Roth.
2012. The UI system in the HOO 2012 shared
task on error correction. In Proceedings of the Sev-
enth Workshop on Building Educational Applica-
tions Using NLP. Montréal, Canada, pages 272–280.
http://www.aclweb.org/anthology/W12-2032.

Zheng Yuan and Ted Briscoe. 2016. Grammati-
cal error correction using neural machine transla-
tion. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies. San Diego, California, pages 380–386.
http://www.aclweb.org/anthology/N16-1042.

A Appendix - Tables of results

74

Test Sets 20% 40% 60% 80%
test-l8p20 87.29 87.63 86.85 86.77
test-l8p40 80.35 80.63 80.68 81.07
test-l8p60 72.17 72.82 73.54 74.68
test-l8p80 61.51 62.60 64.21 66.39
test-np20 86.60 87.64 86.42 86.28
test-np40 84.69 84.76 84.59 84.60
test-np60 79.49 80.04 79.99 80.91
test-np80 73.48 74.43 74.75 76.34

Table 3: GLEU score according to how much
preposition error in training data informed by
Lang-8, tested on test sets with varying amounts
of error from Lang-8 and NUCLE.

Test Sets 20% 40% 60% 80%
test-l8d20 88.16 86.76 86.39 84.38
test-l8d40 81.94 82.18 82.20 80.53
test-l8d60 74.83 75.92 76.45 74.99
test-l8d80 65.36 67.54 68.61 69.49
test-nd20 87.64 86.40 85.82 83.63
test-nd40 84.74 84.53 84.22 83.53
test-nd60 81.95 81.96 81.98 81.13
test-nd80 77.08 77.36 77.79 78.20

Table 4: GLEU score according to how much de-
terminer error in training data informed by Lang-
8, tested on test sets with varying amounts of error
from Lang-8 and NUCLE.

Test Sets 20% 40% 60% 80%
test-l8b20 87.53 86.70 84.96 83.40
test-l8b40 81.32 81.11 80.28 78.86
test-l8b60 73.74 73.99 73.99 73.37
test-l8b80 63.16 63.98 64.77 65.38
test-nb20 87.86 86.91 86.35 84.36
test-nb40 84.30 83.92 83.38 82.09
test-nb60 77.78 77.87 77.96 77.22
test-nb80 69.39 70.35 71.68 71.05

Table 5: GLEU score according to how much
combined preposition and determiner error in
training data informed by Lang-8, tested on test
sets with varying amounts of error from Lang-8
and NUCLE.

Test Sets 20% 40% 60% 80%
test-nd20 87.40 86.02 84.40 82.95
test-nd40 84.53 83.80 82.51 81.47
test-nd60 81.63 81.52 80.04 79.45
test-nd80 76.73 77.01 75.53 75.82
test-np20 86.91 85.63 84.03 83.36
test-np40 84.02 83.55 83.22 82.35
test-np60 78.75 78.64 78.88 78.99
test-np80 72.82 73.36 73.88 74.74

Table 6: GLEU score according to how much
combined preposition and determiner error in
training data informed by Lang-8, tested sepa-
rately on NUCLE test sets with varying amounts
of determiner error, and then preposition error.

Test Sets 20% 40% 60% 80%
test-nb20 88.01 87.55 86.85 85.36
test-nb40 84.48 84.12 83.51 83.36
test-nb60 77.58 77.51 77.26 77.45
test-nb80 69.05 69.64 69.57 70.58
test-nb20 87.74 87.39 86.71 85.72
test-nb40 83.43 83.04 82.41 81.90
test-nb60 74.98 74.79 74.32 73.83
test-nb80 64.66 64.66 64.45 64.49

Table 7: GLEU score according to how much
preposition error (first 4 rows) or determiner er-
ror (last 4 rows) in training data informed by Lang-
8, tested on test sets with varying amounts of com-
bined determiner/preposition error from NUCLE.

Test Sets 20% 40% 60% 80%
test-l8p20 87.27 87.00 86.72 85.66
test-l8p40 79.52 79.78 79.67 79.03
test-l8p60 70.87 71.63 72.03 71.99
test-l8p80 59.66 61.18 62.09 62.85
test-l8p20 87.29 87.63 86.85 86.77
test-l8p40 80.35 80.63 80.68 81.07
test-l8p60 72.17 72.82 73.54 74.68
test-l8p80 61.51 62.60 64.21 66.39

Table 8: GLEU score according to how much
preposition error in training data informed by
Wikipedia (first 4 rows) and Lang-8 (last 4 rows),
tested on test sets with varying amounts of prepo-
sition error from Lang-8.

75

Test Sets 20% 40% 60% 80%
test-np20 88.01 87.68 88.12 86.72
test-np40 86.52 87.02 87.29 86.84
test-np60 82.49 83.68 84.67 85.02
test-np80 77.89 79.74 81.43 82.56
test-np20 86.60 87.64 86.42 86.28
test-np40 84.69 84.76 84.59 84.60
test-np60 79.49 80.04 79.99 80.91
test-np80 73.48 74.43 74.75 76.34

Table 9: GLEU score according to how much
preposition error in training data informed by
Wikipedia (first 4 rows) and Lang-8 (last 4 rows),
tested on test sets with varying amounts of prepo-
sition error from NUCLE.

76

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 77–84
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

An Entity Resolution Approach to Isolate Instances of
Human Trafficking Online

Chirag Nagpal, Kyle Miller, Benedikt Boecking and Artur Dubrawski
chiragn@cs.cmu.edu, mille856@andrew.cmu.edu, boecking@andrew.cmu.edu, awd@cs.cmu.edu

Carnegie Mellon University

Abstract

Human trafficking is a challenging law
enforcement problem, and traces of vic-
tims of such activity manifest as ‘escort
advertisements’ on various online forums.
Given the large, heterogeneous and noisy
structure of this data, building models to
predict instances of trafficking is a con-
voluted task. In this paper we propose
an entity resolution pipeline using a no-
tion of proxy labels, in order to extract
clusters from this data with prior history
of human trafficking activity. We apply
this pipeline to 5M records from back-
page.com and report on the performance
of this approach, challenges in terms of
scalability, and some significant domain
specific characteristics of our resolved en-
tities.

1 Introduction

Over the years, human trafficking has grown to
be a challenging law enforcement issue. The ad-
vent of the internet has brought the problem into
the public domain making it an ever greater soci-
etal concern. Prior studies (Kennedy, 2012) have
leveraged computational techniques to mine on-
line escort advertisements from classifieds web-
sites to detect spatio-temporal patterns, by utiliz-
ing certain domain specific features of the ads.
Other studies (Dubrawski et al., 2015) have uti-
lized machine learning approaches to identify if
ads are likely to be involved in human trafficking
activity. Significant work has also been carried out
in building large distributed systems to store and
process such data, and carry out entity resolution
to establish ontological relationships between var-
ious entities. (Szekely et al., 2015)

In this paper we explore the possibility of lever-
aging online escort data in an attempt to identify
sources of advertisements, i.e. grouping related
ads by the persons that generated them. We isolate
such clusters of related advertisements originating
from the same source and identify if these poten-
tial sources of are involved in human trafficking
using prior domain knowledge.

In case of ordinary Entity Resolution schemes,
each record is considered to represent a single
entity. A popular approach in such scenarios is
a ‘merge and purge’ strategy where records are
compared, matched, and then merged into a sin-
gle more informative record, and the individual
records are deleted from the dataset. (Benjelloun
et al., 2009)

While our problem can be considered a case
of Entity Resolution, escort advertisements pose
additional challenges as they form a noisy and
unstructured dataset. For example, a single ad-
vertisement may represent more than one entity
and as such can contain features belonging to
more than one individual or group. We describe
these idiosyncrasies of this domain in detail in
the following sections. Since the advertisements
are associated with multiple modalities including
text, hyperlinks, images, timestamps, locations
etc. in order to featurize characteristics from texts,
we use a regex based information extractor con-
structed via the GATE framework (Cunningham,
2002). This allows us to generate certain domain
specific features from our dataset such as aliases,
cost, location, phone numbers, or specific URLs.
We use these hand engineered features along with
other generic features like text similarity, num-
ber of common images as features for our binary
match function. We note that many identifying
characteristics of entities like aliases, are common
and shared between escorts which makes it diffi-
cult to generate exact matches over individual fea-

77

(a) Search Results on backpage.com (b) Representative escort advertisement

Figure 1: Escort advertisements are a classic source of what can be described as noisy text. Notice the
excessive use of emojis, intentional misspelling and relatively benign colloquialisms to obfuscate a more
nefarious intent. Domain experts extract meaningful cues from the spatial and temporal indicators, and
other linguistic markers to identify suspected trafficking activity, which further motivate the leveraging
of computational approaches to support such decision making.

tures.
We proceed to leverage machine learning ap-

proaches to learn a classifier that can predict if
two advertisements are from the same source,
the challenge being the lack of prior knowledge
of the source of advertisements. We thus de-
pend upon a strong linking feature, in our case
phone numbers, which can be used as proxy ev-
idence for the source of the advertisements and
can help us generate labels for the training and
test data for a classifier. We can therefore use such
strong evidence as to learn another function, which
can help us generate labels for our dataset, this
semi-supervised approach is described as ‘surro-
gate learning’ in (Veeramachaneni and Kondadadi,
2009). Pairwise comparisons result in an ex-
tremely high number of comparisons over the en-
tire dataset. In order to reduce this computational
burden we introduce a blocking scheme described
later.

The resulting clusters are labeled according to
their human trafficking relevance using prior ex-
pert knowledge. Rule learning is used to estab-
lish differences between such relevant clusters and
other extracted clusters. The entire pipeline is rep-
resented by Figure 2.

2 Domain and Feature Extraction

Figure 1 is illustrative of the search results of es-
cort advertisements and a page advertising a par-
ticular individual. The text is inundated with
special characters, emojis, as well as misspelled
words that are specific markers and highly infor-
mative to domain experts. The text consists of

Table 1: Performance of TJBatchExtractor

Feature Precision Recall F1 Score
Age 0.980 0.731 0.838
Cost 0.889 0.966 0.926
E-mail 1.000 1.000 1.000
Ethnicity 0.969 0.876 0.920
Eye Color 1.000 0.962 0.981
Hair Color 0.981 0.959 0.970
Name 0.896 0.801 0.846
Phone Number 0.998 0.995 0.997
Restriction(s) 0.949 0.812 0.875
Skin Color 0.971 0.971 0.971
URL 0.854 0.872 0.863
Height 0.978 0.962 0.970
Measurement 0.919 0.883 0.901
Weight 0.976 0.912 0.943

information regarding the escort’s area of oper-
ation, phone number, any particular client pref-
erences, and the advertised cost. We built a
regular expression based feature extractor to ex-
tract this information and store it in a fixed
schema, using the popular JAPE tool part of the
GATE suite of NLP tools. The extractor we
build for this domain, TJBatchExtractor, is open
source and publicly available at github.com/
autoncompute/CMU_memex.

Table 1 lists the performance of our extraction
tool on 1,000 randomly sampled escort advertise-
ments, for the various features. Most of the fea-
tures are self explanatory. (The reader is directed
to (Dubrawski et al., 2015) for a complete descrip-

78

Feature Extraction
from

Raw Data
Rule Learning

Entity Resolution
with

Strong Features

Sample Data and
Train Match

Function

Entity Resolution
With learnt

Match Function

Figure 2: The proposed Entity Resolution pipeline

tion of the fields extracted.) The noisy nature,
along with intentional obfuscations, especially in
case of features like names results in lower perfor-
mance as compared to the other extracted features.

Apart from the regular expression based fea-
tures, we also extract the hashvalues of the images
in the advertisements as their identifier, along with
the posting date and time, and location.1

Figure 3: On applying our match function, weak
links are generated for classifier scores above a
certain match threshold. The strong links between
nodes are represented by solid lines. Dashed lines
represent the weak links generated by our classi-
fier.

3 Entity Resolution

3.1 Definition
The trained match function can be used to repre-
sent our data as a graph where the nodes represent
advertisements and edges represent the similarity
between ads. We approach the problem of extract-
ing connected components from our dataset using
pairwise entity resolution. The similarity or con-
nection between two nodes is treated as a learning
problem, with training data for the problem gen-
erated by using ‘proxy’ labels from existing evi-
dence of connectivity from strong features.

More formally, the problem can be consid-
ered to be to sample all connected components
Hi(V, E) from a graph G(V, E). Here, V , the set
of vertices ({v1, v2, ..., vn}) is the set of adver-
tisements and E , {(vi, vj), (vj , vk), ..., (vk, vl)} is
the set of edges between individual records, the

1These features are present as metadata, and do not re-
quire the use of hand engineered regular expressions.

presence of which indicates that they represent the
same entity.

We need to learn a function M(vi, vj) such that
M(vi, vj) = Pr((vi, vj) ∈ E(Hi),∀Hi ∈ H)

The set of strong features present in a given
record can be considered to be the function ‘S’. In
our problem, Sv represents all the phone numbers
associated with v.

Thus S =
⋃Svi ,∀vi ∈ V . Here, |S| << |V|

Now, let us further consider the graph G∗(V, E)
defined on the set of vertices V , such that
(vi, vj) ∈ E(G∗) if |Svi ∩ Svj | > 0 (more sim-
ply, the graph described by strong features.)

Let H∗ be the set of all the of connected com-
ponents {H∗1(V, E),H∗2(V, E), ...,H∗n(V, E)} de-
fined on the graph G∗(V, E)

Now, function P is such that for any pi ∈ S
P(pi) = V(H∗k) ⇐⇒ pi ∈ ⋃Svi , ∀vi ∈ V(H∗k)

3.2 Sampling Scheme

For our classifier we need to generate a set of train-
ing examples ‘T ’, and Tpos & Tneg are the subsets
of samples labeled positive and negative.
Tpos = {Fvi,vj |vi ∈ P(pi), vj ∈ P(pi), ∀pi ∈ S}
Tneg = {Fvi,vj |vi ∈ P(pi), vj 6∈ P(pi),∀pi ∈ S}

In order to ensure that the sampling scheme
does not end up sampling near duplicate pairs, we
introduce a sampling bias such that for every fea-
ture vector Fvi,vj ∈ Tpos, Svi ∩ Svj = φ
This reduces the likelihood of sampling near-
duplicates as evidenced in Figure 5, which is a his-
togram of jaccard similarities between the sets of
unigrams of ad pairs.
sim(vi, vj) = |unigrams(vi)∩unigrams(vj)|

|unigrams(vi)∪unigrams(vj)|
We observe that although we do still end with
some near duplicates (sim > 0.9), we have high
number of non duplicates. (0.1 < sim < 0.3)
which ensures robust training data for our classi-
fier.

3.3 Training

To train our classifier we experiment with var-
ious classifiers like Logistic Regression (LR),
Naive Bayes (NB) and Random Forest (RF) using

79

0.0 0.2 0.4 0.6 0.8 1.0
False Positives

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

s

RF
LR
NB
Rnd

10 3 10 2 10 1 100

False Positives

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

s

RF
LR
NB
Rnd

Regx

0.0 0.2 0.4 0.6 0.8 1.0
False Positives

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

s

RF
LR
NB
Rnd

10 3 10 2 10 1 100

False Positives

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

s
RF
LR
NB
Rnd

Regx+Temporal

0.0 0.2 0.4 0.6 0.8 1.0
False Positives

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

s

RF
LR
NB
Rnd

10 3 10 2 10 1 100

False Positives

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

s

RF
LR
NB
Rnd

Regx+Temporal+NLP

0.0 0.2 0.4 0.6 0.8 1.0
False Positives

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

s

RF
LR
NB
Rnd

10 3 10 2 10 1 100

False Positives

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

s

RF
LR
NB
Rnd

Regx+Temporal+NLP+Spatial

Figure 4: ROC curves for our match function trained on various feature sets. The ROC curve shows
reasonably large true positive rates for extremely low false positive rates, which is a desirable behaviour
of the match function.

0.0 0.2 0.4 0.6 0.8 1.0
Text Similarity

0
5000

10000
15000
20000
25000
30000
35000

Nu
m

be
r o

f P
ai

rs

Figure 5: Text similarity for our sampling Scheme.
We use Jaccard similarity between the ad uni-
grams as a measure of text similarity. The his-
togram shows that the sampling scheme results in
both, a large number of near duplicates and non
duplicates. Such a behavior is desired to ensure a
robust match function.

Scikit (Pedregosa et al., 2011). Table 2 shows the
most informative features learnt by the Random
Forest classifier. It is interesting to note that the
most informative features include the spatial (Lo-
cation), temporal (Time Difference, Posting Date)
and also the linguistic (Number of Special Char-
acters, Longest Common Substring) features. We
also find that the domain specific features, ex-
tracted using regexs, prove to be informative.

The receiver operating characteristic (ROC)
curves for the classifiers we tested with different
feature sets are presented in Figure 4. The classi-
fiers perform well at very low false positive rates.
Such a behavior is desirable for the classifier to act
as a match function, in order to generate sensible
results for the downstream tasks. High false pos-

Table 2: Most Informative Features

Top 10 Features
1 Location (State)
2 Number of Special Characters
3 Longest Common Substring
4 Number of Unique Tokens
5 Time Difference
6 If Posted on Same Day
7 Presence of Ethnicity
8 Presence of Rate
9 Presence of Restrictions
10 Presence of Names

0.495 0.496 0.497 0.498 0.499 0.500 0.501

0

2000

4000

6000

8000

10000

Si
ze

 o
f C

on
. C

om
po

ne
nt

0.495 0.496 0.497 0.498 0.499 0.500 0.501
0
200
400
600
800
1000
1200
1400
1600

No
. o

f C
on

. C
om

po
ne

nt
s

Logistic Regression

0.88 0.90 0.92 0.94 0.96 0.98 1.00

2000

4000

6000

8000

10000

Si
ze

 o
f C

on
. C

om
po

ne
nt

0.88 0.90 0.92 0.94 0.96 0.98 1.00
0

200

400

600

800

1000

1200

1400

No
. o

f C
on

. C
om

po
ne

nt
s

Random Forest

Figure 6: The plots represents the number of con-
nected components and the size of the largest com-
ponent versus the match threshold.

80

itive rates increase the number of links between
our records, leading to a ‘snowball effect’ which
results in a break-down of the downstream Entity
Resolution process as evidenced in Figure 6.

In order to minimize this breakdown, we need to
heuristically learn an appropriate confidence value
for our classifier. This is done by carrying out the
Entity Resolution process on 10,000 randomly se-
lected records from our dataset. The value of size
of the largest extracted connected component and
the number of such connected components iso-
lated is calculated for different decision thresholds
of our classifier. This allows us to come up with a
sensible heuristic for the confidence value.

Bigrams Unigrams Images

Figure 7: Blocking Scheme

3.4 Blocking Scheme
Our dataset consists of over 5 million records.
Naive pairwise comparisons across the dataset
makes this problem computationally intractable.
In order to reduce the number of comparisons, we
introduce a blocking scheme and perform exhaus-
tive pairwise comparisons only within each block
before resolving the dataset across blocks. We
block the dataset on features including rare uni-
grams, rare bigrams and rare images. Figure 7 rep-
resents the distribution of the frequency of adver-
tisements across the different blocking schemes.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Positive Set
Mean Random Guessing

Figure 9: ROC for the connected component clas-
sifier. The black line is the positive set, while
the red line is the average ROC for 100 randomly
guessed predictors.

(a) This pair of ads have extremely similar textual content in-
cluding use of non-latin and special characters. The ad also ad-
vertises the same individual, as strongly evidenced by the com-
mon alias, ‘Paris’.

(b) The first ad here does not include any specific names of indi-
viduals. However, The strong textual similarity with the second
ad and the same advertised cost, helps to match them and dis-
cover the individuals being advertised as ‘Nick’ and ‘Victoria’.

(c) While this pair is not extremely similar in terms of language,
however the existence of the rare alias ‘SierraDayna’ in both
advertisemets helps the classifier in matching them. This match
can also easily be verified by the similar language structure of
the pair.

(d) The first advertisement represents entities ‘Black China’ and
‘Star Quality’, while the second advertisement, reveals that the
pictures used in the first advertisement are not original and be-
long to the author of the second ad. This example pair shows
the robustness of our match function. It also reveals how com-
plicated relationships between various ads can be.

Figure 8: Representative results of advertisement
pairs matched by our classifier. In all the four
cases the advertisement pairs had no phone num-
ber information (strong feature) in order to detect
connections. Note that sensitive elements have
been intentionally obfuscated.

81

Table 3: Results Of Rule Learning

Rule Support Ratio Lift
Xminchars<=250, 120000<Xmaximgfrq, 3<Xmnweeks<=3.4, 4<Xmnmonths<=6.5 11 90.9% 2.67

Xminchars<=250, 120000<Xmaximgfrq 4<Xmnmonths<=6.5, 16 81.25% 2.4
Xstatesnorm<=0.03, 3.6<Xuniqimgsnorm<=5.2, 3.2<Xstdmonths 17 100.0% 2.5
Xstatesnorm<=0.03, 1.95<Xstdweeks<=2.2, 3.2<Xstdmonths 19 94.74% 2.37

0 5 10 15 20 25
False Positives

0

5

10

15

20

25

Tr
ue

 P
os

iti
ve

s

Max Rules: 5
Max Rules: 3
Max Rules: 2

Figure 10: The figure presents PN curves for vari-
ous values of the maximum rules extracted by the
rule learner.

4 Rule Learning

We extract clusters and identify records that are
associated with human trafficking using domain
knowledge from experts. We featurize the ex-
tracted components using features like size of the
cluster, the spatio-temporal characteristics, and the
connectivity of the clusters. For our analysis, we
consider only components with more than 300 ad-
vertisements. We then train a random forest clas-
sifier to predict if a cluster contains indicators of
human trafficking. In order to establish statistical
significance, we compare the ROC results of our
classifier using four fold cross-validation for 100
random connected components versus the positive
set. Figure 9 & Table 4 lists the performance of
the classifier in terms of false positive and true
positive Rate while Table 5 lists the most informa-
tive features for this classifier.

Additionally we extract rules from our feature
set that help establish differences between the
trafficking relevant clusters. Some of the rules
with corresponding ratios and lift are given in
Table 3. PN curves for Rule Learning are analo-
gous to ROC Curves in Classification (Fürnkranz
and Flach, 2005) and PN curves corresponding to
various rules learnt are presented in the Figure 10.
It can be observed that the features used by the
rule learning to learn rules with maximum support
and ratios, correspond to the ones labeled by the
random forest as informative. This also serves as
validation for the use of rule learning.

Jessica
Montgomery, AL

Kimberly
Montgomery, AL
Wilkes-Barre, PA

Amber/Desire
Montgomery, AL

Eve/Eden/Desire
Montgomery, AL

Nicole
Montgomery, AL

Monica
Scranton, PA

Candice
Montgomery, AL

Stephanie
Scranton, PA

Montgomery, AL

Figure 11: Representative entity isolated by our
pipeline, believed to be involved in human traffick-
ing. The nodes represent advertisements, while
the edges represent links between advertisements.
This entity has 802 nodes and 39,383 edges. This
visualization is generated using Gephi. (Bastian
et al., 2009). This entity operated in cities, across
states and advertised multiple different individu-
als along with multiple phone numbers. This sug-
gests a more complicated and organised activity
and serves as an example of how complicated cer-
tain entities can be in this trade.

.

Table 4: Metrics for the Connected Component
classifier

AUC TPR@FPR=1% FPR@TPR=50%
90.38% 66.6% 0.6%

Table 5: Most Informative Features

Top 5 Features
1 Posting Months
2 Posting Weeks
3 Std-Dev. of Image Frequency
4 Norm. No. of Names
5 Norm. No. of Unique Images

82

5 Conclusion

In this paper we approached the problem of isolat-
ing sources of human trafficking from online es-
cort advertisements with a pairwise Entity Reso-
lution approach. We trained a classifier able to
predict if two advertisements are from the same
source using phone numbers as a strong feature
which we exploit as proxy ground truth to generate
training data. The resulting classifier proved to be
robust, as evidenced from extremely low false pos-
itive rates. Other approaches like (Szekely et al.,
2015) aim at building similar knowledge graphs
using similarity score between each feature. This
has some limitations. Firstly, we need labelled
training data in order to train match functions to
detect ontological relations. The challenge is ag-
gravated since this approach considers each fea-
ture independently making generation of enough
labelled training data for training multiple match
functions an extremely complicated task.

Since we utilise existing features as proxy evi-
dence, our approach can generate a large amount
of training data without the need of any human
annotation. Our approach requires just learning a
single function over the entire featureset. Hence,
our classifier can learn multiple complicated rela-
tions between features to predict a match, instead
of the naive feature independence assumption.

We then proceeded to use this classifier in order
to perform entity resolution using a heuristically
learned match threshold. The resultant connected
components were again featurised, and a classi-
fier model was fit before subjecting to rule learn-
ing. On comparison with (Dubrawski et al., 2015),
the connected component classifier performs a lit-
tle better with higher values of the area under the
ROC curve and the TPR@FPR=1% indicating a
steeper ROC curve. We hypothesize that due to
the entity resolution process, we are able to gen-
erate larger, more robust amount of training data
which is immune to the noise in labelling and re-
sults in a stronger classifier. The learnt rules show
high ratios and lift for reasonably high support as
shown in Table 3. Rule learning also adds an ele-
ment of interpretability to the models we built and
as compared to more complex ensemble methods
like Random Forests, having hard rules as classifi-
cation models are preferred by domain experts to
build evidence for incrimination.

6 Future Work

While our blocking scheme performs well to re-
duce the number of comparisons, scalability is still
a significant challenge since our approach involves
naive pairwise comparisons. One solution to this
issue may be to design such a pipeline in a dis-
tributed environment. Another approach could be
to use a computationally inexpensive technique to
de-duplicate the dataset first, which would greatly
help with regard to scalability.

In our approach, the ER process depends upon
the heuristically learnt match threshold. Lower
threshold values can significantly degrade the per-
formance, producing extremely large connected
components as a result. The possibility of treating
this attribute as a learning task, would help mak-
ing this approach more generic, and non domain
specific.

Hashcodes of the images associated with the
ads were also utilized as a feature for the match
function. However, simple features like number of
unique and common images etc., did not prove to
be very informative. Further research is required
in order to make better use of such visual data.

Acknowledgments

The authors would like to thank all staff, fac-
ulty and students who made the Robotics Insti-
tute Summer Scholars program 2015 at Carnegie
Mellon University possible. This work has been
partially supported by the National Institute of
Justice (2013-IJ-CX-K007) and the Defense Ad-
vanced Research Projects Agency (FA8750-14-2-
0244).

References
Mathieu Bastian, Sebastien Heymann, and Math-

ieu Jacomy. 2009. Gephi: An open source
software for exploring and manipulating networks.
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154.

Omar Benjelloun, Hector Garcia-Molina, David Men-
estrina, Qi Su, Steven Euijong Whang, and Jennifer
Widom. 2009. Swoosh: a generic approach to en-
tity resolution. The VLDB JournalThe International
Journal on Very Large Data Bases 18(1):255–276.

Hamish Cunningham. 2002. Gate, a general architec-
ture for text engineering. Computers and the Hu-
manities 36(2):223–254.

Artur Dubrawski, Kyle Miller, Matthew Barnes,
Benedikt Boecking, and Emily Kennedy. 2015.

83

Leveraging publicly available data to discern pat-
terns of human-trafficking activity. Journal of Hu-
man Trafficking 1(1):65–85.

Johannes Fürnkranz and Peter A Flach. 2005. Roc
nrule learningtowards a better understanding of cov-
ering algorithms. Machine Learning 58(1):39–77.

Emily Kennedy. 2012. Predictive patterns of sex traf-
ficking online .

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer,
Ron Weiss, Vincent Dubourg, Jake Vanderplas,
Alexandre Passos, David Cournapeau, Matthieu
Brucher, Matthieu Perrot, and Édouard Duch-
esnay. 2011. Scikit-learn: Machine learning
in python. J. Mach. Learn. Res. 12:2825–2830.
http://dl.acm.org/citation.cfm?id=1953048.2078195.

Pedro Szekely, Craig A. Knoblock, Jason Slepicka,
Andrew Philpot, Amandeep Singh, Chengye Yin,
Dipsy Kapoor, Prem Natarajan, Daniel Marcu,
Kevin Knight, David Stallard, Subessware S.
Karunamoorthy, Rajagopal Bojanapalli, Steven
Minton, Brian Amanatullah, Todd Hughes, Mike
Tamayo, David Flynt, Rachel Artiss, Shih-Fu
Chang, Tao Chen, Gerald Hiebel, and Lidia Fer-
reira. 2015. Building and using a knowledge graph
to combat human trafficking. In Proceedings of the
14th International Semantic Web Conference (ISWC
2015).

Sriharsha Veeramachaneni and Ravi Kumar Kon-
dadadi. 2009. Surrogate learning: from feature in-
dependence to semi-supervised classification. In
Proceedings of the NAACL HLT 2009 Workshop
on Semi-Supervised Learning for Natural Language
Processing. Association for Computational Linguis-
tics, pages 10–18.

84

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 85–93
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

Noisy Uyghur Text Normalization

Osman Tursun Ruket Çakıcı
Computer Engineering Department
Middle East Technical University

Ankara Turkey
wusiman.tuerxun, ruken@ceng.metu.edu.tr

Abstract

Uyghur is the second largest and most
actively used social media language in
China. However, a non-negligible part
of Uyghur text appearing in social media
is unsystematically written with the Latin
alphabet, and it continues to increase in
size. Uyghur text in this format is incom-
prehensible and ambiguous even to na-
tive Uyghur speakers. In addition, Uyghur
texts in this form lack the potential for any
kind of advancement for the NLP tasks
related to the Uyghur language. Restor-
ing and preventing noisy Uyghur text writ-
ten with unsystematic Latin alphabets will
be essential to the protection of Uyghur
language and improving the accuracy of
Uyghur NLP tasks. To this purpose, in this
work we propose and compare the noisy
channel model and the neural encoder-
decoder model as normalizing methods.

1 Introduction

Uyghur is an alphabetic language, whose alpha-
bet includes 32 phones. Currently, the Uyghur is
written with Perso-Arabic, Latin or Cyrillic-based
scripts. The most widely used Uyghur alphabet
is the modified Perso-Arabic script. However, in
some situations, especially in social media, users
adopt Latin letters to overcome certain limitations
of the Perso-Arabic script. A major problem is
that Latin letters are irregularly used as alterna-
tives to Perso-Arabic script because mapping be-
tween Perso-Arabic script and Latin alphabet is
not trivial. For example, “X”, “SH” or “Ş” are all
used as alternative representations for the Perso-

Arabic character �� (phoneme [+]). Table 1, which
based on the result of a conducted survey, shows
that 15 out of 32 letters have two to four alter-
natives. To the best of our knowledge, although
unsystematic usage of Latin-based alphabets is a
well-discussed problem within Uyghur society, it
does not appear in the literature. As far as we
know it is only described in (Duval and Janbaz,
2006) as “unsystematic transliterations”. In this
paper, we refer to this issue as unsystematic us-
age of Latin alphabets (UULA).

UULA problem is similar to text normaliza-
tion, which has received attention recently (Sproat
et al., 2001; Ikeda et al., 2016) because of a large
amount of unnormalized text in the social me-
dia. In this work, with respect to the small-
est text element, we divide the text normaliza-
tion problem into two sub-categories: word-based
and character-based normalization. The word-
based normalization (Sproat et al., 2001; Ikeda
et al., 2016) turns non-standard words such as
slang, acronyms and phonetic substantiation into
standard dictionary words. On the other hand,
character-based normalization transform the raw
text through substituting the irregularly used char-
acters with proper ones. Character-level nor-
malization includes problems such as diacritic
restoration (DR) (Mihalcea and Nastase, 2002),
de-ASCIIfication (Arslan, 2015) and so on.

UULA normalization is a character-level nor-
malization, yet it is harder than other character-
level normalization problems. It is a many-to-
many mapping problem while most of the other
types of character-level normalizations are one-to-
many. As mentioned above, Table 1 shows 15 of
32 characters have 2 to 4 alternatives. Besides that,
UULA texts suffer heavy ambiguity as well. For
instance, if the sentence “I gave a Yuan” is written
in Uyghur UULA as “Men bir koy berdim”, which
may mean “I gave a sheep” or “I gave a Yuan”.

85

Table 1: Possible Latin alphabet alternatives of Uyghur Perso-Arabic alphabet.

Uyghur �P ñK éK �� ùK �ñK h� �ñK 	̈ 	p �� è �¼ ù..
K �ð

Phonetics Z o E q i e
>
tS ø K X S h N e v

CTA1 J O E Q I Ü Ç Ö Ğ X Ş H Ñ É V

Alternatives ZH, J O A Q I V, U Ç, Q O, U G, GH X X H G E, I V
Z, Y U E K E O, Ü CH V, Ö H, Ğ H SH, Ş Y NG, Ñ Ë, É W

Table 2 shows some other cases of ambiguity. In
short, UULA restoration which is addressed in this
paper is a non-trivial problem.

Table 2: Examples of confusion cases.

UULA CTA(Means)
Kan Qan(Blood) — Kan(Mine)
Soz Söz(Word) — Soz(Stretch)

Oruk Oruq(Thin) — Örük(Apricot)
Soyux Söyuş(Kiss) — Soyuş(Peel off)
Kalgin Kelgin(come) — Qalghin (stay)

UULA restoration techniques are critical to pro-
cess non-standard Uyghur text and develop a new
type of input method editor (IME) that automat-
ically suggests correctly written words and thus
reduce the amount of UULA text. Figure 1 and
Table 3 show several real examples of the increas-
ing amount of UULA text on social media and the
Internet. In this study we aim to 1) process and
standardize the UULA text on the web so that it
can be used for other NLP tasks such as informa-
tion retrieval 2) help to create IMEs equipped with
UULA restoration techniques that will prevent the
generation of more non-standard text. Further-
more, although UULA restoration is a problem
specific to the Uyghur language, the result will
be useful for other character-level normalization
problems and may be used for languages with sim-
ilar mapping issues.

(a) Video title (b) Facebook name (c) Chatting

Figure 1: Examples of UULA cases from social
media.

The rest of the paper is organized as follows: we
first talk about the background and related work in
Section 2 and 3. Then, the methods for UULA

Table 3: Illustrations of examples displayed in
Figure1.

Figure UULA CTA Means
1a Appigim Apiim My Baby
1b Mamat irzat Memet irzat Uyghur Per-

son Name
1c Men tehi

sizni uh-
lap kalgan
ohxaydu
daptiman.

Men texi
sizni uxlap
kalgan
oxshaydu
deptimen.

I thought
you were
sleeping.

1c Yaki hata
sual sorap
kalgan
ohxayman
daptiman.

Yaki hata
soal sorap
kalgan
oxshaymen
deptimen.

Or I asked
improper
question.

1c Yak hey.
Munqiga
kirip ketken.

Yak hey,
munchigha
kirip ketken.

Nothing hap-
pen. I was
taking a bath.

restoration are described in Section 4. The exper-
imental setup is given in Section 5 which is fol-
lowed by results, and discussion. Finally, we talk
about the conclusion and future work.

2 Background and Survey

2.1 Uyghur Alphabets

Uyghur is the native language of more than 15
million Uyghur people. Currently, the modern
Uyghur Perso-Arabic alphabet (UPAA) is the most
used and official script of Xinjiang Uyghur Au-
tonomous regions of China. In the last century,
due to cultural and political reasons (Duval and
Janbaz, 2006), Uyghurs have witnessed several re-
forms of the Uyghur writing system. Each of them
brings certain adverse effects on Uyghur culture
and society such as creating generation gaps, in-
creasing illiteracy ratio, loss of materials written in
previous scripts and so on. As a result, Uyghur so-
ciety tends to refuse any new alternative scripts to
the currently used UPAA. Furthermore, this social
atmosphere causes unsuccessful propagation of an
authentic Uyghur Latin alphabet system: Uyghur
Latin alphabet (ULA), which is a project by Xin-

1CTA: Common Turkic Alphabet, which is composed of
34 Latin letters.

86

jiang University in July 2001 (Duval and Janbaz,
2006). However, many Uyghur people have not
adopted or even learned this system yet.

With the digital information age, Uyghur peo-
ple, especially the young generation, are starting
to use Latin letters to bypass the limitation re-
lated to the UPAA in social media and the inter-
net. There are intrinsic and extrinsic limitations
of UPAA. The intrinsic limitation is that, in many
new computer programs, web pages, applications
etc., UPAA suffers many problems such as un-
qualified display, absence of IME, and so on. On
the other hand, the extrinsic limitation comes from
users. Many Uyghur people are not familiar with
the UPAA keyboard. Additionally, some Uyghur
people consider typing with UPAA input method
or switching to it from the other input methods like
English as inconvenient work.

Although Uyghur people use Latin letters as an
alternative to UPAA, many of them have not cho-
sen the authentic ULA as the alternative. Before
and after the announcement of ULA, both system-
atic and unsystematic transliterations with Latin
letters were actively used. According to the sur-
vey mentioned in (Duval and Janbaz, 2006), up
to 18 different systematic Latin Alphabet systems
existed in 2000. These are replaced by the ULA
since it is announced as the official Latin alterna-
tive of UPAA. However, UULA is still very com-
mon in spite of anti-UULA propaganda. Possible
explanations can be found for this from many as-
pects: linguistic, social, political, and so on. These
discussions are not in the scope of this paper as our
goal is restoring and preventing UULA texts with
the aid of an automated system.

2.2 Survey

In 2016, we conducted a small e-survey2 about
how Uyghur-speaking people use Latin alphabets
when writing in Uyghur. In this survey, we in-
cluded questions about the participants’ favorite
alphabet system and Latin-based alternatives to
UPAA. Besides that, we asked them to write 10
different words or phrases given in Latin-derived
alphabets they personally use (Table 5).

Among 170 attenders, 39.8% mainly used
UPAA, 29.7% mainly use ULA, 30.5% use
UULA. However, we also discovered that Uyghur
people use different scripts in different circum-
stances. We discover that nearly half of the peo-

2available at http://goo.gl/forms/5Pi2vCeUr3

Table 4: Possible alternatives of corrupted charac-
ters.

Char. Alt. Char. Alt. Char. Alt.
u u, ö, ü a a, e w v
v v, ö, ü k k, q ch ç
o o, ö, ü n n, ñ ng ñ
i, i, é j j, c sh ş
h h, x, ğ q q, ç gh ğ
y y, h, j x x, ş zh j
e e, é, i k k, q ë é
g g, ñ, ğ z z, j

ple use Latin-based characters as alternatives to
UPAA frequently. Nevertheless, through asking
attendees to type 10 different words or sentences
with Latin letters, we concluded the pattern of
UULA is the one shown in Table 4. According to
the table, if a sentence includes all of these char-
acters, there will be nearly 450,000 different alter-
native representations of that sentence.

Table 5: Selected survey results.

Samples Feedback

ÈA 	KPð �P
Jurnal, Jornal, Zhornal, Zhurnal, Zornal,
Zurnal, Yornal, Yurnal

ÉJ�̄ éK
akil, eqil, ekil, akel

�� �ñ�̄ñë
huquq, hukuk, hokok, hoqoq, hoquq,
hokuk

¼ �ð 	QK
 éÊJK.
Bilayzuk, Belayzuk, Bilayzvk, Be-
leyzuk, Bileyzvk, Bileyzk, Bileyzvk, Bi-
layzuk, Bileyzuk

èP �ñk� �ñk�
Qoqura, Chochure, Ququra, Chchre,
Ququre, Qoqure, Qoqore, Chochvre,
Chuchure, Qvqvra, Qoqvra, Qoqora,
Chchvre, Chochore, Ququra Qoqvre, re,
Chchre

�½J 	JJ.. Ó
Menig, Mening, Mning, Mning,
Mening, Mineg, Mineng, Minig,
Mining

H� A 	«ðX
dogap, doghap, dohap, dugap, dughap,
dohap, duhap

�IK 	QJ..Ãø 	QJ 	« é�̄
gezit qeghizi, gezit kagizi, gizit qeghizi,
gizit kagizi, gizit qeghizi, gizit kegizi,
gizit kagizi, gezit kegizi, gzit qeghizi,
gezit kagizi, gzit qeghizi, gezit qeghizi,
gizit qegizi, gizit kagaz

- øQK
 é 	k	à é� éë ��ñ 	k

xeyr xosh hesen, hayri hox hasan, xeyir
xosh hesen, hair hox hasan, heyir hosh
hesen, xeyir xosh hesen, heyir hox hesen

	àA�J 	Kñ 	̄ ù�®JÊJ..ë
heliki fontan, heliqi fontan, hiliki fontan,
hiliqi fontan, heliqi fontan, yiliki fontan,
heliki fontan, hiliki funtan, hiliki fontan,
hliqi fontan

3 Related Work

This is the first study on UULA restoration to our
knowledge. However, the problem is closely re-
lated to text normalization, which is the focus of

87

studies given in this section. With an exponen-
tial growth of noisy texts, the text normalization
study has become a hot topic in NLP. In the lit-
erature, text normalization is viewed as being re-
lated to either spell-checking (Cook and Steven-
son, 2009; Choudhury et al., 2007) or machine
translation (Aw et al., 2006; Kobus et al., 2008;
Ikeda et al., 2016). However, it is pointed out
that traditional spell-checking algorithms are not
very effective on some text normalization prob-
lems such as normalizing text messages like SMS,
tweets, comments, etc (Pennell and Liu, 2010;
Clark and Araki, 2011).

According to Kukich’s early survey (Kukich,
1992) on automatic word correction, there are sev-
eral types of spelling correction techniques such
as minimum edit distance (Damerau, 1964), sim-
ilarity key (Odell and Russell, 1918), rule-based
methods (Yannakoudakis and Fawthrop, 1983), N-
gram-based models (Riseman and Hanson, 1974),
probabilistic (Bledsoe and Browning, 1959; Cook
and Stevenson, 2009; Choudhury et al., 2007) and
neural net techniques (Cherkassky and Vassilas,
1989). Among them, probabilistic models (e.g.
noisy channel model) are successfully used for
text normalization (Cook and Stevenson, 2009;
Choudhury et al., 2007). The noisy channel model
method normalizes non-standard words with the
channel model and the language model, which are
achieved by analyzing and processing a large cor-
pus of noisy and formal texts.

Statistical (Aw et al., 2006), rule-based (Beau-
fort et al., 2010) and neural network techniques
(Ikeda et al., 2016) from machine translation are
used for text normalization. Since the neural
machine translation (Cho et al., 2014) showed
promising results, it has also been adapted to other
problems such as text normalization and language
correction. Xie et al. (2016) applied character-
based sequence modelling with attention mecha-
nism for language correction. The most closely
related previous work to our study is Ikeda et
al. (2016). They used a neural encoder-decoder
model for normalizing noise in Japanese text in-
troduced by the usage of three different writing
systems. They also built a synthetic database
with predefined rules for data augmentation. They
compared their neural network model with rule-
based methods, while we compare our neural net-
work model with a probabilistic model.

4 Method

For UULA restoration, the aim is to recover
the target sequence Y from the source sequence
X . Word-based or character-based models can
be used for this. In the character-based model,
X =< lx1 , lx2 , . . . , lxn >, Y =< ly1 , l

y
2 , . . . , l

y
n >

where lx1 is the first character of X , and n is the
length of the word(s) . On the other hand, for the
word-based model, X =< wx

1 , wx
2 , . . . , wx

m >,
Y =< wy

1 , wy
2 , . . . , wy

m > where m is number of
words in X or Y , and w is a word. For word-
based restoration, we adopt the noisy channel
model. Meanwhile, we use an encoder-decoder
based sequence to sequence model for character-
based restoration. In fact, both of models can be
character or word based. In the encoder-decoder
model, to reduce the input dimension, we picked
the character-based solution over the word-based.
However, we choose the word-based solution for
the noisy channel model because of simple imple-
mentation and robust filtering with a dictionary.

4.1 Noisy Channel Model (NCM)
Noisy channel model (Church and Gale, 1991;
Mays et al., 1991) is a widely applied method for
spell checking. It assumes spelling mistakes were
introduced while inputs were passing through a
noisy communication channel. If P is the prob-
abilistic model of the noisy channel, then the cor-
rect word wy

i , from the dictionary V , correspond-
ing to the word wx

i can be found by using the fol-
lowing formula:

wy
i = argmax

w∈V
P (w|wx

i) (1)

= argmax
w∈V

P (wx
i |w)P (w)
P (wx

i)
(2)

= argmax
w∈V

P (wx
i |w)P (w) (3)

Equation 3 shows that the target word wy
i de-

pends on conditional probability P (wx
i |w) and

prior probability P (w). P (w) is calculated with
the language model, while P (wy

i |w) is calcu-
lated with the error model. The error model is
achieved with static analysis on real error sam-
ples. Since our error samples are created syn-
thetically, we build the error model with the same
confusion table with which we generated cor-
rupt data. Here, the confusion table is at the
character-level but we need a word-level confu-
sion table. In order to overcome this issue, we

88

apply the Bledsoe-Browning technique (Bledsoe
and Browning, 1959). It calculates the word-level
confusion probability by multiplying the confu-
sion probability of the letters as in Equation 4.

P (wy
i |wx

i) =
i∏
n

P (lyi |lxi) (4)

4.2 Neural Encoder-Decoder Model (NEDM)
From a different perspective, the text normaliza-
tion task can be considered as a text regeneration
process starting with the information extracted
from noisy data. We can view text reconstruction
as rewriting new text with same meaning. Dur-
ing generation, the text process model (encoder)
extracts abstract information from un-normalized
text. The generalization model (decoder) starts
to generate the text once it receives information
from the text processing model. The generation
model is trained by maximizing the probability of
the generated text, P (Y). According to the chain
rule, it is decomposed into:

P (Y) =
M∏
t=1

p(yi|y1, y2, . . . , yi−1) (5)

where M is the length of the sequence, and
yi is a unit in the sequence. Therefore, we need
a model that learns the conditional distributions:
p(yi|y1, y2, . . . , yi−1).

Figure 2: Encoder-decoder model.

The encoder-decoder model in (Cho et al.,
2014) works in a similar fashion. It divides many-
to-many mappings into many-to-one and one-to-
many mappings. The encoder does a many-to-one
mapping, while the decoder performs a one-to-
many mapping. Both the encoder and the decoder
are recurrent neural networks. One of the advan-
tages of this model is that the encoder and the de-
coder are jointly trained to maximize the condi-
tional probability, P (Y |X).

P (Y |X) =
M∏
t=1

p(lyi |ly1 , ly2 , . . . , lyi−1, X) (6)

As the Figure 2 and Equation 6 show, the en-
coder extracts abstract information W from input
X , and then the decoder starts generating target
text sequentially with the information that comes
from the encoder and the previous time step.

5 Experiment and Results

5.1 Dataset

In the experiments, we use both synthetic and au-
thentic data. We train/build our models with syn-
thetic data because of limited access to the real
cases and difficulties of building ground truth.
Nevertheless, we conduct tests both on synthetic
and real data that we have collected. 3

5.1.1 Synthetic Data

The synthetic dataset used in our experiments is
built by scrawling raw text from news websites
such as “tianshannet.com”, “okyan.com” and “uy-
cnr.cn”. In total, we collected 2GB of data for
training and testing, 10 text files of different gen-
res, each of which includes around 586 words.
Note that these data are written in UPAA, while we
convert them to the CTA format for convenience.

The training of the encoder-decoder model uses
pairs of source and target sequences. Target se-
quences are collected from raw text, while source
sequences are created synthetically by randomly
replacing letters in the target sequence using the
mapping shown in Table 4. Notice that words in
synthetic UULA text may include more characters
than ground-truth target words. This is caused by
replacing some single letters by double letters. For
example, ş to sh , ç to ch, and so on. To ensure that
corresponding words in source-target pairs have
the same length, we pad n “w”s at the end of a
target word whose corresponding source word in-
cludes n additional letters. The reason for choos-
ing the character “w” is that it is not in CTA. Sim-
ilarly, we generate the target and source text for
testing. However, for more convincing test results
on synthetic data, we generated 10 different source
texts for each of the target text. Testing results on
each of the synthetic files are the mean of 10 cases,
while the final accuracy of all synthetic data is the
mean of all the results on the synthetic files.

3The Noisy Uyghur Text Dataset used in this study is
freely accessible from the URL: http://kovan.ceng.
metu.edu.tr/˜osman.

89

5.1.2 Real Data
We collect 226 sentences (1372 words in total)
from social media platforms such as “Wechat”,
“Facebook” and so on. For building the ground
truth, we first use our model for restoration. Sec-
ondly, we restore texts manually. Finally, we apply
a spell-checker for further restoring. While col-
lecting real data and building the corresponding
ground, we found that the real data has more noise
than the usual UULA. We found in real data that
there are various types of spelling errors, misuse
of punctuation and repetitions.

5.2 Implementation Details

5.2.1 Neural Encoder-Decoder Model
We built our neural encoder-decoder model with
TensorFlow (Abadi et al., 2015). Both encoder
and decoder models used three layers stacked
LSTMs with 256 hidden units and 256 dimension
character embeddings. For training the model, the
Adam optimizer with 0.0001 learning rate is ap-
plied. We trained the model in only 2 epochs with
a 128 batch size. We selected the model with the
best validation results on the validation set that is
described below. The training process is accom-
plished on Tesla K40 GPU.

In this model, the length of the target and the
source sequences is 30, and, instead of special to-
kens, blank space is placed at the beginning and
the end of a sequence. Note that these sequences
are constructed by grouping words in the raw text
by keeping sequence length under 30. We build
them as follows: First, we tokenize the text with
blank space or new line character, then we ap-
pend a blank space to the beginning of each to-
ken. Then, we concatenate them in order by keep-
ing the sequence length at maximum 30. If con-
catenating the next word makes the current se-
quence length bigger than 30, then only blank
spaces are appended. However, the new sequence
will start from the next word. In total, we gen-
erate 63,824,760 sequences. We divide them into
training, validation and testing sets in this portion:
60%, 20%, 20%.

5.2.2 Noisy Channel Model
The channel probability, in other words, the error
model, in the NCM is generated according to the
Table 1. For example, the probability of l1=‘ş’
turning into l2=‘x’, p(l2|l1) is 1/3, since ş has
three alternatives. We generate a 3-gram language

model by running Kenlm language modeling tool
(Heafield, 2011) on our collected text.

The Noisy channel model method normalizes
the text word-by-word by selecting the most prob-
able candidate from all possible candidates by
ranking their probabilities. These candidates are
generated with Table 1. For example, the word
”xax” will have 8 candidates: “xax, şax, xex, şex,
xeş, şeş, şaş, xaş”, since both “x” and “a” have
two alternatives. According to our experiment, on
average, 1074 candidates are proposed for each
word. However, we filter these candidates with
the use of a dictionary. The dictionary includes all
unique words from the raw text. With this dictio-
nary filter, 1074 candidates are filtered to an aver-
age of 1.6 candidates. After filtering, a candidate
is passed to the noisy channel model to find the
candidate with the highest likelihood. If all candi-
dates are filtered, then the original is kept.

5.3 Results and Analysis
The performance of two models is evaluated by
conducting two tests: UULA text restoration test
and the IME recommendation test. The former
tests the accuracy the model on restoring docu-
ments with UULA noise. On the other hand, the
latter checks a model’s prediction accuracy of the
word being typed. In the IME recommendation
test, we conjecture that the models have limited
access to previous words. Therefore, we test two
models by providing a limited number of previous
words to them (at most two words in IME testing).
In fact, the noisy channel model always has lim-
ited access to the previous context, therefore its
results are the same for two tests.

Accuracy results of the tests are calculated as in
Equation 7.

Accuracy =
of correct words

of words
(7)

where “correct words” means correctly recom-
mended or restored words. We did not calculate
the precision-recall value, since the recall is al-
ways equal to 1, and precision is equal to the ac-
curacy.

From Table 6, we can see both the neural
encoder-decoder model and the noisy channel
model show high performance on the synthetic
dataset. However, the noisy channel model is
slightly better than the encoder-decoder model.
Table 7 shows that both of the models are suit-
able for developing IME specialized for UULA

90

restoration. However, the 2-gram noisy channel
model returns the best performance. We believe
that there are three possible explanations for why
the NCM outperforms the NEDM on the synthetic
dataset: 1) The dictionary used in NCM is very
robust, it filters out almost all of the unqualified
candidates. 2) The channel model used in NCM is
too ideal because it is exactly calculated not gen-
erally approximated. 3) The NEDM model needs
more training with synthetic data pairs.

In the real cases as Table 8 shows, the neural
encoder-decoder model is slightly better than the
noisy channel model. In the real dataset, some
words are not included in the dictionary, there-
fore noisy channel model cannot restore them cor-
rectly. Besides, other factors such as spelling er-
rors, misuse of punctuation and redundant repeat-
ing bring more challenges to the noisy channel
model as compared to the neural encoder-decoder
model, since the former works at word-level but
the latter at character-level.

Table 6: The results of UULA restoration on syn-
thetic dataset (Before restoration, the accuracy is
19.40 ± 0.03).

Model Accuracy (%)
NEDM 93.09± 2.21

NCM 1-gram 94.16± 0.08
NCM 2-gram 94.54 ± 0.11
NCM 3-gram 94.52± 0.11

Table 7: The results of IME recommendation on
synthetic dataset.

N-gram NEDM (%) NCM (%)
1-gram 91.65 94.16
2-gram 94.38 94.54

Table 8: The results of UULA restoration on real
noisy data (Before restoration, the accuracy is
26.14 %).

Model Accuracy (%)
NEDM 65.69

NCM 2-gram 64.95

In Tables 9, 10 and Figure 3, the qualitative re-
sults are given, where both NCM and NEDM fail
to restore certain noisy words. The NCM fails
in restoring a noisy word when the corresponding

Table 9: Examples of comparison of two mod-
els and the baselines on synthetic UULA texts
(Underlined means the original noisy text. Italic
means the text is erroneously restored to non-
standard text. Bold means the text is wrongly re-
stored to an unwanted (but in dictionary) text).

Sentences
UULA pütukqilek tarehiy nayayeti uzun bir kesip.

qademda orda-saraylargha, yamulgha mex-
sus pütvkqeler qoyulğan.

Baseline pütükçilik tarixiy nahayiti uzun bir kesip.
qedimde orda-saraylarğa, yamulğa mexsus
pütükçiler qoyulğan.

NCM pütükçilik tarixiy nahayiti uzun bir kesip.
qedemde orda-saraylargha, yamulgha mex-
sus pütvkqeler qoyulğan.

NEDM pütükçilik tarixiy nahayiti uzun bir kesip.
qedemde orda-saraylarğa, yamulğa mexsus
pütükçiler qoyulğan.

UULA tulum ilgerki zamanlardeki uyghurlar
saparga çeqkan vaketta ozuq-tvlvk we başka
lazematlik turmux buyumlerine kaqilayde-
han tëriden yasalhan halta yam xundakla
kadimki uygurlar eshlitip kalgan muyem
qatnax korallerining biri.

Baseline tulum ilgirki zamanlardiki uyğurlar seperge
çiqqan vaqitta ozuq-tülük ve başqa lazimet-
lik turmuş buyumlirini qaçilaydiğan téridin
yasalğan xalta hem şundaqla qedimki
uyğurlar işlitip kelgen muhim qatnaş
qoralliriniñ biri.

NCM tulum ilgirki zamanlardiki uyğurlar seperge
çiqqan vaqitta ozuq-tülük ve başqa lazimet-
lik turmuş buyumlirini qaçilaydiğan téridin
yasalğan xalta hem şundaqla qedimki
uyğurlar işlitip kelgen muhim qatnaş
qoralliriniñ biri.

NEDM tulum ilgirki zamanlardiki uyğurlar seperge
çiqqan vaqitta ozuq-tülük ve başqa lazimet-
lik turmuş buyumlirini qaçilaydiğan téridin
yasalğan xalta hem şundaqla qedimki
uyğurlar işlitip qalğan muhim qatnaş
qoralliriniñ biri.

Table 10: Examples of comparison of two models
and the baselines on real UULA texts (The text
formatting has the same meaning as in Table 9).

Sentences
UULA nur xirkitinig adrisini bildihanlar bamu?

Baseline nur şirkitiniñ adrésini bilidiğanlar barmu?
NCM nur şirkitiniñ adrisini bildihanlar bamu?

NEDM nur şirkitiniñ adrisini bildiğanlar bamu?
UULA muxu hakta taklip pikir berilsa?

Baseline muşu heqte teklip pikir bérilse?
NCM muşu hakta teklip pikir bérilse?

NEDM muşu heqte teklip pikir birilse?
UULA chishliri chushup ketkuche eytiptu bichare

ashiq boway
Baseline çişliri çüşüp ketküçe éytiptu biçare aşiq bovay

NCM çişliri çüşüp ketküçe éytiptu biçare aşiq bovay
NEDM çişliri çüşüp ketküçi éytiptu biçare aşiq bovay

91

original word does not appear in the dictionary or
has an ignorable N-gram score. Meanwhile, the
NEDM model tends to map characters to popu-
lar patterns. Therefore, in a few cases, it restores
noisy words to unexpected ones.

Figure 3: An example output of the neural
encoder-decoder model on a subset of the syn-
thetic UULA text (Top and bottom left part are the
same ground truth, top right is the UULA, bottom
right is the restoration. Blue highlights are differ-
ences.).

6 Conclusion and Future Work

In this work, we propose two models for normaliz-
ing Uyghur UULA texts. The noisy channel model
views the problem as a spell-checking problem,
while the neural encoder-decoder model views it
as a machine translation problem. Both of them re-
turn highly accurate results on restoration and rec-
ommendation tasks on the synthetic dataset. How-
ever, their accuracy on real datat would benefit
from further improvement. To improve their per-
formance on the real dataset, one possible strat-
egy is to consider other noisy factors appearing in
the real dataset. In future work, we will update
our models to handle other noisy elements such as
spelling errors and the misuse of punctuation on
the real dataset. However, we believe that it is eas-

ier to adapt the neural encoder-decoder model to
the new challenges than the noisy channel model.
This is because it only requires fine-tuning on ex-
tra data for different kinds of noise, while the noisy
channel model requires redesigning of the model
structure.

7 Acknowledgement

We gratefully acknowledge the support of
NVIDIA Corporation with the donation of the
Tesla K40 GPU used for this research.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Va-
sudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2015. TensorFlow:
Large-scale machine learning on heterogeneous sys-
tems. Software available from tensorflow.org.
http://tensorflow.org/.

Ahmet Arslan. 2015. Deasciification approach to han-
dle diacritics in turkish information retrieval. Infor-
mation Processing & Management .

AiTi Aw, Min Zhang, Juan Xiao, and Jian Su. 2006.
A phrase-based statistical model for sms text nor-
malization. In Proceedings of the COLING/ACL
on Main conference poster sessions. Association for
Computational Linguistics, pages 33–40.

Richard Beaufort, Sophie Roekhaut, Louise-Amélie
Cougnon, and Cédrick Fairon. 2010. A hybrid
rule/model-based finite-state framework for normal-
izing sms messages. In Proceedings of the 48th An-
nual Meeting of the Association for Computational
Linguistics. Association for Computational Linguis-
tics, pages 770–779.

Woodrow Wilson Bledsoe and Iben Browning. 1959.
Pattern recognition and reading by machine. In Pa-
pers presented at the December 1-3, 1959, eastern
joint IRE-AIEE-ACM computer conference. ACM,
pages 225–232.

Vladimir Cherkassky and Nikolaos Vassilas. 1989.
Performance of back propagation networks for as-
sociative database retrieval. Int. J. Comput. Neural
Net .

92

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078 .

Monojit Choudhury, Rahul Saraf, Vijit Jain, Animesh
Mukherjee, Sudeshna Sarkar, and Anupam Basu.
2007. Investigation and modeling of the structure
of texting language. International journal on docu-
ment analysis and recognition 10(3):157–174.

Kenneth W Church and William A Gale. 1991. Proba-
bility scoring for spelling correction. Statistics and
Computing 1(2):93–103.

Eleanor Clark and Kenji Araki. 2011. Text normal-
ization in social media: progress, problems and
applications for a pre-processing system of casual
english. Procedia-Social and Behavioral Sciences
27:2–11.

Paul Cook and Suzanne Stevenson. 2009. An un-
supervised model for text message normalization.
In Proceedings of the workshop on computational
approaches to linguistic creativity. Association for
Computational Linguistics, pages 71–78.

Fred J Damerau. 1964. A technique for computer de-
tection and correction of spelling errors. Communi-
cations of the ACM 7(3):171–176.

Jean Rahman Duval and Walis Abdukerim Janbaz.
2006. An introduction to latin-script uyghur. In
Middle East & Central Asia Politics, Economics,
and Society Conference. pages 7–9.

Kenneth Heafield. 2011. Kenlm: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation. Asso-
ciation for Computational Linguistics, pages 187–
197.

Taishi Ikeda, Hiroyuki Shindo, and Yuji Matsumoto.
2016. Japanese text normalization with encoder-
decoder model. WNUT 2016 page 129.

Catherine Kobus, François Yvon, and Géraldine
Damnati. 2008. Normalizing sms: are two
metaphors better than one? In Proceedings of
the 22nd International Conference on Computa-
tional Linguistics-Volume 1. Association for Com-
putational Linguistics, pages 441–448.

Karen Kukich. 1992. Techniques for automatically
correcting words in text. ACM Computing Surveys
(CSUR) 24(4):377–439.

Eric Mays, Fred J Damerau, and Robert L Mercer.
1991. Context based spelling correction. Informa-
tion Processing & Management 27(5):517–522.

Rada Mihalcea and Vivi Nastase. 2002. Letter level
learning for language independent diacritics restora-
tion. In proceedings of the 6th conference on Nat-
ural language learning-Volume 20. Association for
Computational Linguistics, pages 1–7.

M Odell and R Russell. 1918. The soundex coding sys-
tem. US Patents 1261167.

Deana L Pennell and Yang Liu. 2010. Normalization
of text messages for text-to-speech. In Acoustics
Speech and Signal Processing (ICASSP), 2010 IEEE
International Conference on. IEEE, pages 4842–
4845.

Edward M Riseman and Allen R Hanson. 1974. A
contextual postprocessing system for error correc-
tion using binary n-grams. IEEE Transactions on
Computers 100(5):480–493.

Richard Sproat, Alan W Black, Stanley Chen, Shankar
Kumar, Mari Ostendorf, and Christopher Richards.
2001. Normalization of non-standard words. Com-
puter speech & language 15(3):287–333.

Ziang Xie, Anand Avati, Naveen Arivazhagan, Dan Ju-
rafsky, and Andrew Y Ng. 2016. Neural language
correction with character-based attention. arXiv
preprint arXiv:1603.09727 .

Emmanuel J Yannakoudakis and David Fawthrop.
1983. The rules of spelling errors. Information Pro-
cessing & Management 19(2):87–99.

93

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 94–106
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

Crowdsourcing Multiple Choice Science Questions
Johannes Welbl⇤

Computer Science Department
University College London
j.welbl@cs.ucl.ac.uk

Nelson F. Liu⇤

Paul G. Allen School of
Computer Science & Engineering

University of Washington
nfliu@cs.washington.edu

Matt Gardner
Allen Institute for Artificial Intelligence

mattg@allenai.org

Abstract

We present a novel method for obtain-
ing high-quality, domain-targeted multi-
ple choice questions from crowd workers.
Generating these questions can be difficult
without trading away originality, relevance
or diversity in the answer options. Our
method addresses these problems by lever-
aging a large corpus of domain-specific
text and a small set of existing ques-
tions. It produces model suggestions for
document selection and answer distractor
choice which aid the human question gen-
eration process. With this method we have
assembled SciQ, a dataset of 13.7K mul-
tiple choice science exam questions.1 We
demonstrate that the method produces in-
domain questions by providing an analysis
of this new dataset and by showing that hu-
mans cannot distinguish the crowdsourced
questions from original questions. When
using SciQ as additional training data to
existing questions, we observe accuracy
improvements on real science exams.

1 Introduction

The construction of large, high-quality datasets
has been one of the main drivers of progress in
NLP. The recent proliferation of datasets for tex-
tual entailment, reading comprehension and Ques-
tion Answering (QA) (Bowman et al., 2015; Her-
mann et al., 2015; Rajpurkar et al., 2016; Hill
et al., 2015; Hewlett et al., 2016; Nguyen et al.,
2016) has allowed for advances on these tasks,
particularly with neural models (Kadlec et al.,

*Work done while at the Allen Institute for Artificial In-
telligence.

1Dataset available at http://allenai.org/data.
html

2016; Dhingra et al., 2016; Sordoni et al., 2016;
Seo et al., 2016). These recent datasets cover
broad and general domains, but progress on these
datasets has not translated into similar improve-
ments in more targeted domains, such as science
exam QA.

Science exam QA is a high-level NLP task
which requires the mastery and integration of in-
formation extraction, reading comprehension and
common sense reasoning (Clark et al., 2013;
Clark, 2015). Consider, for example, the ques-
tion “With which force does the moon affect tidal
movements of the oceans?”. To solve it, a model
must possess an abstract understanding of nat-
ural phenomena and apply it to new questions.
This transfer of general and domain-specific back-
ground knowledge into new scenarios poses a
formidable challenge, one which modern statisti-
cal techniques currently struggle with. In a re-
cent Kaggle competition addressing 8th grade sci-
ence questions (Schoenick et al., 2016), the high-
est scoring systems achieved only 60% on a mul-
tiple choice test, with retrieval-based systems far
outperforming neural systems.

A major bottleneck for applying sophisticated
statistical techniques to science QA is the lack of
large in-domain training sets. Creating a large,
multiple choice science QA dataset is challeng-
ing, since crowd workers cannot be expected to
have domain expertise, and questions can lack rel-
evance and diversity in structure and content. Fur-
thermore, poorly chosen answer distractors in a
multiple choice setting can make questions almost
trivial to solve.

The first contribution of this paper is a general
method for mitigating the difficulties of crowd-
sourcing QA data, with a particular focus on mul-
tiple choice science questions. The method is
broadly similar to other recent work (Rajpurkar
et al., 2016), relying mainly on showing crowd

94

Example 1 Example 2 Example 3 Example 4
Q: What type of organism is
commonly used in preparation of
foods such as cheese and yogurt?

Q: What phenomenon
makes global winds blow
northeast to southwest or
the reverse in the northern
hemisphere and northwest
to southeast or the reverse
in the southern hemisphere?

Q: Changes from a less-ordered
state to a more-ordered state
(such as a liquid to a solid) are
always what?

Q: What is the
least danger-
ous radioactive
decay?

1) mesophilic organisms 1) coriolis e�ect 1) exothermic 1) alpha decay
2) protozoa 2) muon e�ect 2) unbalanced 2) beta decay
3) gymnosperms 3) centrifugal e�ect 3) reactive 3) gamma decay
4) viruses 4) tropical e�ect 4) endothermic 4) zeta decay
Mesophiles grow best in mod-
erate temperature, typically be-
tween 25�C and 40�C (77�F
and 104�F). Mesophiles are often
found living in or on the bod-
ies of humans or other animals.
The optimal growth temperature
of many pathogenic mesophiles is
37�C (98�F), the normal human
body temperature. Mesophilic
organisms have important uses
in food preparation, including
cheese, yogurt, beer and wine.

Without Coriolis E�ect the
global winds would blow
north to south or south
to north. But Coriolis
makes them blow north-
east to southwest or the re-
verse in the Northern Hemi-
sphere. The winds blow
northwest to southeast or
the reverse in the southern
hemisphere.

Summary Changes of state are
examples of phase changes, or
phase transitions. All phase
changes are accompanied by
changes in the energy of a sys-
tem. Changes from a more-
ordered state to a less-ordered
state (such as a liquid to a gas)
are endothermic. Changes from
a less-ordered state to a more-
ordered state (such as a liquid to
a solid) are always exothermic.
The conversion . . .

All radioactive
decay is dan-
gerous to living
things, but al-
pha decay is the
least dangerous.

1

Figure 1: The first four SciQ training set examples. An instance consists of a question and 4 answer op-
tions (the correct one in green). Most instances come with the document used to formulate the question.

workers a passage of text and having them ask
a question about it. However, unlike previous
dataset construction tasks, we (1) need domain-
relevant passages and questions, and (2) seek
to create multiple choice questions, not direct-
answer questions.

We use a two-step process to solve these prob-
lems, first using a noisy classifier to find relevant
passages and showing several options to workers
to select from when generating a question. Sec-
ond, we use a model trained on real science exam
questions to predict good answer distractors given
a question and a correct answer. We use these pre-
dictions to aid crowd workers in transforming the
question produced from the first step into a multi-
ple choice question. Thus, with our methodology
we leverage existing study texts and science ques-
tions to obtain new, relevant questions and plau-
sible answer distractors. Consequently, the human
intelligence task is shifted away from a purely gen-
erative task (which is slow, difficult, expensive and
can lack diversity in the outcomes when repeated)
and reframed in terms of a selection, modification
and validation task (being faster, easier, cheaper
and with content variability induced by the sug-
gestions provided).

The second contribution of this paper is a
dataset constructed by following this methodol-
ogy. With a total budget of $10,415, we collected
13,679 multiple choice science questions, which

we call SciQ. Figure 1 shows the first four train-
ing examples in SciQ. This dataset has a multiple
choice version, where the task is to select the cor-
rect answer using whatever background informa-
tion a system can find given a question and several
answer options, and a direct answer version, where
given a passage and a question a system must pre-
dict the span within the passage that answers the
question. With experiments using recent state-of-
the-art reading comprehension methods, we show
that this is a useful dataset for further research. In-
terestingly, neural models do not beat simple infor-
mation retrieval baselines on the multiple choice
version of this dataset, leaving room for research
on applying neural models in settings where train-
ing examples number in the tens of thousands, in-
stead of hundreds of thousands. We also show that
using SciQ as an additional source of training data
improves performance on real 4th and 8th grade
exam questions, proving that our method success-
fully produces useful in-domain training data.

2 Related Work

Dataset Construction. A lot of recent work has
focused on constructing large datasets suitable for
training neural models. QA datasets have been as-
sembled based on Freebase (Berant et al., 2013;
Bordes et al., 2015), Wikipedia articles (Yang
et al., 2015; Rajpurkar et al., 2016; Hewlett et al.,

95

2016) and web search user queries (Nguyen et al.,
2016); for reading comprehension (RC) based on
news (Hermann et al., 2015; Onishi et al., 2016),
children books (Hill et al., 2015) and novels (Pa-
perno et al., 2016), and for recognizing textual en-
tailment based on image captions (Bowman et al.,
2015). We continue this line of work and construct
a dataset for science exam QA. Our dataset dif-
fers from some of the aforementioned datasets in
that it consists of natural language questions pro-
duced by people, instead of cloze-style questions.
It also differs from prior work in that we aim at
the narrower domain of science exams and in that
we produce multiple choice questions, which are
more difficult to generate.

Science Exam Question Answering. Exist-
ing models for multiple-choice science exam QA
vary in their reasoning framework and training
methodology. A set of sub-problems and solution
strategies are outlined in Clark et al. (2013). The
method described by Li and Clark (2015) eval-
uates the coherence of a scene constructed from
the question enriched with background KB infor-
mation, while Sachan et al. (2016) train an en-
tailment model that derives the correct answer
from background knowledge aligned with a max-
margin ranker. Probabilistic reasoning approaches
include Markov logic networks (Khot et al., 2015)
and an integer linear program-based model that
assembles proof chains over structured knowl-
edge (Khashabi et al., 2016). The Aristo ensem-
ble (Clark et al., 2016) combines multiple rea-
soning strategies with shallow statistical methods
based on lexical co-occurrence and IR, which by
themselves provide surprisingly strong baselines.
There has not been much work applying neural
networks to this task, likely because of the paucity
of training data; this paper is an attempt to address
this issue by constructing a much larger dataset
than was previously available, and we present re-
sults of experiments using state-of-the-art reading
comprehension techniques on our datasets.

Automatic Question Generation. Transform-
ing text into questions has been tackled be-
fore, mostly for didactic purposes. Some ap-
proaches rely on syntactic transformation tem-
plates (Mitkov and Ha, 2003; Heilman and Smith,
2010), while most others generate cloze-style
questions. Our first attempts at constructing a sci-
ence question dataset followed these techniques.
We found the methods did not produce high-

quality science questions, as there were problems
with selecting relevant text, generating reasonable
distractors, and formulating coherent questions.

Several similarity measures have been em-
ployed for selecting answer distractors (Mitkov
et al., 2009), including measures derived from
WordNet (Mitkov and Ha, 2003), thesauri (Sumita
et al., 2005) and distributional context (Pino et al.,
2008; Aldabe and Maritxalar, 2010). Domain-
specific ontologies (Papasalouros et al., 2008),
phonetic or morphological similarity (Pino and
Esknazi, 2009; Correia et al., 2010), probabil-
ity scores for the question context (Mostow and
Jang, 2012) and context-sensitive lexical infer-
ence (Zesch and Melamud, 2014) have also been
used. In contrast to the aforementioned similarity-
based selection strategies, our method uses a
feature-based ranker to learn plausible distractors
from original questions. Several of the above
heuristics are used as features in this ranking
model. Feature-based distractor generation mod-
els (Sakaguchi et al., 2013) have been used in the
past by Agarwal and Mannem (2011) for creating
biology questions. Our model uses a random for-
est to rank candidates; it is agnostic towards tak-
ing cloze or humanly-generated questions, and it
is learned specifically to generate distractors that
resemble those in real science exam questions.

3 Creating a science exam QA dataset

In this section we present our method for crowd-
sourcing science exam questions. The method is
a two-step process: first we present a set of candi-
date passages to a crowd worker, letting the worker
choose one of the passages and ask a question
about it. Second, another worker takes the ques-
tion and answer generated in the first step and pro-
duces three distractors, aided by a model trained
to predict good answer distractors. The end result
is a multiple choice science question, consisting of
a question q, a passage p, a correct answer a⇤, and
a set of distractors, or incorrect answer options,
{a0}. Some example questions are shown in Fig-
ure 1. The remainder of this section elaborates on
the two steps in our question generation process.

3.1 First task: producing in-domain
questions

Conceiving an original question from scratch in
a specialized domain is surprisingly difficult; per-
forming the task repeatedly involves the danger of

96

falling into specific lexical and structural patterns.
To enforce diversity in question content and lex-
ical expression, and to inspire relevant in-domain
questions, we rely on a corpus of in-domain text
about which crowd workers ask questions. How-
ever, not all text in a large in-domain corpus, such
as a textbook, is suitable for generating questions.
We use a simple filter to narrow down the selection
to paragraphs likely to produce reasonable ques-
tions.

Base Corpus. Choosing a relevant, in-domain
base corpus to inspire the questions is of crucial
importance for the overall characteristics of the
dataset. For science questions, the corpus should
consist of topics covered in school exams, but not
be too linguistically complex, specific, or loaded
with technical detail (e.g., scientific papers). We
observed that articles retrieved from web searches
for science exam keywords (e.g. “animal” and
“food”) yield a significant proportion of commer-
cial or otherwise irrelevant documents and did not
consider this further. Articles from science-related
categories in Simple Wikipedia are more targeted
and factual, but often state highly specific knowl-
edge (e.g., “Hoatzin can reach 25 inches in length
and 1.78 pounds of weight.”).

We chose science study textbooks as our base
corpus because they are directly relevant and lin-
guistically tailored towards a student audience.
They contain verbal descriptions of general nat-
ural principles instead of highly specific example
features of particular species. While the number
of resources is limited, we compiled a list of 28
books from various online learning resources, in-
cluding CK-122 and OpenStax3, who share this
material under a Creative Commons License. The
books are about biology, chemistry, earth science
and physics and span elementary level to college
introductory material. A full list of the books we
used can be found in the appendix.

Document Filter. We designed a rule-based
document filter model into which individual para-
graphs of the base corpus are fed. The system
classifies individual sentences and accepts a para-
graph if a minimum number of sentences is ac-
cepted. With a small manually annotated dataset
of sentences labelled as either relevant or irrele-
vant, the filter was designed iteratively by adding
filter rules to first improve precision and then re-

2www.ck12.org
3www.openstax.org

call on a held-out validation set. The final fil-
ter included lexical, grammatical, pragmatical and
complexity based rules. Specifically, sentences
were filtered out if they i) were a question or ex-
clamation ii) had no verb phrase iii) contained
modal verbs iv) contained imperative phrases v)
contained demonstrative pronouns vi) contained
personal pronouns other than third-person vii) be-
gan with a pronoun viii) contained first names
ix) had less than 6 or more than 18 tokens or
more than 2 commas x) contained special char-
acters other than punctuation xi) had more than
three tokens beginning uppercase xii) mentioned
a graph, table or web link xiii) began with a dis-
course marker (e.g. ‘Nonetheless’) xiv) contained
absoulute wording (e.g. ‘never’, ‘nothing’, ‘def-
initely’) xv) contained instructional vocabulary (
‘teacher’, ‘worksheet’, . . .).

Besides the last, these rules are all generally
applicable in other domains to identify simple
declarative statements in a corpus.

Question Formulation Task. To actually gen-
erate in-domain QA pairs, we presented the fil-
tered, in-domain text to crowd workers and had
them ask a question that could be answered by
the presented passage. Although most undesirable
paragraphs had been filtered out beforehand, a
non-negligible proportion of irrelevant documents
remained. To circumvent this problem, we showed
each worker three textbook paragraphs and gave
them the freedom to choose one or to reject all
of them if irrelevant. Once a paragraph had been
chosen, it was not reused to formulate more ques-
tions about it. We further specified desirable char-
acteristics of science exam questions: no yes/no
questions, not requiring further context, query-
ing general principles rather than highly specific
facts, question length between 6-30 words, answer
length up to 3 words (preferring shorter), no am-
biguous questions, answers clear from paragraph
chosen. Examples for both desirable and undesir-
able questions were given, with explanations for
why they were good or bad examples. Further-
more we encouraged workers to give feedback,
and a contact email was provided to address up-
coming questions directly; multiple crowdwork-
ers made use of this opportunity. The task was
advertised on Amazon Mechanical Turk, requiring
Master’s status for the crowdworkers, and paying
a compensation of 0.30$ per HIT. A total of 175
workers participated in the whole crowdsourcing

97

project.
In 12.1% of the cases all three documents were

rejected, much fewer than if a single document had
been presented (assuming the same proportion of
relevant documents). Thus, besides being more
economical, proposing several documents reduces
the risk of generating irrelevant questions and in
the best case helps match a crowdworker’s indi-
vidual preferences.

3.2 Second task: selecting distractors
Generating convincing answer distractors is of
great importance, since bad distractors can make
a question trivial to solve. When writing science
questions ourselves, we found that finding rea-
sonable distractors was the most time-consuming
part overall. Thus, we support the process in our
crowdsourcing task with model-generated answer
distractor suggestions. This primed the workers
with relevant examples, and we allowed them to
use the suggested distractors directly if they were
good enough. We next discuss characteristics of
good answer distractors, propose and evaluate a
model for suggesting such distractors, and de-
scribe the crowdsourcing task that uses them.

Distractor Characteristics. Multiple choice
science questions with nonsensical incorrect an-
swer options are not interesting as a task to study,
nor are they useful for training a model to do well
on real science exams, as the model would not
need to do any kind of science reasoning to answer
the training questions correctly. The difficulty in
generating a good multiple choice question, then,
lies not in identifying expressions which are false
answers to q, but in generating expressions which
are plausible false answers. Concretely, besides
being false answers, good distractors should thus:

• be grammatically consistent: for the question
“When animals use energy, what is always
produced?” a noun phrase is expected.

• be consistent with respect to abstract proper-
ties: if the correct answer belongs to a certain
category (e.g., chemical elements) good dis-
tractors likely should as well.

• be consistent with the semantic context of the
question: a question about animals and en-
ergy should not have newspaper or bingo as
distractors.

Distractor Model Overview. We now intro-
duce a model which generates plausible answer

distrators and takes into account the above criteria.
On a basic level, it ranks candidates from a large
collection C of possible distractors and selects the
highest scoring items. Its ranking function

r : (q, a⇤, a0) 7! sa0 2 [0, 1] (1)

produces a confidence score sa0 for whether a0 2
C is a good distractor in the context of question q
and correct answer a⇤. For r we use the scoring
function sa0 = P (a0 is good | q, a⇤) of a binary
classifier which distinguishes plausible (good) dis-
tractors from random (bad) distractors based on
features �(q, a⇤, a0). For classification, we train r
on actual in-domain questions with observed false
answers as the plausible (good) distractors, and
random expressions as negative examples, sam-
pled in equal proportion from C. As classifier we
chose a random forest (Breiman, 2001), because
of its robust performance in small and mid-sized
data settings and its power to incorporate nonlin-
ear feature interactions, in contrast, e.g., to logistic
regression.

Distractor Model Features. This section de-
scribes the features �(q, a⇤, a0) used by the dis-
tractor ranking model. With these features, the
distractor model can learn characteristics of real
distractors from original questions and will sug-
gest those distractors that it deems the most realis-
tic for a question. The following features of ques-
tion q, correct answer a⇤ and a tentative distractor
expression a0 were used:

• bags of GloV e embeddings for q, a⇤ and a0;

• an indicator for POS-tag consistency of a⇤

and a0;

• singular/plural consistency of a⇤ and a0;

• log. avg. word frequency in a⇤ and a0;

• Levenshtein string edit distance between a⇤

and a0;

• suffix consistency of a⇤ and a0 (firing e.g. for
(regeneration, exhaustion));

• token overlap indicators for q, a⇤ and a0;

• token and character length for a⇤ and a0 and
similarity therein;

• indicators for numerical content in q, a⇤ and
a0 consistency therein;

98

• indicators for units of measure in q, a⇤ and
a0, and for co-occurrence of the same unit;

• WordNet-based hypernymy indicators be-
tween tokens in q, a⇤ and a0, in both direc-
tions and potentially via two steps;

• indicators for 2-step connections between en-
tities in a⇤ and a0 via a KB based on OpenIE
triples (Mausam et al., 2012) extracted from
pages in Simple Wikipedia about anatomical
structures;

• indicators for shared Wordnet-hyponymy of
a⇤ and a0 to one of the concepts most fre-
quently generalising all three question dis-
tractors in the training set (e.g. element, or-
gan, organism).

The intuition for the knowledge-base link and
hypernymy indicator features is that they can re-
veal sibling structures of a⇤ and a0 with respect
to a shared property or hypernym. For example,
if the correct answer a⇤ is heart, then a plausible
distractor a0 like liver would share with a⇤ the hy-
ponymy relation to organ in WordNet.

Model Training. We first constructed a large
candidate distractor set C whose items were to be
ranked by the model. C contained 488,819 ex-
pressions, consisting of (1) the 400K items in the
GloVe vocabulary (Pennington et al., 2014); (2)
answer distractors observed in training questions;
(3) a list of noun phrases from Simple Wikipedia
articles about body parts; (4) a noun vocabulary of
⇠6000 expressions extracted from primary school
science texts. In examples where a⇤ consisted of
multiple tokens, we added to C any expression
that could be obtained by exchanging one unigram
in a⇤ with another unigram from C.

The model was then trained on a set of 3705 sci-
ence exam questions (4th and 8th grade) , separated
into 80% training questions and 20% validation
questions. Each question came with four answer
options, providing three good distractor examples.
We used scikit-learn’s implementation of ran-
dom forests with default parameters. We used 500
trees and enforced at least 4 samples per tree leaf.

Distractor Model Evaluation. Our model
achieved 99, 4% training and 94, 2% validation ac-
curacy overall. Example predictions of the dis-
tractor model are shown in Table 1. Qualita-
tively, the predictions appear acceptable in most
cases, though the quality is not high enough to use

them directly without additional filtering by crowd
workers. In many cases the distractor is semanti-
cally related, but does not have the correct type
(e.g., in column 1, “nutrient” and “soil” are not el-
ements). Some predictions are misaligned in their
level of specificity (e.g. “frogs” in column 3), and
multiword expressions were more likely to be un-
related or ungrammatical despite the inclusion of
part of speech features. Even where the predicted
distractors are not fully coherent, showing them to
a crowd worker still has a positive priming effect,
helping the worker generate good distractors ei-
ther by providing nearly-good-enough candidates,
or by forcing the worker to think why a suggestion
is not a good distractor for the question.

Distractor Selection Task. To actually gener-
ate a multiple choice science question, we show
the result of the first task, a (q, a⇤) pair, to a crowd
worker, along with the top six distractors sug-
gested from the previously described model. The
goal of this task is two-fold: (1) quality control
(validating a previously generated (q, a⇤) pair),
and (2) validating the predicted distractors or writ-
ing new ones if necessary.

The first instruction was to judge whether the
question could appear in a school science exam;
questions could be marked as ungrammatical, hav-
ing a false answer, being unrelated to science or re-
quiring very specific background knowledge. The
total proportion of questions passing was 92.8%.

The second instruction was to select up to two
of the six suggested distractors, and to write at
least one distractor by themselves such that there
is a total of three. The requirement for the worker
to generate one of their own distractors, instead of
being allowed to select three predicted distractors,
was added after an initial pilot of the task, as we
found that it forced workers to engage more with
the task and resulted in higher quality distractors.

We gave examples of desirable and undesir-
able distractors and the opportunity to provide
feedback, as before. We advertised the task on
Amazon Mechanical Turk, paying 0.2$ per HIT,
again requiring AMT Master’s status. On aver-
age, crowd workers found the predicted distrac-
tors good enough to include in the final question
around half of the time, resulting in 36.1% of the
distractors in the final dataset being generated by
the model (because workers were only allowed to
pick two predicted distractors, the theoretical max-
imum is 66%). Acceptance rates were higher in

99

Q: Compounds containing an
atom of what element, bonded
in a hydrocarbon framework,
are classified as amines?

Q: Elements have or-
bitals that are filled with
what?

Q: Many species use
their body shape and col-
oration to avoid being de-
tected by what?

Q: The small amount of energy
input necessary for all chemi-
cal reactions to occur is called
what?

A: nitrogen A: electrons A: predators A: activation energy
oxygen (0.982) ions (0.975) viruses (0.912) conversely energy (0.987)
hydrogen (0.962) atoms (0.959) ecosystems (0.896) decomposition energy (0.984)
nutrient (0.942) crystals (0.952) frogs (0.896) membrane energy (0.982)
calcium (0.938) protons (0.951) distances (0.8952) motion energy (0.982)
silicon (0.938) neutrons (0.946) males (0.877) context energy (0.981)
soil (0.9365) photons (0.912) crocodiles (0.869) distinct energy (0.980)

Table 1: Selected distractor prediction model outputs. For each QA pair, the top six predictions are
listed in row 3 (ranking score in parentheses). Boldfaced candidates were accepted by crowd workers.

the case of short answers, with almost none ac-
cepted for the few cases with very long answers.

The remainder of this paper will investigate
properties of SciQ, the dataset we generated by
following the methodology described in this sec-
tion. We present system and human performance,
and we show that SciQ can be used as additional
training data to improve model performance on
real science exams.

Figure 2: Total counts of question, answer and dis-
tractor length, measured in number of tokens, cal-
culated across the training set.

Model Accuracy

Aristo 77.4
Lucene 80.0
TableILP 31.8

AS Reader 74.1
GA Reader 73.8

Humans 87.8 ± 0.045

Table 2: Test set accuracy of existing models on
the multiple choice version of SciQ.

3.3 Dataset properties

SciQ has a total of 13,679 multiple choice ques-
tions. We randomly shuffled this dataset and split
it into training, validation and test portions, with
1000 questions in each of the validation and test
portions, and the remainder in train. In Figure 2
we show the distribution of question and answer
lengths in the data. For the most part, questions
and answers in the dataset are relatively short,
though there are some longer questions.

Each question also has an associated passage
used when generating the question. Because the
multiple choice question is trivial to answer when
given the correct passage, the multiple choice ver-
sion of SciQ does not include the passage; systems
must retrieve their own background knowledge
when answering the question. Because we have
the associated passage, we additionally created a
direct-answer version of SciQ, which has the pas-
sage and the question, but no answer options. A
small percentage of the passages were obtained
from unreleasable texts, so the direct answer ver-
sion of SciQ is slightly smaller, with 10481 ques-
tions in train, 887 in dev, and 884 in test.

Qualitative Evaluation. We created a crowd-
sourcing task with the following setup: A person
was presented with an original science exam ques-
tion and a crowdsourced question. The instruc-
tions were to choose which of the two questions
was more likely to be the real exam question. We
randomly drew 100 original questions and 100 in-
stances from the SciQ training set and presented
the two options in random order. People identi-
fied the science exam question in 55% of the cases,
which falls below the significance level of p=0.05
under a null hypothesis of a random guess4.

4using normal approximation

100

4 SciQ Experiments

4.1 System performance

We evaluated several state-of-the-art science QA
systems, reading comprehension models, and hu-
man performance on SciQ.

Multiple Choice Setting. We used the Aristo
ensemble (Clark et al., 2016), and two of its indi-
vidual components: a simple information retrieval
baseline (Lucene), and a table-based integer linear
programming model (TableILP), to evaluate SciQ.
We also evaluate two competitive neural reading
comprehension models: the Attention Sum Reader
(AS Reader, a GRU with a pointer-attention mech-
anism; Kadlec et al. (2016)) and the Gated At-
tention Reader (GA Reader, an AS Reader with
additional gated attention layers; Dhingra et al.
(2016)). These reading comprehension methods
require a supporting text passage to answer a ques-
tion. We use the same corpus as Aristo’s Lucene
component to retrieve a text passage, by formulat-
ing five queries based on the question and answer5

and then concatenating the top three results from
each query into a passage. We train the reading
comprehension models on the training set with hy-
perparameters recommended by prior work ((On-
ishi et al., 2016) for the AS Reader and (Dhingra
et al., 2016) for the GA Reader), with early stop-
ping on the validation data6. Human accuracy is
estimated using a sampled subset of 650 questions,
with 13 different people each answering 50 ques-
tions. When answering the questions, people were
allowed to query the web, just as the systems were.

Table 2 shows the results of this evaluation.
Aristo performance is slightly better on this set
than on real science exams (where Aristo achieves
71.3% accuracy (Clark et al., 2016)).7 Because
TableILP uses a hand-collected set of background
knowledge that does not cover the topics in SciQ,
its performance is substantially worse here than on
its original test set. Neural models perform rea-
sonably well on this dataset, though, interestingly,
they are not able to outperform a very simple infor-
mation retrieval baseline, even when using exactly
the same background information. This suggests
that SciQ is a useful dataset for studying reading
comprehension models in medium-data settings.

5The question text itself, plus each of the four answer op-
tions appended to the question text.

6For training and hyperparameter details, see Appendix
7We did not retrain the Aristo ensemble for SciQ; it might

overly rely on TableILP, which does not perform well here.

Dataset AS Reader GA Reader

4th grade 40.7% 37.6%
4th grade + SciQ 45.0% 45.4%
Difference +4.3% +7.8%

8th grade 41.2% 41.0%
8th grade + SciQ 43.0% 44.3%
Difference +1.8% +3.3%

Table 3: Model accuracies on real science ques-
tions validation set when trained on 4th / 8th grade
exam questions alone, and when adding SciQ.

Direct Answer Setting. We additionally
present a baseline on the direct answer version
of SciQ. We use the Bidirectional Attention Flow
model (BiDAF; Seo et al. (2016)), which recently
achieved state-of-the-art results on SQuAD (Ra-
jpurkar et al., 2016). We trained BiDAF on the
training portion of SciQ and evaluated on the test
set. BiDAF achieves a 66.7% exact match and
75.7 F1 score, which is 1.3% and 1.6% below the
model’s performance on SQuAD.

4.2 Using SciQ to answer exam questions

Our last experiment with SciQ shows its useful-
ness as training data for models that answer real
science questions. We collected a corpus of 4th

and 8th grade science exam questions and used the
AS Reader and GA Reader to answer these ques-
tions.8 Table 3 shows model performances when
only using real science questions as training data,
and when augmenting the training data with SciQ.
By adding SciQ, performance for both the AS
Reader and the GA Reader improves on both grade
levels, in a few cases substantially. This contrasts
with our earlier attempts using purely synthetic
data, where we saw models overfit the synthetic
data and an overall performance decrease. Our
successful transfer of information from SciQ to
real science exam questions shows that the ques-
tion distribution is similar to that of real science
questions.

5 Conclusion

We have presented a method for crowdsourcing
the creation of multiple choice QA data, with

8There are approx. 3200 8th grade training questions and
1200 4th grade training questions. Some of the questions
come from www.allenai.org/data, some are propri-
etary.

101

a particular focus on science questions. Using
this methodology, we have constructed a dataset
of 13.7K science questions, called SciQ, which
we release for future research. We have shown
through baseline evaluations that this dataset is a
useful research resource, both to investigate neu-
ral model performance in medium-sized data set-
tings, and to augment training data for answering
real science exam questions.

There are multiple strands for possible future
work. One direction is a systematic exploration of
multitask settings to best exploit this new dataset.
Possible extensions for the direction of generating
answer distractors could lie in the adaptation of
this idea in negative sampling, e.g. in KB popula-
tion. Another direction is to further bootstrap the
data we obtained to improve automatic document
selection, question generation and distractor pre-
diction to generate questions fully automatically.

References
Manish Agarwal and Prashanth Mannem. 2011. Auto-

matic gap-fill question generation from text books.
In Proceedings of the 6th Workshop on Innovative
Use of NLP for Building Educational Applications.
Association for Computational Linguistics, Strouds-
burg, PA, USA, IUNLPBEA ’11, pages 56–64.
http://dl.acm.org/citation.cfm?id=2043132.2043139.

Itziar Aldabe and Montse Maritxalar. 2010. Auto-
matic Distractor Generation for Domain Specific
Texts, Springer Berlin Heidelberg, Berlin, Heidel-
berg, pages 27–38.

Jonathan Berant, Andrew Chou, Roy Frostig, and
Percy Liang. 2013. Semantic parsing on free-
base from question-answer pairs. In Proceedings
of the 2013 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2013, 18-
21 October 2013, Grand Hyatt Seattle, Seattle,
Washington, USA, A meeting of SIGDAT, a Spe-
cial Interest Group of the ACL. pages 1533–1544.
http://aclweb.org/anthology/D/D13/D13-1160.pdf.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and
Jason Weston. 2015. Large-scale simple ques-
tion answering with memory networks. CoRR
abs/1506.02075. http://arxiv.org/abs/1506.02075.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguis-
tics.

Leo Breiman. 2001. Random forests. Machine Learn-
ing 45(1):5–32.

Peter Clark. 2015. Elementary school science and
math tests as a driver for ai: Take the aristo
challenge! In Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelli-
gence. AAAI Press, AAAI’15, pages 4019–4021.
http://dl.acm.org/citation.cfm?id=2888116.2888274.

Peter Clark, Oren Etzioni, Tushar Khot, Ashish
Sabharwal, Oyvind Tafjord, Peter Turney, and
Daniel Khashabi. 2016. Combining retrieval,
statistics, and inference to answer elemen-
tary science questions. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelli-
gence. AAAI Press, AAAI’16, pages 2580–2586.
http://dl.acm.org/citation.cfm?id=3016100.3016262.

Peter Clark, Philip Harrison, and Niranjan Balasub-
ramanian. 2013. A study of the knowledge base
requirements for passing an elementary science
test. In Proceedings of the 2013 Workshop on
Automated Knowledge Base Construction. ACM,
New York, NY, USA, AKBC ’13, pages 37–42.
https://doi.org/10.1145/2509558.2509565.

Rui Correia, Jorge Baptista, Nuno Mamede, Isabel
Trancoso, and Maxine Eskenazi. 2010. Automatic
generation of cloze question distractors. In Pro-
ceedings of the Interspeech 2010 Satellite Workshop
on Second Language Studies: Acquisition, Learn-
ing, Education and Technology, Waseda University,
Tokyo, Japan.

Bhuwan Dhingra, Hanxiao Liu, William W. Cohen, and
Ruslan Salakhutdinov. 2016. Gated-attention read-
ers for text comprehension. CoRR abs/1606.01549.
http://arxiv.org/abs/1606.01549.

Michael Heilman and Noah A. Smith. 2010. Good
question! statistical ranking for question generation.
In Human Language Technologies: The 2010
Annual Conference of the North American Chapter
of the Association for Computational Linguis-
tics. Association for Computational Linguistics,
Stroudsburg, PA, USA, HLT ’10, pages 609–617.
http://dl.acm.org/citation.cfm?id=1857999.1858085.

Karl Moritz Hermann, Tomáš Kočiský, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. 2015. Teaching
machines to read and comprehend. In Advances
in Neural Information Processing Systems (NIPS).
http://arxiv.org/abs/1506.03340.

Daniel Hewlett, Alexandre Lacoste, Llion Jones, Illia
Polosukhin, Andrew Fandrianto, Jay Han, Matthew
Kelcey, and David Berthelot. 2016. Wikiread-
ing: A novel large-scale language understand-
ing task over wikipedia. CoRR abs/1608.03542.
http://arxiv.org/abs/1608.03542.

Felix Hill, Antoine Bordes, Sumit Chopra, and
Jason Weston. 2015. The goldilocks prin-
ciple: Reading children’s books with explicit
memory representations. CoRR abs/1511.02301.
http://arxiv.org/abs/1511.02301.

102

Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and Jan
Kleindienst. 2016. Text understanding with the at-
tention sum reader network. CoRR abs/1603.01547.
http://arxiv.org/abs/1603.01547.

Daniel Khashabi, Tushar Khot, Ashish Sabharwal,
Peter Clark, Oren Etzioni, and Dan Roth. 2016.
Question answering via integer programming over
semi-structured knowledge. In Proceedings of
the Twenty-Fifth International Joint Conference
on Artificial Intelligence, IJCAI 2016, New York,
NY, USA, 9-15 July 2016. pages 1145–1152.
http://www.ijcai.org/Abstract/16/166.

Tushar Khot, Niranjan Balasubramanian, Eric
Gribkoff, Ashish Sabharwal, Peter Clark, and Oren
Etzioni. 2015. Exploring markov logic networks
for question answering. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2015, Lisbon,
Portugal, September 17-21, 2015. pages 685–694.
http://aclweb.org/anthology/D/D15/D15-1080.pdf.

Yang Li and Peter Clark. 2015. Answering elementary
science questions by constructing coherent scenes
using background knowledge. In EMNLP. pages
2007–2012.

Mausam, Michael Schmitz, Robert Bart, Stephen
Soderland, and Oren Etzioni. 2012. Open language
learning for information extraction. In Proceed-
ings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and
Computational Natural Language Learning. Asso-
ciation for Computational Linguistics, Stroudsburg,
PA, USA, EMNLP-CoNLL ’12, pages 523–534.
http://dl.acm.org/citation.cfm?id=2390948.2391009.

Ruslan Mitkov and Le An Ha. 2003. Computer-
aided generation of multiple-choice tests. In
Proceedings of the HLT-NAACL 03 Workshop on
Building Educational Applications Using Natu-
ral Language Processing - Volume 2. Associa-
tion for Computational Linguistics, Stroudsburg,
PA, USA, HLT-NAACL-EDUC ’03, pages 17–22.
https://doi.org/10.3115/1118894.1118897.

Ruslan Mitkov, Le An Ha, Andrea Varga, and
Luz Rello. 2009. Semantic similarity of dis-
tractors in multiple-choice tests: Extrinsic eval-
uation. In Proceedings of the Workshop on
Geometrical Models of Natural Language Seman-
tics. Association for Computational Linguistics,
Stroudsburg, PA, USA, GEMS ’09, pages 49–56.
http://dl.acm.org/citation.cfm?id=1705415.1705422.

Jack Mostow and Hyeju Jang. 2012. Generat-
ing diagnostic multiple choice comprehension
cloze questions. In Proceedings of the Seventh
Workshop on Building Educational Applications
Using NLP. Association for Computational Lin-
guistics, Stroudsburg, PA, USA, pages 136–146.
http://dl.acm.org/citation.cfm?id=2390384.2390401.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng
Gao, Saurabh Tiwary, Rangan Majumder, and

Li Deng. 2016. MS MARCO: A human gener-
ated machine reading comprehension dataset. CoRR
abs/1611.09268. http://arxiv.org/abs/1611.09268.

Takeshi Onishi, Hai Wang, Mohit Bansal, Kevin
Gimpel, and David A. McAllester. 2016. Who
did what: A large-scale person-centered cloze
dataset. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2016, Austin, Texas,
USA, November 1-4, 2016. pages 2230–2235.
http://aclweb.org/anthology/D/D16/D16-1241.pdf.

Andreas Papasalouros, Konstantinos Kanaris, and Kon-
stantinos Kotis. 2008. Automatic generation of mul-
tiple choice questions from domain ontologies. In
Miguel Baptista Nunes and Maggie McPherson, ed-
itors, e-Learning. IADIS, pages 427–434.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, San-
dro Pezzelle, Marco Baroni, Gemma Boleda, and
Raquel Fernández. 2016. The lambada dataset:
Word prediction requiring a broad discourse context.
arXiv preprint arXiv:1606.06031 .

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1532–
1543. http://www.aclweb.org/anthology/D14-1162.

Juan Pino and Maxine Esknazi. 2009. Semi-automatic
generation of cloze question distractors effect of stu-
dents’ l1. In SLaTE. ISCA, pages 65–68.

Juan Pino, Michael Heilman, and Maxine Eskenazi.
2008. A Selection Strategy to Improve Cloze Ques-
tion Quality. In Proceedings of the Workshop on In-
telligent Tutoring Systems for Ill-Defined Domains.
9th International Conference on Intelligent Tutoring
Systems..

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. 2016.
Squad: 100,000+ questions for machine comprehen-
sion of text. In Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Mrinmaya Sachan, Avinava Dubey, and Eric P.
Xing. 2016. Science question answering using
instructional materials. CoRR abs/1602.04375.
http://arxiv.org/abs/1602.04375.

Keisuke Sakaguchi, Yuki Arase, and Mamoru Ko-
machi. 2013. Discriminative approach to fill-
in-the-blank quiz generation for language learn-
ers. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguis-
tics, ACL 2013, 4-9 August 2013, Sofia, Bul-
garia, Volume 2: Short Papers. pages 238–242.
http://aclweb.org/anthology/P/P13/P13-2043.pdf.

Carissa Schoenick, Peter Clark, Oyvind Tafjord, Peter
Turney, and Oren Etzioni. 2016. Moving beyond the
turing test with the allen ai science challenge. arXiv
preprint arXiv:1604.04315 .

103

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi,
and Hannaneh Hajishirzi. 2016. Bidirectional at-
tention flow for machine comprehension. CoRR
abs/1611.01603. http://arxiv.org/abs/1611.01603.

Alessandro Sordoni, Phillip Bachman, and Yoshua
Bengio. 2016. Iterative alternating neural atten-
tion for machine reading. CoRR abs/1606.02245.
http://arxiv.org/abs/1606.02245.

Eiichiro Sumita, Fumiaki Sugaya, and Seiichi
Yamamoto. 2005. Measuring non-native speak-
ers’ proficiency of english by using a test with
automatically-generated fill-in-the-blank ques-
tions. In Proceedings of the Second Workshop on
Building Educational Applications Using NLP.
Association for Computational Linguistics, Strouds-
burg, PA, USA, EdAppsNLP 05, pages 61–68.
http://dl.acm.org/citation.cfm?id=1609829.1609839.

Yi Yang, Scott Wen-tau Yih, and Chris Meek. 2015.
Wikiqa: A challenge dataset for open-domain
question answering. ACL Association for Compu-
tational Linguistics. https://www.microsoft.com/en-
us/research/publication/wikiqa-a-challenge-dataset-
for-open-domain-question-answering/.

Torsten Zesch and Oren Melamud. 2014. Au-
tomatic generation of challenging distractors
using context-sensitive inference rules. In
Proceedings of the Ninth Workshop on In-
novative Use of NLP for Building Educa-
tional Applications, BEA@ACL 2014, June 26,
2014, Baltimore, Maryland, USA. pages 143–
148. http://aclweb.org/anthology/W/W14/W14-
1817.pdf.

104

A List of Study Books

The following is a list of the books we used as data
source:

• OpenStax, Anatomy & Physiology. Open-
Stax. 25 April 20139

• OpenStax, Biology. OpenStax. May 20,
201310

• OpenStax, Chemistry. OpenStax. 11 March
201511

• OpenStax, College Physics. OpenStax. 21
June 201212

• OpenStax, Concepts of Biology. OpenStax.
25 April 201313

• Biofundamentals 2.0 – by Michael
Klymkowsky, University of Colorado &
Melanie Cooper, Michigan State Univer-
sity14

• Earth Systems, An Earth Science Course on
www.curriki.org15

• General Chemistry, Principles, Patterns, and
Applications by Bruce Averill, Strategic En-
ergy Security Solutions and Patricia El-
dredge, R.H. Hand, LLC; Saylor Founda-
tion16

• General Biology; Paul Doerder, Cleveland
State University & Ralph Gibson, Cleveland
State University 17

9Download for free at http://cnx.org/content/
col11496/latest/

10Download for free at http://cnx.org/content/
col11448/latest/

11Download for free at http://cnx.org/content/
col11760/latest/

12Download for free at http://cnx.org/content/
col11406/latest

13Download for free at http://cnx.org/content/
col11487/latest

14https://open.umn.edu/opentextbooks/
BookDetail.aspx?bookId=350

15http://www.curriki.
org/xwiki/bin/view/Group_
CLRN-OpenSourceEarthScienceCourse/

16https://www.saylor.org/site/
textbooks/General%20Chemistry%
20Principles,%20Patterns,%20and%
20Applications.pdf

17https://upload.wikimedia.org/
wikipedia/commons/4/40/GeneralBiology.
pdf

• Introductory Chemistry by David W. Ball,
Cleveland State University. Saylor Founda-
tion 18

• The Basics of General, Organic, and Biologi-
cal Chemistry by David Ball, Cleveland State
University & John Hill, University of Wis-
consin & Rhonda Scott, Southern Adventist
University. Saylor Foundation19

• Barron’s New York State Grade 4
Elementary-Level Science Test, by Joyce
Thornton Barry and Kathleen Cahill 20

• Campbell Biology: Concepts & Connections
by Jane B. Reece, Martha R. Taylor, Eric J.
Simon, Jean L. Dickey21

• CK-12 Peoples Physics Book Basic 22

• CK-12 Biology Advanced Concepts 23

• CK-12 Biology Concepts 24

• CK-12 Biology 25

• CK-12 Chemistry - Basic 26

• CK-12 Chemistry Concepts – Intermediate 27

• CK-12 Earth Science Concepts For Middle
School28

• CK-12 Earth Science Concepts For High
School29

18https://www.saylor.org/site/
textbooks/Introductory%20Chemistry.pdf

19http://web.archive.org/web/
20131024125808/http://www.saylor.
org/site/textbooks/The%20Basics%20of%
20General,%20Organic%20and%20Biological%
20Chemistry.pdf

20We do not include documents from this resource in the
dataset.

21We do not include documents from this resource in the
dataset.

22http://www.ck12.org/book/
Peoples-Physics-Book-Basic/

23http://www.ck12.org/book/
CK-12-Biology-Advanced-Concepts/

24http://www.ck12.org/book/
CK-12-Biology-Concepts/

25http://www.ck12.org/book/
CK-12-Biology/

26http://www.ck12.org/book/
CK-12-Chemistry-Basic/

27http://www.ck12.org/book/
CK-12-Chemistry-Concepts-Intermediate/

28http://www.ck12.org/book/
CK-12-Earth-Science-Concepts-For-Middle-School/

29http://www.ck12.org/book/
CK-12-Earth-Science-Concepts-For-High-School/

105

• CK-12 Earth Science For Middle School 30

• CK-12 Life Science Concepts For Middle
School 31

• CK-12 Life Science For Middle School 32

• CK-12 Physical Science Concepts For Mid-
dle School33

• CK-12 Physical Science For Middle School
34

• CK-12 Physics Concepts - Intermediate 35

• CK-12 People’s Physics Concepts 36

CK-12 books were obtained under the Creative
Commons Attribution-Non-Commercial 3.0 Un-
ported (CC BY-NC 3.0) License 37.

B Training and Implementation Details

Multiple Choice Reading Comprehension. Dur-
ing training of the AS Reader and GA Reader, we
monitored model performance after each epoch
and stopped training when the error on the valida-
tion set had increased (early stopping, with a pa-
tience of one). We set a hard limit of ten epochs,
but most models reached their peak validation ac-
curacy after the first or second epoch. Test set
evaluation, when applicable, used model param-
eters at the epoch of their peak validation accu-
racy. We implemented the models in Keras, and
ran them with the Theano backend on a Tesla K80
GPU.

The hyperparameters for each of the models
were adopted from previous work. For the AS
Reader, we use an embedding dimension of 256
and GRU hidden layer dimension of 384 (obtained

30http://www.ck12.org/book/
CK-12-Earth-Science-For-Middle-School/

31http://www.ck12.org/book/
CK-12-Life-Science-Concepts-For-Middle-School/

32http://www.ck12.org/book/
CK-12-Life-Science-For-Middle-School/

33http://www.ck12.org/book/
CK-12-Physical-Science-Concepts-For-Middle-School/

34http://www.ck12.org/book/
CK-12-Physical-Science-For-Middle-School/

35http://www.ck12.org/book/
CK-12-Physics-Concepts-Intermediate/

36http://www.ck12.org/book/
Peoples-Physics-Concepts/

37http://creativecommons.org/licenses/
by-nc/3.0/

through correspondence with the authors of On-
ishi et al. (2016)) and use the hyperparameters re-
ported in the original paper (Kadlec et al., 2016)
for the rest. For the GA Reader, we use three
gated-attention layers with the multiplicative gat-
ing mechanism. We do not use the character-level
embedding features or the question-evidence com-
mon word features, but we do follow their work by
using pretrained 100-dimension GloVe vectors to
initialize a fixed word embedding layer. Between
each gated attention layer, we apply dropout with
a rate of 0.3. The other hyperparameters are the
same as their original work (Dhingra et al., 2016).

Direct Answer Reading Comprehension. We
implemented the Bidirectional Attention Flow
model exactly as described in Seo et al. (2016) and
adopted the hyperparameters used in the paper.

106

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 107–115
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

A Text Normalisation System for Non-Standard English Words

Emma Flint1 Elliot Ford1 Olivia Thomas1

Andrew Caines1 Paula Buttery2

1 Department of Theoretical and Applied Linguistics
2 Computer Laboratory

University of Cambridge, Cambridge, U.K.
{emf40|ef355|oft20|apc38|pjb48}@cam.ac.uk

Abstract

This paper investigates the problem of
text normalisation; specifically, the nor-
malisation of non-standard words (NSWs)
in English. Non-standard words can be
defined as those word tokens which do
not have a dictionary entry, and can-
not be pronounced using the usual letter-
to-phoneme conversion rules; e.g. lbs,
99.3%, #EMNLP2017. NSWs pose a
challenge to the proper functioning of text-
to-speech technology, and the solution is
to spell them out in such a way that they
can be pronounced appropriately. We de-
scribe our four-stage normalisation sys-
tem made up of components for detec-
tion, classification, division and expan-
sion of NSWs. Performance is favourabe
compared to previous work in the field
(Sproat et al. 2001, Normalization of non-
standard words), as well as state-of-the-art
text-to-speech software. Further, we up-
date Sproat et al.’s NSW taxonomy, and
create a more customisable system where
users are able to input their own abbre-
viations and specify into which variety
of English (currently available: British or
American) they wish to normalise.

1 Introduction

The transfer of surface linguistic representations
between the written and spoken form is known as
‘text-to-speech’ (TTS) in one direction and ‘auto-
matic speech recognition’ (ASR) in the other. In
TTS there is a need to map word tokens to a target
pronunciation, enabling synthesized speech pro-
duction. Depending on the text genre, many of

the word tokens will map to sound symbols in a
straightforward way. For instance, the Carnegie
Mellon University Pronouncing Dictionary of En-
glish1 (CMU’s PDE) lists more than 134,000 to-
kens and their pronunciations in ARPAbet form2

(Table 1).

Entry Pronunciation
AARDVARK AA1 R D V AA2 R K
CAT K AE1 T
MILK M IH1 L K
PUG P AH1 G

Table 1: Example entries from the Carnegie Mel-
lon University Pronouncing Dictionary of English

Tokens such as these may be thought of as the
‘standard’ set of words – those which have been
curated, and continue to be curated, for TTS and
ASR.

However, there is another type of word token
that does not map straightforwardly to a pronun-
ciation, either because it is an abbreviation or
acronym (1), a number (2), a date or time (3), an
amount (4), an asterisked profanity (5), a url or
hashtag (6), or a spelling error (7).

(1) kHz, Rt. Hon., OED

(2) 42, (Henry) VIII, 4/5

(3) 15/04/1997, 2016-12-31, 09:30:01

(4) e500, 2000¥, 99.99%

(5) sh*t, f**k, *ss

(6) http://www.abc123.com, google.com, #sum-
mer2016

(7) anoncement, caligaphy, helko
1http://www.speech.cs.cmu.edu/cgi-bin/

cmudict
2http://fave.ling.upenn.edu/downloads/

ARPAbet.pdf

107

There are no entries for these examples in CMU’s
PDE and hence they belong in the set of ‘non-
standard’ words (NSWs) of English.

A normalisation system should automatically
detect NSWs in a given text input, identify their
type, and spell them out in full such that a
TTS system may produce them in a human-
interpretable fashion. A successful system must
also be able to deal with ambiguities present in real
text; the same NSW may be pronounced in multi-
ple ways depending on the context. For example,
the number 1985 would normally be pronounced
‘one thousand, nine hundred and eighty five’ when
used as an amount, but ‘nineteen eighty five’ when
used as a year, and “one nine eight five” if read as
a sequence of digits. Does M8 represent the ‘m
eight’ motorway in Scotland or is it shorthand for
‘mate’?

Here we present a text normalisation system
which sorts an input text into standard and non-
standard words, identifies NSW types where ap-
propriate, and expands the NSW to a form ready
for speech realisation. The NSW taxonomy is
founded on the seminal work by Sproat et al.
(2001), with amendments to deal with (a) over-
lap between class identification and expansion for
several classes, (b) finer classification of the nu-
meric NSW group, and (c) developments in web
language. For example, the input text below (8)
would be normalised as in (9) in order to be read
out appropriately by a TTS system (NSWs in bold,
expansions italicised):

(8) On the 13 Feb. 2007, Rt. Hon. Theresa May
MP announced on ITV News that the rate of
childhod obesity had risen from 7.3-9.6% in
just 3 years, costing the Gov. £20m #politics.

(9) On the thirteenth of February two thousand
and seven, The Right Honourable Theresa
May M P announced on I T V News that the
rate of childhood obesity had risen from seven
point three to nine point six percent in just
three years, costing the government twenty
million pounds hashtag politics.

NSW normalisation systems enable a smoother
transition between the written and spoken forms
of language, rather than skipping NSW tokens,
or attempting pronunciations in unexpected or in-
correct ways. It is a vital prerequisite for TTS
and other downstream natural language process-
ing (NLP) tasks in which technology has been de-

veloped on the basis of standard language varieties
(Plank, 2016). The system means that texts from a
wide range of domains may be read aloud, includ-
ing newswire, parliamentary proceedings, scien-
tific literature, microblog texts, etc. We have made
it straightforward to opt for a specific tokenizer, or
input a new dictionary of abbreviations, meaning
that the system is domain-modifiable whilst still
being appropriately domain-general in its founda-
tions. We make our normalisation system publicly
available as a GitHub repository3.

2 Related Work

Sproat et al. (2001) remains the single most influ-
ential piece of work in the normalisation of NSWs.
They were the first to propose a comprehensive
taxonomy of NSWs, as well as various heuristics
for their expansion. Prior to this, text normalisa-
tion had been given limited attention in TTS, and
was attempted through the construction of specific
rules appropriate for the treatment of NSWs found
in the desired domain.

Sproat et al. (2001) proposed an NSW taxon-
omy based on four distinct domains: newswire,
a recipes newsgroup, a hardware-product-specific
newsgroup, and classified property advertise-
ments. Their corpora were predominantly U.S.
English and an associated set of normalisation
tools was made publicly available4. Their work
has since inspired normalisation research for dif-
ferent text types such as short messaging service
(SMS) texts (Aw et al., 2006), email (Moore et al.,
2010), and microblog texts from Twitter (Han and
Baldwin, 2011). Furthermore, Roark and Sproat
(2014) focused on high precision abbreviation ex-
pansion, adopting a ‘do no harm’ approach. We
attempt to incorporate some of the normalisation
steps taken in these more recent papers, as in-
ternet and SMS text has developed in idiosyn-
cratic ways which require normalisation heuristics
of their own (Eisenstein, 2013).

We adopt the taxonomy outlined in Sproat et al.
(2001) and adapt it to work in a more streamlined
manner, and to cope with text domains which are
much more prevalent in the present day than at
the time of their work – namely the Internet do-
main. Furthermore, although our system aims to
be domain-general, we also allow users the option
to input their own dictionary of abbreviations, in

3http://github.com/EFord36/normalise
4http://festvox.org/nsw

108

order to tailor towards a specific domain. A further
parameter allows the user to specify whether their
input variety conforms to British (BrE) or Amer-
ican English (AmE), improving expansion of cer-
tain ambiguous tokens, such as dates; 02/03 repre-
sents ‘the second of March’ in BrE, but ‘the third
of February’ in the AmE format. In future work
we can incorporate normalisation variants from
other Englishes, including ‘outer’ and ‘expanding’
circle varieties (Kachru, 1992).

The publicly available resources associated
with the previous work required installation of the
Festival speech synthesizer5, were only intended
as a “pre-alpha” release and have not been devel-
oped since version 0.2.1 in the year 2000. Fur-
thermore, the source code is in Scheme, whereas
we release software in the more commonly-used
Python programming language.

3 Our Approach to Text Normalisation

Our system is made up of separate components
for the detection, classification, division and ex-
pansion of NSWs. In this section, we outline
our method of normalisation by describing each
of these modules in turn.

3.1 NSW detection

After the input text has been tokenised (either by
the user or with our basic tokenizer), non-standard
words (henceforth NSWs) are detected. This is
achieved by comparison of tokens against a word
list, consisting of the set of all English words in
a word list corpus, the set of all alphabetic words
(greater than four characters) in the Brown Corpus
(Francis and Kučera, 1964), and a set of proper
names. The Brown Corpus contains 1.15 million
words from 500 sources, hence we deemed it to
be a good representation of different genres and
styles of writing, from fiction to newswire to offi-
cial documents. We recognise that, as it contains
texts from the 1960s and 1970s, the Brown Cor-
pus is by now a little dated. However, its benefits
include availability, practicality and coverage. Ad-
ditionally, we manually add a selection of lexemes
which have been coined, or come into greater us-
age, since the corpus was compiled, such as com-
mon technological terms.

In order to facilitate detection of NSWs, we
temporarily lower-case and lemmatise the input

5http://www.cstr.ed.ac.uk/projects/
festival

text (using the WordNet lemmatiser from NLTK
(Bird et al., 2009)). This allows us to prevent
words whose plural, inflected or capitalised form
do not appear in our wordlist from being detected
as NSWs. Furthermore, we exclude a number
of common contractions which do not appear in
our word list from NSW detection (e.g. aren’t,
won’t and you’re), on the basis that a normalisa-
tion system which expanded these tokens to their
full forms would affect the register of the input
text (e.g. from informal to formal), which is not
the purpose of a TTS system. Single punctuation
is also prevented from detection, as this provides
meaningful information and is important for TTS,
whereas nonsense sequences of characters should
be detected, and later deleted.

To summarise, a token is detected as an NSW if
it satisfies all four of the following conditions:

a. Its lower-cased form is not in the word list.

b. Its lemmatised form is not in the word list.

c. Its non-possessive form (with ’s or s’ removed)
is not in the word list.

d. It is not single punctuation.

3.2 NSW classification

Following detection, NSWs are first classified into
one of four general classes: ALPHA (for alpha-
betic tokens), NUMB (for numeric tokens), SPLT

(for mixed tokens that require further division) or
MISC (for everything else). Unlike in Sproat et al.
(2001), where all NSWs are processed by a split-
ter, only tokens tagged as SPLT will form the input
of our division algorithm. After initial classifica-
tion and division of SPLT tokens, all NSWs are fur-
ther classified and labelled with a specific tag to
indicate how they should be expanded.

3.2.1 A modified NSW taxonomy

A summary of tags assigned to various NSW to-
kens can be found in Table 2, a modified version
of the taxonomy developed in Sproat et al. (2001),
along with a description and examples.
Although our taxonomy is largely consistent with
Sproat et al. (2001), a few changes and additions
have been made. Sproat and colleagues’ MSPL

(misspelling), FNSP (funny spelling) and ASWD

(read as word) tags have been conflated into a sin-
gle category WDLK (wordlike), because the effort
necessary to distinguish between these tokens is

109

Class Tag Description Examples

ALPHA
EXPN abbreviation cm (centimetres), Dec. (December), addr. (address)
LSEQ letter sequence BBC (B B C), U.K. (U K)
WDLK word, misspelling beatiful (beautiful), slllooooow (slow)

NUMB

NUM cardinal number 27 (twenty seven), 14.5 (fourteen point five), 2/3 (two thirds)
NORD ordinal number June 3 (third), 15th (fifteenth), Louis VI (sixth)
NRANGE number range 25-30 (twenty five to thirty)
NTEL telephone number +447892-739-562 (plus four four seven eight nine two...)
NDIG number as digits 123 (one two three)
NTIME time 2.45 (two forty five), 17:10 (five ten)
NDATE date 19/03 (nineteenth of March), 07-07 (seventh of July)
NADDR address 15 Hollybush Ave (fifteen), 5000 Lensfield Rd. (five thousand)
NYER year 1980 (nineteen eighty), 70s (seventies)
MONEY money £50 (fifty pounds), 100USD (one hundred US dollars)
PRCT percentage 23.5% (twenty three point five percent)
NSCI scientific number 63.2°N (sixty three point two degrees north)

SPLT SPLT mixed ITV3 (I T V three), 500-yds (five hundred yards)

MISC
PROF profanity sh*t (shit), cr*p (crap)
URL web address, email emf355@hotmail.co.uk
HTAG hashtag #politics, #summer2016
NONE not spoken ?!*?!*

Table 2: Non-standard word taxonomy.

equal to that used in expansion, rendering it re-
dundant. This reduces the categories defined for
alphabetic tokens from four to three.

In addition, SLNT (word boundary or empha-
sis character, e.g. *seriously*) and PUNC (non-
standard punctuation, e.g. ?!*?!*) have been
removed, as tokens previously corresponding to
these tags can adequately be captured under NONE,
given that all such tokens expand to nothing, em-
phi.e. are deleted and go unspoken. A further
omission is that of the NIDE (identifier) tag in the
numeric class – the distinction between this and
NDIG was unclear.

Finally, we created several new tags in addi-
tion to those of Sproat and colleagues, to capture
classes we believe to be both distinct and impor-
tant. One major modernisation is the addition of
HTAG, to reflect the growing usage of hashtags on
social media platforms such as Twitter and Insta-
gram. Such tokens are distinctive in that words
are strung together without spaces or punctuation,
making word boundaries (and subsequently the
correct expansion) difficult to automatically deter-
mine. Additionally, NRANGE has been added to
capture number ranges (e.g. 25-30, 1990-1995),
NSCI to capture scientific numbers, including coor-
dinates, and PROF to cover profanities, which often
include an asterisk as a censor.

3.2.2 Further classification of ALPHA, NUMB
and MISC tokens

The purpose of the classification stage is to as-
sign to each NSW one of the specific tags prede-

fined in our taxonomy (recall Table 2), e.g. EXPN,
NRANGE, MONEY, URL etc. A separate classifier
is used for each of the ALPHA, NUMB and MISC

classes, which also include those NSWs retagged
after the division step described below (Section
3.3). Our classification of ALPHA and NUMB to-
kens uses a semi-supervised label propagation al-
gorithm, while the classification of MISC tokens is
entirely rule-based.

We use a number of domain-independent fea-
tures in training (13 for the ALPHA classifier, and
29 for the NUMB classifier). These look at proper-
ties of the token itself, as well as +/-2 surround-
ing tokens either side of the token in question.
This information is important in cases where the
class of the NSW is ambiguous, and its correct tag
(and subsequently its expansion) can only be de-
termined by the context. For example, a number
should be tagged as an ordinal (NORD) when fol-
lowing or preceding a month (e.g. ‘On 16 June...’)
but a cardinal (NUM) elsewhere (e.g. ‘There were
16 people...’).

Properties used in classification include –

• The length of the token.

• Case features: all upper, all lower, titlecase or
mixed.

• Specific punctuation used within the token:
forward slashes, hyphens, full stops, etc.

• The content of surrounding words, e.g. pre-
ceded by on, at, from, to, etc.

For the classification of MISC tokens, we use a

110

rule-based method, as there is no (or at least very
little) ambiguity in this class compared to ALPHA

and NUMB. NSWs are tagged as either HTAG (hash-
tag), URL (web address) or PROF (profanity) if they
conform to a pre-defined regular expression pat-
tern. For example, tokens beginning with a single
character and followed by a series of alphanu-
meric characters are tagged HTAG. If tokens do not
match any pattern, they are tagged as NONE (and
later deleted), e.g. a series of nonsense characters.
After classification, the assigned tag is used to de-
termine how the NSW should be expanded.

3.3 Classification and division of SPLT tokens

Many NSWs are compound words made up of dis-
tinct subcomponents, which cannot be expanded
as they are, but must be broken down for fur-
ther processing. Examples include mixed alphanu-
meric tokens, such as acronym-number com-
pounds (ITV3), tokens containing mixed upper and
lower case letters (iPlayer) and hyphenated words
(100-mile). By classifying into ALPHA, NUMB,
MISC and SPLT prior to division, single tokens that
would otherwise conform to the SPLT pattern, such
as dates and number ranges, are prevented from
being incorrectly divided.

With a predefined list of tokens to be split, the
division process is relatively straightforward; the
same patterns used in the classification of SPLT to-
kens are used to hypothesise split points. Tokens
are split by punctuation (e.g. hyphens, forward
slashes), at boundaries between alphabetic and nu-
meric characters and at boundaries between upper
and lower case letters. Emphasis characters, such
as asterisks, which often surround a word of im-
portance (such as *this*), are also removed.

One ambiguous case arises in words containing
a transition from upper to lower case - subtokens
here could be an uppercase word followed by a
lowercase word (BBCnews), necessitating a split
after the final uppercase character, or an upper-
case word followed by a titlecase words (BBC-
News), where the split should be before the final
uppercase character. For tokens matching this pat-
tern, we deal with the ambiguity by hypothesising
both split points, and checking whether the result-
ing word is in our word list. If neither group is in
the word list, we split before the final uppercase
letter as a default. This was found to be the more
common pattern by Sproat et al (2001).

After division, each part of the SPLT token is

then retagged as ALPHA, NUMB or MISC for further
classification and expansion.

3.4 NSW expansion

For the majority of NSW tokens, including all
those tagged as NUMB, expansions are unambigu-
ous, and pronunciations straightforward, once the
tag is determined. Algorithms for number ex-
pansion are predominantly consistent with those
in Sproat et al. (2001). However, in some cases
where it was necessary to choose between multi-
ple possible pronunciations for a single NSW, we
looked at spoken data from the Spoken Wikipedia
Corpus (Köhn et al., 2016) in order to make a prin-
cipled, rather than arbitrary, decision. For exam-
ple, for the pronunciation of years in the 2000s,
we chose ‘twenty thirteen’ rather than ‘two thou-
sand and thirteen’, based on our inspection of the
corpus.

3.4.1 Unsupervised expansion of EXPN tokens

EXPN tokens are first checked against a dictionary
of common abbreviations, an amended version of
a list taken from the Oxford English Dictionary6.
Ambiguous abbreviations in the dictionary (those
with more than one possible expansion) are dis-
ambiguated in the same way as previously un-
known abbreviations (see below), but their can-
didates are taken from the dictionary rather than
generated from the word list. A second dictionary
is used for common measurements, and match-
ing NSWs are only expanded as such if the pre-
vious token is digit-based, e.g. ‘two pounds’ for
2 lb. This stage allows us to accurately capture
the most common abbreviations, whilst still being
sufficiently domain-general.

For unusual EXPN tokens whose expansions are
not listed in the abbreviation dictionary, we use an
unsupervised method to predict the most probable
expansion given the abbreviation. The algorithm
first generates a list of candidate expansions for
the abbreviation. These candidates are words from
the word list that include the (ordered) sequence
of letters in the abbreviation, either at the start
of the word (as in ‘address’ for addr.), inserting
any numbers of characters before the final letter
(‘government’ for govt.) or inserting any number
of intervening vowels (‘function’ for fnctn). This
follows from observations as to how abbreviations

6http://public.oed.com/
how-to-use-the-oed/abbreviations

111

are most frequently formed. This list is then nar-
rowed down by ruling out those candidates whose
part-of-speech (POS) tag does not match the pre-
dicted POS tag for the abbreviation based on its
syntactic context.

The final criterion for selection of an appropri-
ate expansion uses a Corpus Lesk algorithm (Kil-
garriff and Rosenzweig, 2000) to look at the over-
lap between the abbreviation and its possible ex-
pansions. Overlap is calculated by counting the
number of words (ignoring stopwords, such as the,
at, of, as well as the 100 most frequent words
in Brown) shared by the context of the abbrevi-
ation and a signature generated for each candi-
date expansion, using contextual information from
the Brown corpus, as well as WordNet (Fellbaum,
1998) definitions and examples. Candidates are
ruled out if they overlap very little or not at all
with the abbreviation. Where two candidates have
equal overlap, we take the most frequent word (us-
ing frequency counts from Brown). This allows
us to check that potential expansions are seman-
tically, as well as syntactically, appropriate. As a
candidate is only chosen if its character content,
POS-tag and semantic context are consistent with
the abbreviation, this allows us to be confident as
to the accuracy of the expansion. In this way, we
treat the problem of abbreviation expansion in a
similar way to that of word sense disambiguation,
where the task is to resolve an ambiguity between
possible candidate expansions.

Since we use several criteria to predict the ex-
pansion of previously unseen abbreviations, this
allows generalisation across many different do-
mains. As a result, our method of abbreviation ex-
pansion represents a significant improvement over
previous normalisation work, which was princi-
pally domain-specific.

4 Evaluation

Our normalisation system is evaluated against a
gold standard corpus containing 1000 sentences
taken from various websites including Wikipedia,
Google News, Maths is Fun, Slate, the Urban Dic-
tionary and the University of Cambridge. We refer
to this corpus as NSW-GOLD and release it in the
GitHub repository. NSW-GOLD contains 21,447
tokens in which NSWs were hand-labelled with an
overall class (ALPHA, NUMB, MISC or SPLT) and a
specific tag. It remains a matter of future work
to add multiple gold-standard expansions for the

whole corpus, though we did so for a subset, as
explained below.

Evaluation was performed for detection, classi-
fication and expansion separately. As it is possible
for a word to be correctly expanded whilst being
incorrectly tagged (and vice versa), we evaluate
the performance of each component separately.

4.1 NSW detection
As the first stage of our normalisation system (de-
tection) is a binary task, labelling input tokens as
either NSWs or standard words, we use simple
precision and recall metrics for evaluation. Pre-
cision (1) is the number of true positives (Tp) over
the number of true positives plus false positives
(Fp), i.e. the proportion of tokens labelled ‘NSW’
that are truly NSWs. Recall (2) is the number of
true positives over the number of true positives
plus the number of false negatives (Fn), i.e. the
proportion of NSWs in NSW-GOLD that are cor-
rectly detected as such.

P =
Tp

Tp + Fp
(1) R =

Tp

Tp + Fn
(2)

Our evaluation for NSW detection yielded
scores of 95.1% for precision and 97.4% for re-
call. This means that just under 3% of NSWs
in NSW-GOLD went undetected but that tokens
hypothesised to be NSWs were indeed NSWs 95
times out of 100. Note that we prioritize precision
over recall in the detection stage, because if a word
is incorrectly tagged as an NSW it should later be
classified WDLK (wordlike) and expanded to itself,
whereas if an NSW is not detected, it can never be
expanded.

4.2 NSW classification
In order to evaluate both our overall classifier and
our subclassifiers for ALPHA, NUMB and MISC to-
kens, we computed an accuracy score, where ac-
curacy is the number of correctly labelled NSWs
(those whose label matches that in NSW-GOLD)
over the total number of NSWs. As tokens only
proceed to be classified if they are tagged as
NSWs, these accuracy scores do not take into ac-
count NSWs that were not detected at the initial
stage, but are purely a measure of classification ac-
curacy.

For our ALPHA classifier, accuracy was 89%
(Table 3). Within the ALPHA class, performance
is high for LSEQ and WDLK but lower for EXPN,
reflecting the ambiguity of NSWs tagging. Some

112

NSW tokens, such as LW, could reasonably be
read either as a letter sequence (LSEQ), or ex-
panded to ‘long wave’ (EXPN).

For the NUMB class accuracy was found to be
89%. Whilst this performance is good, the task
of assigning fine-grained labels to NSWs is much
harder. Certain types, namely NUM and NYER

may be tagged very accurately; others, such as,
NRANGE and NTIME, are harder, whilst NTEL and
NSCI were not identified at all. Improvement in
identifying these NSW types remains a matter for
future work. Nevertheless, in terms of expansion,
provided that the NUMB class is correctly identi-
fied, many times the exact tag does not matter too
much, since for several tag types the NSW will
be spelled out like a number or as separate dig-
its. This is fine for most numeric tags, and people
are often willing to accept several different expan-
sions of the same NSW, as is clear from human
evaluation of expansion (next section). Moreover,
this observation suggests we could collapse some
of the numeric distinctions in a future review.

The SPLT class sees the lowest accuracy at 86%,
which is understandable since – being of mixed
content – these are inherently difficult to iden-
tify. Finally, for the MISC class accuracy was
92%. Within the MISC class, hashtags are identi-
fied without errors, but the PROF,URL,NONE types
are identified less well. There are clear improve-
ments to be made in this class in future work.

In all cases, the accuracy scores may be lower
than if we had allowed for multiple tags per NSW
in our evaluation, thereby reflecting the subjectiv-
ity of classification and the multi-functionality of
linguistic tokens.

In Table 4 we show a confusion matrix for NSW
tag types. It is apparent that errors tend to stay
within class, or default to NONE (not spoken).
Within the NUMB class, the NUM tag is dominant,
which is tolerable as for most numeric types the
expansion will be acceptable. It remains a matter
for future work to improve our classifiers and add
to NSW-GOLD for further evaluation.

4.3 NSW expansion – comparison to existing
systems

In order to assess the accuracy of our overall sys-
tem, we compared the output of our system to
that of both Sproat et al. (2001)’s original sys-
tem, and an online interface to the AT&T Natu-
ral Voices TTS system, which we believe to be

Class Accuracy Tag Accuracy

ALPHA 0.893
EXPN 0.60
LSEQ 0.90
WDLK 0.92

NUMB 0.89

NUM 1.0
NORD 0.72
NRANGE 0.56
NTEL 0
NDIG 0.12
NTIME 0.72
NDATE 0.34
NADDR 0.12
NYER 0.98
MONEY 0.80
PRCT 0.76
NSCI 0

SPLT 0.86 SPLT 0.86

MISC 0.92
PROF 0.66
URL 0.48
HTAG 1.0
NONE 0.66

Table 3: Accuracy of NSW classification by class
and tag.

derivative from Sproat and colleagues’ work7. As
Sproat et al. (2001)’s model uses training data
from one of four specific domains (a recipes news-
group, newswire, a PC-hardware newsgroup, and
classified property advertisements), we evaluated
against each domain separately.

For this comparison, we used a subset of 102
sentences from NSW-GOLD, selected at random.
The sample contained 291 NSWs, the expansion
of which were hand-annotated as either correct or
incorrect in the output generated by each of the
five systems. Expansions were labelled as cor-
rect if they could realistically have been produced
by a human, and would be acceptable if read out
by a TTS system. In the case of ambiguity, we
accepted both expansions as correct, e.g. either
‘twenty ten’ or ‘two thousand and ten’ for the year
2010. Here, accuracy is defined as the number of
correctly expanded NSWs over the total number
of NSWs (n = 291).
Our system was found to achieve an overall accu-
racy of 91.4%, much higher than that of the Wiz-
zard TTS system (75.3%), or any of the domain-
specific models (see Table 5). Whilst Sproat et al.
(2001)’s system is sure to perform well given data
from one of their four specific domains, the in-
applicability of their supervised approach to new
domains was evident here. For example, when us-
ing its classified property advertisements model,
the system returned incorrect expansions such as

7http://wizzardsoftware.com/
text-to-speech-sdk.php

113

Predicted labels
ALPHA NUMB MISC

Actual E
X

P
N

L
S

E
Q

W
D

L
K

N
U

M

N
O

R
D

N
R

A
N

G
E

N
T

E
L

N
D

IG

N
T

IM
E

N
D

A
T

E

N
A

D
D

R

N
Y

E
R

M
O

N
E

Y

P
R

C
T

N
S

C
I

S
P

LT

P
R

O
F

U
R

L

H
TA

G

N
O

N
E

n/a
EXPN 30 12 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0
LSEQ 0 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5
WDLK 0 0 46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
NUM 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NORD 0 9 1 2 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
NRANGE 0 0 0 16 0 28 0 0 1 0 0 1 0 0 0 0 0 0 0 4 0
NTEL 0 0 0 43 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 4 0
NDIG 0 0 0 42 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 2 0
NTIME 0 0 0 14 0 0 0 0 36 0 0 0 0 0 0 0 0 0 0 0 0
NDATE 0 0 0 19 0 4 0 10 0 17 0 0 0 0 0 0 0 0 0 0 0
NADDR 0 0 0 40 2 1 0 0 0 1 6 0 0 0 0 0 0 0 0 0 0
NYER 0 0 0 1 0 0 0 0 0 0 0 49 0 0 0 0 0 0 0 0 0
MONEY 0 0 0 10 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0
PRCT 0 0 0 5 0 0 0 0 0 0 0 0 0 38 0 0 0 0 0 7 0
NSCI 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37 0
SPLT 0 0 0 3 0 0 0 0 0 0 0 0 0 0 3 43 0 1 0 0 0
PROF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 0 0 17 0
URL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 26 0
HTAG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0
NONE 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 33 15

Table 4: Confusion matrix for classification of NSW tags in NSW-GOLD.

Our system AT&T Sproat et al. (2001)
Natural Voices Recipes Hardware News Ads

0.914 0.753 0.460 0.536 0.601 0.574

Table 5: Cross-system comparison of NSW expansion accuracy

‘kitchen H Z’ for kHz. The total run time for our
program compared to the original was also found
to be significantly faster8.

5 Conclusion and Future Work

We have presented a text normalisation system
for NSWs, adopting and adapting the taxonomy
designed by Sproat et al. (2001), and showed
that our modular detection-classification-division-
expansion system works to a high degree of ac-
curacy across all NSW types and modules (>
91%). This is an important step for TTS sys-
tems and other downstream NLP tasks. The sys-
tem is made available as a GitHub repository9

for non-commercial use under a GNU General
Public License10. In contrast to a previous sys-
tem written in Scheme (Sproat et al., 2001), the
fact our system has been developed in the widely-

8Mean run time 1 minute 50 seconds for Sproat and col-
leagues’ system; 22 seconds for ours, averaged over 100 runs
on a Macintosh iMac with 2.7GHz Intel Core i5 processor
and 8GB memory.

9http://github.com/EFord36/normalise
10https://www.gnu.org/licenses/gpl-3.0.

en.html

used Python programming language makes it flex-
ible to the unforeseen needs of other researchers.
In addition, we have made it straightforward to
opt for a specific tokenizer, or input a dictio-
nary of abbreviations, meaning that the system is
domain-modifiable whilst still being appropriately
domain-general.

In future work, we intend to improve our sys-
tem by addressing the NSW tag types for which
performance was relatively poor, and by extend-
ing our taxonomy to include more tags specific to
the web. We would also like to allow the genera-
tion of multiple expansions, to capture ambiguity
and different pronunciation preferences. We can
also further test our system against modern TTS
systems available through Google Android Apps,
Apple Macintosh OS, and Microsoft Office.

A further problem for normalisation is that the
boundary between standard words and NSWs is
not always rigid. Some words, such as proper
nouns, foreign words or company names, may not
have a dictionary entry (or pronunciation in the
CMU), but should not (and cannot) be further ex-
panded, thus a normalisation system would be un-
able to aid TTS in these cases. This is an area in

114

need of further investigation and system develop-
ment.

Having updated the NSW taxonomy and
adopted a rule-based approach to classification,
the system remains vulnerable to further macro-
scale shifts in language use such as that brought
on by the Internet, and the kind of micro-scale
non-standard neologisms which emerge (and re-
cede) day-to-day. In future work we can therefore
incorporate unsupervised methods of NSW classi-
fication and expansion, along the lines of the au-
tomatic dictionary construction method presented
by Han et al. (2012), and the distributional method
described by Rangarajan Sridhar (2015).

Additional areas of future interest might be
in developing a ‘reverse text normalisation’ sys-
tem for Automatic Speech Recognition (ASR) – a
backwards conversion of speech into non-standard
text, e.g. numbers. Finally, a cognitive computa-
tional investigation comparing speech production
errors and NSW classification errors is a research
question of general interest.

Acknowledgements

This paper reports on research supported by Cam-
bridge English, University of Cambridge. We are
thankful for support from Sidney Sussex College
and Downing College, Cambridge. And we grate-
fully acknowledge Dimitrios Alikaniotis and Ernst
for their help with this work. We thank the three
reviewers for their very helpful comments and
have attempted to improve the paper in line with
their suggestions.

References
AiTi Aw, Min Zhang, Juan Xiao, and Jian Su. 2006.

A phrase-based statistical model for sms text nor-
malization. In Proceedings of the COLING/ACL
2006 Main Conference Poster Session. Association
for Computational Linguistics.

Steven Bird, Edward Loper, and Ewan Klein. 2009.
Natural Language Processing with Python. Se-
bastopol, CA: O’Reilly Media.

Jacob Eisenstein. 2013. What to do about bad lan-
guage on the internet. In Proceedings of NAACL-
HLT 2013. Association for Computational Linguis-
tics.

Christiane Fellbaum, editor. 1998. WordNet: An Elec-
tronic Lexical Database. Cambridge, MA: MIT
Press.

W. Nelson Francis and Henry Kučera. 1964. Manual
of information to accompany A Standard Corpus of
Present-Day Edited American English, for use with
Digital Computers.

Bo Han and Timothy Baldwin. 2011. Lexical normali-
sation of short text messages: makn sens a #twitter.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics. Associ-
ation for Computational Linguistics.

Bo Han, Paul Cook, and Timothy Baldwin. 2012. Au-
tomatically constructing a normalisation dictionary
for microblogs. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning.

Braj Kachru. 1992. The Other Tongue: English across
cultures. Chicago: University of Illinois Press.

Adam Kilgarriff and Joseph Rosenzweig. 2000. En-
glish senseval: Report and results. In Proceedings of
the Second International Conference on Language
Resources and Evaluation (LREC 2000). European
Language Resources Association (ELRA).

Arne Köhn, Florian Stegen, and Timo Baumann. 2016.
Mining the spoken wikipedia for speech data and
beyond. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC 2016). European Language Resources Asso-
ciation (ELRA).

Stuart Moore, Sabine Buchholz, and Anna Korhonen.
2010. Annotating the enron email corpus with num-
ber senses. In Proceedings of the Seventh Interna-
tional Conference on Language Resources and Eval-
uation (LREC’10). European Language Resources
Association (ELRA).

Barbara Plank. 2016. What to do about non-standard
(or non-canonical) language in NLP. In Proceed-
ings of the 13th Conference on Natural Language
Processing (KONVENS 2016).

Vivek Kumar Rangarajan Sridhar. 2015. Unsupervised
text normalization using distributed representations
of words and phrases. In Proceedings of the 1st
Workshop on Vector Space Modeling for Natural
Language Processing.

Brian Roark and Richard Sproat. 2014. Hippocratic
abbreviation expansion. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers).

Richard Sproat, Alan Black, Stanley Chen, Shankar
Kumar, Mari Ostendorf, and Christopher Richards.
2001. Normalization of non-standard words. Com-
puter Speech and Language 15:287–333.

115

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 116–121
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

Huntsville, hospitals, and hockey teams:
Names can reveal your location

Bahar Salehi♣, Dirk Hovy♣, Eduard Hovy♦ and Anders Søgaard♣
♣Department of Computer Science, University of Copenhagen
♦School of Computer Science, Carnegie Mellon University
bahar.salehi@gmail.com dirk.hovy@di.ku.dk

hovy@cmu.edu soegaard@di.ku.dk

Abstract

Geolocation is the task of identifying a
social media user’s primary location, and
in natural language processing, there is a
growing literature on to what extent auto-
mated analysis of social media posts can
help. However, not all content features
are equally revealing of a user’s location.
In this paper, we evaluate nine name en-
tity (NE) types. Using various metrics,
we find that GEO-LOC, FACILITY and
SPORT-TEAM are more informative for
geolocation than other NE types. Using
these types, we improve geolocation accu-
racy and reduce distance error over various
famous text-based methods.

1 Introduction
Because social media such as Twitter are used in
both research and industry to monitor trends and
identify sudden changes in society, it is critical
to be able to locate social media users. In Twit-
ter, however, only about 1% of all tweets are geo-
tagged, and the location specified by users in their
profile is often noisy and unreliable (Cheng et al.,
2010).

Geolocation is the task of identifying users’
general or primary location, when this is not read-
ily available. Accurate geolocation can improve
scientific studies, as well as technologies such as
event detection, recommender systems, sentiment
analysis, and knowledge base population.

Since tweets contain at most 140 characters, ge-
olocation of individual tweets is rarely feasible.
Instead, most studies focus on predicting the pri-
mary location of a user by concatenating their en-
tire tweet history. While this provides more con-
text, it is still a noisy source with features of vary-
ing informativeness.

In this paper, we focus on named entities
(NEs), a particular rich source of information,
and investigate how much they can reveal about
a user’s primary location. Wing and Baldridge
(2014) showed lists of predictive features for
multiple cities, where we observe NEs among
the top 20 features. This is due to the in-
herent localization of many NEs. E.g., top
features for Los Angeles contain NEs such as
names (Irvine, disneyland), parts of names
(diego , angeles), and abbreviations (UCLA,
SoCal (Southern California)). This observation
motivates us to examine nine common NE types
in social media, and their location predictiveness.
Additionally, we find that using only the top three
most informative types for geolocation improves
accuracy and reduces the median distance error.

Contributions We study (1) the geographical
informativeness of nine named entity types, and
(2) explore their effect in a logistic regression
model of text-based geolocation. Among the pre-
vious top text-based models, we obtain the best
performance using the hidden location informa-
tion of the top three NE types. This suggests that
users who would like to maintain privacy should
avoid using such names.

2 Related Work
Most previous studies use textual features as in-
put. Some use KL divergence between the dis-
tribution of a users words and the words used in
each region (Wing and Baldridge, 2011; Roller
et al., 2012), regional topic distributions (Eisen-
stein et al., 2010; Ahmed et al., 2013; Hong
et al., 2012), or feature selection/weighting to find
words indicative of location (Priedhorsky et al.,
2014; Han et al., 2012, 2014; Wing and Baldridge,
2014).

All these studies require relatively large training
sets to fit the models, and can be heavily biased by

116

Type Example %
PERSON Barack Obama 31
GEO-LOC Southern California 18
FACILITY Edward theater 14
COMPANY IBM 12
MOVIE The town 10
BAND pink floyd 9
PRODUCT microsoft office 7
TV-SHOW family guy 4
SPORT-TEAM Eagles 2
All 55

Table 1: NE types considered in this paper and
percentage of users in training set who use at least
one of these NEs in their tweets.

major events during the time of collection, such as
an election or a disaster. In contrast to our work,
most do not consider multi-word NEs.

Only few text-based studies consider NEs, and
if so, focus on location names using gazetteers
like GeoNames, limiting the methods to the com-
pleteness of these gazetteers. Since they usu-
ally also use other text-based models, it is hard
to determine how much location names con-
tribute. These approaches depend on a name-
disambiguation phase, using Wikipedia, DBPedia,
or OpenStreetMap, since location names can refer
to multiple locations (Brunsting et al., 2016).

Chi et al. (2016) explicitly study the contribu-
tions of city and country names, hashtags, and
user mentionings, to geolocation. Their results
suggested that a combination of city and country
names, as well as hashtags, are good location pre-
dictors. Pavalanathan and Eisenstein (2015) sug-
gest that non-standard words are more location-
specific, and also, more likely to occur in geo-
tagged tweets. In contrast to this paper, none of the
previous works study how much various NE types
reveal about the user location. Similarly, Salehi
and Søgaard (2017) evaluate common hypotheses
about language and location. However, they do not
explicitly study named entities.

3 Resources
Data We use the WORLD dataset (Han et al.,
2012), which covers 3,709 cities worldwide and
consists of tweets from 1.4M users. Han et al.
(2012) hold out 10,000 users as development and
10,000 as test set. For each user with at least 10
geotagged tweets, the user’s location is set to be
the city in which the majority of their tweets are
from. We also use Han et al. (2012)’s method
to extract the nearest city to a given latitude-
longitude coordinate.

NER We use TwitterNLP (Ritter et al., 2011) to
extract the nine most common NE types in Twitter.
Table 1 shows the percentage of users in our train-
ing data who use at least one NE in their tweets.
Overall, 55% of the users use at least one NE, with
PERSON, GEO-LOC and FACILITY as the most
popular types.

Twitter corpus In order to measure the geo-
graphical diversity of NEs, we construct a cor-
pus from tweets posted one week before the
WORLD dataset was collected (14 Sep, 2011 to
20 Sep, 2011). We remove all non-English and
non-geo-tagged tweets from this corpus. This
leaves us with 0.5M tweets. This corpus cov-
ers 167 countries and 2263 cities/regions around
the world.1 The most frequent countries are
USA, Great Britain, Indonesia, Canada, Malaysia,
Philippine and Australia, and the most frequent
cities are London, Los Angeles, Chicago, Man-
hattan, Atlanta, Jakarta and Singapore. Using this
corpus, we obtain the distribution of NEs over the
cities of the world.

4 NE types and Geolocation
In Table 1, we have seen the general distribu-
tion of NE types, with PERSON, GEO-LOC and
FACILITY as top three. In this section, we fo-
cus on the predictiveness of NEs (as features) for
geolocation. Later, in Section 5, we will propose
a method to improve geolocation by putting more
emphasis on the top NEs and their hidden location
information.

We conduct three experiments to quantify pre-
dictiveness of NEs. In the first, we measure the
geographic distribution of each NE type, and mea-
sure their entropy. In the second experiment, we
conduct feature selection via randomized logistic
regression, and, in the third experiment, we es-
tablish a baseline by using majority classes for all
types.

Geographic diversity We first measure the ge-
ographic distribution of each type. We extract all
NEs in the WORLD training set and use the Tweet
corpus to measure entropy and mean pairwise dis-
tance (in kilometers) between tweets that contain
the same NEs. We compute unpredictability as en-
tropy:

H(x) = −
n∑

i=1

P(xi) log P(xi)

1We map the latitude and longitude coordinates to
cities/regions based on Han et al. (2012).

117

Entropy Avg. pairwise distance
city-level ↓ country-level ↓ in kilometers ↓ LR ↑

GEO-LOC 2.581 0.756 3982.077 0.831
FACILITY 2.774 0.798 4368.122 0.851
SPORT-TEAM 3.002 0.806 4127.404 0.729
MOVIE 2.980 1.110 5524.074 0.492
TV-SHOW 3.090 0.906 4713.947 0.465
PERSON 3.351 1.106 5157.701 0.544
BAND 3.519 1.199 5261.419 0.535
PRODUCT 4.119 1.358 5481.787 0.498
COMPANY 5.562 1.646 5814.398 0.611

Table 2: Average geographical variation/sparsity of each NE type in Twitter and average randomized
logistic regression (LR) weights. ↓ = lower values are better, ↑ = higher values are better. The top three
types in each column are shown in BOLD.

where the entropy of NE x is measured by com-
puting P (xi), which is the probability that x is re-
ferring to the ith city/country, based on the fre-
quency. We measure the entropy in both city and
country level, shown in Table 2.

For example, suppose CMU is found in four
tweets from Pittsburgh and one from San Fran-
cisco, and IBM is found in one tweet each from
Pittsburgh, San Francisco, Melbourne, and New
York. In this case, the entropy for CMU will be
lower than for IBM. This would indicate that IBM
is less predictive than CMU for geolocation. To
compute the entropy of an NE type, we average
over the entropies of all NEs of that type.

The first three columns of Table 2 show that
GEO-LOC and FACILITY are the least diverse
location-wise. NEs of type PERSON are the most
frequent NEs (see Table 1), and occur in more di-
verse locations. On the other hand, NEs of type
SPORT-TEAM, the least frequent NEs, have low
location diversity. PRODUCT and COMPANY are
the least predictive types.

Feature evaluation In our second experiment,
we use L1 randomized logistic regression (Ng,
2004) on the training set to get the most predictive
features. It measures how often a feature is pre-
dictive under varying conditions, by fitting hun-
dreds of L1-regularized models on subsets of the
data. Each feature is assigned a weight between
0 and 1 based on their predictiveness. For exam-
ple, the weights for countries and city names are
high (on average 0.831) showing that they are very
predictive. Yet, some examples of features with
zero weight are web, today and t.v. showing that
these features are not predictive at all. Table 2 (un-
der LR column) shows the resulting prevalence for
each type. These are compatible with the previous
two metrics, showing GEO-LOC, FACILITY and

0 1000 2000 3000 4000 5000
Distance error from true location (km)

0

20

40

60

80

100

C
u
m

u
la

ti
v
e
 %

band
tvshow
movie

product
facility

company
person

sportsteam
geo-loc

Figure 1: Distance error (test set)

SPORT-TEAM as the most predictive types.

Majority Vote Accuracy In the third experi-
ment, we measure accuracy and distance error
(in kilometers) using majority voting for each
NE on the Tweet corpus. E.g., if we see CMU
in four tweets from Pittsburgh and one tweet
from San Francisco, we label the user’s location
as Pittsburgh. Figure 1 shows the percent-
age of the test set with a distance error from
the true location less than K kilometers (also
known as ACC@K). The three top types are
again GEO-LOC, FACILITY and SPORT-TEAM,
showing their higher impact on revealing the loca-
tion of users.

5 NE Impact on Geolocation
Having established the informativeness of the var-
ious NE types, in this section, we examine the im-
pact of NEs and their hidden location information
for geolocation. To extract the hidden location
information of each NE, we collect the locations
of all tweets in our tweet corpus that contain that

118

Example Me, my friend and the Eiffel tower
baseline Me my friend and the Eiffel tower
Only NE [Eiffel tower]
Baseline without NE ME my friend and the
Our Method Me my friend and the Eiffel tower Paris Paris

Paris Paris [Las Vegas] [Las Vegas]

Table 3: Examples and features of methods in Section 5

Accuracy Distance
Method city↑ country↑ @161↑ Median↓ Mean↓
Baseline 17.6 83.6 33.6 515 1727
Only NE 9.3 53.6 17.7 2186 5317
Baseline without NE 14.8 82.2 29.9 612 1885
Our MethodallNEs 17.5 83.3 33.7 520 1769
Our Methodtop3 17.8 83.6 34.0 495 1735
Previous studies
Wing and Baldridge (2014) – – 31.0 509 1669
Han et al. (2012) 10.3 – 24.1 646 1953

Table 4: Accuracy and distance results for various methods. – indicates no report in respective paper

NE. To divide the world into regions with roughly
the same number of users, we use a k-d tree ap-
proach proposed by Roller et al. (2012). As a re-
sult, we will cover larger regions when the popu-
lation density is low and vice versa. Each region
is then considered as a label to train the classi-
fiers. The approach of using k-d tree is also used in
Rahimi et al. (2015); Han et al. (2012) and Wing
and Baldridge (2014).

See Table 3 for an example of the following
methods. All use logistic regression as classifier,
following Rahimi et al. (2015).

Baseline We use (Rahimi et al., 2015)’s bag-of-
words model over tweets as baseline, which is also
the state-of-the-art text-based method on the pub-
licly available WORLD dataset.

Baseline without NE Here, we remove all NEs,
to observe the influence of NEs in the bag-of-
words model.

Only NEs In this approach, we consider only
NEs and discard all other words in the tweets.

Our method We consider NEs and their inher-
ent location information in addition to the bag-of-
words model. The inherent location information
for each NE is extracted from our Twitter corpus.2

Suppose, for example, that Eiffel tower is found in
four tweets from Paris and two tweets from Las
Vegas. In this case, we add Paris (four times)
and Las Vegas (twice) to the input text. The

2As mentioned in Section 3, our Twitter corpus is the col-
lection of tweets posted one week before the WORLD dataset
was collected. This way we make sure that we are not training
on test data.

repetition is used to put more emphasis/weight
based on frequency.3 In order to measure the ef-
fectiveness of the three top NE types discovered in
Section 4, we experiment with (1) considering all
NE types (shown as Our MethodallNEs in Table
4), and (2) the three most useful types (shown as
Our Methodtop3).

Evaluation metrics We use the same evalua-
tion metrics as previous studies: accuracy depend-
ing on location granularity (city and country), ac-
curacy within the distance of 100 miles/161km
(ACC@161)4, and median and mean error (in
kilometers).

6 Results and Discussion

The results of applying each of the methods in-
troduced in Section 5 are shown in Table 4. The
baseline follows Rahimi et al. (2015), but does not
use network information, to isolate the effect of
NEs. They also add additional data, whereas we
only consider the WORLD training set to be com-
parable with Wing and Baldridge (2014) and Han
et al. (2012). Our baseline results are therefore
lower than what Rahimi et al. (2015) report. Using
only NEs results in a large performance drop with
respect to the baseline. However, ignoring NEs
(baseline-NE) also decreases the geolocation pre-
dictability by 15% (city level), indicating the im-
portance of NEs in revealing the location of users.

Our proposed method, using all NE types

3We also tried weighing features and samples according
to their entropy, but we found repetition to perform better.

4ACC@161 measures near-miss predictions (Cheng et al.,
2010)

119

according to their hidden location information,
comes close, but does not improve over the
baseline. However, when we consider only the
top three NE types (GEO-LOC,FACILITY and
SPORT-TEAM) from Section 4, performance in-
creases, indicating that other NE types add noisy
information.

Our error analysis shows that PERSON is
very frequent, yet diverse, including politi-
cians, athletes, and more general names. Since
SPORT-TEAM is one of the most indicative types,
we assume that athlete names can be useful as
well. We leave this aspect for future work.

7 Conclusion
We compare the predictiveness of various named
entity types for geolocation. We consider en-
tropy, pairwise distance, feature selection weights,
and the effect of the NEs on accuracy and er-
ror distance, and find that GEO-LOC, FACILITY
and SPORT-TEAM are more predictive of location
than other NE types.

Our results show that using the inherent local-
ized information of NEs can improve geolocation
accuracy. The results also suggest that users could
obfuscate geolocation by avoiding these types.

Acknowledgments
This work was supported by the Data Trans-
parency Lab.

References
Amr Ahmed, Liangjie Hong, and Alexander J Smola.

2013. Hierarchical geographical modeling of user
locations from social media posts. In Proceedings
of the 22nd international conference on World Wide
Web. ACM, pages 25–36.

Shawn Brunsting, Hans De Sterck, Remco Dolman,
and Teun van Sprundel. 2016. Geotexttagger: High-
precision location tagging of textual documents us-
ing a natural language processing approach. arXiv
preprint arXiv:1601.05893 .

Zhiyuan Cheng, James Caverlee, and Kyumin Lee.
2010. You are where you tweet: a content-based
approach to geo-locating twitter users. In Proceed-
ings of the 19th ACM international conference on In-
formation and knowledge management. ACM, pages
759–768.

Lianhua Chi, Kwan Hui Lim, Nebula Alam, and
Christopher J Butler. 2016. Geolocation prediction
in twitter using location indicative words and textual
features. WNUT 2016 page 227.

Jacob Eisenstein, Brendan O’Connor, Noah A Smith,
and Eric P Xing. 2010. A latent variable model
for geographic lexical variation. In Proceedings of
the 2010 Conference on Empirical Methods in Nat-
ural Language Processing. Association for Compu-
tational Linguistics, pages 1277–1287.

Bo Han, Paul Cook, and Timothy Baldwin. 2012. Ge-
olocation prediction in social media data by finding
location indicative words. In Proceedings of COL-
ING. pages 1045–1062.

Bo Han, Paul Cook, and Timothy Baldwin. 2014. Text-
based twitter user geolocation prediction. Journal of
Artificial Intelligence Research 49:451–500.

Liangjie Hong, Amr Ahmed, Siva Gurumurthy,
Alexander J Smola, and Kostas Tsioutsiouliklis.
2012. Discovering geographical topics in the twit-
ter stream. In Proceedings of the 21st international
conference on World Wide Web. ACM, pages 769–
778.

Andrew Y. Ng. 2004. Feature selection, l1 vs. l2 regu-
larization, and rotational invariance. In Proceedings
of the Twenty-first International Conference on Ma-
chine Learning. ICML ’04, pages 78–85.

Umashanthi Pavalanathan and Jacob Eisenstein. 2015.
Confounds and consequences in geotagged twitter
data. arXiv preprint arXiv:1506.02275 .

Reid Priedhorsky, Aron Culotta, and Sara Y Del Valle.
2014. Inferring the origin locations of tweets with
quantitative confidence. In Proceedings of the 17th
ACM conference on Computer supported coopera-
tive work & social computing. ACM, pages 1523–
1536.

Afshin Rahimi, Trevor Cohn, and Timothy Baldwin.
2015. Twitter user geolocation using a unified text
and network prediction model. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing of the
Asian Federation of Natural Language Processing
(ACL2015). The Association for Computational Lin-
guistics, pages 630–636.

Alan Ritter, Sam Clark, Mausam, and Oren Etzioni.
2011. Named entity recognition in tweets: An ex-
perimental study. In EMNLP.

Stephen Roller, Michael Speriosu, Sarat Rallapalli,
Benjamin Wing, and Jason Baldridge. 2012. Super-
vised text-based geolocation using language models
on an adaptive grid. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning. Association for Computational
Linguistics, pages 1500–1510.

Bahar Salehi and Anders Søgaard. 2017. Evaluating
hypotheses in geolocation on a very large sample
of twitter. In Proceedings of the 3rd Workshop on
Noisy User-generated Text (WNUT). Copenhagen,
Denmark.

120

Benjamin Wing and Jason Baldridge. 2014. Hierar-
chical discriminative classification for text-based ge-
olocation. In EMNLP. pages 336–348.

Benjamin P Wing and Jason Baldridge. 2011. Sim-
ple supervised document geolocation with geodesic
grids. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies-Volume 1. Association
for Computational Linguistics, pages 955–964.

121

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 122–130
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

Improving Document Clustering by Eliminating Unnatural Language

Myungha Jang1, Jinho D. Choi2, James Allan1

1College of Information and Computer Sciences, University of Massachusetts
2Department of Computer Science, Emory University

mhjang@cs.umass.edu, jinho.choi@emory.edu, allan@cs.umass.edu

Abstract

Technical documents contain a fair amount
of unnatural language, such as tables, for-
mulas, and pseudo-code. Unnatural lan-
guage can be an important factor of confus-
ing existing NLP tools. This paper presents
an effective method of distinguishing un-
natural language from natural language,
and evaluates the impact of unnatural lan-
guage detection on NLP tasks such as doc-
ument clustering. We view this problem as
an information extraction task and build a
multiclass classification model identifying
unnatural language components into four
categories. First, we create a new anno-
tated corpus by collecting slides and papers
in various formats, PPT, PDF, and HTML,
where unnatural language components are
annotated into four categories. We then ex-
plore features available from plain text to
build a statistical model that can handle any
format as long as it is converted into plain
text. Our experiments show that removing
unnatural language components gives an
absolute improvement in document cluster-
ing by up to 15%. Our corpus and tool are
publicly available.

1 Introduction

Technical documents typically include meta com-
ponents such as figures, tables, mathematical for-
mulas, and pseudo-code to effectively communi-
cate complex ideas and results. Let us define the
term unnatural language as text blocks that con-
sist of only meta components as opposed to natural
language that consists of body text.

There are many effective NLP tools available as
the field has been advanced. However, these tools
are mostly built for input text that are natural lan-

guage. As many of our tools for NLP can be badly
confused by unnatural language, it is necessary to
distinguish unnatural language blocks from natural
language blocks, or else unnatural language blocks
will cause confusion for natural language process-
ing. Once we salvage natural language blocks from
the documents, we can exploit NLP tools much
better as they are intended for. This phenomenon
is emphasized in technical documents that have
a higher ratio of unnatural language compared to
non-technical documents such as essays and nov-
els.

Document layout analysis aiming to identify doc-
ument format by classifying blocks into text, fig-
ures, and tables has been a long-studied problem
(O’Gorman, 1993; Simon et al., 1997). Most previ-
ous work have focused on image-based documents,
PDF and OCR formats, and used geometric anal-
ysis on the pages using the visual cues from its
layout. This was a clearly important problem in
many applications in NLP and IR.

This work was particularly motivated while we
attempted to cluster teaching documents (e.g., lec-
ture slides and reading materials from courses) in
technical topics. We discovered that unnatural
language blocks introduced significant noise for
clustering, causing spurious matches between doc-
uments. For example, code consists of reserved
programming keywords and variable names. Two
documents can contain two very different code
blocks from one another but their cosine similar-
ity is high because they share many terms by pro-
gramming convention (Figure 1). (Kohlhase and
Sucan, 2006) also recognized this problem by ex-
plaining main challenges of semantic search for
mathematical formula: (1) Mathematical notation
is context-dependent; without human’s capability
to understand the formula from the context, formu-
las are just noise. (2) Identical presentations can
stand for multiple distinct mathematical objects.

122

Figure 1: An example of how unnatural language confuses NLP tools. The left and right pseudo-code are
very different, but standard NLP similarity functions such as cosine similarity can easily be confused by
the terms highlighted in yellow.

This paper proposes a new approach for identify-
ing unnatural language blocks in plain text into four
types of categories: (1) TABLE (2) CODE (3) MATH-
EMATICAL FORMULA, and (4) MISCELLANEOUS

(MISC). Text is extracted from technical documents
in PDF, PPT, and HTML formats with little to no
explicit visual layout information preserved. We
focus on technical documents because they have
a significant amount of unnatural language blocks
(26.3% and 16% in our two corpora). Specifically,
we focus on documents in slide formats, which
have been underexplored.

We further study how removal of unnatural lan-
guage improves two NLP tasks: document simi-
larity and document clustering. Our experiments
show that clustering on documents with unnatu-
ral language removed consistently showed higher
accuracy on many of the settings than on original
documents, with the maximum improvements up
to 15% and 11% in two datasets, while it never
significantly hurts the original clustering.

2 Related Work

2.1 Table Extraction

Various efforts have been made for table extraction
using semi-supervised learning on the patterns of
table layouts within ASCII text documents (Ng
et al., 1999) web documents (Pinto et al., 2003;
Lerman et al., 2001; Zanibbi et al., 2004) PDF
and OCR image documents (Clark and Divvala,
2015; Liu et al., 2007). Existing techniques exploit
the graphical features such as primitive geometry
shapes, symbols, and lines to detect table borders.
(Khusro et al., 2015) introduces and compares the
state-of-the-art table extraction techniques from

PDF articles. However, there does not appear to be
any work that has attempted to process plain text
extracted from richer formats, where table layouts
are unpreserved.

2.2 Formula Extraction

Lin et al. (2011) categorized existing approaches
for mathematical formulas detection by ‘character-
based’ and ‘layout-based’ with respect to key fea-
tures. (Chan and Yeung, 2000) provides a com-
prehensive survey of mathematical formula extrac-
tion using various layout features available from
image-based documents. Since we have no access
to layout information, character-based approaches
are more relevant to our work. They use fea-
tures of mathematical symbols, operators, and posi-
tions and their character sizes (Suzuki et al., 2003;
Kacem et al., 2001).

2.3 Code Extraction

Tuarob et al. (2013) proposed 3 pseudo-code ex-
traction methods: a rule based, a machine learning,
and a combined method. Their rule based approach
finds the presence of pseudo-code captions using
keyword matching. The machine learning approach
detects a box surrounding a sparse region and clas-
sifies whether the box is pseudo-code or not. They
extracted four groups of features: font-style based,
context based, content based, and structure based.

3 Problem Definition

Input to our task is the plain text extracted from
PDF or PPT documents. The goal is to assign a
class label to each line in that plain text, identifying
it as natural language (regular text) or one of the

123

Figure 2: A table in a PDF document (left) and its text-extracted version (right). Note that it is hard to
distinguish the column headings from the extracted text without its layout.

Figure 3: An example of poor text extraction. The output from Apache Tika (right) has lost its original
structure. Experiments will show that document clustering is improved by removing this kind of noise
labeled as MISC

four types of unnatural language block components:
table, code, formula, or miscellaneous text. In this
work, we focus on these four specific types because
our observations lead us to believe they are the most
frequently occurring components in PPT lecture
slides and PDF articles. Figures are also a frequent
component but we do not consider them because
they are commonly pictures or drawings and cannot
be easily extracted to text. In this section, we briefly
discuss the characteristics of each component and
challenges in their identification from the raw text.

3.1 Table
Tables are prevalent in almost every domain of tech-
nical documents. Tables are usually conveyed by
its two-dimensional layout and its column and/or
row headings (Khusro et al., 2015). Tables typi-
cally have multiple cells merged for layout, which
makes them particularly difficult to distinguish as
a table once they are converted to flat text.

3.2 Mathematical Formula
Mathematical formulas exist in two ways: isolated
formulas on their own lines or as formulas embed-
ded within a line of text. In this work, we treat
both types as a formula component. Because not
all math symbols can be matched to Unicode char-
acters and because the extraction software may not
convert them correctly, the extracted text tends to
contain more oddly formatted or even completely
wrong characters. Superscripts and subscripts are
no longer distinguishable and the original visual

layout (e.g., math symbols over multiple lines such
as Π and

∑
) is lost.

3.3 Code

Articles in Computer Science or related fields often
contain pseudo-code or actual program code to
illustrate their algorithm. We assume that even
indents, one of the strong code visual cues, are
not preserved in the extracted text although some
extraction tool saves them, not to limit ourselves to
the detailed performances of text extraction tools.

3.4 Miscellaneous Non-text (Misc.)

In addition to the components mentioned above,
there are other types of unnatural language blocks
that are left during conversion to text and that may
provide spurious sub-topic matches between doc-
uments. To allow for those, we denote those com-
ponents as miscellaneous text. One example of
miscellaneous text is the text and caption that are
part of the diagrams in slides. Figure 3 shows an
example of miscellaneous text that lost its structure
and meaning while being converted to text without
the original diagram.

4 Corpus

4.1 Data Collection

We collected 1,561 lecture slides from various
Computer Science and Electrical Engineering
courses that are available online, and 5,898 aca-
demic papers from several years of ACL/EMNLP

124

Purpose Name Content

Classification Training
TSLIDES 35 lecture slides (8,514 lines) whose components are annotated
TACL 35 ACL papers (25,686 lines) whose components are annotated
TCOMBINED Combination of TSLIDES and TACL

Word Embedding Training TWORD2V EC
1,190 lecture slides and 5,863 ACL/EMNLP papers archived
over a few years that are used for training word embedding.

Clustering
CDSA 128 lecture slides from ‘data structure’ and ‘algorithm’ classes
COS 300 lecture slides from, ‘operating system’ classes

Table 1: Datasets used in our paper. All data are available for download at [http://cs.umass.edu/
~mhjang/publications.html]

archive1. We divided the dataset for several pur-
poses: training the classification model, training
word embedding model for feature extraction, and
clustering for extrinsic evaluation. The details of
the dataset we used are summarized in Table 1.
We make the data publicly available for down-
load at http://cs.umass.edu/~mhjang/
publications.html.

For classification, we constructed three datasets
using two different data sources: (1) lecture slides,
(2) ACL papers, and (3) a combination of both. We
chose these two types of data sources because they
have different ratios of unnatural language com-
ponents and complement each other for coverage.
Table 2 shows the ratio of the four components
from each annotated dataset. For example, 1.4% of
lines in TSLIDES are annotated as part of table.

4.2 Text Extraction

We extracted plain text from our datasets using an
open-source software package, Apache Tika. The
package is available for text extraction from various
formats including PDF, PPT, and HTML.

4.3 Annotation

To train a statistical model, we need ground-truth
data. We created annotation guidelines for the 4
types of unnatural language components and anno-
tated 35 lectures slides (7,943 lines) and 35 ACL
papers (25,686 lines). We developed an annota-
tion tool to support the task and also to enforce
annotators to follow certain rules2. We hired four
undergraduate annotators who have knowledge of
the Computer Science domain for this task.

1https://aclweb.org/anthology
2The guidelines and the tool are available at http://cs.

umass.edu/~mhjang/publications.html

TABLE CODE FORMULA MISC All

TSLIDES 1.4% 14.6% 0.5% 9.8% 26.3%
TACL 4.0% 0.6% 5.0% 6.4% 16%

Table 2: % of lines by unnatural category. Both
datasets have quite a bit of unnatural language
(26.3% for TSLIDES and 16% for TACL), though
TACL has more TABLES and FORMULAS and less
CODE.

5 Features

We find line-based prediction has an advantage
over token-based prediction because it allows us
to observe the syntactic structure of the line, how
statistically common the grammar structure is, and
how layout patterns compare to neighboring lines.
We introduce five sets of features used to train our
classifier and discuss each feature’s impact on the
accuracy.

5.1 N-gram (N)
Unigrams and bigrams of each line are included as
features.

5.2 Parsing Features (P)
Unnatural languages are not likely to form any
grammar structure. When we attempt to parse the
unnatural language line, the resultant parsing tree
would form unusual syntactic structure. To capture
this insight, we parse each line using the depen-
dency parser in ClearNLP (Choi and McCallum,
2013) and extract features such as the set of depen-
dency labels, the ratio of each POS tag, and POS
tags of each dependent-head pair from each parse
tree.

5.3 Table String Layout (T)
Text extracted from tables loses its visual layout as
a table but still preserves implicit layout through
its string patterns. Tables tend to convey the same

125

type of data along the same column or row. For ex-
ample, if a column in a table reports numbers, it is
more likely to contain numeral tokens in the same
location of the lines of the table in parallel. Hence,
a block of lines will more likely be a table if they
share the same pattern. We encode each line by
replacing each token as either S (String) or N (Nu-
meral). We then compute the edit distance among
neighboring lines weighted by language modeling
probability computed from the table corpus (Equa-
tion 1, 2).

Ptable(li) ∝ Ptable(li|li−1)
= TableLanguageModel(li)·

editDistance(encode(li), encode(li−1)) (1)

TableLanguageModel(li)
= Πn

j (P (encode(ti,j+1)|encode(ti,j)) (2)

where li refers to a i-th line in a document, ti,j
refers to a j-th token in li.

5.4 Word Embedding Feature (E)

We train word embeddings using TWORD2V EC us-
ing WORD2VEC (Mikolov et al., 2013). The train-
ing corpus contained 278,719 words. Since we
do a line-based prediction, we need a vector that
represents the line, not each word. We consider
three ways of computing a line embedding vector:
(1) by averaging the vector of the words, (2) by
computing a paragraph vector introduced in (Le
and Mikolov, 2014), and (3) by using both.

5.5 Sequential Feature (S)

The sequential nature of the lines is also an impor-
tant feature because the component most likely oc-
curs over a block of contiguous lines. We train two
models. The first model uses the annotation for the
previous line’s class. We then train another model
using the previous line’s predicted label, which is
the output of the first model.

6 Classification Experiments

We use the Liblinear Support Vector Machine
(SVM) (Chang and Lin, 2011) classifier for train-
ing and run 5-fold cross-validation for evaluation.
To improve the robustness of structured prediction,
we adopt a learning to search algorithm known as
DAGGER to SVM (Ross et al., 2010). We first intro-
duce two baselines to compare the accuracy against
our statistical model.

6.1 Baselines
Since no existing work is directly applicable to
our scenario, we consider two straightforward base-
lines.

• Weighted Random (W-Random)
This assigns the random component class to
each line. Instead of uniform random predic-
tion, we made more educated guesses using
the ratio of components known from the anno-
tated dataset (Table 2).

• Component Language Modeling (CLM)
Among the five language models of the five
component classes (the four non-textual com-
ponents and text component) generated from
the annotations, we predict the component for
each line by assigning the component whose
language model gives the highest probability
to the line.

6.2 Classification Result
We first conduct single-domain classification. An-
notations within each dataset, TSLIDES and TACL

are split for training and testing using 5-fold cross
validation scheme. Table 3 reports F1-score for pre-
diction of the four components in the two dataset
using our method as well as baselines.

Precision Recall F1-score

TABLE 94.60 76.39 84.53
CODE 89.56 84.01 86.69

FORMULA 85.07 79.32 82.10
MISC 85.59 90.24 87.86
TEXT 97.76 98.79 98.27

Table 4: Multi-domain classification improves the
single-domain classification in Table 3. Identifica-
tion of categories with particularly low accuracy in
each datasets (TABLE and FORMULA in TSLIDES

and CODE in TACL) are improved to be as good as
the other categories.

The proposed method dramatically increased the
prediction accuracies for all of the components
against the baselines. CLM baseline showed the
highest accuracy on CODE among the four cate-
gories in both datasets. Because pseudo-code use
more controlled vocabulary (e.g., reserved words
and common variable names), the language itself
becomes distinctive characteristics. We also in-
clude the numbers reported by Tuarob et al. (2013)

126

TSLIDES TACL

TABLE CODE FORMULA MISC TABLE CODE FORMULA MISC

W-Random 1.69 14.62 2.82 10.57 4.15 0.62 4.44 6.08
CLM 5.41 28.62 0.00 10.47 13.10 16.45 10.32 5.18

Proposed Method 67.89 90.22 29.09 89.63 86.58 63.70 80.98 87.63
PC-CB (Tuarob et al., 2013) N/A 75.95 N/A N/A N/A 75.95 N/A N/A

Table 3: Single-domain Classification Result in F1-score: Proposed method is much better than baselines
for classifying unnatural language. Note that we borrowed the F1-score reported on their dataset for
reference. The number is not directly comparable to other numbers since the datasets are different.

for comparison. Since their dataset was 258 PDF
scholarly articles, TACL is more a comparable
dataset than TSLIDES , but our training set is much
smaller than their dataset. However, their number
reported on Table 3 is not directly comparable to
other numbers because the numbers are on different
datasets.

In TSLIDES , the classification F1-score for FOR-
MULA is relatively low as 29.09% compared to
the other components in the same dataset, and also
compared to the FORMULA prediction in TACL

(80.98%). This is due to too small amount of train-
ing data (only 0.5% of FORMULA in TACL), which
is overcome in TSLIDES that contain 5% of FOR-
MULA training data (refer to Table 2).

In the proposed method, classification of CODE

and MISC was significantly improved in TSLIDES

(around 90%), while that of TABLE and FOR-
MULA was improved in TACL (over 80%). This
shows the complementary nature between the two
datasets, which suggests that a combination of both,
Tcombined, would further improve classification per-
formance. Table 4 shows the multi-domain clas-
sification result using Tcombined, in which all four
categories are identified with an F1-score higher
than 80%.

6.3 Feature Analysis

We conducted feature analysis to understand the
impact of single feature and their combination. We
started from single features and incrementally com-
bined them to observe the performance (Figure 5).
Features are added in a greedy fashion such that a
feature that gives the higher accuracy when used
alone is added first.

We first compare the three ways of computing
sentence vector features mentioned in Section 5
(Figure 4). When we experiment with only embed-
ding features, averaging word vectors performed
9-12 times better than paragraph vectors. When

Figure 4: Three ways of computing sentence em-
bedding vector

both features were used, there are some gains in
CODE and MISC but losses in TABLE and FOR-
MULA. However, when we experiment with all the
other features in addition to embedding features,
losses were covered by the other features such that
combined vectors give overall the highest perfor-
mances.

N-gram (N) features was the most powerful fea-
ture with 68% of F1-score when used alone. The
next useful features are parsing feature (P), table
layout (T), and embedding features (E) in order
for TABLE, while embedding vectors were more
effective than parsing feature for CODE (Figure 5).

7 Removal Effects of Unnatural
Language on NLP tools

We observe how removal of unnatural language
from documents affects the performance of two
NLP tools: document similarity and document clus-
tering. For the set of experiments, we prepared a
gold standard clustering for each dataset, CDSA

and COS .

127

Figure 5: Feature analysis for TABLE and FOR-
MULA identification in Tcombined. N: N-gram, E:
Embedding, P: Parsing, T: Table String Layout, S:
Sequential.

7.1 Document Similarity

If two documents are similar, they must be topically
relevant to each other. A good similarity measure
should reflect that; two topically relevant docu-
ments should have a high similarity score. To test
whether the computed similarity reflects the actual
topic relevance better once the unnatural language
is removed, we conduct regression analysis.

We convert the gold standard clustering to pair-
wise binary relevance. If two documents are in the
same ground-truth cluster, they are relevant, and
otherwise irrelevant. We then fit a log-linear model
in R for predicting binary relevance from the cosine
similarity of document pairs.

Regression models fitted in R are evaluated using
AIC (Akaike, 1974). The AIC is a measure used as
a means for model selection, which measures the
relative quality of statistical models learned from
the given data. When AIC is smaller, the fit is better
and the complexity of the model is smaller since
it requires fewer parameters. Table 5 shows that
AIC was reduced by 53 and 118 respectively on the
models trained with documents whose unnatural
language blocks are removed, compared to the orig-
inal documents. Since AIC does not provide a test
for a model, AIC does not suggest anything about
the quality of the model in an absolute sense, but
relative quality. From this result, we can conclude
that cosine similarity can fit a better model that
predicts documents’ topic relevance with signifi-
cance after unnatural language blocks have been
removed.

AIC(Doriginal) AIC(Dremoved) Improvement
CDSA -40975 -41028 -53
COS -61404 -61522 -118

Table 5: The statistical model is trained better
with documents whose unnatural language cate-
gories are removed (Dremoved) than the model with
the original documents (Doriginal) in both datasets.
Smaller AIC scores imply better models.

Figure 6: Clustering result on two datasets, CDSA

(top) and COS (bottom). X axis referes to the the
size of document vector K, which controls the top-
K TF-IDF terms included from documents. Y axis:
Clustering F1-score.

7.2 Document Clustering

Comparing general clustering performance on two
document sets is tricky because clustering perfor-
mance varies by many factors, e.g., clustering algo-
rithm, similarity function, document representation,
and parameters. To make a safe claim that cluster-
ing quality of one set of documents is better than
the other, clustering on one set should consistently
outperform the other under many different settings.
To validate this, we perform clustering experiments
with multiple settings such as different document
vector size and and initialization schemes.

In this experiment, we consider seeded K-means
clustering algorithm (Basu et al., 2002) for teach-
ing documents. In our application scenario, users
initially submit a topic list (e.g., syllabus) of the
course. Then lecture slides are grouped into the
given topic cluster. Depending on users’ interac-
tion level, we consider a semi-interactive scenario
where users only provide a topic list, and a fully-
interactive setting where users not only provide a
topic list but also provide an answer document for
each topic cluster, further specifying the intended
topic.

128

Input: Set of document vectors D =
{d1, ...dn}, di ∈ RT , set of seed vectors S =
{s1, ...sk}, user-provided topic keywords
vector T = {t1, ...tk}
Result: Disjoint K partitioning of D into Ck

l=1

Seed Initialization:
if Topic-keywords seeding then

si = ti

if Top-1 document seeding then
si = dj ,
argmaxj(COSINESIMILARITY(ti, dj))

if User-selected document seeding then
si =DOCSELECTEDBYUSER(ti)

while convergence do
K-means clustering document selection
process

Algorithm 1: Seeded K-means with User Interac-
tion

In a semi-interactive setting, topic keywords are
sparse seeds as they usually consist of two or three
words. Therefore, we expand the topic keywords
by finding the top-1 document retrieved from the
keywords and use it as a seed. For experiments,
we simulate the fully-interactive setting; instead of
having an actual user to pick an answer document,
we use an answer document randomly chosen from
a gold cluster. The seeded K-means clustering
algorithm with three interactive seeding schemes
is described in Algorithm 1.

A simulated setting is more realistic when the
selected document is suggested to the user as the
top or near-top choice. In our dataset, 60% of
the selected documents were ranked in top 10 in
CDSA, and 13% of the selected documents were
ranked in top 10 in COS , which implies that the
simulated setting in CDSA was more realistic than
in CDSA. For top-1 document seeding, 64% and
78% of document seeds matched with the gold
standard in CDSA and COS , respectively.

Figure 6 shows the clustering result of original
documents (Doriginal) and documents whose un-
natural language blocks are removed (Dremoved),
with three different seeding schemes over two lec-
ture slide datasets. In CDSA, Dremoved consistently
outperformed with all three seeding schemes. The
clustering performed the best with Dremoved when
top-1 document was used as a seed. Overall, in
CDSA, clustering was improved 94% of the time
with the maximum absolute gain of 14.7% and
the average absolute gain of 4.6%. The average

absolute loss was 0.8% when 6% of the time the
removal of unnatural language made the cluster-
ing worse. In COS , clustering was improved 73%
of the times with the maximum absolute gain of
11.4% and the average absolute gain of 3.9%. The
average absolute loss was 1.7%. Our results sug-
gest that removal of unnatural language blocks can
significantly improve clustering most of the times
with a bigger gain than occasional losses.

8 Conclusion

In this paper, we argued that unnatural language
should be distinguished from natural language in
technical documents for NLP tools to work effec-
tively. We presented an approach to the identifi-
cation of four types of unnatural language blocks
from plain text, which is not dependent on docu-
ment format. The proposed method extracts five
sets of line-based textual features, and had an F1-
score that was above 82% for the four categories of
unnatural language. We showed how existing NLP
tools can work better on documents if we remove
unnatural language from documents. Specifically,
we demonstrated removing unnatural language im-
proved document clustering in many settings by
up to 15% and 11% at best, while not significantly
hurting the original clustering in any setting.

Acknowledgments

This work was supported in part by the Center
for Intelligent Information Retrieval and in part by
NSF grant #IIS-1217281. Any opinions, findings
and conclusions or recommendations expressed in
this material are those of the authors and do not
necessarily reflect those of the sponsor.

References
Hirotugu Akaike. 1974. A new look at the statisti-

cal model identification. Automatic Control, IEEE
Transactions on, 19(6):716–723.

Sugato Basu, Arindam Banerjee, and Raymond J.
Mooney. 2002. Semi-supervised clustering by seed-
ing. In Proceedings of the Nineteenth International
Conference on Machine Learning, ICML ’02, pages
27–34, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

Kam-Fai Chan and Dit-Yan Yeung. 2000. Mathemati-
cal expression recognition: A survey.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIB-
SVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology,
2:27:1–27:27.

129

Jinho D. Choi and Andrew McCallum. 2013.
Transition-based dependency parsing with se-
lectional branching. In Proceedings of the 51st
Annual Meeting of the Association for Computa-
tional Linguistics, ACL’13, pages 1052–1062.

Christopher Clark and Santosh Divvala. 2015. Looking
beyond text: Extracting figures, tables and captions
from computer science papers. In AAAI Workshops.

Afef Kacem, Abdel Belaïd, and Mohamed Ben Ahmed.
2001. Automatic extraction of printed mathematical
formulas using fuzzy logic and propagation of con-
text. IJDAR, 4(2):97–108.

Shah Khusro, Asima Latif, and Irfan Ullah. 2015. On
methods and tools of table detection, extraction and
annotation in pdf documents. J. Inf. Sci., 41(1):41–
57.

Michael Kohlhase and Ioan Sucan. 2006. A search en-
gine for mathematical formulae. In AISC, volume
4120 of Lecture Notes in Computer Science, pages
241–253. Springer.

Quoc V. Le and Tomas Mikolov. 2014. Distributed
representations of sentences and documents. CoRR,
abs/1405.4053.

Kristina Lerman, Craig Knoblock, and Steven Minton.
2001. Automatic data extraction from lists and ta-
bles in web sources. In In Proceedings of the work-
shop on Advances in Text Extraction and Mining
(IJCAI-2001), Menlo Park. AAAI Press.

Xiaoyan Lin, Liangcai Gao, Zhi Tang, Xiaofan Lin,
and Xuan Hu. 2011. Mathematical Formula Iden-
tification in PDF Documents. In International Con-
ference on Document Analysis and Recognition, IC-
DAR, pages 1419–1423.

Ying Liu, Kun Bai, Prasenjit Mitra, and C. Lee Giles.
2007. TableSeer: automatic table metadata extrac-
tion and searching in digital libraries. In Joint Con-
ference on Digital Library, JCDL, pages 91–100.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Hwee Tou Ng, Chung Yong Lim, and Jessica Li Teng
Koo. 1999. Learning to recognize tables in free
text. In Proceedings of the 37th Annual Meeting
of the Association for Computational Linguistics on
Computational Linguistics, ACL ’99, pages 443–
450, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

L. O’Gorman. 1993. The document spectrum for page
layout analysis. IEEE Trans. Pattern Anal. Mach.
Intell., 15(11):1162–1173.

David Pinto, Andrew McCallum, Xing Wei, and
W. Bruce Croft. 2003. Table extraction using con-
ditional random fields. In Proceedings of the 26th

Annual International ACM SIGIR Conference on Re-
search and Development in Informaion Retrieval,
SIGIR ’03, pages 235–242, New York, NY, USA.
ACM.

Stéphane Ross, Geoffrey J. Gordon, and J. Andrew
Bagnell. 2010. No-regret reductions for imita-
tion learning and structured prediction. CoRR,
abs/1011.0686.

Anikó Simon, Jean-Christophe Pret, and A. Peter John-
son. 1997. A fast algorithm for bottom-up document
layout analysis. IEEE Trans. Pattern Anal. Mach. In-
tell., 19(3):273–277.

Masakazu Suzuki, Fumikazu Tamari, Ryoji Fukuda,
Seiichi Uchida, and Toshihiro Kanahori. 2003.
Infty- an integrated ocr system for mathematical doc-
uments. In Proceedings of ACM Symposium on
Document Engineering 2003, pages 95–104. ACM
Press.

Suppawong Tuarob, Sumit Bhatia, Prasenjit Mitra,
and C. Lee Giles. 2013. Automatic detection of
pseudocodes in scholarly documents using machine
learning. In Proceedings of the 2013 12th Interna-
tional Conference on Document Analysis and Recog-
nition, ICDAR ’13, pages 738–742, Washington,
DC, USA. IEEE Computer Society.

Richard Zanibbi, Dorothea Blostein, and R. Cordy.
2004. A survey of table recognition: Models, ob-
servations, transformations, and inferences. Int. J.
Doc. Anal. Recognit., 7(1):1–16.

130

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 131–139
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

Lithium NLP: A System for Rich Information Extraction from
Noisy User Generated Text on Social Media

Preeti Bhargava and Nemanja Spasojevic and Guoning Hu
Lithium Technologies | Klout

San Francisco, CA
preeti.bhargava, nemanja.spasojevic, guoning.hu@lithium.com

Abstract

In this paper, we describe the Lithium
Natural Language Processing (NLP)
system - a resource-constrained, high-
throughput and language-agnostic sys-
tem for information extraction from
noisy user generated text on social me-
dia. Lithium NLP extracts a rich set
of information including entities, top-
ics, hashtags and sentiment from text.
We discuss several real world applica-
tions of the system currently incorpo-
rated in Lithium products. We also
compare our system with existing com-
mercial and academic NLP systems in
terms of performance, information ex-
tracted and languages supported. We
show that Lithium NLP is at par with
and in some cases, outperforms state-
of-the-art commercial NLP systems.

1 Introduction

Social media has become one of the major
means for communication and content produc-
tion. As a result, industrial systems that pos-
sess the capability to process rich user gener-
ated content from social media platform have
several real-world applications. Furthermore,
due to the content style, size and heterogene-
ity of information (e.g. text, emoticons, hash-
tags etc.) available on social media, novel
NLP techniques and systems that are designed
specifically for such content and can poten-
tially integrate or learn information from dif-
ferent sources are highly useful and applicable.

However, NLP on social media data can be
significantly complex and challenging due to
several reasons:

• Noisy unnormalized data - Social me-
dia data is much more informal than tra-
ditional text and less consistent in lan-
guage in terms of style, tone etc. It
involves heavy usage of slang, jargons,
emoticons, or abbreviations which usually
do not follow formal grammatical rules.
Hence, novel NLP techniques need to be
developed for such content.

• Multi-lingual content - Social media
data poses an additional challenge to NLP
practitioners because the user generated
content on them is often multi-lingual.
Hence, any NLP system processing real
world data from the web should be able
to support multiple languages in order to
be practical and applicable.

• Large scale datasets - State-of-the-art
NLP systems should be able to work on
large scale datasets such as social me-
dia data, often involving millions of doc-
uments. Moreover, these systems need to
have low resource consumption in order to
scale to such datasets in a finite amount of
time. In addition, in order to be applica-
ble and practical, they should be able to
run on off-the-shelf commodity machines.

• Rich set of information - In order to
be cost-efficient, state-of-the-art NLP sys-
tems need to be exhaustive in terms of
information extracted1 from social media
text. This includes extracting entities of
different types (such as professional ti-
tles, sports, activities etc.) in addition
to just named entities (such as persons,
organizations, locations etc.), inferring

1https://en.wikipedia.org/wiki/Information_
extraction

131

Figure 1: A user’s inferred expertise topics Figure 2: Content Personalization

fine-grained and coarse-grained subject
matter topics (sports, politics, health-
care, basketball), text sentiment, hash-
tags, emoticons etc.

In this paper, we present the Lithium NLP2

system which addresses these challenges. It is
a resource-constrained, high-throughput and
language-agnostic system for information ex-
traction from noisy user generated text such
as that available on social media. It is capable
of extracting a rich set of information includ-
ing entities, topics, hashtags and sentiment.
Lithium NLP currently supports multiple lan-
guages including Arabic, English, French, Ger-
man, Italian and Spanish. It supports large
scale data from several social media platforms
such as Twitter, Facebook, Linkedin, etc. by
processing about 500M new social media mes-
sages, and 0.5M socially relevant URLs shared
daily. Since it employs statistical NLP tech-
niques, it uses the large scale of the data to
help overcome the noisiness.

Lithium NLP is currently incorporated in
several Lithium products. It enables con-
sumer products like Klout3 - a platform which
integrates users’ data from multiple social
networks such as Twitter, Facebook, Insta-
gram, Linkedin, GooglePlus, Youtube, and
Foursquare, in order to measure their online
social influence via the Klout Score4 (Rao
et al., 2015). On Klout, it is used to model
users’ topics of interest (Spasojevic et al.,
2014) and expertise (Spasojevic et al., 2016) by
building their topical profiles. Figure 1 shows

2A screencast video demonstrating the system is
available at https://youtu.be/U-o6Efh6TZc

3https://klout.com
4https://klout.com/corp/score

an example of a user’s topics of expertise, as
inferred on Klout. Currently, we build topi-
cal profiles for more than 600M users. These
profiles are further used to recommend person-
alized content to these users by matching their
topics of interest or expertise with content top-
ics as this leads to better user engagement. An
example of content personalization is shown in
Figure 2. The user scores and topics are also
available via the GNIP PowerTrack API5.

Lithium NLP also enables enterprise prod-
ucts such as Lithium’s social media manage-
ment tools6 - Lithium Reach and Lithium Re-
sponse. It is used to analyze 20+M new daily
engagements across Lithium’s 400+ communi-
ties7. In the past, a version of Lithium NLP
had been used to enable user targeting applica-
tions such as Klout Perks8 (influencer reward
platform), Cinch9 (Q&A app), and Who-To-
Follow recommendations. These involved se-
lecting a group of users for targeting based on
given topics and other filtering criteria.

2 Knowledge Base
Our Knowledge Base (KB) consists of about 1
million Freebase machine ids for entities that
were chosen from a subset of all Freebase enti-
ties that map to Wikipedia entities. We prefer
to use Freebase rather than Wikipedia as our
KB since in Freebase, the same id represents a
unique entity across multiple languages. Due
to limited resources and usefulness of the enti-

5http://support.gnip.com/enrichments/klout.
html

6https://www.lithium.com/products/
social-media-management/

7https://www.lithium.com/products/
online-communities/

8https://goo.gl/vtZDqE#Klout_Perks
9https://goo.gl/CLcx9p#Cinch

132

ties, our KB contains approximately 1 million
most important entities from among all the
Freebase entities. This gives us a good bal-
ance between coverage and relevance of enti-
ties for processing common social media text.
Section 3.1 explains how entity importance is
calculated, which enables us to rank the top 1
million Freebase entities.

In addition to the KB entities, we also em-
ploy two special entities: NIL and MISC.
NIL entity indicates that there is no entity as-
sociated with the mention, eg. mention ‘the’
within the sentence may link to entity NIL.
This entity is useful especially when it comes
to dealing with stop words and false positives.
MISC indicates that the mention links to an
entity which is outside the selected entity set
in our KB.

3 System Overview
Figure 3 shows a high level overview of the
Lithium NLP system. It has two phases:

3.1 Offline Resource Generation
In this phase, we generate several dictionar-
ies that capture language models, probabili-
ties and relations across entities and topics, by
leveraging various multi-lingual data sources.
Some of these dictionaries are derived using
our DAWT10 data set (Spasojevic et al., 2017)
that consists of densely annotated wikipedia
pages across multiple languages. It is 4.8 times
denser than Wikipedia and is designed to be
exhaustive across several domains.

The dictionaries generated from the DAWT
dataset are:

• Mention-Entity Co-occurrence - This
dictionary captures the prior probability
that a mention Mi refers to an entity Ej

(including NIL and MISC) within the
DAWT dataset and is equivalent to the
cooccurrence probability of the mention
and the entity:

count(Mi → Ej)
count(Mi)

For instance, mention Michael Jordan can
link to Michael Jordan (Professor) or
Michael Jordan (Basketball player)

10https://github.com/klout/opendata/tree/
master/wiki_annotation

with different prior probabilities. More-
over, we generate a separate dictionary for
each language.

• Entity-Entity Co-occurrence - This
dictionary captures co-occurrence fre-
quencies among entities by counting all
the entities that simultaneously appear
within a sliding window of 50 tokens.
Moreover, this data is accumulated across
all languages and is language independent
in order to capture better relations and
create a smaller memory footprint when
supporting additional languages. Also,
for each entity, we consider only the top
30 co-occurring entities which have at
least 10 or more co-occurrences across
all supported languages. For instance,
entity Michael Jordan (Basketball
player) co-occurs with entities Basket-
ball, NBA etc. while entity Michael
Jordan (Professor) co-occurs with enti-
ties Machine Learning, Artificial In-
telligence, UC Berkeley etc.

We also generate additional dictionaries:

• Entity Importance - The entity impor-
tance score (Bhattacharyya and Spaso-
jevic, 2017) is derived as a global score
identifying how important an extracted
entity is for a casual observer. This
score is calculated using linear regression
with features capturing popularity within
Wikipedia links, and importance of the
entity within Freebase. We used signals
such as Wiki page rank, Wiki and Free-
base incoming and outgoing links, and
type descriptors within our KB etc.

• Topic Parents - This dictionary contains
the parent topics for each topic in the
Klout Topic Ontology 11 (KTO) - a manu-
ally curated ontology built to capture so-
cial media users’ interests and expertise
scores, in different topics, across multi-
ple social networks. As of April 2017, it
consists of roughly 8,030 topic nodes and
13,441 edges encoding hierarchical rela-
tionships among them.

11https://github.com/klout/opendata/tree/
master/klout_topic_ontology

133

Document	
Text

Language	
Detection

Text	
Normalization

Sentence	
Breaking

Tokenization Entity	
Extraction

Text	Processing
Entity	

Disambiguation	
and	Linking

Topic	
Projection

Hashtag	
Recommendation

Sentiment	
Analysis

Entity	
Metadata	
Decoration

Annotated	
Document	

Text

Mention	Entity	
Co-occurrence	

Offline	Resource	Generation

Entity	Entity	
Co-occurrence	

Entity	
Importance	

Topic	
Parents

Topic	
Hashtags

Figure 3: Overview of the Lithium NLP pipeline

Text: “ Google CEO Eric Schmidt said that the competition between Apple and Google and iOS vs. Android is the defining fight of the tech industry !!! “

Language	Detection

Lithium	NLP	
Pipeline	Stage

Stage output with information extracted and added as semantic annotation

Normalized text: “Google CEO Eric Schmidt said that the competition between Apple and Google and iOS vs . Android is ' the defining fight of the tech industry . ’”Text	Normalization

Text with sentence breaks: <s> Google CEO Eric Schmidt said that the competition between Apple and Google and iOS vs . Android is ' the defining fight of the
tech industry . ’ </s>

Sentence	Breaking	

Tokens: <Google, CEO, Eric, Schmidt, said, that, the, competition, between, Apple, and, Google, and, iOS, vs, Android, is, the, defining, fight, of, the, tech, industry>Tokenization

Language: en

Text:	Google	CEO Eric	Schmidt	said	that	the	competition	between	Apple and	Google and	iOS vs.		Android is	`the	defining	fight	of	the	tech	industry.'	

NIL Google	
Inc.

Eric	
Schmidt

Apple	
Inc.

Apple	
(fruit)

Apple	
Records

iOS Android	
(OS)

Android	
(Robot)

TechnologyChief	
Executive

NIL NIL NIL NIL NIL

Entity	
Extraction

Entity	
Disambiguation	
and	Linking

Text: Google	CEO Eric	Schmidt said	that	the	competition	between	Apple and	Google and	iOS vs.		Android is	`the	defining	fight	of	the	tech	industry.'	

Google	
Inc.

Eric	
Schmidt

Apple	Inc. iOS Android	
(OS)

Google	
Inc.

Chief	
Executive Technology

Topic	Projection Topics	for	entities:	Google	Inc:	<Google,	Technology,	Search	Engines...>, Eric	Schmidt:	<Eric	Schmidt,	Google,	CEOs	and	Execs,	Technology...>,	Apple	Inc.:	<Apple,	
Technology,	Computers,	Tablets...>,	iOS:	<iOS,	Software,	Technology...>,	Android:	<Android,	Smartphones,	Software...>

Hashtag	
Recommendation

Hashtags	recommended	for	topics:		Google:	<#SEO,	#tech,	#Google	...>,	Eric	Schmidt:	<#EricSchmidt,	...>,	Apple :	<#Jobs,	#tech,	#iPhone,	#Apple...>,		iOS:	<#iOS,	
#AppStore,	#Technology….>,	Android:	<#AndroidOS,	#Android	….	>

Sentiment	Analysis Sentiment: Neutral

Entity	Metadata	
Decoration Entity	Metadata:	<Google	Inc:	ORGANIZATION,	Eric	Schmidt:	PERSON,	Apple	Inc:	ORGANIZATION,		iOS:	MISC,	Android:	MISC,	Technology:	MISC>

Figure 4: An example demonstrating the information extracted and added as semantic annota-
tion at each stage of the Lithium NLP pipeline (best viewed in color)

• Topic Hashtags - This dictionary con-
tains hashtags recommended for topics
in KTO. We determine the hashtags via
co-occurrence counts of topics and hash-
tags, importance, recency and popularity
of hashtags as well popularity of topics.

3.2 Text Processing
In the Lithium NLP system, an input text doc-
ument is stored as a Protocol Buffers12 mes-
sage. The Text Processing phase of the system
processes the input text document through
several stages and the information (entities,

12https://developers.google.com/
protocol-buffers/

topics etc.) extracted at every stage is added
as a semantic annotation to the text. Not
all annotations are added to a document, the
Lithium NLP API (explained in Section 3.3)
allows a client application to select specific an-
notations. However, certain annotations such
as language and tokens are prerequisites for
later stages.

The Text Processing pipeline stages are:

• Language Detection - This stage de-
tects the language of the input document
using an open source language detector13.
This detector employs a naive Bayesian

13https://github.com/shuyo/
language-detection

134

filter which uses character, spellings and
script as features to classify language and
estimate its probability. It has a precision
of 99% for 49 languages.

• Text Normalization - This stage nor-
malizes the text by escaping unescaped
characters and replacing special charac-
ters (e.g. diacritical marks) based on the
detected language. It replaces non-ASCII
punctuations and hyphens with spaces,
multiple spaces with single space, con-
verts accents to regular characters etc.

• Sentence Breaking - This stage breaks
the normalized text into sentences using
Java Text API14. It can distinguish sen-
tence breakers from other marks, such
as periods within numbers and abbrevia-
tions, according to the detected language.

• Tokenization - This stage converts each
sentence into a sequence of tokens via the
Lucene Standard Tokenizer15 for all lan-
guages and the Lucene Smart Chinese An-
alyzer16 for Chinese.

• Entity Extraction - This stage extracts
mentions in each sentence using the Men-
tion Entity Co-occurrence dictionary gen-
erated offline (Section 3.1). A mention
may contain a single token or several con-
secutive tokens, but a token can belong to
at most one mention.
To make this task computationally effi-
cient, we apply a simple greedy strategy
that analyzes windows of n-grams (n ∈
[1,6]) and extracts the longest mention
found in each window. For each extracted
mention, we generate multiple candidate
entities. For instance, mention Android
can link to candidate entities Android
(OS) or Android (Robot).

• Entity Disambiguation and Linking
(EDL) - This stage disambiguates and
links an entity mention to the correct

14https://docs.oracle.com/javase/7/docs/api/
java/text/BreakIterator.html

15http://lucene.apache.org/core/4_5_0/
analyzers-common/org/apache/lucene/analysis/
standard/StandardTokenizer.html

16https://lucene.apache.org/core/4_5_0/
analyzers-smartcn/org/apache/lucene/analysis/
cn/smart/SmartChineseAnalyzer.html

candidate entity in our KB (Bhargava
et al., 2017). It uses several features ob-
tained from the dictionaries generated of-
fline (Section 3.1). These include context-
independent features, such as mention-
entity co-occurrence, mention-entity Jac-
card similarity and entity importance,
and context-dependent features such as
entity entity co-occurrence and entity
topic semantic similarity. It employs ma-
chine learning models, such as decision
trees and logistic regression, generated
using these features to correctly disam-
biguate a mention and link to the corre-
sponding entity. This stage has a pre-
cision of 63%, recall of 87% and an F-
score of 73% when tested on an in-house
dataset.

• Topic Projection - In this stage, we
associate each entity in our KB to upto
10 most relevant topics in KTO. For in-
stance, entity Android (OS) will be as-
sociated with the topics such as Smart-
phones, Software etc.
We use a weighted ensemble of several
semi-supervised models that employ en-
tity co-occurrences, GloVe (Pennington
et al., 2014) word vectors, Freebase hi-
erarchical relationships and Wikipedia in
order to propagate topic labels. A com-
plete description of this algorithm is be-
yond the scope of this paper.

• Hashtag Recommendation - In this
stage, we annotate the text with hashtags
recommended based on the topics asso-
ciated with the text in Topic Projection.
This uses the Topic Hashtags dictionary
generated offline (Section 3.1)

• Sentiment Analysis - In this stage, we
determine the sentiment of the text (pos-
itive, negative or neutral) via lexicons
and term counting with negation handling
(Spasojevic and Rao, 2015). For this, we
used several lexicons of positive and nega-
tive words (including SentiWordNet (Bac-
cianella et al., 2010; Esuli and Sebastiani,
2007) and AFINN (Nielsen, 2011)) as well
as emoticons. We compute the sentiment
score as

135

WP os −WNeg

Log(Total # of words in text) + ε

where WP os is the weighted strength of
positive words and emoticons, WNeg is the
weighted strength of negative words and
emoticons in the text and ε is a smooth-
ing constant. If the score is positive and
above a certain threshold, the text is clas-
sified as ‘Positive’. If it is below a cer-
tain threshold, the text is classified as
‘Negative’. If it lies within the boundary
between ‘Positive’ and ‘Negative’ classes,
the text is classified as ‘Neutral’.
To handle negations, we use a lookback
window. Every time, we encounter a word
from our sentiment lexicons, we look back
at a window of size 3 to see if any negation
words precede it and negate the weight of
the sentiment word. Overall, this stage
has a precision of 47%, recall of 48% and
an F-score of 46% when tested on an in-
house dataset.

• Entity Metadata Decoration - In this
stage, we add the entity metadata such as
its type (Person, Organization, Location,
Film, Event, Book) and Location (Popu-
lation, Time Zone, Latitude/Longitude).

Figure 4 demonstrates how the Lithium
NLP pipeline processes a sample text “Google
CEO Eric Schmidt said that the competition
between Apple and Google and iOS vs. An-
droid is ‘the defining fight of the tech indus-
try’.” and adds the annotations at every stage.

3.3 REST API
The Lithium NLP system provides a REST
API via which client applications can send
a text document as request and receive the
annotated text as JSON response. A snippet
of an annotated response (which is in our
text proto format17) received through the
API is shown in Listing 1. Note that the
disambiguated entities are also linked to their
Freebase ids and Wikipedia links.

17https://github.com/klout/opendata/blob/
master/wiki_annotation/Text.proto

 0

 50

 100

 150

 200

 250

 0 2000 4000 6000 8000 10000 12000

T
im

e
 S

p
e
n
t
[m

s
]

Text Length [characters]

TEXT_NORMALIZATION
SENTENCE_BREAKER

TOKENIZE
ENTITY_EXTRACTION

ENTITY_DISAMBIGUATION
TOPIC_PROJECTION

DECORATOR
HASHTAG_RECOMMENDATION

 0

 1

 2

 3

 4

 0 250 500 750 1000

Figure 5: Lithium NLP performance per pro-
cessing stage (best viewed in color)

Listing 1: JSON of annotated text summary
{

” t e x t ” : ” Vlade Divac Serbian NBA p l a y e r
used to play f o r LA Lakers . ” ,

” language ” : ” en ” ,
” annotation summary ” : [{

” type ” : ”ENTITY” ,
” a n n o t a t i o n i d e n t i f i e r ” : [{

” i d s t r ” : ”01 vpr 3” ,
” i d u r l ” : ” https : // en . w i k i p e d i a . org

/ wik i / Vlade Divac ” ,
” s c o r e ” : 0 . 9456 ,
” type ” : ”PERSON”

} , {
” i d s t r ” : ”05 jvx ” ,
” i d u r l ” : ” https : // en . w i k i p e d i a . org

/ wik i /NBA” ,
” s c o r e ” : 0 . 8496 ,
” type ” : ”ORGANIZATION”

} , . . .
}]

} ,
{

” type ” : ”KLOUT TOPIC” ,
” a n n o t a t i o n i d e n t i f i e r ” : [{

” i d s t r ” : ”6467710261455026125” ,
” i d r e a d a b l e ” : ”nba” ,
” s c o r e ” : 0 . 7582

} , {
” i d s t r ” : ”8311852403596174326” ,
” i d r e a d a b l e ” : ” l o s−ange les−l a k e r s ” ,
” s c o r e ” : 0 . 66974

} , {
” i d s t r ” : ”8582816108322807207” ,
” i d r e a d a b l e ” : ” b a s k e t b a l l ” ,
” s c o r e ” : 0 . 5445

} , . . .]
} ,
{

” type ” : ”HASHTAG” ,
” a n n o t a t i o n i d e n t i f i e r ” : [{

” i d s t r ” : ”NBA” ,
” s c o r e ” : 54285 . 7515

} , {
” i d s t r ” : ” NBAPlayoffs ” ,
” s c o r e ” : 28685 . 6006

} , . . .]
}] ,

” sent iment ” : 0 . 0
}

136

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

 0.01 0.1 1 10 100

a)

P
ro

c
e

s
s
in

g
 T

im
e

 [
s
]

Text Length [kb]

aida
lithium

10
0

10
1

10
2

10
3

 0.01 0.1 1 10 100

b)

E
n

ti
ty

 C
o

u
n

t

Text Length [kb]

aida
lithium

Figure 6: AIDA vs. Lithium NLP Comparison
on a) Text processing runtime b) Extracted
entity count (best viewed in color)

3.4 Performance
Figure 5 shows the computational perfor-
mance per processing stage of the Lithium
NLP system. The overall processing speed is
about 22ms per 1kb of text. As shown, the
time taken by the system is a linear function
of text size. The EDL stage takes about 80%
of the processing time.

4 Comparison with existing NLP
systems

Currently, due to limited resources at our end
and also due to inherent differences in the
Knowledge Base (Freebase vs Wikipedia and
others), test dataset, and types of informa-
tion extracted (entities, topics, hashtags etc.),
a direct comparison of the Lithium NLP sys-
tem’s performance (in terms of precision, re-
call and f-score) with existing academic and
commercial systems such as Google Cloud NL
API18, Open Calais19, Alchemy API20, Stan-
ford CoreNLP21 (Manning et al., 2014), Am-
biverse/AIDA22 (Nguyen et al., 2014) and
Twitter NLP23 (Ritter et al., 2011, 2012) is
not possible. Hence, we compare our system
with some of them on a different set of metrics.

4.1 Comparison on runtime and
entity density

We compare the runtime of Lithium NLP and
AIDA across various text sizes. As shown in
Figure 6, Lithium NLP is on an average 40,000

18https://cloud.google.com/natural-language/
19http://www.opencalais.com/opencalais-demo/
20https://alchemy-language-demo.mybluemix.

net/
21http://corenlp.run/
22https://www.ambiverse.com/
23https://github.com/aritter/twitter_nlp

times faster than AIDA whose slow runtime
can be attributed mainly to Stanford NER. In
addition to speed, we also compare the number
of entities extracted per kb of text. As shown,
Lithium NLP extracts about 2.8 times more
entities than AIDA.

4.2 Comparison on information
extracted

Table 1 compares the types of information ex-
tracted by Lithium NLP system with exist-
ing systems. In this comparison, we explicitly
differentiate between named entities (Person,
Location etc.) and other entity types (Sports,
Activities) as well as fine-grained topics (Bas-
ketball) and coarse-grained topics (Sports) to
demonstrate the rich set of information ex-
tracted by Lithium NLP. As evident, most
other systems do not provide the rich set of
semantic annotations that Lithium NLP pro-
vides. A majority of the systems focus on rec-
ognizing named entities and types with only a
few focusing on sentiment and coarse-grained
topics as well. In contrast, Lithium NLP ex-
tracts, disambiguates and links named and
other entities, extracts subject matter topics,
recommends hashtags and also infers the sen-
timent of the text.

4.3 Comparison on languages
Table 2 compares the languages supported by
the Lithium NLP system with existing sys-
tems. As evident, Lithium supports 6 different
languages which is at par and in some cases,
more than existing systems.

5 Conclusion and Future Work

In this paper, we described the Lithium
NLP system - a resource-constrained, high-
throughput and language-agnostic system for
information extraction from noisy user gener-
ated text on social media. Lithium NLP ex-
tracts a rich set of information including enti-
ties, topics, hashtags and sentiment from text.
We discussed several real world applications of
the system currently incorporated in Lithium
products. We also compared our system with
existing commercial and academic NLP sys-
tems in terms of performance, information ex-
tracted and languages supported. We showed
that Lithium NLP is at par with and in some

137

Lithium NLP Google NL Open Calais Alchemy API Stanford CoreNLP Ambiverse Twitter NLP
Named Entities X X X X X X X
Other Entities X X X X X

Topics (fine-grained) X
Topics (coarse-grained) X X X

Hashtags X
Document Sentiment X X X
Entity level Sentiment X X

Entity types X X X X X X X
Relationships X X X

Events X

Table 1: Comparison of information extracted by Lithium NLP with existing NLP systems
Lithium NLP Google NL Open Calais Alchemy API Stanford CoreNLP Ambiverse Twitter NLP

Supported Arabic, English, Chinese, English, French, English, English, French, German, Arabic, Chinese, English, German, English
Languages French, German, German, Italian, Japanese, French, Italian, Portuguese, Russian, English, French, Spanish,

Italian, Spanish Korean, Portugese, Spanish Spanish Spanish, Swedish German, Spanish Chinese

Table 2: Comparison of languages supported by Lithium NLP with existing NLP systems

cases, outperforms state-of-the-art commercial
NLP systems.

In future, we plan to extend the capabilities
of Lithium NLP to include entity level senti-
ment as well. We also hope to collaborate ac-
tively with academia and open up the Lithium
NLP API to academic institutions.

Acknowledgements
The authors would like to thank Prantik Bhat-
tacharya, Adithya Rao and Sarah Ellinger for
their contributions to the Lithium NLP sys-
tem. They would also like to thank Mike Ot-
tinger and Armin Broubakarian for their help
with building the Lithium NLP UI and demo.

References
Stefano Baccianella, Andrea Esuli, and Fabrizio

Sebastiani. 2010. Sentiwordnet 3.0: An en-
hanced lexical resource for sentiment analysis
and opinion mining. In LREC, volume 10, pages
2200–2204.

Preeti Bhargava, Nemanja Spasojevic, and Guon-
ing Hu. 2017. High-throughput and language-
agnostic entity disambiguation and linking on
user generated data. In Proceedings of WWW
2017 workshop on Linked Data on the Web.

Prantik Bhattacharyya and Nemanja Spasojevic.
2017. Global entity ranking across multiple
languages. In Companion Proceedings of the
WWW, pages 761 – 762.

Andrea Esuli and Fabrizio Sebastiani. 2007. Sen-
tiwordnet: A high-coverage lexical resource for
opinion mining. Evaluation, pages 1–26.

Christopher D Manning, Mihai Surdeanu, John
Bauer, Jenny Rose Finkel, Steven Bethard, and
David McClosky. 2014. The stanford corenlp

natural language processing toolkit. In ACL
(System Demonstrations), pages 55–60.

Dat Ba Nguyen, Johannes Hoffart, Martin
Theobald, and Gerhard Weikum. 2014. Aida-
light: High-throughput named-entity disam-
biguation. In LDOW’14.

Finn Årup Nielsen. 2011. A new anew: Evalua-
tion of a word list for sentiment analysis in mi-
croblogs. arXiv preprint arXiv:1103.2903.

Jeffrey Pennington, Richard Socher, and Christo-
pher D Manning. 2014. Glove: Global vec-
tors for word representation. In Proceedings of
EMNLP, pages 1532 – 1543.

Adithya Rao, Nemanja Spasojevic, Zhisheng Li,
and Trevor Dsouza. 2015. Klout score: Mea-
suring influence across multiple social networks.
In IEEE Intl. Conf. on Big Data.

Alan Ritter, Mausam Clark, Sam, and Oren Et-
zioni. 2011. Named entity recognition in tweets:
an experimental study. In Empirical Methods in
Natural Language Processing.

Alan Ritter, Mausam, Oren Etzioni, and Sam
Clark. 2012. Open domain event extraction
from twitter. In KDD.

Nemanja Spasojevic, Preeti Bhargava, and Guon-
ing Hu. 2017. Dawt: Densely annotated
wikipedia texts across multiple languages. In
Companion Proceedings of WWW, pages 1655 –
1662.

Nemanja Spasojevic, Prantik Bhattacharyya, and
Adithya Rao. 2016. Mining half a billion topical
experts across multiple social networks. Social
Network Analysis and Mining, 6(1):1–14.

Nemanja Spasojevic and Adithya Rao. 2015. Iden-
tifying actionable messages on social media. In
IEEE International Conference on Big Data,
IEEE BigData ’15.

138

Nemanja Spasojevic, Jinyun Yan, Adithya Rao,
and Prantik Bhattacharyya. 2014. Lasta: Large
scale topic assignment on multiple social net-
works. In Proc. of ACM KDD, pages 1809 –
1818.

139

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 140–147
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

Results of the WNUT2017 Shared Task on
Novel and Emerging Entity Recognition

Leon Derczynski
University of Sheffield

S1 4DP, UK
leon.d@shef.ac.uk

Eric Nichols
Honda Research Institute

Saitama, Japan
e.nichols@jp.honda-ri.com

Marieke van Erp
VU University Amsterdam
Amsterdam, Netherlands

marieke.van.erp@vu.nl

Nut Limsopatham
Accenture

Dublin, Ireland
nut.limsopatham@gmail.com

Abstract

This shared task focuses on identifying
unusual, previously-unseen entities in the
context of emerging discussions. Named
entities form the basis of many modern ap-
proaches to other tasks (like event clus-
tering and summarization), but recall on
them is a real problem in noisy text - even
among annotators. This drop tends to be
due to novel entities and surface forms.
Take for example the tweet “so.. kktny
in 30 mins?!” – even human experts find
the entity kktny hard to detect and resolve.
The goal of this task is to provide a defini-
tion of emerging and of rare entities, and
based on that, also datasets for detecting
these entities. The task as described in
this paper evaluated the ability of partic-
ipating entries to detect and classify novel
and emerging named entities in noisy text.

1 Introduction

Named Entity Recognition (NER) is the task of
finding in text special, unique names for specific
concepts. For example, in “Going to San Diego”,
“San Diego” refers to a specific instance of a loca-
tion; compare with “Going to the city”, where the
destination isn’t named, but rather a generic city.

NER is sometimes described as a solved
task due to high reported scores on well-known
datasets, but in fact the systems that achieve these
scores tend to fail on rarer or previously-unseen
entities, making the majority of their performance
score up from well-known, well-formed, unsur-
prising entities (Augenstein et al., 2017). This
leaves them ill-equipped to handle NER in new

environments (Derczynski et al., 2015). As new
named entities are guaranteed to continuously
emerge and gradually replace the older ones, it is
important to be able to handle this change. This
paper gives data and metrics for evaluating the
ability of systems to detect and classify novel,
emerging, singleton named entities in noisy text,
including the results of seven systems participat-
ing in the WNUT 2017 shared task on the topic.

One approach to tackle rare and emerging en-
tities would be to continuously create new train-
ing data, allow systems to learn the updates and
newer surface forms. However, this involves a sus-
tained expense in annotation costs. Another solu-
tion is to develop systems that are less sensitive to
change, and can handle rare and emerging entity
types with ease. This is a route to sustainable NER
approaches, pushing systems to generalise well. It
is this second approach that the WNUT17 shared
task focuses on.

2 Task Definition

With the novel and emerging entities recognition
task, we aim to establish a new benchmark dataset
and current state-of-the-art for the recognition of
entities in the long tail. Most language expressions
form a Zipfian distribution (Zipf, 1949; Monte-
murro, 2001) wherein a small number of very fre-
quent observations occur and a very long tail of
less frequent observations. Our research com-
munity’s benchmark datasets, representing only a
small sample of all language expressions, often
follow a similar distribution if a standard sample is
taken. Recently, an awareness of the limitations of
current evaluation datasets has risen (Hovy et al.,
2006; van Erp et al., 2016; Postma et al., 2016).
Due to this bias and the way many NLP ap-

140

proaches work internally (i.e. through deriving a
model from the training data that often incorpo-
rates frequency information) many NLP systems
are predisposed towards the high-frequency obser-
vations and less so to low-frequency or unknown
observations. This is clearly exhibited in the fact
that many NLP systems’ scores drop when pre-
sented with data that is different in type or distri-
bution from the data it was trained on (Augenstein
et al., 2017).

We aim to contribute to mitigating the prob-
lem of limited datasets through this shared task,
for which we have annotated and made avail-
able 2,295 texts taken from three different sources
(Reddit, Twitter, YouTube, and StackExchange
comments) that focus on entities that are emerging
(i.e. not present in data from n years ago) and rare
(i.e. not present more than k times in our data).

3 Data

To focus the task on emerging and rare entities,
we set out to assemble a dataset where very few
surface forms occur in regular training data and
very few surface forms occur more than once. Ide-
ally, none of the surface forms would be shared be-
tween the training data and test data, but this was
too ambitious in the time available.

3.1 Sources and Selection

In this section, we detail the dataset creation.

Training data – Following the WNUT15
task (Baldwin et al., 2015), the dataset from
earlier Twitter NER exercises (Ritter et al., 2011)
comprised this task’s training data. This dataset
is made up of 1,000 annotated tweets, totaling
65,124 tokens.

Development and test data – Whilst Twitter
is a rich source for noisy user-generated data,
we also sought to include texts that were longer
than 140 characters as these exhibit different writ-
ing styles and characteristics. To align some
of the development and test data with the train-
ing data, we included Twitter as a source, but
additional comments were mined from Reddit,
YouTube and StackExchange. These sources were
chosen because they are large and samples can
be mined along different dimensions such as texts
from/about geospecific areas, and about particular
topics and events. Furthermore, the terms of use

of the sources allowed us to download, store and
distribute the data.

Reddit Documents were drawn from com-
ments1 from various English-speaking subreddits
over January-March 2017. These were selected
based on volume, for a variety of regions and
granularities. For example, country- and city-
level subreddits were included, as well as non-
geospecific forums like /r/restaurants. The
full list used was:

Global: politics worldnews news sports soccer
restaurants

Anglosphere, low-traffic: bahamas belize
Bermuda botswana virginislands Guam isleofman
jamaica TrinidadandTobago

Anglosphere, high-traffic: usa unitedkingdom
canada ireland newzealand australia southafrica

Cities: cincinnati seattle leeds bristol vancou-
ver calgary cork galway wellington sydney perth
johannesburg montegobay

To ensure that comments would be likely
to include named entities, the data was pre-
empted (Derczynski and Bontcheva, 2015) using
proper nouns as an entity-bearing signal. Docu-
ments were filtered to include only those between
20 and 400 characters in length, split into sen-
tences, and tagged with the NLTK (Bird, 2006)
and Stanford CoreNLP (Manning et al., 2014) (us-
ing the GATE English Twitter model (Cunning-
ham et al., 2012; Derczynski et al., 2013)) POS
taggers. Only sentences with at least one word that
was tagged as NNP by both taggers were kept.

YouTube The corpus includes YouTube com-
ments. These are drawn from the all-time top
100 videos across all categories, within certain
parts of the anglosphere (specifically the US, the
US, Canada, Ireland, New Zealand, Australia, Ja-
maica, Botswana, South Africa and Singapore)
during April 2017. One hundred top-level com-
ments were drawn from each video. Non-English
comments were removed with langid.py (Lui
and Baldwin, 2012). Finally, in an attempt to cut
out trite comments and diatribes, comments were
filtered for length: min 10, max 200 characters.

Twitter The twitter samples were drawn from
time periods matching recent natural disasters,
specifically the Rigopiano avalanche and the Palm
Sunday shootings. This was intended to select

1The raw data can be downloaded from https://
files.pushshift.io/reddit/comments/.

141

content about emerging events, that may con-
tain highly-specific and novel toponyms. Con-
tent was taken from an archive of the Twit-
ter streaming API, processed to extract English-
language documents using langid.py, and two-
kenized (O’Connor et al., 2010).

StackExchange Another set of user-generated
contents were drawn from StackExchange2. In
particular, title posts and comments, which were
posted between January-May 2017 and also as-
sociated to five topics (including movies, politics,
physics, scifi and security) were downloaded from
archive.org3. From these title posts and comments,
400 samples were uniformly drawn for each topic.
Note that title posts and comments that are shorter
than 20 characters or longer than 500 characters
were excluded, in order to keep the task feasible
but still challenging. On average the length of ti-
tle posts and comments is 118.73 with a standard
deviation of 100.89.

Note that the data is of mixed domains, and that
the proportions of the mixture are not the same
in dev and test data. This is intended to provide
a maximally adverse machine learning environ-
ment. The underlying goal is to improve NER in
a novel and emerging situation, where there is a
high degree of drift. This challenges systems to
generalise as best they can, instead of e.g. memo-
rising or relying on stable context- or sub-word-
level cues. Additionally, we know that entities
mentioned vary over time, as does the linguistic
context in which entities are situated (Derczynski
et al., 2016). Changing the particular variant of
noisy, user-generated text somewhat between par-
titions helps create this environment, high in di-
versity, and helps represent the constant variation
found in the wild.

3.2 Preprocessing

Candidate development and test data was filtered
for common entities. To ensure that all entities in
the development and test data were novel, surface
forms marked as entities in the training data were
gathered into a blacklist. Any texts containing any
of these surface forms were excluded from the fi-
nal data.

Texts were tokenized using twokenizer and pro-
cessed through GATE (Cunningham et al., 2012)

2https://stackexchange.com
3https://archive.org/download/

stackexchange

for crowdsourcing. The corpus was not screened
for obscenity and potentially offensive content.

3.3 Data Splits

The development data was taken from YouTube.
The test split was drawn from the remaining
sources.

3.4 Annotation Guidelines

Various named entity annotation schemes are
available for named entity annotation (cf.
CoNLL (Sang, 2002), ACE (LDC, 2005),
MSM (Rizzo et al., 2016)). Based on these, we
annotate the following entity types:

1. person
2. location (including GPE, facility)
3. corporation
4. product (tangible goods, or well-defined

services)
5. creative-work (song, movie, book and

so on)
6. group (subsuming music band, sports team,

and non-corporate organisations)

The following guidelines were used for each
class.

person – Names of people (e.g. Virginia
Wade). Don’t mark people that don’t have their
own name. Include punctuation in the middle of
names. Fictional people can be included, as long
as they’re referred to by name (e.g. Harry Potter).

location – Names that are locations (e.g.
France). Don’t mark locations that don’t have
their own name. Include punctuation in the mid-
dle of names. Fictional locations can be included,
as long as they’re referred to by name (e.g. Hog-
warts).

corporation – Names of corporations (e.g.
Google). Don’t mark locations that don’t have
their own name. Include punctuation in the middle
of names.

product – Name of products (e.g. iPhone).
Don’t mark products that don’t have their own
name. Include punctuation in the middle of names.
Fictional products can be included, as long as
they’re referred to by name (e.g. Everlasting Gob-
stopper). It’s got to be something you can touch,
and it’s got to be the official name.

142

Metric Dev Test
Documents 1,008 1,287
Tokens 15,734 23,394
Entities 835 1,040
person 470 414
location 74 139
corporation 34 70
product 114 127
creative-work 104 140
group 39 150

Table 1: The emerging entity dataset statistics

creative-work – Names of creative works
(e.g. Bohemian Rhapsody). Include punctuation in
the middle of names. The work should be created
by a human, and referred to by its specific name.

group – Names of groups (e.g. Nirvana, San
Diego Padres). Don’t mark groups that don’t
have a specific, unique name, or companies (which
should be marked corporation).

3.5 Annotation
Once selected and preprocessed, annotations were
taken from the crowd. The GATE crowdsourcing
plugin (Bontcheva et al., 2014) provided effective
mediation with CrowdFlower for this. Three anno-
tators were allocated per document/sentence, and
all sentences were multiply annotated. Annotators
were selected from the UK, USA, Australia, New
Zealand, Ireland, Canada, Jamaica and Botswana.
Once gathered, crowd annotations were processed
using max-recall automatic adjudication, which
has proven effective for social media text (Der-
czynski et al., 2016). The authors performed a fi-
nal manual annotation over the resulting corpus, to
compensate for crowd noise.

3.6 Statistics
The dataset dimensions are given in Table 1. The
test partition was slightly larger than the develop-
ment data, which we hope provides greater resolu-
tion on this more critical part.

4 Evaluation

The shared task evaluates against two measures.
In addition to classical entity-level precision, re-
call and their harmonic mean, F1, surface forms
found in the emerging entities task are also evalu-
ated. The set of unique surface forms in the gold
data and the submission are compared, and their

precision, recall and F1 are measured as well. This
latter measure measures how good systems are at
correctly recognizing a diverse range of entities,
rather than just the very frequent surface forms.

For example, the classical measure would re-
ward a system that always recognizes London ac-
curately, and so such a system would get a high
score on a corpus where 50% of the Location enti-
ties are just London. The second measure, though,
would reward London just once, regardless of how
many times it appeared in the text.

These two measures are denoted F1 (entity) and
F1 (surface).

Surface forms should also be given the right
class. For example, finding London as an
entity is useful, but not if it’s recognized as
a product. Therefore, when computing sur-
face F1, the units used for evaluation are
〈surfaceform, entitytype〉 tuples. This favors a
certain kind of system construction; for example,
the tuple formulation assumes that systems are do-
ing joint recognition and typing, instead of the two
in distinct stages. However, our goal is to evaluate
performance of systems after both named entity
recognition and typing, so it fits well in this use
case.

5 Results

Results of the evaluation are given in Table 2.
Note that surface recognition performance is often
lower than entity recognition performance, sug-
gesting that the entities being missed are those that
are rarer, and so don’t count towards entity F1 as
much. We also see that NER in novel, emerging
settings remains hard, reinforcing earlier findings
that NE systems do not generalize well, especially
in this environment (Augenstein et al., 2017).

6 Analysis

To gain insights into the difficult and less difficult
parts of the task, we did a qualitative analysis of
the outputs of the different systems. We see the
most systems have no problems with entities that
consist of common English names (e.g. “Lynda”,
“Becky”). However, when (part of) a name is
also a common word (e.g. “Andrew Little”, “Don-
ald Duck”), we see that some systems only iden-
tify “Andrew” or “Donald” as part of the name.
Furthermore, some systems erroneously tag words
such as “swift” as entities, probably due to a bias
towards ‘Taylor Swift’ in many current datasets.

143

Team F1 (entity) F1 (surface)
Arcada (Jansson and Liu, 2017) 39.98 37.77
Drexel-CCI (Williams and Santia, 2017) 26.30 25.26
FLYTXT (Sikdar and Gambäck, 2017) 38.35 36.31
MIC-CIS 37.06 34.25
SJTU-Adapt (Lin et al., 2017) 40.42 37.62
SpinningBytes (von Däniken and Cieliebak, 2017) 40.78 39.33
UH-RiTUAL (Aguilar et al., 2017) 41.86 40.24

Table 2: Results of the emerging entity extraction task.

Locations that contain elements that are also com-
mon in person names present an obstacle for the
participating systems, for example in the detec-
tion of “Smith Tower” or “Crystal Palace” where
“Smith” and “Crystal” are sometimes recognised
as person names.

Names originating from other languages such
as “Leyonhjelm” or “Zlatan” for persons or
“Sonmarg” and “Mahazgund” for locations often
present problems for the systems. “Mahagzund”
is for example classified as corporation, group or
person or “other” (no entity) whilst it refers to a
village in Kashmir region of India.
Corporation and creative work were

generally a difficult classes for the systems to pre-
dict. For corporation, this may be partly due
to confusion between the corporation and group
and product classes, as well as the fact that some-
times the corporation name is used to indicate a
headquarters. For example “Amazon” on its own
would in most cases be deemed a corporation in
our gold standard, but in “Amazon Web Services”
it is part of a product name. The ‘White House’
can both be a location and a corporation, which
requires the systems to distinguish between subtle
contextual differences in use of the term.

The difficulty in detecting entities of class
creative-work can often be explained by the
fact that these entities contain person names (e.g.
“Grimm”) , common words (e.g. “Demolition
Man”, “Rogue One”) and can be quite long (e.g.
“Miss Peregrine’s Home for Peculiar Children”).

Annotation still remains hard; some entities in
the corpus, if we co-opt Kripke’s “rigid designa-
tor” (Kripke, 1972) to define that role, are hard to
fit into a single category. There were also other
types of entity in the data; we did not attempt
to define a comprehensive classification schema.
The shortness of texts often makes disambiguation
hard, too, as the spatial, temporal, conversational

and topical context which a human reader relies on
to interpret texts are all hidden under this model of
annotation.

Twitter accounts can also fall into a number
of different classes, and rather than instruct an-
notators on this, we left behavior up to them.
Much prior work has avoided assigning tags to
these (Ritter et al., 2011; Liu et al., 2011) though
accounts often represent not only a person, also or-
ganizations, regions, buildings and so on. There-
fore, much of our data carries these labels on Twit-
ter account names, where the annotator has speci-
fied it.

7 Related Work

Named entity recognition has a long standing
tradition of shared tasks, with the most promi-
nent being the multilingual named entity recog-
nition tasks organised at CoNLL in 2002 and
2003 (Sang, 2002; Tjong Kim Sang and Meul-
der, 2003). However, these, as well as follow-up
tasks such as ACE (LDC, 2005) focused on formal
and relatively clean texts such as newswire. This
remains a difficult task, especially with the addi-
tion of the OntoNotes dataset, with modern work
still pushing forward the state of the art (Chiu and
Nichols, 2016).

Since 2011, Twitter has been gaining attention
as a rich source for information extraction chal-
lenges such as (Ritter et al., 2011) and the Mak-
ing Sense of Microposts challenge series starting
in 2013 (Rizzo et al., 2017).

Emerging entities have received some attention
entity linking approaches (Hoffart et al., 2014; far,
2016; NIST, 2017). In particular for entity link-
ing, identifying whether an entity is present in a
knowledge base to prevent an erroneous link from
being created is a key problem.

Rare entities are an even less researched prob-
lem. Recasens et al. (2013) attempt to identify

144

entity mentions that occur only once within a dis-
course to improve co-reference resolution. In (Jin
et al., 2014), a system is presented that is focused
on linking low frequent entities.

In the previous two WNUTs there has been at-
tention for named entity recognition in noisy user-
generated data in the form of a shared task on
Named Entity Recognition in Twitter (Baldwin
et al., 2015; Strauss et al., 2016). However, in
those tasks, the dataset consisted of a random sam-
ple from a particular period without a particular
focus on rare or emerging entities.

8 Conclusion

We have presented the setup and results of the
WNUT2017 Shared Task on Novel and Emerg-
ing Entity Recognition. For this task, we cre-
ated a new benchmark dataset consisting of 1,008
development and 1,287 test documents contain-
ing nearly 2,000 entity mentions. The doc-
uments were chosen in such a way that they
contained mostly rare and novel entities of the
types person, location, corporation,
product, creative-work and group. The
results of the seven systems that participated in
this task show that entity recognition on these enti-
ties indeed is more difficult than on high frequent
entities commonly found in named entity recog-
nition challenges. More work in this area is thus
needed and this shared task is only a small start.
Going forward, datasets like this may be extended,
possibly also with other entity classes for particu-
lar domains. Furthermore, we hope that more NLP
tasks take up the challenge of creating more di-
verse benchmark datasets to expand our coverage
of rare and novel language use.

Finally, the task is very tough. These are low
figures for named entity recognition, and the sur-
face form capture was even harder, reinforcing
earlier findings that systems are failing to gen-
eralise successfully, instead profiting from fre-
quently repeated entities in regular contexts. This
is not working for noisy text, not Tweets, but
broadly.

Acknowledgments

We thanks the participants for their enjoyable col-
laboration and for joining in this new task. This re-
search received support from the European Com-
mission’s Horizon 2020 funding programme un-
der grant agreement 687847, COMRADES. Leon

Derczynski thanks the University of California
San Diego for facilities provided during this re-
search. Marieke van Erp acknowledges that the
research for this paper was made possible by the
CLARIAH-CORE project financed by NWO.

References
2016. On Emerging Entity Detection.

Gustavo Aguilar, Suraj Maharjan, Adrian Pastor López
Monroy, and Thamar Solorio. 2017. A Multi-task
Approach for Named Entity Recognition in Social
Media Data. In Proceedings of the 3rd Workshop
on Noisy, User-generated Text (W-NUT) at EMNLP.
ACL.

Isabelle Augenstein, Leon Derczynski, and Kalina
Bontcheva. 2017. Generalisation in Named Entity
Recognition: A Quantitative Analysis. Computer
Speech & Language .

Timothy Baldwin, Young-Bum Kim, Marie Cather-
ine De Marneffe, Alan Ritter, Bo Han, and Wei
Xu. 2015. Shared tasks of the 2015 workshop on
noisy user-generated text: Twitter lexical normal-
ization and named entity recognition. ACL-IJCNLP
126:2015.

Steven Bird. 2006. NLTK: the natural language toolkit.
In Proceedings of the COLING/ACL on Interac-
tive presentation sessions. Association for Compu-
tational Linguistics, pages 69–72.

Kalina Bontcheva, Ian Roberts, Leon Derczynski, and
Dominic Paul Rout. 2014. The GATE Crowd-
sourcing Plugin: Crowdsourcing Annotated Corpora
Made Easy. In EACL. pages 97–100.

Jason PC Chiu and Eric Nichols. 2016. Named En-
tity Recognition with Bidirectional LSTM-CNNs.
Transactions of the Association for Computational
Linguistics 4:357–370.

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, Valentin Tablan, Niraj Aswani, Ian
Roberts, Genevieve Gorrell, Adam Funk, Angus
Roberts, Danica Damljanovic, et al. 2012. Devel-
oping language processing components with gate
version 8 (a user guide). University of Sheffield,
UK, Web: http://gate.ac.uk/sale/tao/index.html .

Leon Derczynski and Kalina Bontcheva. 2015. Effi-
cient named entity annotation through pre-empting.
In International Conference Recent Advances in
Natural Language Processing, RANLP. Association
for Computational Linguistics, volume 2015, pages
123–130.

Leon Derczynski, Kalina Bontcheva, and Ian Roberts.
2016. Broad Twitter Corpus: A Diverse Named En-
tity Recognition Resource. In In Proc. of the Intl
Conference on Computational Linguistics (COL-
ING). pages 161–172.

145

Leon Derczynski, Diana Maynard, Giuseppe Rizzo,
Marieke van Erp, Genevieve Gorrell, Raphaël
Troncy, Johann Petrak, and Kalina Bontcheva. 2015.
Analysis of named entity recognition and linking
for tweets. Information Processing & Management
51(2):32–49.

Leon Derczynski, Alan Ritter, Sam Clark, and Kalina
Bontcheva. 2013. Twitter Part-of-Speech Tagging
for All: Overcoming Sparse and Noisy Data. In
RANLP. pages 198–206.

Johannes Hoffart, Yasemin Altun, and Gerhard
Weikum. 2014. Discovering emerging entities with
ambiguous names. In Proceedings of the 23rd inter-
national conference on World wide web. pages 385–
396.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. Ontonotes:
The 90% solution. In Proceedings of the Human
Language Technology Conference of the NAACL,
Companion Volume: Short Papers. Association for
Computational Linguistics, New York City, USA,
pages 57–60.

Patrick Jansson and Shuhua Liu. 2017. Distributed
Representation, LDA Topic Modelling and Deep
Learning for Emerging Named Entity Recognition
from Social Media. In Proceedings of the 3rd Work-
shop on Noisy, User-generated Text (W-NUT) at
EMNLP. ACL.

Yuzhe Jin, Emre Kcman, Kuansan Wang, and Ricky
Loynd. 2014. Entity linking at the tail: sparse sig-
nals, unknown entities, and phrase models. In Pro-
ceedings of the 7th ACM international conference on
Web search and data mining. pages 453–462.

Saul A Kripke. 1972. Naming and necessity. In Se-
mantics of natural language, Springer, pages 253–
355.

LDC. 2005. ACE (Automatic Content Extraction)
English Annotation Guidelines for Entities version
5.6.1. Linguistic Data Consortium.

Bill Y. Lin, Frank Xu, Zhiyi Luo, and Kenny Zhu.
2017. Multi-channel BiLSTM-CRF Model for
Emerging Named Entity Recognition in Social Me-
dia. In Proceedings of the 3rd Workshop on Noisy,
User-generated Text (W-NUT) at EMNLP. ACL.

Xiaohua Liu, Shaodian Zhang, Furu Wei, and Ming
Zhou. 2011. Recognizing named entities in tweets.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies-Volume 1. Association for
Computational Linguistics, pages 359–367.

Marco Lui and Timothy Baldwin. 2012. langid. py: An
off-the-shelf language identification tool. In Pro-
ceedings of the ACL 2012 system demonstrations.
Association for Computational Linguistics, pages
25–30.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In ACL (System Demon-
strations). pages 55–60.

Marcelo A Montemurro. 2001. Beyond the Zipf–
Mandelbrot law in quantitative linguistics. Phys-
ica A: Statistical Mechanics and its Applications
300(3):567–578.

NIST. 2017. Tac kbp2017 entity discovery and link-
ing pilot on 10 low-resource languages. Technical
report, NIST.

Brendan O’Connor, Michel Krieger, and David Ahn.
2010. Tweetmotif: Exploratory search and topic
summarization for twitter. In Proceedings of
ICWSM-2010 (demo track).

Marten Postma, Filip Ilievski, Piek Vossen, and
Marieke van Erp. 2016. Moving away from seman-
tic overfitting in disambiguation datasets. In Pro-
ceedings of EMNLP 2016’s UBLP (Uphill Battles in
Language Processing) workshop.

Marta Recasens, Marie-Catherine de Marneffe, and
Christopher Potts. 2013. The life and death of dis-
course entities: Identifying singleton mentions. In
HLT-NAACL. pages 627–633.

Alan Ritter, Sam Clark, Mausam, and Oren Etzioni.
2011. Named entity recognition in tweets: An ex-
perimental study. In Proc. of Empirical Methods
for Natural Language Processing (EMNLP). Edin-
burgh, UK.

Giuseppe Rizzo, Bianca Pereira, Andrea Varga,
Marieke van Erp, and Amparo Elizabeth Cano
Basave. 2017. Lessons learnt from the Named En-
tity rEcognition and Linking (NEEL) challenge se-
ries. Semantic Web Journal .

Giuseppe Rizzo, Marieke van Erp, Julien Plu, and
Raphaël Troncy. 2016. Making sense of micro-
posts (#microposts2016) named entity recognition
and linking (neel) challenge. In Proceedings of the
6th Workshop on ’Making Sense of Microposts’ co-
located with the 25th International World Wide Web
Conference (WWW 2016).

Erik F. Tjong Kim Sang. 2002. Introduction to
the conll-2002 shared task: Language-independent
named entity recognition. In Proceedings of
CoNLL-2002. Taipei, Taiwan.

Utpal Kumar Sikdar and Björn Gambäck. 2017. A
Feature-based Ensemble Approach to Recognition
of Emerging and Rare Named Entities. In Proceed-
ings of the 3rd Workshop on Noisy, User-generated
Text (W-NUT) at EMNLP. ACL.

Benjamin Strauss, Bethany E Toma, Alan Ritter,
Marie-Catherine de Marneffe, and Wei Xu. 2016.
Results of the wnut16 named entity recognition
shared task. WNUT 2016 page 138.

146

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 Shared
Task: Language-Independent Named Entity Recog-
nition. In Proceedings of CoNLL-2003. Edmonton,
Canada, pages 142–147.

Marieke van Erp, Pablo Mendes, Heiko Paulheim, Filip
Ilievski, Julien Plu, Giuseppe Rizzo, and Joerg Wait-
elonis. 2016. Evaluating entity linking: An analysis
of current benchmark datasets and a roadmap for do-
ing a better job. In Proceedings of LREC 2016.

Pius von Däniken and Mark Cieliebak. 2017. Transfer
Learning and Sentence Level Features for Named
Entity Recognition on Tweets . In Proceedings of
the 3rd Workshop on Noisy, User-generated Text (W-
NUT) at EMNLP. ACL.

Jake Williams and Giovanni Santia. 2017. Context-
Sensitive Recognition for Emerging and Rare Enti-
ties. In Proceedings of the 3rd Workshop on Noisy,
User-generated Text (W-NUT) at EMNLP. ACL.

George Kingsley Zipf. 1949. Human behavior and the
principle of least effort. Addison-Wesley Press.

147

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 148–153
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

A Multi-task Approach for Named Entity Recognition in
Social Media Data

Gustavo Aguilar, Suraj Maharjan, A. Pastor López-Monroy and Thamar Solorio
Department of Computer Science

University of Houston
Houston, TX 77204-3010

{gaguilaralas, smaharjan2, alopezmonroy, tsolorio}@uh.edu

Abstract

Named Entity Recognition for social me-
dia data is challenging because of its
inherent noisiness. In addition to im-
proper grammatical structures, it contains
spelling inconsistencies and numerous in-
formal abbreviations. We propose a novel
multi-task approach by employing a more
general secondary task of Named Entity
(NE) segmentation together with the pri-
mary task of fine-grained NE categoriza-
tion. The multi-task neural network ar-
chitecture learns higher order feature rep-
resentations from word and character se-
quences along with basic Part-of-Speech
tags and gazetteer information. This neu-
ral network acts as a feature extractor to
feed a Conditional Random Fields clas-
sifier. We were able to obtain the first
position in the 3rd Workshop on Noisy
User-generated Text (WNUT-2017) with a
41.86% entity F1-score and a 40.24% sur-
face F1-score.

1 Introduction

Named Entity Recognition (NER) aims at iden-
tifying different types of entities, such as people
names, companies, location, etc., within a given
text. This information is useful for higher-level
Natural Language Processing (NLP) applications
such as information extraction, summarization,
and data mining (Chen et al., 2004; Banko et al.,
2007; Aramaki et al., 2009). Learning Named En-
tities (NEs) from social media is a challenging
task mainly because (i) entities usually represent a
small part of limited annotated data which makes
the task hard to generalize, and (ii) they do not fol-
low strict rules (Ritter et al., 2011; Li et al., 2012).

This paper describes a multi-task neural net-
work that aims at generalizing the underneath
rules of emerging NEs in user-generated text. In
addition to the main category classification task,
we employ an auxiliary but related secondary task
called NE segmentation (i.e. a binary classifica-
tion of whether a given token is a NE or not).
We use both tasks to jointly train the network.
More specifically, the model captures word shapes
and some orthographic features at the character
level by using a Convolutional Neural Network
(CNN). For contextual and syntactical informa-
tion at the word level, such as word and Part-
of-Speech (POS) embeddings, the model imple-
ments a Bidirectional Long-Short Term Memory
(BLSTM) architecture. Finally, to cover well-
known entities, the model uses a dense representa-
tion of gazetteers. Once the network is trained, we
use it as a feature extractor to feed a Conditional
Random Fields (CRF) classifier. The CRF clas-
sifier jointly predicts the most likely sequence of
labels giving better results than the network itself.

With respect to the participants of the shared
task, our approach achieved the best results in
both categories: 41.86% F1-score for entities, and
40.24% F1-score for surface forms. The data for
this shared task is provided by Derczynski et al.
(2017).

2 Related Work

Traditional NER systems use hand-crafted fea-
tures, gazetteers and other external resources to
perform well (Ratinov and Roth, 2009). Luo et al.
(2015) obtain state-of-the-art results by relying on
heavily hand-crafted features, which are expensive
to develop and maintain. Recently, many studies
have outperformed traditional NER systems by ap-
plying neural network architectures. For instance,
Lample et al. (2016) use a bidirectional LSTM-

148

CRF architecture. They obtain a state-of-the-
art performance without relying on hand-crafted
features. Limsopatham and Collier (2016), who
achieved the first place on WNUT-2016 shared
task, use a BLSTM neural network to leverage or-
thographic features. We use a similar approach but
we employ CNN and BLSTM in parallel instead of
forwarding the CNN output to the BLSTM. Nev-
ertheless, our main contribution resides on Multi-
Task Learning (MTL) and a combination of POS
tags and gazetteers representation to feed the net-
work.

Recently, MTL has gained significant attention.
Researchers have tried to correlate the success
of MTL with label entropy, regularizers, training
data size, and other aspects (Martı́nez Alonso and
Plank, 2017; Bingel and Søgaard, 2017). For in-
stance, Collobert and Weston (2008) use a multi-
task network for different NLP tasks and show that
the multi-task setting improves generality among
shared tasks. In this paper, we take advantage of
the multi-task setting by adding a more general
secondary task, NE segmentation, along with the
primary NE categorization task.

3 Methodology

This section describes our system1 in three parts:
feature representation, model description2, and se-
quential inference.

3.1 Feature Representation

We select features to represent the most relevant
aspects of the data for the task. The features are
divided into three categories: character, word, and
lexicons.
Character representation: we use an ortho-
graphic encoder similar to that of Limsopatham
and Collier (2016) to encapsulate capitalization,
punctuation, word shape, and other orthographic
features. The only difference is that we handle
non-ASCII characters. For instance, the sentence
“3rd Workshop !” becomes “ncc Cccccccc p” as
we map numbers to ‘n’, letters to ‘c’ (or ‘C’ if
capitalized), and punctuation marks to ‘p’. Non-
ASCII characters are mapped to ‘x’. This encoded
representation reduces the sparsity of character
features and allows us to focus on word shapes

1 https://github.com/tavo91/NER-WNUT17
2 The neural network is implemented using Keras

(https://github.com/fchollet/keras) and
Theano as backend (http://deeplearning.net/
software/theano/).

and punctuation patterns. Once we have an en-
coded word, we represent each character with a
30-dimensional vector (Ma and Hovy, 2016). We
account for a maximum length of 20 characters3

per word, applying post padding on shorter words
and truncating longer words.
Word representation: we have two different rep-
resentations at the word level. The first one uses
pre-trained word embeddings trained on 400 mil-
lion tweets representing each word with 400 di-
mensions (Godin et al., 2015)4. The second one
uses Part-of-Speech tags generated by the CMU
Twitter POS tagger (Owoputi et al., 2013). The
POS tag embeddings are represented by 100-
dimensional vectors. In order to capture contex-
tual information, we account for a context window
of 3 tokens on both words and POS tags, where the
target token is in the middle of the window.

We randomly initialize both the character fea-
tures and the POS tag vectors using a uniform dis-

tribution in the range
[
−

√
3

dim , +
√

3
dim

]
, where

dim is the dimension of the vectors from each fea-
ture representation (He et al., 2015).
Lexical representation: we use gazetteers pro-
vided by Mishra and Diesner (2016) to help the
model improve its precision for well-known enti-
ties. For each word we create a binary vector of 6
dimensions (one dimension per class). Each of the
vector dimensions is set to one if the word appears
in the gazetteers of the related class.

3.2 Model Description

Character level CNN: we use a CNN architecture
to learn word shapes and some orthographic fea-
tures at the character level representation (see Fig-
ure 1). The characters are embedded into a Rd×l

dimensional space, where d is the dimension of
the features per character and l is the maximum
length of characters per word. Then, we take the
character embeddings and apply 2-stacked convo-
lutional layers. Following Zhou et al. (2015), we
perform a global average pooling5 instead of the
widely used max pooling operation. Finally, the
result is passed to a fully-connected layer using a
Rectifier Linear Unit (ReLU) activation function,
which yields the character-based representation of

3 Different lengths do not improve results
4 http://www.fredericgodin.com/software
5 Zhou et al. (2015) empirically showed that global av-

erage pooling captured more extensive information from the
feature maps than max pooling.

149

Figure 1: Orthographic character-based representation of a
word (green) using a CNN with 2-stacked convolutional lay-
ers. The first layer takes the input from embeddings (red)
while the second layer (blue) takes the input from the first
convolutional layer. Global Average Pooling is applied after
the second convolutional layer.

a word. The resulting vector is used as input for
the rest of the network.
Word level BLSTM: we use a Bidirectional
LSTM (Dyer et al., 2015) to learn the contextual
information of a sequence of words as described
in Figure 2. Word embeddings are initialized with
pre-trained Twitter word embeddings from a Skip-
gram model (Godin et al., 2015) using word2vec
(Mikolov et al., 2013). Additionally, we use POS
tag embeddings, which are randomly initialized
using a uniform distribution. The model receives
the concatenation of both POS tags and Twitter
word embeddings. The BLSTM layer extracts the
features from both forward and backward direc-
tions and concatenates the resulting vectors from
each direction ([~h; ~h]). Following Ma and Hovy
(2016), we use 100 neurons per direction. The re-
sulting vector is used as input for the rest of the
network.
Lexicon network: we take the lexical representa-
tion vectors of the input words and feed them into
a fully-connected layer. We use 32 neurons on this
layer and a ReLU activation function. Then, the
resulting vector is used as input for the rest of the
network.
Multi-task network: we create a unified model
to predict the NE segmentation and NE catego-
rization tasks simultaneously. Typically, the ad-
ditional task acts as a regularizer to generalize the
model (Goodfellow et al., 2016; Collobert and We-
ston, 2008). The concatenation of character, word
and lexical vectors is fed into the NE segmentation

Figure 2: Word representation of POS-tag embeddings
(blue) and Twitter word embeddings (red) using a BLSTM
neural network.

and categorization tasks. We use a single-neuron
layer with a sigmoid activation function for the
secondary NE segmentation task, whereas for the
primary NE categorization task, we employ a 13-
neuron6 layer with a softmax activation function.
Finally, we add the losses from both tasks and feed
the total loss backward during training.

3.3 Sequential Inference

The multi-task network predicts probabilities for
each token in the input sentence individually.
Thus, those individual probabilities do not account
for sequential information. We exploit the sequen-
tial information by using a Conditional Random
Fields7 classifier over those probabilities. This al-
lows us to jointly predict the most likely sequence
of labels for a given sentence instead of perform-
ing a word-by-word prediction. More specifically,
we take the weights learned by the multi-task neu-
ral network and use them as features for the CRF
classifier (see Figure 3). Taking weights from the
common dense layer captures both of the segmen-
tation and categorization features.

4 Experimental Settings

We preprocess all the datasets by replacing the
URLs with the token <URL> before performing
any experiment. Additionally, we use half of de-
velopment set as validation and the other half as
evaluation.

6 Using BIO encoding, each of the 6 classes will have a
begin and inside version (e.g. B-product, I-product).

7 Python CRF-Suite library: https://github.com/
scrapinghub/python-crfsuite

150

Figure 3: Overall system design. First, the system em-
beds a sentence into a high-dimensional space and uses CNN,
BLSTM, and dense encoders to extract features. Then, it
concatenates the resulting vectors of each encoder and per-
forms multi-task. The top left single-node layer represents
segmentation (red) while the top right three-node layer repre-
sents categorization (blue). Finally, a CRF classifier uses the
weights of the common dense layer to perform a sequential
classification.

Regarding the network hyper-parameters, in the
case of the CNN, we set the kernel size to 3 on
both convolutional layers. We also use the same
number of filters on both layers: 64. Increasing
the number of filters and the number of convolu-
tional layers yields worse results, and it takes sig-
nificantly more time. In the case of the BLSTM
architecture, we add dropout layers before and af-
ter the Bidirectional LSTM layers with dropout
rates of 0.5. The dropout layers allow the network
to reduce overfitting (Srivastava et al., 2014). We
also tried using a batch normalization layer instead
of dropouts, but the experiment yielded worse re-
sults. The training of the whole neural network
is conducted using a batch size of 500 samples,
and 150 epochs. Additionally, we compile the
model using the AdaMax optimizer (Kingma and
Ba, 2014). Accuracy and F1-score are used as
evaluation metrics.

For sequential inference, the CRF classifier uses
L-BFGS as a training algorithm with L1 and L2
regularization. The penalties for L1 and L2 are
1.0 and 1.0e−3, respectively.

5 Results and Discussion

We compare the results of the multi-task neural
network itself and the CRF classifier on each of
our experiments. The latter one always shows the
best results, which emphasizes the importance of
sequential information. The results of the CRF,
using the development set, are in Table 1.

Moreover, the addition of a secondary task al-
lows the CRF to use more relevant features from

Classes Precision (%) Recall (%) F1 (%)
corporation 35.71 29.41 32.26
creative-work 60.00 5.26 9.68
group 30.00 12.00 17.14
location 65.71 56.10 60.53
person 83.98 62.04 71.36
product 39.29 15.71 22.45
Entity 72.16 43.30 54.12
Surface 68.38 95.05 79.54

Table 1: This table shows the results from the CRF clas-
sifier at the class level. The classification is conducted using
the development set as both validation and evaluation.

Classes Precision (%) Recall (%) F1 (%)
corporation 31.91 22.73 26.55
creative-work 36.67 7.75 12.79
group 41.79 16.97 24.14
location 56.92 49.33 52.86
person 70.72 50.12 58.66
product 30.77 9.45 14.46
Entity 57.54 32.90 41.86
Surface 56.31 31.31 40.24

Table 2: This table shows the final results of our submis-
sion. The hardest class to predict for is creative-work, while
the easiest is person.

the network improving its results from a F1-score
of 52.42% to 54.12%. Our finding that a multi-
task architecture is generally preferable over the
single task architecture is consistent with prior re-
search (Søgaard and Goldberg, 2016; Collobert
and Weston, 2008; Attia et al., 2016; Maharjan
et al., 2017).

We also study the relevance of our features by
performing multiple experiments with the same
architecture and different combinations of fea-
tures. For instance, removing gazetteers from the
model drops the results from 54.12% to 52.69%.
Similarly, removing POS tags gives worse results
(51.12%). Among many combinations, the feature
set presented in Section 3.1 yields the best results.

The final results of our submission to the
WNUT-2017 shared task are shown in Table 2.
Our approach obtains the best results for the per-
son and location categories. It is less effective for
corporation, and the most difficult categories for
our system are creative-work and product. Our in-
tuition is that the latter two classes are the most
difficult to predict for because they grow faster
and have less restrictive patterns than the rest. For
instance, products can have any type of letters or
numbers in their names, or in the case of creative
works, as many words as their titles can hold (e.g.

151

Participants F1 - E (%) F1 - SF (%)
MIC-CIS 37.06 34.25
Arcada 39.98 37.77
Drexel-CCI 26.30 25.26
SJTU-Adapt 40.42 37.62
FLYTXT 38.35 36.31
SpinningBytes 40.78 39.33
UH-RiTUAL 41.86 40.24

Table 3: The scores of all the participants in the WNUT-
2017 shared task. The metrics of the shared task are entity
and surface form F1-scores. Our results are highlighted.

name of movies, books, songs, etc.).
Regarding the shared-task metrics, our ap-

proach achieves a 41.86% F1-score for entities and
40.24% for surface forms. Table 3 shows that our
system yields similar results to the other partici-
pants on both metrics. In general, the final scores
are low which states the difficulty of the task and
that the problem is far from being solved.

6 Error Analysis

By evaluating the errors made by the CRF clas-
sifier, we find that the NE boundaries are a prob-
lem. For instance, when a NE is preceded by an
article starting with a capitalized letter, the model
includes the article as if it were part of the NE.
This behavior may be caused by the capitalization
features captured by the CNN network. Similarly,
if a NE is followed by a conjunction and another
NE, the classifier tends to join both NEs as if the
conjunction were part of a single unified entity.
Another common problem shown by the classi-
fier is that fully-capitalized NEs are disregarded
most of the time. This pattern may be related to
the switch of domains in the training and testing
phases. For instance, some Twitter informal ab-
breviations8 may appear fully-capitalized but they
do not represent NEs, whereas in Reddit and Stack
Overflow fully-capitalized words are more likely
to describe NEs.

7 Conclusion

We show that our multi-task neural network is ca-
pable of extracting relevant features from noisy
user-generated text. We also show that a CRF
classifier can boost the neural network results be-
cause it uses the whole sentence to predict the
most likely set of labels. Additionally, our ap-
proach emphasizes the importance of POS tags in

8 E.g. LOL is an informal social media expression that
stands for Laughing Out Loud, which is not an NE.

conjunction with gazetteers for NER tasks. Twit-
ter word embeddings and orthographic character
embeddings are also relevant for the task.

Finally, our ongoing work aims at improving
these results by getting a better understanding of
the strengths and weaknesses of our model. We
also plan to evaluate the current system in related
tasks where noise and emerging NEs are prevalent.

References
Eiji Aramaki, Yasuhide Miura, Masatsugu Tonoike,

Tomoko Ohkuma, Hiroshi Mashuichi, and Kazuhiko
Ohe. 2009. TEXT2TABLE: Medical Text Summa-
rization System based on Named Entity Recognition
and Modality Identification. In Proceedings of the
Workshop on Current Trends in Biomedical Natural
Language Processing, BioNLP ’09, pages 185–192,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Mohammed Attia, Suraj Maharjan, Younes Samih,
Laura Kallmeyer, and Thamar Solorio. 2016.
CogALex-V Shared Task: GHHH - Detecting Se-
mantic Relations via Word Embeddings. In Pro-
ceedings of the 5th Workshop on Cognitive Aspects
of the Lexicon (CogALex - V), pages 86–91, Osaka,
Japan. The COLING 2016 Organizing Committee.

Michele Banko, Michael J. Cafarella, Stephen Soder-
land, Matt Broadhead, and Oren Etzioni. 2007.
Open Information Extraction from the Web. In Pro-
ceedings of the 20th International Joint Conference
on Artificial Intelligence, IJCAI’07, pages 2670–
2676, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

Joachim Bingel and Anders Søgaard. 2017. Identify-
ing beneficial task relations for multi-task learning
in deep neural networks. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 2, Short
Papers, pages 164–169, Valencia, Spain. Associa-
tion for Computational Linguistics.

Hsinchun Chen, Wingyan Chung, Jennifer Jie Xu,
Gang Wang, Yi Qin, and Michael Chau. 2004.
Crime Data Mining: A General Framework and
Some Examples. Computer, 37(4):50–56.

Ronan Collobert and Jason Weston. 2008. A Uni-
fied Architecture for Natural Language Processing:
Deep Neural Networks with Multitask Learning. In
Proceedings of the 25th International Conference on
Machine Learning, ICML ’08, pages 160–167, New
York, NY, USA. ACM.

Leon Derczynski, Eric Nichols, Marieke van Erp,
and Nut Limsopatham. 2017. Results of the
WNUT2017 Shared Task on Novel and Emerging
Entity Recognition. In Proceedings of the 3rd Work-
shop on Noisy, User-generated Text (W-NUT) at
EMNLP. ACL.

152

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
Based Dependency Parsing with Stack Long Short-
Term Memory. CoRR, abs/1505.08075.

Fréderic Godin, Baptist Vandersmissen, Wesley
De Neve, and Rik Van de Walle. 2015. Multimedia
Lab @ ACL WNUT NER Shared Task: Named En-
tity Recognition for Twitter Microposts using Dis-
tributed Word Representations. In Proceedings of
the Workshop on Noisy User-generated Text, pages
146–153, Beijing, China. Association for Computa-
tional Linguistics.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep Learning. MIT Press. http://www.
deeplearningbook.org.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving Deep into Rectifiers: Surpass-
ing Human-Level Performance on ImageNet Classi-
fication. CoRR, abs/1502.01852.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural Architectures for Named Entity Recognition.
CoRR, abs/1603.01360.

Chenliang Li, Jianshu Weng, Qi He, Yuxia Yao, An-
witaman Datta, Aixin Sun, and Bu-Sung Lee. 2012.
TwiNER: Named Entity Recognition in Targeted
Twitter Stream. In Proceedings of the 35th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’12,
pages 721–730, New York, NY, USA. ACM.

Nut Limsopatham and Nigel Collier. 2016. Bidirec-
tional LSTM for Named Entity Recognition in Twit-
ter Messages. In Proceedings of the 2nd Workshop
on Noisy User-generated Text (WNUT), pages 145–
152, Osaka, Japan. The COLING 2016 Organizing
Committee.

Gang Luo, Xiaojiang Huang, Chin-Yew Lin, and Za-
iqing Nie. 2015. Joint Entity Recognition and Dis-
ambiguation. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 879–888, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Xuezhe Ma and Eduard H. Hovy. 2016. End-to-end
Sequence Labeling via Bi-directional LSTM-CNNs-
CRF. CoRR, abs/1603.01354.

Suraj Maharjan, John Arevalo, Manuel Montes,
Fabio A. González, and Thamar Solorio. 2017. A
Multi-task Approach to Predict Likability of Books.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers, pages 1217–
1227, Valencia, Spain. Association for Computa-
tional Linguistics.

Héctor Martı́nez Alonso and Barbara Plank. 2017.
When is multitask learning effective? Semantic se-
quence prediction under varying data conditions. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers, pages 44–53, Va-
lencia, Spain. Association for Computational Lin-
guistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Represen-
tations in Vector Space. CoRR, abs/1301.3781.

Shubhanshu Mishra and Jana Diesner. 2016. Semi-
supervised Named Entity Recognition in noisy-text.
In Proceedings of the 2nd Workshop on Noisy User-
generated Text (WNUT), pages 203–212, Osaka,
Japan. The COLING 2016 Organizing Committee.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A.
Smith. 2013. Improved Part-of-Speech Tagging for
Online Conversational Text with Word Clusters. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 380–390, Atlanta, Georgia. Association for
Computational Linguistics.

Lev Ratinov and Dan Roth. 2009. Design Chal-
lenges and Misconceptions in Named Entity Recog-
nition. In Proceedings of the Thirteenth Confer-
ence on Computational Natural Language Learning,
CoNLL ’09, pages 147–155, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Alan Ritter, Sam Clark, Mausam, and Oren Etzioni.
2011. Named Entity Recognition in Tweets: An Ex-
perimental Study. In Proceedings of the Conference
on Empirical Methods in Natural Language Pro-
cessing, EMNLP ’11, pages 1524–1534, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Anders Søgaard and Yoav Goldberg. 2016. Deep
multi-task learning with low level tasks supervised
at lower layers. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 231–
235, Berlin, Germany. Association for Computa-
tional Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. J. Mach. Learn. Res., 15(1):1929–
1958.

Bolei Zhou, Aditya Khosla, Àgata Lapedriza, Aude
Oliva, and Antonio Torralba. 2015. Learning Deep
Features for Discriminative Localization. CoRR,
abs/1512.04150.

153

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 154–159
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

Distributed Representation, LDA Topic Modelling and Deep Learning
for Emerging Named Entity Recognition from Social Media

Patrick Jansson and Shuhua Liu
Arcada University of Applied Sciences

Jan-Magnus Janssonin aukio 1, 00560 Helsinki, Finland
{patrick.jansson, shuhua.liu}@arcada.fi

Abstract

This paper reports our participation in
the W-NUT 2017 shared task on
emerging and rare entity recognition
from user generated noisy text such as
tweets, online reviews and forum dis-
cussions. To accomplish this challeng-
ing task, we explore an approach that
combines LDA topic modelling with
deep learning on word level and char-
acter level embeddings. The LDA top-
ic modelling generates topic represen-
tation for each tweet which is used as a
feature for each word in the tweet. The
deep learning components consist of
two-layer bidirectional LSTM and a
CRF output layer. Our submitted result
performed at 39.98 (F1) on entity and
37.77 on surface forms. Our new ex-
periments after submission reached a
best performance of 41.81 on entity
and 40.57 on surface forms.

1 Introduction

The shared task Emerging and Rare Entity
Recognition at the 3rd Workshop on Noisy User-
generated Text (W-NUT 2017) takes on the chal-
lenge of identifying unusual, previously-unseen
entities in noisy texts such as tweets, online re-
views and other social discussions (http://noisy-
text.github.io/2017/emerging-rare-entities.html).
The emergent nature of novel named entities in
user generated content and the often very creative
natural of their surface forms make the task of au-
tomatic detection of such entities particularly dif-
ficult. To address such challenges, the shared task

organizer prepared training, development and test
datasets and provided to the participants. The da-
tasets try to “resemble turbulent data containing
few repeated entities, drawn from rapidly-
changing text types or sources of non-mainstream
entities”. Results from the shared task are evaluat-
ed using F1 measures on the entities and surface
forms found in the test data. It rewards systems at
correctly detecting a diverse range of entities ra-
ther than only the frequent ones.

Inspired by the work of Limsopatham and Col-
lier (2016, winner of w-nut 2016 shared task on
Named Entity Recognition in Twitter), Chiu and
Nichols (2016), and Huang et al (2015), we ap-
proached this shared task with bidirectional
LSTM models (Long Short Term Memory recur-
rent neural network model) enhanced by CRF
output layer, using both character-level and word-
level embeddings as inputs. In addition, different
from the study of Limsopatham and Collier
(2016), we didn’t make use of orthographic fea-
tures of characters but tried to incorporate POS
tags as well as document topics extracted from
LDA topic modelling as optional inputs to the
modelling process. The LDA topic modelling
generates topic representation for each tweet
which is used as a feature for each word in the
tweet.

Our submitted result performed at 39.98 (F1)
on entity and 37.77 (F1) on surface forms, using
10% of the combined training and development
set for validation. After submission, we continued
with more experiments, using data combining the
training set and development set in training pro-
cess, with ground truth available that helps the se-
lection of the results. Our best result reached a
performance of 41.81 on entity and 40.57 on sur-
face forms.

154

2 Data and Preprocessing

The shared task datasets consist of a training set, a
development set and a test set. Basic statistics of
each data set in shown in Table 1. The shared task
focuses on discovering 6 types of target entities
and surface forms of: Corporation, Creative-Work,
Group, Location, Person and Product (Derczynski
et al, 2017).

In counting surface forms, every "word-label"
combination has to be unique and letter case sen-
sitive. When the same word appears twice but as
different entities both are counted.

For the stop words removing, we utilized the
Stopwords ISO (https://github.com/stopwords-
iso/stopwords-en) list. The cutoff value for infre-
quent terms is set as one when applying LDA
modelling.

3 Emerging and Rare Entity Detection
from Social Media: Framework and
Methods

Our approach to emerging and rare entity detec-
tion from social media is illustrated in Figure 1.
Our methodology framework consists of the fol-
lowing components: (1) character-level embed-
dings and bidirectional LSTM modeling; (2)

word level embeddings and bidirectional LSTM
modelling; (3) LDA topic modelling, POS tags
enhanced bidirectional LSTM; (4) fully connect-
ed layers, and (5) a CRF (Conditional Random
Fields) output layer.

3.1 Character-level Representation
Character-level information was found to be

valuable input for named entity recognition from
social media (Limsopatham and Collier, 2016;
Vosoughi et al, 2016). Chiu and Nichols (2015)
found that modelling both the character-level and
word-level embeddings within a neural network
for named entity recognition helps improve the
performance.

In our system, each character is represented
as an N dimensional embedding which is learned
and adjusted during the training process. The
character level representations will then be
merged into one M dimensional (50d-200d
seems to work well) representation for each
word. Character capitalization is kept.

We used 20-dimensional embeddings to rep-
resent each character. To learn character-level
representations for each word we use a bidirec-
tional LSTM to create a 200-dimensional repre-
sentation for each word.

Figure 1: Methodology Framework

3.2 Word Embeddings
Word embeddings are distributed representa-

tion of words that offers continuous representa-
tions of words and text features such as the lin-
guistic context of words (Mikolv et al, 2013a,

Entities all

Training Dev Test

tweets/posts 3394 1009 1287
Tokens total 62730 15733 23394
Entities total 3160 1250 1740
Corporation 267 46 88
Creative-work 346 238 360
Group 414 64 235
Location 793 107 244
Person 995 587 560
Product 345 208 253

 Surface

Training Dev Test

Corporation 180 44 79
Creative-work 259 203 292
Group 343 60 188
Location 589 99 174
Person 742 484 476
Product 284 184 200

2397 1074 1409

Table 1: Dataset overview

155

2013b). Word embeddings are the current norm
for many text applications as they are found to be
able to accurately capture not only syntactic reg-
ularities but also (local) semantic regularities of
words and phrases (Mikolv et al, 2013a, Hasen et
al, 2015; Limsopatham and Collier, 2016;
Vosoughi et al, 2016).

Estimation of the word vectors is done using
various types of model architectures trained on
large corpora. Word2vec (Mikolv et al, 2013a,
2013b) and GloVe (Pennington et al, 2014) are
two widely used efficient model architectures
and algorithms for learning high quality continu-
ous vector representations of words from huge
data sets with billions of words. They have been
used to train and create word embeddings that
can be applied directly by other applications.

Considering our target source and based on
some primitive test, we choose to use 200-
dimensional GloVe pre-trained embeddings
(Pennington et al, 2014), which was trained on a
Twitter corpus with 27 billion tokens and a vo-
cabulary size of 1.2 million.

3.3 POS Tagging
Part of Speech is also an important indicator of

named entities, which we would like to include in
our model (Huang et al, 2015). GATE Twitter
POS tagger (https://gate.ac.uk/wiki/twitter-
postagger.html) is used to assign POS tags for
each word. POS tags is represented as 50-
dimensional trainable embedding.

3.4 LDA Topic Modelling
Topic modeling offers a powerful means for

finding hidden thematic structure in large text
collections. In topic models, topics are defined as
a distribution over a fixed vocabulary of terms
and documents are defined as a distribution over
topics. LDA topic modeling and its variations
represent the most popular methods (Blei et al,
2003; Blei, 2012).

We consider the topic composition of each
Tweet or social media post an important indica-
tor of subject domain context, which can be used
to complement the local linguistic context of
word vector. We make use of topic representa-
tion for each tweet derived from LDA modelling
as a feature for each word in the Tweet.

We applied the online LDA method by Hoff-
man et al (2010), implemented in Genism
(https://radimrehurek.com/gensim/models/ldamo
del.html). It can handily analyze massive docu-
ment collections or document streams.

When generate topic models, all the three da-
tasets are combined into one corpus, and each
entry is treated as a separate document. Each
document is cleaned and preprocessed, which in-
cludes removing stop-words, punctuation and in-
frequent terms. An LDA model of 250 topics
was trained and used for our system that generat-
ed submitted results. Using the model, we get a
document level topic for each document, the top-
ic value is then assigned to each word in the doc-
ument. We also use the model to get a topic for
each word in the documents. If the probability
that a document or a word belongs to a topic is,
the same for each topic, a special token is as-
signed to it instead of a topic. Each topic token is
then assigned to a 250-dimensional embedding,
embeddings for document and word-level topics
are initialized separately.

3.5 Two-Layer Bidirectional LSTM
Bidirectional LSTM has been shown effective

for modelling social media sentences (Huang et
al., 2015; Dyer et al., 2015; Limsopatham and
Collier, 2016). To learn deep neural models for
named entity recognition we adopted a two-layer
bidirectional LSTM, followed by two fully con-
nected layers, and a Conditional Random Field
(CRF) as an output layer where we maximize the
joint likelihood.

For the first LSTM layer, we concatenate the
200-dimensional GloVe word embeddings and the
200-dimensional embeddings for character level
representation. For the second layer, we concate-
nate the output of the first layer with the POS-
feature embeddings and LDA-feature embed-
dings. The LSTM output dimensions are 256 for
the first layer and 512 for the second layer.

After the second LSTM layer, we use two fully
connected layers at each time step, and feed this
representation into the CRF output-layer. The di-
mensions of the fully connected layers are 128
and 64 for the first and second layer respectively.

Between each layer in the network we applied
dropout and batch normalization (Ioffe and Szre-
gedy, 2015). A dropout rate of 0.25 is used for the
first two layers of the network (the Character
LSTM and the character + word LSTM). For all
the other layers of the network, a dropout rate of
0.5 is used.

The fully connected layers are extra hidden
layers before the CRF output layer, which allow
the models to learn higher level representations

156

without adding complexity through an extra com-
positional layer (Rei and Yannakoudakis, 2016).

Conditional random field (CRF) has shown to
be one of the most effective methods for named
entity recognition in general and in social media
(Lafferty et al., 2001; McCallum and Li, 2003;
Baldwin et al., 2015; Limsopatham and Collier,
2016). It also helped our system to gain perfor-
mance in recognizing emerging entities and sur-
face forms.

The deep neural model was implemented using
Keras with a TensorFlow backend and Keras
community contributions for the CRF implemen-
tation. One model is trained for both entity and
surface form recognition. Any feature can be in-
cluded or excluded as needed when running the
model.

4 Experiments and Results

In this section, we report two sets of experiments
and results. Results from the 1st set of experiments
were submitted to the shared task organizer for
evaluation. The 2nd set of experiments are done af-
ter the submission. Using the ground truth re-
leased by the organizer we evaluated the results
directly by ourselves. The ground truth being
available also helps us in identifying the best
model.

4.1 1st Set of Experiments and Submit-
ted Results

To train the model, the training set and the dev
sets are merged, of which 10% (in terms of size,
about half of the original dev set) are used for val-
idation. We used a batch size of 32 for training,
and the RMSprop optimizer with an initial leaning
rate of 0.001. The results are shown in Table 2.
The results from all participating systems are pre-
sented in Table 3 (Derczynski, et al, 2017).

The overall performance of our system reached
39.98 on entities and 37.77 on surface forms. The
performance on Person and Location types of en-
tities and surface forms are comparatively better,
with F1 score at 55,88 and 47,38 respectively for
entities, and F1 score at 53.30 and 42.80 for their
surface forms. The system is less effective on
identifying Corporation, Product, Creative-work
and Group types of entities and surface forms, es-
pecially disappointing in terms of recall. For Crea-
tive-work and Product type entities, recall only
reached 9.86% and 11.02% respectively.

 Accuracy Precision Recall FB1
Entities 94.03% 47.40% 34.57% 39.98
Surface forms 44.94% 32.57% 37.77

 Entity types Precision Recall FB1
 Corporation 19.05% 18.18% 18.60
 Creative-

work
31.82% 9.86% 15.05

 Group 38.36% 16.97% 23.53
 Location 44.00% 51.33% 47.38
 Person 58.91% 53.15% 55.88
 Product 31.11% 11.02% 16.28

 Surface

forms
Precision Recall FB1

 Corporation 20.37% 18.33% 19.30
 Creative-

work
32.56% 10.29% 15.64

 Group 35.29% 17.02% 22.97
 Location 39.73% 46.40% 42.80
 Person 56.38% 50.53% 53.30
 Product 31.82% 11.97% 17.39

Table 2: Our submitted results

Team F (entity) F (surface)

MIC-CIS 37.06 34.25

Arcada 39.98 37.77

Drexel-CCI 26.30 25.26

SJTU-Adapt 40.42 37.62

FLYTXT 38.35 36.31

SpinningBytes 40.78 39.33

UH Ritual 41.86 40.24

Table 3: Submitted results, all participants

4.2 2nd Set of Experiments and Updated
Results

After submission, we continued our modelling work
with new training strategies. In terms of the data, all
samples of the training set and dev set are used for
training the model, which is then directly applied
to test set. We also experimented more with dif-
ferent options of the number of topics in LDA top-
ic modelling. We found that incorporating LDA
features does have a positive effect on the perfor-
mance. We used models with topic counts in the
range of 20, 50, 150, 250, 350, 450. The results
(FB1 value for entity and surface forms) are illus-
trated in Table 4. The scores are maxima out of

157

two runs of experiments, where each run goes
through all the topic counts.

Topics 0 20 50 150
Entity 40.63 40.63 41.48 41.81
Surface 38.06 38.95 39.68 40.57

Topics 250 350 450
Entity 41.78 41.66 40.95
Surface 39.90 39.48 39.29

Table 4: Performance variation related with number of

topics for LDA modelling

When topic number set as 150, breakdown of the
performance shows that the system performed
best for the more difficult entity types and surface
forms, as is shown in Table 5. For Creative-work
and Product type entities, recall reached 15.49%
and 14.96% respectively. For their surface forms,
recall reached 16.18% and 16.24% respectively.

 Accuracy Precision Recall FB1
Entities 94.10% 50.86% 35.50% 41.81
Surface forms 49.55% 34.35% 40.57

 Entity types Precision Recall FB1
 Corporation 31.71% 19.70% 24.30
 Creative-

work
37.29% 15.49% 21.89

 Group 40.62% 15.76% 22.71
 Location 49.09% 54.00% 51.43
 Person 61.16% 51.75% 56.06
 Product 31.15% 14.96% 20.21

 Surface

forms
Precision Recall FB1

 Corporation 31.43% 18.33% 23.16
 Creative-

work
37.93% 16.18% 22.68

 Group 40.32% 17.73% 24.63
 Location 47.14% 52.80% 49.81
 Person 60.06% 49.20% 54.09
 Product 32.20% 16.24% 21.59

Table 5: Performance on different types of entities,

number of topics for LDA modelling = 150

5 Discussion and Conclusion

In this paper, we reported our participation in the
W-NUT 2017 shared task on emerging and rare
entity recognition from user generated noisy text.
We described our system that leverages the power
of LDA topic modelling, POS tags, character-level

and word-level embeddings, bidirectional LTSM
and CRF. The LDA topic modelling generates top-
ic representation for each tweet or social media
post. The deep learning model consists of two-
layer bidirectional LSTM, two fully connected
layers and a CRF output layer. We make use of
topic representation for each tweet derived from
LDA modelling as a feature for each word in a
tweet or post. The topic composition of each post
offers a certain subject domain context that could
complement the local linguistic context of word
embeddings.

We reported two sets of experiments and re-
sults. Results from the 1st set of experiments were
submitted to the shared task organizer for evalua-
tion. Our submitted results performed at 39.98
(F1) on entities and 37.77 (F1) on surface forms.

The 2nd set of experiments are done as follow
up study after the submission, adopting a different
training strategy. Using the ground truth released
by the organizer we evaluated the results directly
by ourselves. The ground truth being available
helped us to identify the best model.

We experimented more with different options
of the number of topics in LDA topic modelling.
We found that incorporating LDA features does
have a positive effect on the performance. The
new results reached a best performance of 41.81
on entities and 40.57 on surface forms, with the
number of topics set as 150. When the number of
topics is set the same as for our submitted results
(i.e. 250), the new results showed performance
gain as well, reached 41.78 on entities and 39.90
on surface forms.

For future work, it would be interesting to train
the LDA model on a larger corpus, to hopefully
find a more accurate subject domain context for
each tweet or post. It would be useful as well to
explore the effects of alternative word embed-
dings such as fasttext. It would also be interesting
to apply our system in identifying city event relat-
ed entities and surface forms from other social
media data.

Acknowledgements
This work is part of the DIGILENS-HKI project
on mining community knowledge from social
media (http://rdi.arcada.fi/katumetro-digilens-hki).
We thank and gratefully acknowledge funding
from Helsinki Region Urban Research Program
(http://www.helsinki.fi/kaupunkitutkimus/) and
Arcada Foundation (tuf.arcada.fi).

158

References
Blei D, A. Ng and M. I. Jordan. 2003. Latent Dirichlet

Allocation. Advances in Neural Information Pro-
cessing Systems. Pages 601-608.

Blei D. 2012. Probabilistic Topic Models. Communi-
cations of the ACM, 55(4):77-84.

Benjamin Strauss, Bethany E. Toma, Alan Ritter, Ma-
rie Catherine de Marneffe, and Wei Xu. 2016. Re-
sults of the wnut16 named entity recognition
shared task. In Proceedings of the Workshop on
Noisy User-generated Text (WNUT 2016), Osaka,
Japan.

Baldwin Timothy, Young-Bum Kim, Marie Catherine
de Marneffe, Alan Ritter, Bo Han, and Wei Xu.
2015. Shared tasks of the 2015 workshop on noisy
user-generated text: Twitter lexical normalization
and named entity recognition. ACL-IJCNLP,
126:2015.

Chiu Jason P. C., Eric Nichols, Named Entity Recog-
nition with Bidirectional LSTM-CNNs, TACL2016

Derczynski Leon, Diana Maynard, Giuseppe Rizzo,
Marieke van Erp, Genevieve Gorrell, Raphae ̈l
Troncy, Johann Petrak, and Kalina Bontcheva.
2015. Analysis of named entity recognition and
linking for tweets. Information Processing & Man-
agement, 51(2):32–49.

Derczynski Leon, Eric Nichols, Marieke van Erp, Nut
Limsopatham, Results of the WNUT2017 Shared
Task on Novel and Emerging Entity Recognition,
in Proceedings of the 3rd Workshop on Noisy, Us-
er-generated Text, 2017

Dyer Chris, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. arXiv preprint arXiv:1505.08075.

Godin Frederic, Baptist Vandersmissen, Wesley De
Neve and Rik Vande Walle. 2015. Multime-
dialab@acl w-nut shared task: Named entity
recognition for twitter micro posts using distributed
word representations. ACL-IJCNLP 2015, page
146.

Hasan Sadid A., Yuan Ling, Joey Liu, Oladimeji Farri,
Exploiting Neural Embeddings for Social Media
Data Analysis. TREC 2015

Hoffman M, D. Blei and F. Bach. 2010. Online learn-
ing for Latent Dirichlet Allocation. Advances in
Neural Information Processing Systems 23, 856-
864.

Huang Zhiheng, Wei Xu, Kai Yu, Bidirectional
LSTM-CRF Models for Sequence Tagging,
ArXiv2015

Lafferty John, Andrew McCallum, and Fernando Pe-
reira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence
data. In Proceedings of the eighteenth international
conference on machine learning, ICML, volume 1,
pages 282–289.

Ioffe Sergey, Szregedy Christian, Batch Normaliza-
tion: Accelerating Deep Network Training by Re-
ducing Internal Covariate Shift, ArXiv2015

Limsopatham Nut, Nigel Collier, Bidirectional LSTM
for Named Entity Recognition in Twitter Messages,
2016

McCallum Andrew and Wei Li. 2003. Early results for
named entity recognition with conditional random
fields, feature induction and web-enhanced lexi-
cons. In Proceedings of the seventh conference on
Natural language learning at HLT-NAACL 2003-
Volume 4, pages 188–191. Association for Compu-
tational Linguistics.

Mikolov Tomas, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Repre-
sentations in Vector Space. In Proceedings of
Workshop at ICLR, 2013.

Mikolov Tomas, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed Repre-
sentations of Words and Phrases and their Compo-
sitionality. In Proceedings of NIPS, 2013

Pennington Jeffrey, Richard Socher, and Christopher
D Manning. 2014. GloVe: Global vectors for word
representation. In EMNLP, pages 1532–1543.

Vosoughi Soroush, Prashanth Vijayaraghavan, Deb
Roy, Tweet2Vec: Learning Tweet Embeddings Us-
ing Character-level CNN-LSTM Encoder-Decoder,
Proceedings of SIGIR 2016, July 17-21, 2016, Pi-
sa, Italy

Zhang Xiang, Junbo Zhao, Yann LeCun. Character-
level Convolutional Networks for Text Classifica-
tion. Advances in Neural Information Processing
Systems 28 (NIPS 2015). Poster. Datasets. Code.
Errata.

Marek Rei and Helen Yannakoudakis, “Compositional
Sequence Labeling Models for Error Detection in
Learner Writing”, Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1181–1191, Berlin, Germany, Au-
gust 7-12, 2016.

159

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 160–165
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

Multi-channel BiLSTM-CRF Model for
Emerging Named Entity Recognition in Social Media

Bill Y. Lin∗ and Frank F. Xu∗ and Zhiyi Luo and Kenny Q. Zhu
Shanghai Jiao Tong University

Shanghai, China
{yuchenlin, frankxu, jessherlock}@sjtu.edu.cn, kzhu@cs.sjtu.edu.cn

Abstract

In this paper, we present our multi-
channel neural architecture for recog-
nizing emerging named entity in social
media messages, which we applied in
the Novel and Emerging Named Entity
Recognition shared task at the EMNLP
2017 Workshop on Noisy User-generated
Text (W-NUT). We propose a novel ap-
proach, which incorporates comprehen-
sive word representations with multi-
channel information and Conditional Ran-
dom Fields (CRF) into a traditional Bidi-
rectional Long Short-Term Memory (BiL-
STM) neural network without using any
additional hand-crafted features such as
gazetteers. In comparison with other sys-
tems participating in the shared task, our
system won the 3rd place in terms of the
average of two evaluation metrics.

1 Introduction

Named entity recognition (NER) is one of the first
and most important steps in Information Extrac-
tion pipelines. Generally, it is to identify men-
tions of entities (persons, locations, organizations,
etc.) within unstructured text. However, the di-
verse and noisy nature of user-generated content
as well as the emerging entities with novel surface
forms make NER in social media messages more
challenging.

The first challenge brought by user-generated
content is its unique characteristics: short, noisy
and informal. For instance, tweets are typically
short since the number of characters is restricted
to 140 and people indeed tend to pose short mes-
sages even in social media without such restric-

∗ The two authors made equal contributions.

tions, such as YouTube comments and Reddit. 1

Hence, the contextual information in a sentence is
very limited. Apart from that, the use of colloquial
language makes it more difficult for existing NER
approaches to be reused, which mainly focus on a
general domain and formal text (Baldwin et al.,
2015; Derczynski et al., 2015).

Another challenge of NER in noisy text is the
fact that there are large amounts of emerging
named entities and rare surface forms among the
user-generated text, which tend to be tougher to
detect (Augenstein et al., 2017) and recall thus is a
significant problem (Derczynski et al., 2015). By
way of example, the surface form “kktny”, in the
tweet “so.. kktny in 30 mins?”, actually refers to
a new TV series called “Kourtney and Kim Take
New York”, which even human experts found hard
to recognize. Additionally, it is quite often that ne-
tizens mention entities using rare morphs as sur-
face forms. For example, “black mamba”, the
name for a venomous snake, is actually a morph
that Kobe Bryant created for himself for his ag-
gressiveness in playing basketball games (Zhang
et al., 2015). Such morphs and rare surface forms
are also very difficult to detect and classify.

The goal of this paper is to present our sys-
tem participating in the Novel and Emerging
Named Entity Recognition shared task at the
EMNLP 2017 Workshop on Noisy User-generated
Text (W-NUT 2017), which aims for NER in
such noisy user-generated text. We investigate
a multi-channel BiLSTM-CRF neural network
model in our participating system, which is de-
scribed in Section 3. The details of our implemen-
tation are in presented in Section 4, where we also
present some conclusion from our experiments.

1The average length of the sentences in this shared task is
about 20 tokens per sentence.

160

2 Problem Definition

The NER is a classic sequence labeling problem,
in which we are given a sentence, in the form of
a sequence of tokens w = (w1, w2, ..., wn), and
we are required to output a sequence of token la-
bels y = (y1, y2, ..., yn). In this specific task,
we use the standard BIO2 annotation, and each
named entity chunk are classified into 6 categories,
namely Person, Location (including GPE, facil-
ity), Corporation, Consumer good (tangible goods,
or well-defined services), Creative work (song,
movie, book, and so on) and Group (subsuming
music band, sports team, and non-corporate orga-
nizations).

3 Approach

In this section, we will first introduce the overview
of our proposed model and then present each part
of the model in detail.

3.1 Overview

Figure 1 shows the overall structure of our pro-
posed model, instead of solely using the original
pretrained word embeddings as the final word rep-
resentations, we construct a comprehensive word
representation for each word in the input sen-
tence. This comprehensive word representations
contain the character-level sub-word information,
the original pretrained word embeddings and mul-
tiple syntactical features. Then, we feed them into
a Bidirectional LSTM layer, and thus we have a
hidden state for each word. The hidden states are
considered as the feature vectors of the words by
the final CRF layer, from which we can decode the
final predicted tag sequence for the input sentence.

3.2 Comprehensive Word Representations

In this subsection, we present our proposed com-
prehensive word representations. We first build
character-level word representations from the em-
beddings of every character in each word using a
bidirectional LSTM. Then we further incorporate
the final word representation with the embedding
of the syntactical information of each token, such
as the part-of-speech tag, the dependency role, the
word position in the sentence and the head posi-
tion. Finally, we combine the original word em-
beddings with the above two parts to obtain the
final comprehensive word representations.

Comprehensive
Word

Representations

So .. kktny in 30 mins ?

Bidirectional-LSTM Layer

CRF Layer
BiLSTM-CRF

Sequence
Labeling

O B-CWO O O O OOutput NER
Labels

Figure 1: Overview of our approach.

3.2.1 Character-level Word Representations
In noisy user-generated text analysis, sub-word
(character-level) information is much more impor-
tant than that in normal text analysis for two main
reasons: 1) People are more likely to use novel ab-
breviations and morphs to mention entities, which
are often out of vocabulary and only occur a few
times. Thus, solely using the original word-level
word embedding as features to represent words is
not adequate to capture the characteristics of such
mentions. 2) Another reason why we have to pay
more attention to character-level word representa-
tion for noisy text is that it is can capture the or-
thographic or morphological information of both
formal words and Internet slang.

There are two main network structures to make
use of character embeddings: one is CNN (Ma
and Hovy, 2016) and the other is BiLSTM(Lample
et al., 2016). BiLSTM turns to be better in our ex-
periment on development dataset. Thus, we fol-
low Lample et al. (2016) to build a BiLSTM net-
work to encode the characters in each token as Fig-
ure 2 shows. We finally concatenate the forward
embedding and backward embedding to the final
character-level word representation.

3.2.2 Syntactical Word Representations
We argue that the syntactical information, such as
POS tags and dependency roles, should also be ex-
plicitly considered as contextual features of each
token in the sentence.

TweetNLP and TweeboParser (Owoputi et al.,
2013; Kong et al., 2014) are two popular soft-
ware to generate such syntactical tags for each to-
ken given a tweet. Given the nature of the noisy
tweet text, a new set of POS tags and dependency

161

GoogleG o o g l e

L L L L L L

R R R R RR

Lookup
Table

Syntactic
Tags

Character-level Word Representation Word-level Word
Representation

Syntactical Word
Representation

Comprehensive Word Representation

Figure 2: Illustration of comprehensive word rep-
resentations.

trees are used in the tool, called Tweebank (Gim-
pel et al., 2011). See Table 1 for an example POS
tagging. Since a tweet often contains more than
one utterance, the output of TweeboParser will of-
ten be a multi-rooted graph over the tweet.

Word position embedding are included as well
as it is widely used in other similar tasks, like re-
lation classification (Xu et al., 2016). Also, head
position embeddings are taken into account while
calculating these embedding vectors to further en-
rich the dependency information. It tries to ex-
clude these tokens from the parse tree, resulting a
head index of -1.

After calculating all 4 types of embedding vec-
tors (POS tags, dependency roles, word positions,
head positions) for every tokens, we concatenate
them to form a syntactical word representation.

Token so .. kktny in 30 mins ?
POS R , N P $ N ,
Position 1 2 3 4 5 6 7
Head 0 -1 0 3 6 4 -1

Table 1: Example of POS tagging for tweets.

3.2.3 Combination with Word-level Word
Representations

After obtaining the above two additional word rep-
resentations, we combine them with the original
word-level word representations, which are just
traditional word embeddings.

To sum up, our comprehensive word represen-
tations are the concatenation of three parts: 1)
character-level word representations, 2) syntacti-
cal word representation and 3) original pretrained
word embeddings.

3.3 BiLSTM Layer
LSTM based networks are proven to be effective
in sequence labeling problem for they have access
to both past and the future contexts. Whereas, hid-
den states in unidirectional LSTMs only takes in-
formation from the past, which may be adequate to
classify the sentiment is a shortcoming for label-
ing each token. Bidirectional LSTMs enable the
hidden states to capture both historical and future
context information and then to label a token.

Mathematically, the input of this BiLSTM layer
is a sequence of comprehensive word represen-
tations (vectors) for the tokens of the input sen-
tence, denoted as (x1,x2, ...,xn). The output
of this BiLSTM layer is a sequence of the hid-
den states for each input word vectors, denoted
as (h1,h2, ...,hn). Each final hidden state is the
concatenation of the forward

←−
hi and backward

−→
hi

hidden states. We know that

←−
hi = lstm(xi,

←−−
hi−1) ,

−→
hi = lstm(xi,

−−→
hi+1)

hi =
[←−
hi ;
−→
hi

]
3.4 CRF Layer
It is almost always beneficial to consider the cor-
relations between the current label and neighbor-
ing labels since there are many syntactical con-
strains in natural language sentences. For exam-
ple, I-PERSON will never follow a B-GROUP. If
we simply feed the above mentioned hidden states
independently to a Softmax layer to predict the la-
bels, then such constrains will not be more likely
to be broken. Linear-chain Conditional Random
Field is the most popular way to control the struc-
ture prediction and its basic idea is to use a se-
ries of potential function to approximate the con-
ditional probability of the output label sequence
given the input word sequence.

Formally, we take the above sequence of hid-
den states h = (h1,h2, ...,hn) as our input to the
CRF layer, and its output is our final prediction la-
bel sequence y = (y1, y2, ..., yn), where yi is in
the set of all possible labels. We denote Y(h) as
the set of all possible label sequences. Then we
derive the conditional probability of the output se-
quence given the input hidden state sequence is

p(y|h;W,b) =

∏n
i=1 exp(WT

yi−1,yi
h + byi−1,yi)∑

y′∈Y(h)

∏n
i=1 exp(WT

y′i−1,y′i
h + by′i−1,y′i)

162

, where W and b are the two weight matrices
and the subscription indicates that we extract the
weight vector for the given label pair (yi−1, yi).

To train the CRF layer, we use the classic maxi-
mum conditional likelihood estimation to train our
model. The final log-likelihood with respect to the
weight matrices is

L(W,b) =
∑

(hi,yi)

log p(yi|hi;W,b)

Finally, we adopt the Viterbi algorithm for training
the CRF layer and the decoding the optimal output
sequence y∗.

4 Experiments

In this section, we discuss the implementation de-
tails of our system such as hyper parameter tuning
and the initialization of our model parameters. 2

4.1 Parameter Initialization
For word-level word representation (i.e. the
lookup table), we utilize the pretrained word em-
beddings3 from GloVe(Pennington et al., 2014).
For all out-of-vocabulary words, we assign their
embeddings by randomly sampling from range[
−

√
3

dim , +
√

3
dim

]
, where dim is the dimen-

sion of word embeddings, suggested by He et
al.(2015). The random initialization of character
embeddings are in the same way. We randomly
initialize the weight matrices W and b with uni-

form samples from
[
−

√
6

r+c , +
√

6
r+c

]
, r and c

are the number of the rows and columns, following
Glorot and Bengio(2010). The weight matrices in
LSTM are initialized in the same work while all
LSTM hidden states are initialized to be zero ex-
cept for the bias for the forget gate is initialized to
be 1.0 , following Jozefowicz et al.(2015).

4.2 Hyper Parameter Tuning
We tuned the dimension of word-level embeddings
from {50, 100, 200}, character embeddings from
{10, 25, 50}, character BiLSTM hidden states (i.e.
the character level word representation) from {20,
50, 100}. We finally choose the bold ones. The di-
mension of part-of-speech tags, dependecny roles,
word positions and head positions are all 5.

2The detailed description of the evaluation metric and the
dataset are shown in http://noisy-text.github.
io/2017/emerging-rare-entities.html

3http://nlp.stanford.edu/data/glove.
twitter.27B.zip

As for learning method, we compare the tradi-
tional SGD and Adam (Kingma and Ba, 2014).
We found that Adam performs always better than
SGD, and we tune the learning rate form {1e-2,1e-
3,1e-4}.

4.3 Results

To evaluate the effectiveness of each feature in our
model, we do the feature ablation experiments and
the results are shown in Table 2.

Features F1 (entity) F1 (surface form)
Word 37.16 34.15

Char(LSTM)+Word 38.24 37.21
POS+Char(LSTM)+Word 40.01 37.57

Syntactical+Char(CNN)+Word 40.12 37.52
Syntactical+Char(LSTM)+Word 40.42 37.62

Table 2: Feature Ablation

In comparison with other participants, the re-
sults are shown in Table 3.

Team F1 (entity) F1 (surface form)
Drexel-CCI 26.30 25.26
MIC-CIS 37.06 34.25
FLYTXT 38.35 36.31
Arcada 39.98 37.77
Ours 40.42 37.62

SpinningBytes 40.78 39.33
UH-RiTUAL 41.86 40.24

Table 3: Result comparison

5 Related Work

Conditional random field (CRF) is a most effec-
tive approaches (Lafferty et al., 2001; McCallum
and Li, 2003) for NER and other sequence labeling
tasks and it achieved the state-of-the-art perfor-
mance previously in Twitter NER (Baldwin et al.,
2015). Whereas, it often needs lots of hand-craft
features. More recently, Huang et al. (2015) intro-
duced a similar but more complex model based on
BiLSTM, which also considers hand-crafted fea-
tures. Lample et al. (2016) further introduced us-
ing BiLSTM to incorporate character-level word
representation. Whereas, Ma and Hovy (2016) re-
place the BiLSTM to CNN to build the character-
level word representation. Limsopatham and Col-
lier (2016), used similar model and achieved the
best performance in the last shared task (Strauss
et al., 2016). Based on the previous work, our
system take more syntactical information into ac-
count, such as part-of-speech tags, dependency
roles, token positions and head positions, which
are proven to be effective.

163

6 Conclusion

In this paper, we present a novel multi-channel
BiLSTM-CRF model for emerging named entity
recognition in social media messages. We find that
BiLST-CRF architecture with our proposed com-
prehensive word representations built from multi-
ple information are effective to overcome the noisy
and short nature of social media messages.

References
Isabelle Augenstein, Leon Derczynski, and Kalina

Bontcheva. 2017. Generalisation in named entity
recognition: A quantitative analysis. Computer
Speech & Language 44:61–83.

Timothy Baldwin, Young-Bum Kim, Marie Cather-
ine De Marneffe, Alan Ritter, Bo Han, and Wei
Xu. 2015. Shared tasks of the 2015 workshop on
noisy user-generated text: Twitter lexical normal-
ization and named entity recognition. ACL-IJCNLP
126:2015.

Leon Derczynski, Diana Maynard, Giuseppe Rizzo,
Marieke van Erp, Genevieve Gorrell, Raphaël
Troncy, Johann Petrak, and Kalina Bontcheva. 2015.
Analysis of named entity recognition and linking
for tweets. Information Processing & Management
51(2):32–49.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A Smith. 2011. Part-of-speech tagging
for twitter: Annotation, features, and experiments.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies: short papers-Volume 2. As-
sociation for Computational Linguistics, pages 42–
47.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the Thirteenth In-
ternational Conference on Artificial Intelligence and
Statistics, AISTATS 2010, Chia Laguna Resort, Sar-
dinia, Italy, May 13-15, 2010. pages 249–256.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classifi-
cation. In 2015 IEEE International Conference on
Computer Vision, ICCV 2015, Santiago, Chile, De-
cember 7-13, 2015. pages 1026–1034.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
CoRR abs/1508.01991.

Rafal Józefowicz, Wojciech Zaremba, and Ilya
Sutskever. 2015. An empirical exploration of recur-
rent network architectures. In Proceedings of the

32nd International Conference on Machine Learn-
ing, ICML 2015, Lille, France, 6-11 July 2015.
pages 2342–2350.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Lingpeng Kong, Nathan Schneider, Swabha
Swayamdipta, Archna Bhatia, Chris Dyer, and
Noah A Smith. 2014. A dependency parser for
tweets .

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning (ICML
2001), Williams College, Williamstown, MA, USA,
June 28 - July 1, 2001. pages 282–289.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In NAACL HLT 2016, The 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, San Diego California, USA, June 12-17,
2016. pages 260–270.

Nut Limsopatham and Nigel Collier. 2016. Bidirec-
tional lstm for named entity recognition in twitter
messages.

Xuezhe Ma and Eduard H. Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2016,
August 7-12, 2016, Berlin, Germany, Volume 1:
Long Papers.

Andrew McCallum and Wei Li. 2003. Early results
for named entity recognition with conditional ran-
dom fields, feature induction and web-enhanced
lexicons. In Proceedings of the Seventh Confer-
ence on Natural Language Learning, CoNLL 2003,
Held in cooperation with HLT-NAACL 2003, Ed-
monton, Canada, May 31 - June 1, 2003. pages 188–
191. http://aclweb.org/anthology/W/W03/W03-
0430.pdf.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A
Smith. 2013. Improved part-of-speech tagging for
online conversational text with word clusters. Asso-
ciation for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In EMNLP.

Benjamin Strauss, Bethany E. Toma, Alan Ritter,
Marie-Catherine de Marneffe, and Wei Xu. 2016.
Results of the wnut16 named entity recognition
shared task.

164

Yan Xu, Ran Jia, Lili Mou, Ge Li, Yunchuan Chen,
Yangyang Lu, and Zhi Jin. 2016. Improved re-
lation classification by deep recurrent neural net-
works with data augmentation. arXiv preprint
arXiv:1601.03651 .

Boliang Zhang, Hongzhao Huang, Xiaoman Pan, Su-
jian Li, Chin-Yew Lin, Heng Ji, Kevin Knight,
Zhen Wen, Yizhou Sun, Jiawei Han, and Bülent
Yener. 2015. Context-aware entity morph decoding.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing of the Asian Federation of Natural
Language Processing, ACL 2015, July 26-31, 2015,
Beijing, China, Volume 1: Long Papers. pages 586–
595.

165

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 166–171
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

Transfer Learning and Sentence Level Features for Named Entity
Recognition on Tweets

Pius von Däniken
SpinningBytes AG

Mark Cieliebak
ZHAW

Abstract

We present our system for the WNUT
2017 Named Entity Recognition challenge
on Twitter data. We describe two modi-
fications of a basic neural network archi-
tecture for sequence tagging. First, we
show how we exploit additional labeled
data, where the Named Entity tags differ
from the target task. Then, we propose a
way to incorporate sentence level features.
Our system uses both methods and ranked
second for entity level annotations, achiev-
ing an F1-score of 40.78, and second for
surface form annotations, achieving an F1-
score of 39.33.

1 Introduction

Named Entity Recognition (NER) is an impor-
tant Natural Language Processing task. Its goal
is to tag entities such as names of people and
locations in text. State-of-the-art systems can
achieve F1-scores of up to 92 points on English
news texts (Chiu and Nichols, 2015). Achiev-
ing good performance on more complex domains
such as user generated texts on social media is still
a hard problem. The best system submitted for
the WNUT 2016 shared task achieved an F1-score
of 52.41 on English Twitter data (Strauss et al.,
2016).

In this work, we present our submission for the
WNUT 2017 shared task on “Novel and Emerg-
ing Entity Recognition” (Derczynski et al., 2017).
We extend a basic neural network architecture for
sequence tagging (Chiu and Nichols, 2015; Col-
lobert et al., 2011) by incorporating sentence level
feature vectors and exploiting additional labeled
data for transfer learning. We build on and take
inspiration from recent work from (Falkner et al.,

2017; Sileo et al., 2017) on NER for French Twit-
ter data (Lopez et al., 2017).

Our submitted solution reached an F1-score of
41.76 for entity level annotations and 57.98 on
surface form annotations. This places us second
on entity level annotations, where the best sys-
tem achieved an F1-score of 41.90, and fourth on
surface form annotations, where the best system
achieved an F1-score of 66.59.

2 System Description

Our solution is based on a sequence labeling sys-
tem that uses a bidirectional LSTM (Hochreiter
and Schmidhuber, 1997) which extracts features
for training a Conditional Random Field (Sut-
ton and McCallum, 2012). We apply a trans-
fer learning approach, since previous research has
shown that this can improve sequence labeling
systems (Yang et al., 2017). More precisely, we
modify the base system to allow for joint training
on the WNUT 2016 corpus (Strauss et al., 2016),
which uses a different tag set than our target task.
In addition, we extend the system to incorporate
sentence level feature vectors. All these methods
are combined to build the system that we used for
our submission to the WNUT 2017 shared task.
Figure 1 shows an overview of the different archi-
tectures, which are described in detail in the fol-
lowing sections.

2.1 Basic Sequence Labeling System
Figure 1a shows an overview of our base system.
We use a bidirectional Long Short Term Mem-
ory network (LSTM) (Hochreiter and Schmidhu-
ber, 1997) to learn the potential function for a lin-
ear chain Conditional Random Field (CRF) (Sut-
ton and McCallum, 2012) to predict a sequence of
Named Entity tags y1:T from a sequence of feature
vectors x1:T . This is based on an architecture pre-
viously used in (Chiu and Nichols, 2015), which

166

(a) Basic
System

(b) Transfer Learning Archi-
tecture

(c) Incorporating Sen-
tence Level Features

(d) Architecture Using Transfer Learning and
Sentence Level Features

Figure 1: Overview Of The Different Network Architectures Used

achieved state-of-the-art performance for Named
Entity Recognition on the English CoNLL 2003
data set (Tjong Kim Sang and De Meulder, 2003).

Bidirectional LSTM: For every word in wt in
a given input sentence w1:T , we first compute
a feature vector xt, which is the concatenation
of all the word level features described in Sec-
tion 2.5. The sequence of feature vectors x1:T is
then fed to a bidirectional LSTM. The output of
both the forward and backward LSTM are con-
catenated to get o1:T , which get passed through
a Rectified Linear Unit, (ReLU) (Nair and Hin-
ton, 2010). Every ot ∈ o1:T then gets passed
through a fully connected feed-forward network
with one hidden layer and ReLU activation: st =
W2 relu(W1ot + b1) + b2. Let Ntags be the num-
ber of possible NER-tags, do the dimension of ot
and dh the dimension of the hidden layer. The re-
sulting vector st ∈ RNtags represents a score for
every possible tag y at time step t. The values
W1 ∈ Rdh×do , b1 ∈ Rdh , W2 ∈ RNtags×dh and
b2 ∈ RNtags are weights of the feed-forward net-
work.

Conditional Random Field: A linear chain CRF
models the conditional probability of an output se-
quence y1:T given an input sequence x1:T as:

p (y1:T |x1:T) =
1

Z(x1:T)

T∏
t=1

eφ(yt−1,yt,x1:T ,t,Θ)

(1)

where Z (x1:T) is a normalization constant:

Z (x1:T) =
∑
∀y1:T

T∏
t=1

eφ(yt−1,yt,x1:T ,t,Θ) (2)

φ is a potential function parametrized by a set of
parameters Θ. In our case we use:

φ (yt−1, yt, x1:T , t,Θ = {θ,A}) =
sθ,yt,t (x1:T) +Ayt−1,yt

(3)

Let θ be the parameters of the network described
above. Then sθ,yt,t (x1:T) is the score that the
network parametrized by θ outputs for tag yt at
time step t given the input sequence x1:T . A ∈
RNtags×Ntags is a matrix such thatAi,j is the score
of transitioning from tag i to tag j.
Training: During training we try to maximize
the likelihood of the true tag sequence y1:T given
the input feature vectors x1:T . We use the
Adam (Kingma and Ba, 2014) algorithm to opti-
mize the parameters Θ = {θ,A}. Additionally we
perform gradient clipping (Pascanu et al., 2012)
and apply dropout (Srivastava et al., 2014) to the
LSTM outputs o1:T . The neural network parame-
ters θ are randomly initialized from a normal dis-
tribution with mean zero and variance according
to (Glorot and Bengio, 2010) (normal Glorot ini-
tialization). The transition scores A are initialized
from a uniform distribution with mean zero and
variance according to (Glorot and Bengio, 2010),
(uniform Glorot initialization).

167

2.2 Transfer Learning
In this setting we use the WNUT 2016 cor-
pus (Strauss et al., 2016) as an additional source
of labeled data. The idea is to train the upper
layers of the neural network on both datasets to
improve its generalization ability. It was shown
in (Yang et al., 2017) that this can improve the sys-
tem performance. Figure 1b gives an overview of
our transfer learning architecture.
Modified Architecture: We share all network lay-
ers except for the last linear projection to get sep-
arate tag scores for each data set:

s2016
t = W 2016

2 relu(W1ot + b1) + b2016
2

s2017
t = W 2017

2 relu(W1ot + b1) + b2017
2

(4)

The resulting tag scores get fed to separate CRFs,
which have separate transition matrices A2016 and
A2017.
Training: During training we alternately use a
batch from each dataset and backpropagate the
loss of the corresponding CRF.

2.3 Incorporating Sentence Level Features
Figure 1c shows how we include sentence level
features into our architecture. In this setting
we take an additional feature vector fsent =
F (x1:T) ∈ Rdsent for each input sentence x1:T .
Modified Architecture: We use an additional
feed-forward network to extract tag scores ssent ∈
RNtags from the sentence feature vector fsent:

ssent = W2,sent relu (W1,sentfsent + b1,sent) + b2,sent

The dimensions used are: W1,sent ∈
Rdh,sent×dsent , b1,sent ∈ Rdh,sent , W2,sent ∈
RNtags×dh,sent and b2,sent ∈ RNtags . The value
dh,sent is the dimension of the hidden layer
of the feed-forward network. Let s1:T,word be
the scores that the basic network described in
Section 2.1 outputs for sequence x1:T . To get the
final scores s1:T fed to the CRF we add ssent to
every st,word ∈ s1:T,word: st = ssent + st,word.

2.4 Combined System
The combined system adds the sentence level fea-
tures to the transfer learning architecture. We
share all layers except the linear projections to
tag scores for both sentence features and word
features in a manner analogous to Sections 2.2
and 2.3. The resulting architecture is shown in
Figure 1d.

<PAD>

<PAD>

<PAD>

<PAD>

 A

 n

 t

 o

 n

 i

 n

 a

Input
Sequence

Character
Embeddings

Filter
Maps

Convolution Max
Pooling

Feature
Vector

Figure 2: Neural Network used to extract character
level features

2.5 Features
Word Embeddings: We use the FastText (Bo-
janowski et al., 2016) library to compute word
embeddings. We train the model on a corpus of
200 million tweets and all tweets from the WNUT
2016 and WNUT 2017 corpora. The vocabulary
contains all words occurring at least 10 times.
Other parameters use the default values set by the
library 1. In particular, the size of the context win-
dow is set to 5 and the embedding dimension is
100.

This results in an embedding matrix Eword ∈
RNvocab×100, where Nvocab is the number of
unique tokens in the WNUT 2016 and WNUT
2017 corpora. FastText predicts embedding vec-
tors for words that were out-of-vocabulary during
training by considering character n-grams of the
word. The embedding matrixEword is not updated
during training.
Word Capitalization Features: Following (Chiu
and Nichols, 2015) we add explicit capitaliza-
tion features, since capitalization information is
lost during word embedding lookups. The 6 fea-
ture options are: all capitalized, uppercase ini-
tial, all lower cased, mixed capitalization, emoji
and other. An embedding matrix EwordCap ∈
R6×dwordCap is used to feed these features to the
network and updated during training via back-
propagation. EwordCap is initialized using normal
Glorot initialization.
Character Convolution Features: A convolu-
tional neural network is used to extract additional
character level features. Its architecture is shown
in Figure 2. First, we add special padding tokens

1https://github.com/facebookresearch/
fastText

168

on both sides of the character sequence w, to ex-
tend it to a target length, lw,max. If there is an
odd number of paddings, the additional padding
is added on the right. For sequences longer than
lw,max, only the first lw,max characters are used.
An embedding matrix Echar ∈ RNc×dc maps
characters to Rdc vectors. Nc is the number of
unique characters in the dataset with the addition
of the padding token.

Using Echar, we embed the padded sequence w
and get Cw ∈ Rlw,max×dc . A set of m convolution
filters ∈ Rdc×h is then applied to Cw. This results
in m feature maps Mi ∈ Rlw,max−h+1, which are
passed through a ReLU activation. The final fea-
ture vector F ∈ Rm is attained by max pooling,
such that Fi = maxMi.

The embedding matrix is initialized using uni-
form Glorot initialization. The m convolution fil-
ters are initialized using normal Glorot initializa-
tion.
Character Capitalization Convolution Fea-
tures: Analogous to the word capitalization fea-
tures, we use additional character capitalization
features. The feature options are: upper, lower,
punctuation, numeric and other. We apply a
neural network with the same architecture as de-
scribed above to extract the final character capital-
ization feature vector.
Sentence Embeddings: In (Pagliardini et al.,
2017) the authors introduce sent2vec, a new
method for computing sentence embeddings.
They show that these embeddings provide im-
proved performance for several downstream tasks.

To train the sent2vec model, we use the same
training set as the one used for word embeddings
and we use default values for all the model param-
eters2. In particular, the resulting sentence feature
vectors are in R100.

3 Experiments

We implemented the system described in Sec-
tion 2.4 using the Tensorflow framework 3.

We monitored the systems performance during
training and aborted experiments that had an F1-
score of less than 40 after two epochs (evaluated
on the development set). We let successful exper-
iments run for the full 6 epochs (cf. Section 3.2).
For the submission to WNUT 2017, we ran 6 suc-
cessful experiments and submitted the one which

2https://github.com/epfml/sent2vec
3https://www.tensorflow.org/

Parameter Value
lw,max 30
Ntags WNUT 2016 21
Ntags WNUT 2017 13
dwordCap 6
dc 15
LSTM hidden units 64
dh,word 128
dh,sent 128
m 10
h 3
Dropout rate 0.3
Learning Rate 0.003
Gradient Clip Norm 2
Batch size 100
Number of epochs 6

Table 1: Model Parameters

had the highest entity level F1-score on the devel-
opment set.

3.1 Preprocessing

Tokenization: Since the WNUT 2016 and WNUT
2017 corpora are in the CoNLL format, they are al-
ready tokenized. To tokenize the additional tweets
used for training word and sentence embeddings
(cf. Section 2.5), we use the Twitter tokenizer pro-
vided by the Python NLTK library 4.
Token Substitution: We perform some simple
pattern-based token substitutions. To normalize
Twitter user handles, we substitute every word
starting with an @ character by a special user to-
ken. Similarly, all words starting with the prefix
http are replaced by a url token. Finally, for words
longer than one character, we remove up to one
initial # character.

3.2 Model Parameters

Table 1 shows the parameters used for training the
model.

3.3 Experiments Performed After The
Submission

Following the submission, we conducted addi-
tional experiments to investigate the influence of
the transfer learning approach and sent2vec fea-
tures on the system performance.

4http://www.nltk.org/api/nltk.
tokenize.html#module-nltk.tokenize.
casual

169

Precision (%) Recall (%) F1
Mean Stddev Mean Stddev Mean Stddev

Surface Forms 45.55 0.47 34.94 0.87 39.54 0.55
Entities Overall 47.23 0.55 36.33 0.83 41.06 0.52
Corporation 8.81 0.99 10.86 1.62 9.70 1.14
Creative Work 22.41 2.55 11.03 1.50 14.73 1.73
Group 39.27 7.47 9.49 2.20 15.13 2.86
Location 58.55 2.88 47.11 1.79 52.12 0.66
Person 57.82 1.60 63.60 1.10 60.55 0.84
Product 22.47 2.17 7.87 1.93 11.60 2.38

Table 2: Aggregated performance of all experi-
ments, run before the submission, evaluated on the
test set

Precision (%) Recall (%) F1
Surface Forms 45.47 34.66 39.33
Entities Overall 47.09 35.96 40.78
Corporation 8.24 11.67 9.66
Creative Work 21.92 11.76 15.31
Group 31.71 9.22 14.29
Location 58.95 44.80 50.91
Person 57.67 61.97 59.74
Product 20.00 5.13 8.16

Table 3: Performance of the submitted annotations
evaluated on the test set

For each of the 4 systems described in Section 2,
we ran 6 experiments. We use the same parameters
as shown in Section 3.2.

4 Results

Table 2 shows precision, recall and F1-score of
our system. We compute the mean and standard
deviations over the 6 successful experiments we
considered for submission (cf. Section 3). Ta-
ble 3 shows the breakdown of the performance of
the annotations we submitted for the WNUT 2017
shared task.

Table 4 shows the performance of the different
subsystems proposed in Section 2. We report the
mean and standard deviation over the 6 experi-
ments we performed after submission, for every
system.

All reported scores were computed using the
evaluation script provided by the task organizers.

5 Discussion

From table 4 we can see that using sent2vec
features increases precision and decreases recall
slightly, leading to an overall lower performance
compared to the basic system. The transfer learn-
ing system shows a more substantial decrease in
precision and increase in recall and overall per-

forms best out of the 4 systems. Combination of
the two approaches is counterproductive and out-
performs the basic system only slightly.

During training we observed that restarting ex-
periments as described in Section 3 was only nec-
essary when using sent2vec features.

One weakness of our transfer learning setting is
that the two datasets we used have almost identical
samples and only differ in their annotations. The
WNUT 2016 corpus uses 10 entity classes: com-
pany, facility, Geo location, movie, music artist,
other, person, product, sports team, and TV show.
Further work is needed to study the effect of using
an unrelated data set for transfer learning.

6 Conclusion

We described a deep learning approach for Named
Entity Recognition on Twitter data, which extends
a basic neural network for sequence tagging by us-
ing sentence level features and transfer learning.
Our approach achieved 2nd place at the WNUT
2017 shared task for Named Entity Recognition,
obtaining an F1-score of 40.78.

For future work, we plan to explore the power
of transfer learning for NER in more depth. For
instance, it would be interesting to see how anno-
tated NER data for other languages or other text
types affects the system performance.

References
Piotr Bojanowski, Edouard Grave, Armand Joulin,

and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. ArXiv e-prints
https://arxiv.org/abs/1607.04606.

Jason P. C. Chiu and Eric Nichols. 2015. Named En-
tity Recognition with Bidirectional LSTM-CNNs.
ArXiv e-prints https://arxiv.org/abs/1511.08308.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12:2493–2537.

Leon Derczynski, Eric Nichols, Marieke van Erp,
and Nut Limsopatham. 2017. Results of the
WNUT2017 Shared Task on Novel and Emerging
Entity Recognition. In Proceedings of the 3rd Work-
shop on Noisy, User-generated Text (W-NUT) at
EMNLP. ACL.

Nicole Falkner, Stefano Dolce, Pius von Däniken, and
Mark Cieliebak. 2017. Swiss Chocolate at CAp
2017 NER challenge: Partially annotated data and

170

Entities Surface Forms
Precision (%) Recall (%) F1 Precision (%) Recall (%) F1

Mean Stddev Mean Stddev Mean Stddev Mean Stddev Mean Stddev Mean Stddev
Basic System 58.77 3.72 32.47 1.23 41.74 0.70 56.53 3.80 30.75 1.37 39.73 0.71
Transfer Learning 48.17 1.34 37.55 1.43 42.16 0.52 46.31 1.31 35.86 1.51 40.38 0.62
Sent2Vec Features 59.51 1.73 30.91 0.52 40.67 0.41 57.30 1.98 29.20 0.58 38.66 0.46
Combined System 50.41 3.19 36.04 2.10 41.88 0.69 48.60 3.00 34.50 2.36 40.20 0.99

Table 4: Performance of the different subsystems evaluated on the test set, after the submission

transfer learning. Conférence sur l’Apprentissage
Automatique.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the Thirteenth In-
ternational Conference on Artificial Intelligence and
Statistics. PMLR, Chia Laguna Resort, Italy, vol-
ume 9 of Proceedings of Machine Learning Re-
search, pages 249–256.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput. 9(8):1735–
1780.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
Method for Stochastic Optimization. ArXiv e-prints
https://arxiv.org/abs/1412.6980.

Cdric Lopez, Ioannis Partalas, Georgios Balikas, Nadia
Derbas, Amlie Martin, Coralie Reutenauer, Frdrique
Segond, and Massih-Reza Amini. 2017. French
named entity recognition in twitter challenge. Tech-
nical report.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference
on Machine Learning (ICML-10). Omnipress, pages
807–814.

Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi.
2017. Unsupervised Learning of Sentence Embed-
dings using Compositional n-Gram Features. ArXiv
e-prints https://arxiv.org/abs/1703.02507.

Razvan Pascanu, Tomas Mikolov, and Yoshua
Bengio. 2012. On the difficulty of train-
ing Recurrent Neural Networks. ArXiv e-prints
https://arxiv.org/abs/1211.5063.

Damien Sileo, Camille Pradel, Philippe Muller, and
Tim Van de Cruys. 2017. Synapse at CAp 2017
NER challenge: Fasttext crf. Conférence sur
l’Apprentissage Automatique.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 15(1):1929–
1958.

Benjamin Strauss, Bethany E. Toma, Alan Ritter,
Marie-Catherine de Marneffe, and Wei Xu. 2016.
Results of the WNUT16 named entity recognition

shared task. In The 2nd Workshop on Noisy User-
generated Text. pages 138–144.

Charles Sutton and Andrew McCallum. 2012. An
introduction to conditional random fields. Found.
Trends Mach. Learn. 4(4):267–373.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003 - Vol-
ume 4. Association for Computational Linguistics,
Stroudsburg, PA, USA, CONLL ’03, pages 142–
147.

Zhilin Yang, Ruslan Salakhutdinov, and William W.
Cohen. 2017. Transfer Learning for Sequence Tag-
ging with Hierarchical Recurrent Networks. ArXiv
e-prints https://arxiv.org/abs/1703.06345.

171

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 172–176
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

Context-Sensitive Recognition for Emerging and Rare Entities

Jake Ryland Williams and Giovanni C. Santia
College of Computing and Informatics, Drexel University

30 North 33rd Street, Philadelphia PA, 19104
{jw3477,gs495}@drexel.edu

Abstract

We present a novel named entity recogni-
tion (NER) system, and its participation
in the Emerging and Rare Entity Recog-
nition shared task, hosted at the 2017
EMNLP Workshop on Noisy User Gen-
erated Text (W-NUT). With a specialized
evaluation highlighting performance on
rare, and sparsely-occurring named enti-
ties, this task provided an excellent oppor-
tunity to build out a newly-developed sta-
tistical algorithm and benchmark it against
the state-of-the-art. Powered by flexi-
ble context features of word forms, our
system’s capacity for identifying never-
before-seen entities made it well suited for
the task. Since the system was only de-
veloped to recognize a limited number of
named entity types, its performance was
lower overall. However, performance was
competitive on the categories trained, in-
dicating potential for future development.

1 Introduction

NER is a common foundational step for many
pipelines that rely on natural language processing
(NLP). The main goal is the identification of men-
tions of entities (e.g., persons or locations). As
a pre-processing task for unstructured text, NER
may, for example, provide index keywords for in-
formation retrieval systems (Tjong Kim Sang and
De Meulder, 2003), or topic-rich features for ma-
chine learning (ML) applications (Kumaran and
Allan, 2004; Vavliakis et al., 2013). Effective ap-
proaches to NER have long utilized conditional
random fields (Lafferty et al., 2001), support vec-
tor machines (McCallum and Li, 2003), and per-
ceptrons (Settles, 2004; Ju et al., 2011; Luo et al.,
2015). In addition to relying on face-value, gold-

standard data, systems may benefit from a variety
of other data representations and sources (Strauss
et al., 2016), including gazetteers, word classes
(e.g, Brown clusters), orthographic features, and
grammatical relations between types of words,
such as part of speech. Large-scale annotated
resources for NER have also been developed in
semi-supervised fashions, constructed from online
encyclopedias (Nothman et al., 2008, 2012) and
refined by crowdsourcing (Bos et al., 2017).

While NER systems have been in development
for some time, their applicability to noisy-text do-
mains (i.e., unedited, user-generated content) is
somewhat limited. This is a multi-faceted prob-
lem (Derczynski et al., 2015), involving grammat-
ical inconsistency and rapidly-shifting domains,
requiring specialized algorithms. While progress
has been made through annotation and special-
ized systems development (Ritter et al., 2011),
there are still large gains to be made for this do-
main (Augenstein et al., 2017), which is high-
lighted well by both the shared task at the W-NUT
this year (Strauss et al., 2016), and that of the pre-
vious year.

Adaptation to the task domain’s wide-range of
writing styles and abundant grammatical inconsis-
tencies presents the need for algorithmic flexibil-
ity. These properties make precision loss an is-
sue, and the presence of rare and emerging enti-
ties makes recall an extreme challenge, too. Our
participation in the present shared task relies on
a novel approach: utilizing flexible “contexts” as
features - derived from token forms - alone. We
rely upon these features for their capacity to relate
to never-before-seen tokens as potential entities,
and incorporate them into a statistical model that
can handle both gold-standard data and large, lex-
ical resources.

172

2 Approach

2.1 Shared Task Data

We began our approach by scoping the task data
set composition. There were 6 named entity types:
corporation, creative work, group, location, per-
son, and product, which were a mapping down
from 10 in the 2016 W-NUT Twitter NER Shared
Task. A decomposition of the current shared task
data (see Tab. 1) exhibits several important fea-
tures. The proportion of unique entities out of all
increased from about 80% to 90% from the train-
ing to the development and test sets. However, the
training, development, and test sets all exhibited
internal stability in the proportions of unique num-
bers for each type of named entity. In other words,
no named entity type dropped out of proportion
when considering unique forms. However, the fo-
cus on rare entities resulted in large increases in
the percentage of the data occupied by the person
category. These proportions and the availability of
large-scale gazetteer data highlighted this type for
the initial focus of our model’s development.

2.2 System Design

2.2.1 Previous Work

Context models are conditional statistical models
whose features are derived from the structural pat-
terns surrounding or within written language. We
refer to context models that rely on exterior infor-
mation as external context models, and those that
rely on interior information as internal context
models. For example, word-level context models
applied to the text: “Out to lunch in New York
City.” might place the entity “New York City” in
the external context “Out to lunch in *.”, or the in-
ternal context “New York *” (in each case reserv-
ing * as a wildcard).

Context models trace their roots to Shannon
(1948), but have likewise seen recent attention (Pi-
antadosi et al., 2011). They have been applied
to both patterns of character appearance and word
appearance, with the majority of attention directed
towards word patterns and external models. In re-
cent work by Williams et al. (2015a), an internal
context model was used to identify missing multi-
word dictionary entries. We utilize this model
here, but apply it at the character level so as to be
able to identify both single snd multi-word named
entities.

2.2.2 Context-Sensitive NER
We represent a token, w, by its sequence of n char-
acters:

w = (l1, l2, · · · , ln),

and define its set of 2n−1 contexts, Cw by the cor-
responding removal patterns of contiguous subse-
quences. The context, ci···j ∈ Cw, defined by the
removal of characters i through j is:

ci···j = (l1, · · · , li−1, ∗, · · · , ∗, lj+1, · · · , ln).

Despite execution at the sub-word level, this is
precisely the same construction as in Williams
et al. (2015a), which was used to compute like-
lihoods of dictionary definition.

For a given word, weighting across its con-
texts is accomplished as in Williams et al. (2015a),
induced by a partition process (Williams et al.,
2015b). However instead of dictionary definition,
we use the context conditional probabilities to de-
termine the likelihoods of named entity tags. For
any word, w, and positive tag, t (e.g., B-location,
I-person, B-group, etc.), a computed likelihood,
L(t|Cw), can be interpreted as “the likelihood of
drawing a t-tagged word from the contexts of w”.
Note that these likelihoods can be non-zero for
words that were not present in training, and are
higher for words that are similar to tagged words.
For example, if w1 = Larry, w2 = Harry, and
only w1 appeared in a gold standard, with tag t =
B-person, L(t|Cw2) would be elevated.

2.2.3 Entity Recognition
To handle entities composed of multiple
words, e.g., (w1, w2, · · · , wk), we assess a
potential entity’s membership to a particu-
lar type, e.g., “location”, via the harmonic
mean, L(t1, t2, · · · , tk|w1, w2, · · · , wk), of their
component-word likelihood values, such that only
the first word has the B-version tag (t1) and all
others have the I-version. A candidate is accepted
if its likelihood mean is above a thresholds value,
which is determined in optimization (see Sec. 4).

2.2.4 Conflict Resolution
A given word may fall within multiple predicted
entities, both of different types and lengths. To
resolve potential conflicts between predicted enti-
ties we establish precedence by accepting 1) pre-
dictions appearing first, over 2) longer predictions,
over 3) predictions of higher likelihood.

173

Category Training Development Test
Total (%) Unique (%) Total (%) Unique (%) Total (%) Unique (%)

Corporation 221 (11.19) 140 (8.73) 34 (4.07) 32 (4.29) 69 (6.63) 63 (6.82)
Creative Work 140 (7.09) 127 (7.92) 105 (12.57) 101 (13.54) 141 (13.54) 135 (14.61)

Group 264 (13.37) 231 (14.4) 39 (4.67) 38 (5.09) 151 (14.51) 131 (14.18)
Location 538 (27.75) 434 (27.06) 74 (8.86) 68 (9.12) 138 (13.26) 114 (12.34)
Person 660 (33.42) 546 (34.04) 469 (56.17) 398 (53.35) 441 (39.77) 363 (39.29)

Product 142 (7.19) 126 (7.86) 114 (13.65) 109 (14.61) 128 (12.3) 118 (12.77)
All 1975 1604 835 746 1041 924

Table 1: Description of shared-task data. Each of the Training, Development, and Test data are broken down by types
of named entities (Corporation , Creative Work, Group, Location, Person, and Product), with counts and percents for the
Unique and Total named entity forms present, in addition to total numbers of All named entities present.

3 Materials

3.1 Gold-Standard Data
In addition to the gold-standard data provided for
the shared task (see Sec. 2.1 and Tab. 1) we uti-
lize 1) all components of the W-NUT 2016 Twit-
ter NER shared task (Strauss et al., 2016), 2)
all components of the 2003 CONLL NER shared
task (Tjong Kim Sang and De Meulder, 2003), 3)
the WikiNER annotations (Nothman et al., 2008,
2012), and 4) the Groningen Meaning Bank (Bos
et al., 2017). Each corpus required mapping its en-
tity types to the six 2017 shared task types, and for
data sets (2), (3), and (4), only mappings for the
location and person types were deemed appropri-
ate (geo-loc, facility, and loc to location, and per
to person). However for data set (1), additional
mappings were accepted from tvshow and movie
to creative-work, sportsteam to group, and com-
pany to corporation.

3.2 Supplemental Lexica
To extend model training to as many forms as
possible, supplemental lexica were incorporated
from the gazetteer materials provided alongside
the gold data from the W-NUT 2016 Twitter NER
shared task. Only several gazetteers were incorpo-
rated into the final model: automotive.model and
business.consumer product for the product type;
firstname.5k, lastname.5000, people.family name,
and people.person.filtered for the person type; and
location.country for the location type. Each en-
try in a given gazetteer was treated as a weighted
instance of its named entity type. Weights off-
set the extreme size of gazetteers in comparison
to the gold standard data, and were determined as
follows. For a given entity type, let x be the num-
ber of typed named entities in the gold standard
training data, and y be the number of gazetteer en-
tries. The type’s gazetteer entries were then incor-

porated with weight x/y, and all O-tagged tokens
were counted with weight 2.

4 Optimization

Model development consisted of training on the
gold-standard training data (see Sec. 2.1), in addi-
tion to the external gold standards (see Sec. 3.1),
and the supplemental lexica (see Sec. 3.2). With
the trained model, optimization was performed
with respect to the development data set, which
notably had a disproportionate representation of
person entities. We determined thresholds for each
of the entity types through separate optimizations.
Given the brief timeline, these were conducted
adaptively, optimizing thresholds for by-type F1

values, honing in by step sizes of 0.1, 0.01, and fi-
nally 0.001. Note that the optimization procedure
exhibited no predictive power on entity types cre-
ating work and corporation, leading us to restrain
our model from predicting those types. After fi-
nal threshold parameters were determined, a final
combined model (see Sec. 2.2.4) was allowed to
train additionally on the development data set be-
fore being applied to the final test data set.

5 Results

To understand our model’s performance in the
context of other systems, we provide a fine-
grained system evaluation across the entity types
(see Tab. 2). This follows the specialized shared-
task evaluation method, focusing on precision, re-
call, and F1 with respect to unique named entity
surface forms. On the primary categories in which
our model made predictions (location and person),
our model’s performance was reasonably competi-
tive, with high levels of precision. At location, our
system outperformed two other models by overall
F1, and was in range of the other models with re-
spect to the person type. For all other entity types,

174

Category Arcada Drexel-CCI FLYTXT MIC-CIS SJTU-Adapt SpinningBytes UH Ritual
Precision

Corporation 20.37 0 25.00 12.86 26.67 10.59 38.89
Creative Work 37.21 0 33.33 23.64 60.00 26.03 35.71

Group 35.29 0 26.47 25.00 31.65 31.71 39.34
Location 39.04 58.21 33.33 36.21 34.48 61.05 52.34
Person 54.90 49.58 61.15 46.76 64.83 55.94 68.46

Product 25.00 25.00 16.67 18.03 21.15 16.67 28.21
All 43.93 50.64 43.52 36.82 46.36 45.33 55.18

Recall
Corporation 32.83 0 12.70 14.29 19.05 14.29 22.22

Creative Work 11.85 0 12.59 9.63 2.22 14.07 7.41
Group 18.32 0 13.85 20.61 19.08 9.92 18.32

Location 49.57 33.91 44.35 54.78 52.17 50.43 48.70
Person 50.82 32.42 49.73 45.60 51.65 62.09 48.90

Product 9.32 0.85 6.78 9.32 9.32 4.24 9.32
All 32.83 17.06 30.45 31.21 32.29 35.64 31.64

F1
Corporation 18.80 0 16.84 13.53 22.22 12.16 28.28

Creative Work 17.98 0 18.28 13.68 4.29 18.27 12.27
Group 24.12 0 17.09 26.87 23.81 15.12 25.00

Location 43.68 42.86 38.06 43.60 41.52 55.24 50.45
Person 52.78 39.2 54.85 46.18 57.49 58.85 57.05

Product 13.58 1.64 9.64 12.29 12.94 6.76 14.01
All 37.58 25.53 35.83 33.78 38.06.86 39.90 40.22

Table 2: Shared-task results. All precision, recall, and F1 values are computed with respect to unique entity forms, in
accordance with the task specific evaluation.

our system performed poorly (although no predic-
tions were made for the corporation and creative
work categories). Notably, the only categories
at which other teams performed consistently well
were the person and location categories, with the
main observation being low recall, rarely above
20%.

6 Discussion

For this shared task we developed and evaluated
a novel NER algorithm that relies only on fea-
tures derived from word forms. Despite having the
lowest task evaluation scores, this model exhibited
competitive performance at two of the largest cat-
egories. These two categories (person and loca-
tion) had significant external data availabile (both
gold standards and supplemental lexica), and ex-
hibited the most promise during model optimiza-
tion. The system’s ability to perform competi-
tively at these entity types appears to suggest that
increased performance at the other types may be
possible with the availability of other, category-
specific and large-scale external resources.

We note that our model’s optimization exhibited
an extreme lack of predictive power at the cor-
poration and creative work categories, which, in

addition to being affected by sparsity, may have
also been affected by the lack of acceptable map-
pings from the external gold-standard resources
into these categories. While lexical data were
weighted to good effect (increased performance),
the coverage of gold standard data only over the
person and location entity types may have neg-
atively impacted our system’s ability to predict
other types. Thus, a potential improvement for
prediction of these types might be accomplished
by applying a similar weighting scheme to the ex-
ternal gold-standard data. This leaves us with av-
enues for improvement, along with competitive,
task-specific scores at the person and location cat-
egories; all of this, while relying on features de-
rived only from word forms, points toward value
in the continued development of context-sensitive
NER for rare and emerging entities.

Acknowledgments

The authors thank the shared-task organizers for
their efforts in running this event, the anonymous
reviewers for their thoughtful comments, and
greatfully acknowledge support from the Drexel
University College of Computing and Informatics
and Department of Information Science.

175

References
Isabelle Augenstein, Leon Derczynski, and Kalina

Bontcheva. 2017. Generalisation in named
entity recognition: A quantitative analy-
sis. Computer Speech & Language 44:61–83.
https://doi.org/https://doi.org/10.1016/j.csl.2017.01.012.

Johan Bos, Valerio Basile, Kilian Evang, Noortje J.
Venhuizen, and Johannes Bjerva. 2017. The Gronin-
gen Meaning Bank, Springer Netherlands, Dor-
drecht, pages 463–496. https://doi.org/10.1007/978-
94-024-0881-2 18.

Leon Derczynski, Diana Maynard, Giuseppe
Rizzo, Marieke van Erp, Genevieve Gorrell,
Raphal Troncy, Johann Petrak, and Kalina
Bontcheva. 2015. Analysis of named entity
recognition and linking for tweets. Informa-
tion Processing & Management 51(2):32 – 49.
https://doi.org/http://dx.doi.org/10.1016/j.ipm.2014.10.006.

Zhenfei Ju, Jian Wang, and Fei Zhu. 2011. Named
entity recognition from biomedical text using
svm. In Bioinformatics and Biomedical Engineer-
ing,(iCBBE) 2011 5th International Conference on.
IEEE, pages 1–4.

Giridhar Kumaran and James Allan. 2004. Text clas-
sification and named entities for new event de-
tection. In Proceedings of the 27th Annual In-
ternational ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM,
New York, NY, USA, SIGIR ’04, pages 297–304.
https://doi.org/10.1145/1008992.1009044.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of International Con-
ference on Machine Learning (ICML). pages 282–
289.

Gang Luo, Xiaojiang Huang, Chin-Yew Lin, and Za-
iqing Nie. 2015. Joint named entity recognition and
disambiguation. In Proc. EMNLP. pages 879–880.

Andrew McCallum and Wei Li. 2003. Early results for
named entity recognition with conditional random
fields, feature induction and web-enhanced lexicons.
In Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003 - Vol-
ume 4. Association for Computational Linguistics,
Stroudsburg, PA, USA, CONLL ’03, pages 188–
191. https://doi.org/10.3115/1119176.1119206.

Joel Nothman, James R. Curran, and Tara Murphy.
2008. Transforming wikipedia into named entity
training data. In In Proceedings of the Australasian
Language Technology Association Workshop 2008.
pages 124–132.

Joel Nothman, Nicky Ringland, Will Radford, Tara
Murphy, and James R. Curran. 2012. Learn-
ing multilingual named entity recognition from
Wikipedia. Artificial Intelligence 194:151–175.
https://doi.org/10.1016/j.artint.2012.03.006.

S. T. Piantadosi, H. Tily, and E. Gibson.
2011. Word lengths are optimized for ef-
ficient communication. Proceedings of the
National Academy of Sciences 108(9):3526.
http://colala.bcs.rochester.edu/papers/PNAS-2011-
Piantadosi-1012551108.pdf.

Alan Ritter, Sam Clark, Mausam, and Oren Et-
zioni. 2011. Named entity recognition in
tweets: An experimental study. In Proceed-
ings of the Conference on Empirical Methods
in Natural Language Processing. Association
for Computational Linguistics, Stroudsburg,
PA, USA, EMNLP ’11, pages 1524–1534.
http://dl.acm.org/citation.cfm?id=2145432.2145595.

Burr Settles. 2004. Biomedical named entity
recognition using conditional random fields and
rich feature sets. In Proceedings of the Inter-
national Joint Workshop on Natural Language
Processing in Biomedicine and Its Applications.
Association for Computational Linguistics, Strouds-
burg, PA, USA, JNLPBA ’04, pages 104–107.
http://dl.acm.org/citation.cfm?id=1567594.1567618.

Claude E. Shannon. 1948. A mathematical theory of
communication. Bell system technical journal 27.

Benjamin Strauss, Bethany Toma, Alan Ritter, Marie-
Catherine de Marneffe, and Wei Xu. 2016. Results
of the wnut16 named entity recognition shared task.
In Proceedings of the 2nd Workshop on Noisy User-
generated Text (WNUT). The COLING 2016 Orga-
nizing Committee, Osaka, Japan, pages 138–144.
http://aclweb.org/anthology/W16-3919.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003 - Vol-
ume 4. Association for Computational Linguistics,
Stroudsburg, PA, USA, CONLL ’03, pages 142–
147. https://doi.org/10.3115/1119176.1119195.

Konstantinos N. Vavliakis, Andreas L. Symeonidis,
and Pericles A. Mitkas. 2013. Event identification
in web social media through named entity recogni-
tion and topic modeling. Data Knowl. Eng. 88:1–24.
https://doi.org/10.1016/j.datak.2013.08.006.

Jake Ryland Williams, Eric M. Clark, James P.
Bagrow, Christopher M. Danforth, and Pe-
ter Sheridan Dodds. 2015a. Identifying missing
dictionary entries with frequency-conserving
context models. Phys. Rev. E 92:042808.
https://doi.org/10.1103/PhysRevE.92.042808.

Jake Ryland Williams, Paul R. Lessard, Suma Desu,
Eric M. Clark, James P. Bagrow, Christopher M.
Danforth, and Peter Sheridan Dodds. 2015b. Zipf’s
law holds for phrases, not words. Nature Scientific
Reports 5:12209.

176

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 177–181
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

A Feature-based Ensemble Approach to
Recognition of Emerging and Rare Named Entities

Utpal Kumar Sikdar
R & D Department

Flytxt
Trivandrum, Kerala, India

utpal.sikdar@flytxt.com

Björn Gambäck
Department of Computer Science

Norwegian University of Science and Technology
Trondheim, Norway
gamback@ntnu.no

Abstract

Detecting previously unseen named enti-
ties in text is a challenging task. The paper
describes how three initial classifier mod-
els were built using Conditional Random
Fields (CRFs), Support Vector Machines
(SVMs) and a Long Short-Term Memory
(LSTM) recurrent neural network. The
outputs of these three classifiers were then
used as features to train another CRF clas-
sifier working as an ensemble.

5-fold cross-validation based on training
and development data for the emerging
and rare named entity recognition shared
task showed precision, recall and F1-
score of 66.87%, 46.75% and 54.97%, re-
spectively. For surface form evaluation,
the CRF ensemble-based system achieved
precision, recall and F1 scores of 65.18%,
45.20% and 53.30%. When applied to un-
seen test data, the model reached 47.92%
precision, 31.97% recall and 38.55% F1-
score for entity level evaluation, with
the corresponding surface form evaluation
values of 44.91%, 30.47% and 36.31%.

1 Introduction

The recognition of named entities is inherently
complicated by the fact that new names emerge
constantly and productively. This is particularly
true for social media text and for other texts that
are written in a more informal manner, where the
issue is further complicated by a higher degree of
misspellings as well as different types of uncon-
ventional spellings; on social media such as Twit-
ter, abbreviated forms of words are common, as
are merging of multiple words, special symbols
and characters inserted into the words, etc.

Several approaches to Twitter named entity ex-
traction have been explored, but it is still a chal-
lenging task due to noisiness of the texts. Liu
et al. (2011) proposed a semi-supervised learn-
ing framework to identify Twitter names, using
a k-Nearest Neighbors (kNN) approach to label
names and taking these labels as an input feature
to a Conditional Random Fields (CRF) classifier,
achieving almost 80% accuracy on their own an-
notated data. Ritter et al. (2011) proposed a su-
pervised model based on Labeled LDA (Ramage
et al., 2009), and also showed part-of-speech and
chunk information to be important components in
Twitter named identification. Li et al. (2012) in-
troduced an unsupervised Twitter named entity ex-
traction strategy based on dynamic programming.

The present work addresses emerging and rare
entity recognition. The first Twitter named entity
shared task was organized at the ACL 2015 work-
shop on noisy user-generated text (Baldwin et al.,
2015), with two subtasks: Twitter named entity
identification and classification of those named
entities into ten different types. Of the eight
systems participating in the first workshop, the
best (Yamada et al., 2015) achieved an F1 score
of 70.63% for Twitter name identification and
56.41% for classification, by combining super-
vised machine learning with high quality knowl-
edge obtained from several open knowledge bases
such as Wikipedia. Another team, (Akhtar et al.,
2015) used a strategy based on differential evolu-
tion, getting F1 scores of 56.81% for the identifi-
cation task and 39.84% for classification.

A second shared task on Twitter Named En-
tity recognition was organized at COLING in
2016 (Strauss et al., 2016). The best placed
system (Limsopatham and Collier, 2016) used a
bi-directional LSTM (Long Short-Term Memory)
neural network model, and achieved 52.41% and
65.89% F1-scores on entity level and segmentation

177

Figure 1: Overall system architecture

level evaluation, respectively. A system based on
Conditional Random Fields (CRFs) and a range of
features (Sikdar and Gambäck, 2016) achieved the
best recall at segmentation level evaluation, and
the second best F1-score (63.22%).

A related shared task on Twitter named en-
tity recognition and linking (NEEL) to the DB-
pedia database was held in conjunction with the
2016 WWW conference (Cano et al., 2016). Five
teams particpated, with the best system (Waitelo-
nis and Sack, 2016) achieving recall, precision and
F-scores of 49.4%, 45.3% and 47.3%. In that sys-
tem, each token was mapped to gazetteers devel-
oped from DBpedia. Tokens that were not nouns
or did not match stop words were discarded.

The present paper outlines an ensemble-based
machine learning approach to the identification
and classification of rare and emerging named en-
tities. Here the classification categories are Per-
son, Location, Corporation, Product, Creative-
work and Group. A Conditional Random Fields
(Lafferty et al., 2001) classifier was trained us-
ing the outputs from three other classifiers as fea-
tures, with those classifiers in turn being built us-
ing three different learning strategies: CRFs, Sup-
port Vector Machines (SVMs), and a deep learn-
ing based Long Short-Term Memory (LSTM) re-
current neural network. The rest of the paper is
organized as follows: The named entity identifica-
tion methodology and the different features used
are introduced in Section 2. Results are presented
and discussed in Section 3, while Section 4 ad-
dresses future work and concludes.

2 Name Recognition Methodology

The named entity recognition method is divided
into two steps. In the first step, three classifiers are
built to recognize named entities using different
features from the unstructured text. In the second
step, the outputs from the three classifiers are con-
sidered as three features and used to train a CRF
classifier working as an ensemble learner, to pro-
duce the final named entity recognition. The sys-
tem architecture is shown in Figure 1.

2.1 CRF-based Named Entity Recognition

The Conditional Random Fields Named Entity
Recognition model was implemented using the
C++ based CRF++ package1, which allows for fast
training by utilizing L-BFGS (Liu and Nocedal,
1989), a limited memory quasi-Newton algorithm
for large scale numerical optimization. The CRF
classifier was trained with L2 regularization and a
range of features:
• local context (-3 to +2)2,
• part-of-speech information,
• chunk information,
• suffix and prefix characters (-4, +4), and
• word frequency,

together with a number of Boolean flags,
namely, is-word-length < 5, is-followed-by-
special-character (’@’ or ’#’), is-stop-word,
is-all-upper-case, is-all-digit, is-alpha-and-digit-
together, and is-last-word.

1https://taku910.github.io/crfpp/
2Here ’-’ and ’+’ indicate the number of preceding and fol-
lowing words in the context window, respectively.

178

2.2 SVM-based Named Entity Recognition
Since Support Vector Machines previously have
been successfully utilized to recognize named en-
tities in formal text, e.g. by Isozaki and Kazawa
(2002), a classifier was built using the C++ based
SVM package Yamcha3 with polynomial kernel
and default settings. The same features as for the
CRF model were used to train the SVMs.

2.3 LSTM-based Named Entity Recognition
The proposed deep learning based name entity
recognition model consists of two Long Short-
Term Memory recurrent neural network (Hochre-
iter and Schmidhuber, 1997), a model which was
also successfully used by Lample et al. (2016) to
achieve state-of-the-art named entity recognition
results in formal texts. The first LSTM identifies
the boundaries of a named entity (called mention)
and this mention is then used as one of the features
for named entity recognition in the second LSTM.

For identifying mentions, two binary fea-
tures, is-start-with-capital-letter and is-all-upper-
case, were extracted together with the following:
• word shape-1, a length 6 one-hot vector con-

taining the following six binary flags: upper
case, lower case, digit, ’@’ symbol, ’#’ sym-
bol, and other characters,
• word shape-2, a length 39 one-hot vector con-

sisting of the 26 letters of the English alpha-
bet converted to lower case, together with the
ten digits, the two symbols ’@’ and ’#’, and
one spot for other characters, and
• a word2vec pre-trained vector of length 150,

Tweets were collected from the W-NUT 2016
shared task,4 the 2016 NEEL challenge,5 and
the W-NUT 2017 workshop datasets to build the
word2vec model (Mikolov et al., 2013a,b). The
skip-gram approach was used with negative sam-
pling and a context window of 5. All features were
then concatenated into one vector and fed to the
first LSTM network for mention recognition.

After a mention had been identified, it was used
as one of the features for recognition of named
entities in the second LSTM model, which as
features together with word-shape-1 and word-
shape-2 (as above) utilized three Boolean flags
(is-mention, is-start-with-capital-letter, and is-all-
upper-case), and GloVe (Pennington et al., 2014),
3http://chasen.org/˜taku/software/yamcha/
4http://noisy-text.github.io/2016/
5http://microposts2016.seas.upenn.edu/
challenge.html

Data set tweets named entities

Training 3,394 1,975
Development 1,009 833
Test 1,287 1,041

Table 1: Twitter dataset statistics

a pre-trained Twitter word vector (here a GloVe
vector of dimension 100 was selected).

These features were concatenated to train an
LSTM model for 50 epochs with a batch size of
256. The network was set up as consisting of two
hidden layers with 256 hidden units.

2.4 A Named Entity Recognition Ensemble

In the second step, the outputs of the above three
classifiers were considered as input features to a
CRF classifier, which was trained using these three
features together with the previous and next two
context words. Note that this final CRF classifier
being used a selector in the ensemble thus does not
cover all features of the CRF classifier described
above (Section 2.1), but only utilizes the context
and the three classifiers’ outputs as features.

An ensemble based on using majority voting
was also tested, which selected the output of one
of the classifiers at random, in case they all pro-
duced different outputs. The results of the voting-
based ensemble improved on the CRF and SVM
models, but turned out worse than the LSTM
model. However, the ensemble using a Condi-
tional Random Field model to select among the
classifier outputs improved results over the board.

3 Experiments

The experiments were based on the datasets pro-
vided by the organizers of the W-NUT 2017
shared task on emerging and rare named entity
recognition (Derczynski et al., 2017). The statis-
tics of the datasets are shown in Table 1.

3.1 Results

For the experiments, the development data was
merged with the training data, and a 5-fold cross-
validation was executed. The CRF-based classi-
fier model produced the precision, recall and F1

values of 51.79%, 45.51% and 48.31%, respec-
tively. The LSTM model performed better when
compared to the CRF-based model with respect to
recall and F1-score, achieving precision, recall and

179

Entity Surface form
System Precision Recall F1-score Precision Recall F1-score

CRF 51.79 45.51 48.31 47.25 42.02 44.48
SVM 48.99 44.87 46.65 44.56 41.64 43.05
LSTM 51.58 51.33 51.37 47.21 47.94 47.57

Ensemble 66.87 46.75 54.97 65.18 45.20 53.30

Table 2: 5-fold cross-validated results on combined development and training data

Entity Surface form
System Precision Recall F1-score Precision Recall F1-score

CRF 40.75 28.17 33.32 38.53 27.43 32.05
SVM 34.46 29.38 31.72 32.58 28.69 30.51
LSTM 39.83 30.86 34.78 37.52 29.11 32.78

Ensemble 47.92 31.97 38.55 44.91 30.47 36.31

Table 3: Performance on the unseen test data (5-fold cross-validated)

F1 values of 51.58%, 51.33% and 51.37%. How-
ever, as shown in Table 2, the CRF-ensemble ap-
proach outperformed all the other models with re-
spect to F1-score. For surface evaluation, a similar
behaviour could be observed, with the ensemble
model achieving the highest F1-score at 53.30%.

The different classifiers were also applied to the
unseen test data and produced similar results af-
ter 5-fold cross-validation, with the ensemble ap-
proach achieving the best F1-score compared to all
other models, as can be seen in Table 3. The CRF
ensemble’s named entity precision, recall and F1-
score on the test data were 47.92%, 31.97% and
38.55%, respectively. For surface form evaluation,
the ensemble system achieved 44.91% precision,
30.47% recall and 36.31% F1-score.

Table 4 compares our results (FLYTXT) to the
other systems participating in the shared task, with
the FLYTXT ensemble-based system placing in
5th position in the final ranking on both named en-
tity and surface form evaluation.

3.2 Error Analysis

The system suffers from poor recall, with the
model only finding 720 of 1079 named entities
in the test data. The system also classified many
identified named entities wrongly, and in total cor-
rectly identified 345 named entities. This may be
due to almost all named entities present in the test
data being unknown and fairly dissimilar to the
ones appearing in the training data.

4 Conclusion

This paper has proposed an ensemble-based sys-
tem for Twitter named entity identification and
classification. A range of different features was
developed to extract Twitter names from the
tweets. Three initial classifiers were built, one for
CRF-based named entity extraction, one utilizing
SVMs, and one based on a deep learner (LSTM).
The ensemble utilized a CRF classifier taking the
output of the other three models as input.

In the future, we will analyse the errors in more
detail and aim to use external resources (e.g., DB-
pedia and Wikipedia) to reduce the misclassifica-
tion of the tokens, as well as to identify more en-
tities from the tweets. We will also try to generate
more models and later ensemble these model to
improve the system performance.

Team Entity Surface form

UH-RiTUAL 41.86 40.24
SpinningBytes 40.78 39.33
SJTU-Adapt 40.42 37.62
Arcada 39.98 37.77
FLYTXT 38.35 36.31
MIC-CIS 37.06 34.25
Drexel-CCI 26.30 25.26

Table 4: Comparison of system results (F1 scores)

180

References
Md Shad Akhtar, Utpal Kumar Sikdar, and Asif Ek-

bal. 2015. IITP: Multiobjective differential evolu-
tion based Twitter named entity recognition. In (Xu
et al., 2015), pages 106–110.

Timothy Baldwin, Marie Catherine de Marneffe,
Bo Han, Young-Bum Kim, Alan Ritter, and Wei Xu.
2015. Shared tasks of the 2015 workshop on noisy
user-generated text: Twitter lexical normalization
and named entity recognition. In (Xu et al., 2015),
pages 126–135.

Amparo E. Cano, Daniel Preoţiuc-Pietro, Danica
Radovanović, Katrin Weller, and Aba-Sah Dadzie.
2016. #Microposts2016 — 6th workshop on ‘mak-
ing sense of microposts’. In Proceedings of the 25th
World Wide Web Conference (WWW’16). ACM,
Montréal, Canada, pages 1041–1042.

Leon Derczynski, Eric Nichols, Marieke van Erp,
and Nut Limsopatham. 2017. Results of the
WNUT2017 shared task on novel and emerging en-
tity recognition. In Proceedings of the 3rd Workshop
on Noisy, User-generated Text. ACL, EMNLP 2017,
Copenhagen, Denmark.

Bo Han, Alan Ritter, Leon Derczynski, Wei Xu, and
Timothy Baldwin, editors. 2016. Proceedings of the
2nd Workshop on Noisy User-generated Text. ACL,
26th COLING, Osaka, Japan.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation
9(8):1735–1780.

Hideki Isozaki and Hideto Kazawa. 2002. Efficient
support vector classifiers for named entity recogni-
tion. In Proceedings of the 19th International Con-
ference on Computational linguistics. ACL, Taipei,
Taiwan, volume 1. Paper 54.

John Lafferty, Andrew McCallum, and Fernando C.N.
Pereira. 2001. Conditional Random Fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of the 18th Inter-
national Conference on Machine Learning. IMIS,
Williamstown, MA, USA, pages 282–289.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 15th Annual Conference of
the North American Chapter of the Association for
Computational Linguistics. ACL, San Diego, CA,
USA, pages 260–270.

Chenliang Li, Jianshu Weng, Qi He, Yuxia Yao, An-
witaman Datta, Aixin Sun, and Bu-Sung Lee. 2012.
TwiNER: Named entity recognition in targeted Twit-
ter stream. In Proceedings of the 35th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval. ACM, Portland, OR,
USA, pages 721–730.

Nut Limsopatham and Nigel Collier. 2016. Bidirec-
tional LSTM for named entity recognition in Twitter
messages. In (Han et al., 2016), pages 145–152.

Dong C. Liu and Jorge Nocedal. 1989. On the limited
memory BFGS method for large scale optimization.
Mathematical Programming 45(1):503–528.

Xiaohua Liu, Shaodian Zhang, Furu Wei, and Ming
Zhou. 2011. Recognizing named entities in tweets.
In Proceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics. ACL, Port-
land, OR, USA, pages 359–367.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. CoRR abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013b. Distributed repre-
sentations of words and phrases and their composi-
tionality. In Advances in Neural Information Pro-
cessing Systems 26 (NIPS 2013). Curran Associates,
Red Hook, NY, USA, pages 3111–3119.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In The 2014 Conference on
Empirical Methods in Natural Language Process-
ing. ACL, Doha, Qatar, pages 1532–1543.

Daniel Ramage, David Hall, Ramesh Nallapati, and
Christopher D. Manning. 2009. Labeled LDA: A su-
pervised topic model for credit attribution in multi-
labeled corpora. In Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language
Processing. ACL, Singapore, pages 248–256.

Alan Ritter, Sam Clark, Mausam, and Oren Etzioni.
2011. Named entity recognition in tweets: An ex-
perimental study. In Proceedings of the 2011 Con-
ference on Empirical Methods in Natural Language
Processing. ACL, Edinburgh, Scotland, UK, pages
1524–1534.

Utpal Kumar Sikdar and Björn Gambäck. 2016.
Feature-rich Twitter named entity recognition and
classification. In (Han et al., 2016), pages 164–170.

Benjamin Strauss, Bethany E. Toma, Alan Ritter,
Marie Catherine de Marneffe, and Wei Xu. 2016.
Results of the WNUT16 named entity recognition
shared task. In (Han et al., 2016), pages 138–144.

Jörg Waitelonis and Harald Sack. 2016. Named entity
linking in #tweets with KEA. In Proceedings of 6th
Workshop on Making Sense of Microposts. CEUR,
Montréal, Canada, pages 61–63.

Wei Xu, Bo Han, and Alan Ritter, editors. 2015. Pro-
ceedings of the ACL 2015 Workshop on Noisy User-
generated Text. Beijing, China.

Ikuya Yamada, Hideaki Takeda, and Yoshiyasu Take-
fuji. 2015. Enhancing named entity recognition in
Twitter messages using entity linking. In (Xu et al.,
2015), pages 136–140.

181

Author Index

Aguilar, Gustavo, 148
Allan, James, 122
Andy, Anietie, 40

Ballesteros, Miguel, 11
Barbieri, Francesco, 11
Bhargava, Preeti, 131
Blodgett, Su Lin, 56
Boecking, Benedikt, 77
Bowen, Fraser, 68
Buttery, Paula, 107

Caines, Andrew, 107
Cakici, Ruket, 85
Callison-Burch, Chris, 40
Choi, Jinho D., 122
Chrupała, Grzegorz, 50
Cieliebak, Mark, 166

Daelemans, Walter, 50
Dehdari, Jon, 68
Derczynski, Leon, 140
Dredze, Mark, 40
Dubrawski, Artur, 77

Emmery, Chris, 50
Espinosa Anke, Luis, 11

Flint, Emma, 107
Ford, Elliot, 107

Gambäck, Björn, 177
Gardner, Matt, 94
Gridach, Mourad, 21

Haddad, Hatem, 21
Hovy, Dirk, 116
Hovy, Eduard, 116
Hu, Guoning, 131

Jang, Myungha, 122
Jansson, Patrick, 154

Limsopatham, Nut, 140
Lin, Bill Y., 160
Liu, Nelson F., 94

Liu, Shuhua, 154
López Monroy, Adrian Pastor, 148
Luo, Zhiyi, 160

Maharjan, Suraj, 148
Miller, Kyle, 77
Mulki, Hala, 21

Nagpal, Chirag, 77
Nichols, Eric, 140
Nissim, Malvina, 31

O’Connor, Brendan, 56

Paul, Michael J., 45
Plank, Barbara, 31

Rwebangira, Mugizi, 40

Saggion, Horacio, 11
Salehi, Bahar, 62, 116
Santia, Giovanni, 172
Søgaard, Anders, 62, 116
Sikdar, Utpal Kumar, 177
Soler, Juan, 11
Solorio, Thamar, 148
Spasojevic, Nemanja, 131

Thomas, Olivia, 107
Tursun, Osman, 85

van der Goot, Rob, 31
van Erp, Marieke, 140
Van Genabith, Josef, 68
von Däniken, Pius, 166

Wei, Johnny, 56
Welbl, Johannes, 94
Williams, Jake, 1, 172

Xing, Linzi, 45
Xu, Frank, 160

Zhu, Kenny, 160

183

	Program
	Boundary-based MWE segmentation with text partitioning
	Towards the Understanding of Gaming Audiences by Modeling Twitch Emotes
	Churn Identification in Microblogs using Convolutional Neural Networks with Structured Logical Knowledge
	To normalize, or not to normalize: The impact of normalization on Part-of-Speech tagging
	Constructing an Alias List for Named Entities during an Event
	Incorporating Metadata into Content-Based User Embeddings
	Simple Queries as Distant Labels for Predicting Gender on Twitter
	A Dataset and Classifier for Recognizing Social Media English
	Evaluating hypotheses in geolocation on a very large sample of Twitter
	The Effect of Error Rate in Artificially Generated Data for Automatic Preposition and Determiner Correction
	An Entity Resolution Approach to Isolate Instances of Human Trafficking Online
	Noisy Uyghur Text Normalization
	Crowdsourcing Multiple Choice Science Questions
	A Text Normalisation System for Non-Standard English Words
	Huntsville, hospitals, and hockey teams: Names can reveal your location
	Improving Document Clustering by Removing Unnatural Language
	Lithium NLP: A System for Rich Information Extraction from Noisy User Generated Text on Social Media
	Results of the WNUT2017 Shared Task on Novel and Emerging Entity Recognition
	A Multi-task Approach for Named Entity Recognition in Social Media Data
	Distributed Representation, LDA Topic Modelling and Deep Learning for Emerging Named Entity Recognition from Social Media
	Multi-channel BiLSTM-CRF Model for Emerging Named Entity Recognition in Social Media
	Transfer Learning and Sentence Level Features for Named Entity Recognition on Tweets
	Context-Sensitive Recognition for Emerging and Rare Entities
	A Feature-based Ensemble Approach to Recognition of Emerging and Rare Named Entities

