
Proceedings of the First Workshop on Subword and Character Level Models in NLP, pages 130–135,
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics.

Reconstruction of Word Embeddings from Sub-Word Parameters

Karl Stratos
Toyota Technological Institute at Chicago

stratos@ttic.edu

Abstract

Pre-trained word embeddings improve the
performance of a neural model at the cost
of increasing the model size. We propose
to benefit from this resource without pay-
ing the cost by operating strictly at the sub-
lexical level. Our approach is quite simple:
before task-specific training, we first opti-
mize sub-word parameters to reconstruct
pre-trained word embeddings using vari-
ous distance measures. We report interest-
ing results on a variety of tasks: word sim-
ilarity, word analogy, and part-of-speech
tagging.

1 Introduction

Word embeddings trained from a large quantity
of unlabled text are often important for a neu-
ral model to reach state-of-the-art performance.
They are shown to improve the accuracy of part-
of-speech (POS) tagging from 97.13 to 97.55 (Ma
and Hovy, 2016), the F1 score of named-entity
recognition (NER) from 83.63 to 90.94 (Lample
et al., 2016), and the UAS of dependency pars-
ing from 93.1 to 93.9 (Kiperwasser and Goldberg,
2016). On the other hand, the benefit comes at the
cost of a bigger model which now stores these em-
beddings as additional parameters.

In this study, we propose to benefit from this
resource without paying the cost by operating
strictly at the sub-lexical level. Specifically, we
optimize the character-level parameters of the
model to reconstruct the word embeddings prior
to task-specific training. We frame the problem as
distance minimization and consider various met-
rics suitable for different applications, for example
Manhattan distance and negative cosine similarity.

While our approach is simple, the underlying
learning problem is a challenging one; the sub-
word parameters must reproduce the topology of
word embeddings which are not always morpho-
logically coherent (e.g., the meaning of fox does
not follow any common morphological pattern).
Nonetheless, we observe that the model can still
learn useful patterns. We evaluate our approach on
a variety of tasks: word similarity, word analogy,
and POS tagging. We report certain, albeit small,
improvement on these tasks, which indicates that
the word topology transformation based on pre-
training can be beneficial.

2 Related Work

Faruqui et al. (2015) “retrofit” embeddings against
semantic lexicons such as PPDB or WordNet. Cot-
terell et al. (2016) leverage existing morphologi-
cal lexicons to incorporate sub-word components.
The aim and scope of our work are clearly differ-
ent: we are interested in training a strictly sub-
lexical model that only operates over characters
(which has the benefit of smaller model size) and
yet somehow exploit pre-trained word embeddings
in the process.

Our work is also related to knowledge distil-
lation which refers to training a smaller “stu-
dent” network to perform better by learning from
a larger “teacher” network. We adopt this termi-
nology and refer to pre-trained word embeddings
as the teacher and sub-lexical embeddings as the
student. This problem has mostly been consid-
ered for classification and framed as matching the
probabilities of the student to the probabilities of
the teacher (Ba and Caruana, 2014; Li et al., 2014;
Kim and Rush, 2016). In contrast, we work di-
rectly with representations in Euclidean space.
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3 Reconstruction Method

LetW denote the set of word types. For each word
w ∈ W , we assume a pre-trained word embedding
xw ∈ Rd and a representation hw ∈ Rd computed
by sub-word model parameters Θ; we defer how to
define hw until later. The reconstruction error with
respect to a distance function D : Rd × Rd → R
is given by

LD (Θ) =
∑
w∈W

D (xw, hw) (1)

where xw is constant and hw is a function of Θ.
Since we use gradient descent to optimize (1), we
can define D(u, v) to be any continuous function
measuring the discrepency between u and v, for
example,

D1(u, v) :=
d∑

i=1

|ui − vi| (Manhattan)

D√2(u, v) :=

√√√√ d∑
i=1

|ui − vi|2 (Euclidean)

D2(u, v) :=
d∑

i=1

|ui − vi|2 (squared error)

D∞(u, v) :=
d

max
i=1
|ui − vi| (l∞ distance)

Dcos (u, v) :=
−u>v
||u||2 ||v||2

(negative cosine)

Unlike other common losses used in the neural
network literature such as negative log likelihood
or the hinge loss, LD has a direct geometric inter-
pretation illustrated in Figure 1. We first optimize
(1) over sub-word model parameters Θ for a set
number of epochs, and then proceed to optimize
a task-specific loss L(Θ,Θ′) where Θ′ denotes all
other model parameters.

3.1 Analysis of a Linear Model

In general, hw can be a complicated function of
Θ. But we can gain some insight by analyzing the
simple case of a linear model, which corresponds
to the top layer of a neural network. More specifi-
cally, we assume the form

hw
i = θ>i z

w ∀i = 1 . . . d

where zw ∈ Rd′
is fixed and Θ = {θ1 . . . θd} ⊂

Rd′
is the only parameter to be optimized.

xw

hw

θ

Figure 1: Geometric losses corresponding to
different distance metrics: Manhattan distance
(blue), Euclidean distance (green), squared error
(yellow), l∞ distance (red), and negative cosine
similarity (− cos θ).

Manhattan distance The error LD1(Θ) is now

LD1(Θ) =
∑
w∈W

d∑
i=1

∣∣∣xw
i − θ>i zw

∣∣∣ =
d∑

i=1

LADi(θi)

where LADi(θ) :=
∑

w∈W
∣∣xw

i − θ>i zw
∣∣ is least

absolute deviations (LAD). It is well-known that
the LAD criterion is robust to outliers. To see this,
if zw = (1/d′)1 for all w ∈ W , then a minimizer
of LADi(θ) is given analytically by

θ∗i = median {xw
i : w ∈ W}

where the median resists extreme values (e.g., the
median of both {1, 2, 3} and {1, 2, 999} is 2).
Thus using Manhattan distance can be useful when
teacher word embeddings are noisy or there are oc-
casional exceptions in morphological patterns that
are best ignored.

Squared error The error LD2(Θ) is now

LD2(Θ) =
∑
w∈W

d∑
i=1

∣∣∣xw
i − θ>i zw

∣∣∣2 =
d∑

i=1

OLSi(θi)

where OLSi(θ) :=
∑

w∈W
∣∣xw

i − θ>zw
∣∣2 is ordi-

nary least squares (OLS). Thus if the matrix Z ∈
R|W|×d′

with zw as rows has rank d′, the unique
solution is given by θ∗i =

(
Z>Z

)−1
Z>xw

i . Let
h̄w

i = (θ∗i )>zw denote the optimal sub-word em-
bedding value. It is well-known that the change in
h̄w

i caused by removing xw
i from the dataset is pro-

portional to the residual xw
i − h̄w

i (Davidson et al.,
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1993). In other words, squared error is sensitive to
outliers and may not be as suitable as Manhattan
distance for fitting noisy or incoherent word em-
beddings.

Other distance metrics Euclidean distance is
geometrically intuitive but less mathematically
convenient than squared error, thus we choose not
to focus on it. l∞ distance penalizes the dimension
with maximum absolute difference and can be use-
ful if calculating one coordinate at a time is conve-
nient. Finally, negative cosine similarity penalizes
the angle between embeddings. This is suitable
when we only care about directions and not mag-
nitude, for instance in word similarity where we
measure cosine similarities between word embed-
dings.

There are distance metrics not discussed here
that may be appropriate in certain situations. For
instance, the KL divergence is a natural (assymet-
ric) measure if word embeddings are distributions
(e.g., over context words). More generally, we can
consider the wide class of metrics in the Bregman
divergence (Banerjee et al., 2005).

4 Sub-Word Architecture

We now describe how we define word embedding
hw ∈ Rd from sub-word parameters. We use
a character-based embedding scheme closely fol-
lowing Lample et al. (2016). We use an LSTM
simply as a mapping φ : Rd×Rd′ → Rd′

that takes
an input vector x and a state vector h to output a
new state vector h′ = φ(x, h). See Hochreiter and
Schmidhuber (1997) for a detailed description.

4.1 Character Model
Let C denote the set of character types. The model
parameters Θ associated with this layer are

• ec ∈ Rdc for each c ∈ C
• Character LSTMs φCf , φ

C
b : Rdc×Rdc → Rdc

• W f ,W b ∈ Rd×dc , bC ∈ Rd

Let w(j) ∈ C denote the character of w ∈ W at
position j. The model computes hw ∈ Rd as

fCj = φCf
(
ew(j), fCj−1

)
∀j = 1 . . . |w|

bCj = φCb
(
ew(j), bCj+1

)
∀j = |w| . . . 1

zw = W ffC|w| +W bbC1 + bC

hw
i = max {0, zw

i } ∀i = 1 . . . d (2)

We also experiment with a highway network
(Srivastava et al., 2015) which has been shown
to be beneficial for image recognition (He et al.,
2015) and language modeling (Kim et al., 2016).
In this case, Θ includes additional parameters
W highway ∈ Rd×d and bhighway ∈ Rd. A new
character-level embedding h̃w is computed as

t = σ (W highwayhw + bhighway)

h̃w = t� hw + (1− t)� zw (3)

where σ(·) ∈ [0, 1] denotes an element-wise sig-
moid function and � the element-wise multiplica-
tion. This allows the network to skip nonlinearity
by making ti close to 0. We find that the additional
highway network is beneficial in certain cases. We
will use either (2) or (3) in our experiments de-
pending on the task.

5 Experiments

Implementation We implement our models us-
ing the DyNet library. We use the Adam optimizer
(Kingma and Ba, 2014) and apply dropout at all
LSTM layers (Hinton et al., 2012). For POS tag-
ging and parsing, we perform a 5 × 5 grid search
over learning rates 0.0001 . . . 0.0005 and dropout
rates 0.1 . . . 0.5 and choose the configuration that
gives the best performance on the dev set. We
use the highway network (3) for word analogy and
parsing and (2) for others. Note that the character
embedding dimension dc must match the dimen-
sion of the pre-trained word embeddings.

Teacher Word Embeddings We use 100-
dimensional word embeddings identical to those
used by Dyer et al. (2015) which are computed
with a variant of the skip n-gram model (Ling
et al., 2015). These embeddings have been shown
to be effective in various tasks (Dyer et al., 2015;
Lample et al., 2016).

5.1 Word Similarity and Analogy
Data For word similarity, we use three public
datasets WordSim-353, MEN, and Stanford Rare
Word. Each contains 353, 3000, and 2034 word
pairs annotated with similarity scores. The evalu-
ation is conducted by computing the cosine of the
angle θ between each word pair (w1, w2) under the
model (2):

cos(θ) =
(hw1)> hw2

||hw1 ||2 ||hw2 ||2
(4)
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number of reconstruction epochs
metric 0 10 20 30 50
D1 0.03 0.09 0.11 0.12 0.13
D2 0.03 0.12 0.12 0.14 0.15
D∞ 0.03 0.12 0.10 0.09 0.10
Dcos 0.03 0.13 0.15 0.15 0.15

Table 1: Effect of reconstruction on word simi-
larity: the teacher word embeddings obtain score
0.50.

and computing the Spearman’s correlation coeffi-
cient with the human scores. We report the av-
erage correlation across these datasets. For word
analogy, we use the 8000 syntactic analogy ques-
tions from the dataset of Mikolov et al. (2013b)
and 8869 semantic analogy questions from the
dataset of Mikolov et al. (2013a). We use the mul-
tiplicative technique of Levy and Goldberg (2014)
for answering analogy questions.

Result Table 1 shows word similarity scores
for different numbers of reconstruction training
epochs. The teacher word embeddings obtain 0.5.
The sub-word model improves performance from
the initial score of 0.03 up to 0.16. In particular,
the negative cosine distance metric which directly
optimizes the relevant quantity (4) is consistently
best performing.

Table 2 shows the accuracy on the syntactic
and semantic analogy datasets. An interesting
finding in our experiment is that for syntactic
analogy, a randomly initialized character-based
model outperforms the pre-trained embeddings
and thus reconstruction only decreases the perfor-
mance. We suspect that this is because much of
the syntactic regularities is already captured by
the architecture. Many questions involves only
simplistic transformation, for instance adding r in
wise : wiser ∼ free : x. The model cor-
rectly answers such questions simply by following
its architecture, though it is unable to answer less
regular questions (e.g., see : saw ∼ keep : x).

Semantic analogy questions have no such
morphological regularities (e.g., Athens :
Greece ∼ Havana : x) and are challenging to
sub-lexical models. Nonetheless, the model is able
to make a minor improvement in accuracy.

5.2 POS Tagging

We perform POS tagging on the Penn WSJ tree-
bank with 45 tags using a BiLSTM model de-

Embedding Syntactic Semantic
random 65.21 1.13
D1 26.32 2.20
D2 27.56 2.47
D∞ 45.68 1.74
Dcos 23.77 2.22
teacher 57.42 59.58

Table 2: Effect of reconstruction on word analogy
(10 reconstruction epochs).

model accuracy lookup
FULL 97.20 43211
FULL+EMB 97.32 252365
CHAR 96.93 80
CHAR(D1) 97.17 93
CHAR(D2) 97.08 93
CHAR(D∞) 97.06 93
CHAR(Dcos) 97.08 93

Table 3: POS tagging accuracy with different defi-
nitions of vw (see the main text). The final column
shows the number of lookup parameters.

scribed in Lample et al. (2016). Given a vector se-
quence (vw1 . . . vwn) corresponding to a sentence
(w1 . . . wn) ∈ Wn, the BiLSTM model produces
feature vectors (h1 . . . hn). We adhere to the sim-
plest approach of making a local prediction at each
position i by a feedforward network on hi,

p(ti|hi) ∝ exp
(
W 2f(W 1hi + b1) + b2

)
where fi(v) = max {0, vi} and W 1,W 2, b1, b2

are additional parameters. The model is trained
by optimizing log likelihood. We consider the fol-
lowing choices of vw:

• FULL: vw = ew ⊕ hw uses both word-level
lookup parameter ew and character-level em-
bedding hw (2).

• FULL+EMB: Same as FULL but the lookup
parameters ew are initialized with pre-trained
word embeddings.

• CHAR: vw = hw uses characters only.

• CHAR(D): Same as CHAR but optimized for
10 epochs to reconstruct pre-trained word
embeddings with distance metric D.

Table 3 shows the accuracy of these models. We
see that pre-trained word embeddings boost the
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beautiful wonderful prettiest gorgeous smartest jolly famous sensual
baleful bagful basketful bountiful boastful bashful behavioural
bountiful peaceful disdainful perpetual primaeval successul purposeful

amazing incredible wonderful remarkable terrific marvellous astonishing unbelievable
awaking arming aging awakening angling agonizing among
arousing amusing awarding applauding allaying awaking assaying

Springfield Glendale Kennesaw Gainesville Lynchburg Youngstown Kutztown Harrisburg
Spanish-ruled Serbian-held Serbian-led Spangled Serbian-controlled Schofield Sharif-led
Stubblefield Smithfield Stansfield Butterfield Littlefield Bitterfeld Sinfield

Table 4: Nearest neighbor examples: for each word, the three rows respectively show its nearest neigh-
bors using pre-trained word embeddings, student embeddings at random initialization (3), and student
embeddings optimized for 10 epochs using D1.

performance of FULL from 97.20 to 97.32. When
we use the strictly character-based model CHAR

without reconstruction, the performance drops to
96.93. But with reconstruction, the model recov-
ers some of the lost accuracy. In particular, recon-
structing with the Manhattan distance metric gives
the largeset improvement and yields 97.17.

5.3 Analysis of Student Embeddings
Table 4 shows examples of nearest neighbors. For
each example, the first row corresponds to the
teacher, the second to the student (3) at random
initialization, and the third to the student opti-
mized for 10 epochs using D1. The student em-
beddings at random initialization are already ca-
pable of capturing morphological regularities such
as -ful and -ing. With reconstruction, there
is a subtle change in the topology. For instance,
the nearest neighbors of beautiful change
from baleful and bagful to bountiful
and peaceful. For Springfield, near-
est neighbors change from unrelated words such
as Spanish-ruled to fellow nouns such as
Stubblefield.

6 Conclusion

We have presented a simple method for a sub-
lexical model to leverage pre-trained word em-
beddings. We have shown that by recontructing
the embeddings before task-specific training, the
model can improve over random initialization on a
variety of tasks. The reconstruction task is a chal-
lenging learning problem; while our model learns
useful patterns, it is far from perfect. An important
future direction is to improve reconstruction with
other choices of architecture.
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