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Abstract

In this paper, we propose a new domain
adaptation technique for neural machine
translation called cost weighting, which
is appropriate for adaptation scenarios in
which a small in-domain data set and a
large general-domain data set are avail-
able. Cost weighting incorporates a do-
main classifier into the neural machine
translation training algorithm, using fea-
tures derived from the encoder representa-
tion in order to distinguish in-domain from
out-of-domain data. Classifier probabili-
ties are used to weight sentences accord-
ing to their domain similarity when updat-
ing the parameters of the neural transla-
tion model. We compare cost weighting
to two traditional domain adaptation tech-
niques developed for statistical machine
translation: data selection and sub-corpus
weighting. Experiments on two large-data
tasks show that both the traditional tech-
niques and our novel proposal lead to sig-
nificant gains, with cost weighting outper-
forming the traditional methods.

1 Introduction

The performance of data-driven machine trans-
lation techniques depends heavily on the degree
of domain match between training and test data,
where “domain” indicates a particular combina-
tion of factors such as genre, topic, national origin,
dialect, or author’s or publication’s style (Chen et
al., 2013). Training data varies significantly across
domains, and cross-domain translations are unre-
liable, so performance can often be improved by
adapting the MT system to the test domain.

Domain adaptation (DA) techniques for SMT
systems have been widely studied. Approaches in-

clude self-training, data selection, data weighting,
context-based DA, and topic-based DA, etc. We
review these techniques in the next section.

Sequence-to-sequence learning (Bahdanau et
al., 2015; Sutskever et al., 2015) has achieved
great success on machine translation tasks recently
(Sennrich et al., 2016a), and is often referred to
as Neural Machine Translation (NMT). NMT usu-
ally adopts the encoder-decoder framework: it
first encodes a source sentence into context vec-
tor(s), then decodes its translation token-by-token,
selecting from the target vocabulary. Attention
based NMT (Bahdanau et al., 2015; Luong et al.,
2015) dynamically generates context vectors for
each target position, and focuses on the relevant
source words when generating a target word.

Domain adaptation for NMT is still a new re-
search area, with only a small number of relevant
publications. Luong et al. (2015) adapted an NMT
model trained on general domain data with further
training (fine-tuning) on in-domain data only. This
was called the continue model by (Freitag and Al-
Onaizan, 2016), who propose an ensemble method
that combines the continue model with the original
model. Chu et al. (2017) propose a method called
mixed fine tuning, which combines fine tuning and
multi domain NMT.

In this paper, we propose a new domain adap-
tation method for NMT called cost weighting,
in which a domain classifier and sequence-to-
sequence translation model are trained simulta-
neously. The domain classifier is trained on in-
domain and general domain data, and provides an
estimate of the probability that each sentence in
the training data is in-domain. The cost incurred
for each sentence is weighted by the probability
of it being in-domain. This biases the sequence-
to-sequence model toward in-domain data, result-
ing in improved translation performance on an in-
domain test set.
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We also study the application of existing SMT
domain adaptation techniques to NMT, specifi-
cally data selection and corpus weighting meth-
ods.

Experiments on Chinese-to-English NIST and
English-to-French WMT tasks show that: 1) data
selection and corpus weighting methods yield sig-
nificant improvement over the non-adapted base-
line; and 2) the new cost weighting method ob-
tains the biggest improvement. The cost weight-
ing scheme has the additional advantage of being
integrated with sequence-to-sequence training.

2 Applying SMT adaptation techniques
to NMT

There are several adaptation scenarios for MT, of
which the most common is: 1) the training ma-
terial is heterogeneous, with some parts that are
not too far from the test domain; 2) a bilingual de-
velopment set drawn from the test domain is avail-
able. In this paper, we study adaptation techniques
for this scenario.

2.1 SMT adaptation techniques

Most SMT domain adaptation (DA) techniques
can be classified into one of five categories: self-
training, context-based DA, topic-based DA, data
selection, and data weighting.

With self-training (Ueffing and Ney, 2007;
Schwenk, 2008; Bertoldi and Federico, 2009), an
MT system trained on general domain data is used
to translate large in-domain monolingual data.
The resulting bilingual sentence pairs are then
used as additional training data. Sennrich (2016b)
has shown that back-translating a large amount of
target-language text and using the resulting syn-
thetic parallel text can improve NMT performance
significantly. We can expect greater improve-
ment if the monolingual data are in-domain. This
method assumes the availability of large amounts
of in-domain monolingual data, which is not the
adaptation scenario in this paper.

Context-based DA includes word sense disam-
biguation for adaptation (Carpuat et al., 2013),
which employs local context to distinguish the
translations for different domains. The cache-
based method (Tiedemann, 2010; Gong et al.,
2011) uses local or document-level context.

Work on topic-based DA includes (Tam et al.,
2007; Eidelman et al., 2012; Hasler et al., 2012;
Hewavitharana et al., 2013), and employs a topic

model to distinguish the translations for different
topics.

Data selection approaches (Moore and Lewis,
2010; Axelrod et al., 2011; Duh et al., 2013; Chen
and Huang, 2016) search for data that are similar
to the in-domain data according to some criterion,
then use the results for training, either alone or in
combination with existing data.

Data weighting approaches weight each data
item according to its proximity to the in-domain
data. This can be applied at corpus (Foster and
Kuhn, 2007; Sennrich, 2012), sentence (Mat-
soukas et al., 2009), or phrase level (Foster et al.,
2010; Chen et al., 2013).

2.2 Application to NMT

In this paper, we apply data selection, corpus
weighting, and sentence weighting strategies to
NMT.
Data selection Some previous work (Luong and
Manning, 2015; Sennrich et al., 2016b) has shown
that the performance of NMT systems is highly
sensitive to data size. Therefore, we follow the
solution in (Luong and Manning, 2015): we first
train an NMT system on all available training data,
then further train on the selected in-domain data.
We adopt two data selection methods in this pa-
per. The first one is based on bilingual language
model cross-entropy difference (Axelrod et al.,
2011). For both the source and target language,
two language models are trained on in-domain and
out-of-domain data respectively; then, a sentence
pair is evaluated with the cross-entropy difference
according to the language models. The second
method is semi-supervised convolutional neural
network based data selection (Chen and Huang,
2016). The in-domain data and randomly sam-
pled general-domain data are used to train a do-
main classifier with semi-supervised CNN, then
this classifier computes domain relevance scores
for all the sentences in the general-domain data
set.
Sub-corpus weighting To weight different sub-
corpora, we first train NMT sub-models on them,
then combine these in a weighted fashion. Specif-
ically, we: 1) train an NMT model on the large
combined general-domain corpus; 2) initialize
with the previous model, and train several new
models on sub-corpora; 3) weight each sub-corpus
according to its proximity to the in-domain data
(dev set), using target-side language model per-
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plexity (Foster and Kuhn, 2007; Sennrich, 2012);
and 4) take a weighted average of the parameters
in the sub-models to form our final adapted model.
Sentence-level weighting Our new method for
weighting individual sentence pairs uses a classi-
fier to assign weights, and applies them when com-
puting the cost of each mini-batch during NMT
training. We defer a detailed description to sec-
tion 4, after first presenting the NMT approach
used in our experiments.

3 Neural machine translation

Attention-based neural machine translation sys-
tems (Bahdanau et al., 2014) are typically imple-
mented with a recurrent neural network (RNN)
based encoder-decoder framework. Suppose we
have a source sentence x = x1, x2, ..., xm and its
translation y = y1, y2, ..., yn. The probability of
the target sentence y given a source sentence x is
modeled as follows:

p(y|x) =
n∏
t=1

p(yt|y<t, x), (1)

where y<t stands for all previous translated words.
The NMT encoder reads the source sentence x

and encodes it into a sequence of hidden states
h = h1, h2, ..., hm. Each hidden state hi is com-
puted from the previous hidden state hi−1 and the
current source word xi, using a recurrent unit such
as Long Short-Term Memory (LSTM) (Sutskever
et al., 2014) or Gated Recurrent Unit (GRU) (Bah-
danau et al., 2014).

−→
h i = f(

−→
h i−1, xi) (2)

As is standard practice, we use the concatena-
tion of the forward hidden state

−→
hi and backward

hidden state
←−
hi for the source word xi to form an

aggregated state hi.
The decoder is a recurrent neural network that

predicts the next word in the target sequence. The
conditional probability of each word yt is com-
puted with its previously generated words y<t, a
recurrent hidden state st, and a context vector ct:

p(yt|y<t, x) = g(yt, st, ct) (3)

The context vector ct is introduced to capture
the relevant part of the source sentence, which is
computed as a weighted sum of the annotations
hi. The weight of each annotation hi is computed

through an alignment model αti , which is a feed-
forward neural network to model the probability
that yt is aligned to xi.

ct =
m∑
i=1

αtihi, (4)

where the αti are normalized outputs from a soft-
max operation.

The hidden state st is the decoder RNN hidden
state at time t, computed by a recurrent unit such
as an LSTM or GRU.

st = q(st−1, yt−1, ct) (5)

In the above equations, f , g, q are all non-linear
functions.

Given a bilingual corpus D, the parameters in
the neural network θ are learned by maximiz-
ing the (potentially regularized) conditional log-
likelihood:

θ? = arg max
θ

∑
(x,y)∈D

log p(y|x; θ) (6)

4 Cost weighting based adaptation

The data selection and corpus-weighting ap-
proaches described above involve fine-tuning one
or more NMT systems on data subsets, where
data selection fine-tunes on subsets that are se-
lected according to similarity to the development
set, and sub-corpus weighting fine-tunes on pre-
determined subsets, with the fine-tuned models
being combined according to the subsets’ similar-
ity to the development set.

Our cost weighting scheme for neural machine
translation departs from these strategies in two
ways. First of all, we do not adopt a fine-tuning
strategy, but instead directly scale the NMT sys-
tem’s top-level costs according to each training
sentence’s similarity to the development set. Sec-
ond, development set similarity is determined by
a feed-forward neural network, which is learned
alongside the NMT parameters, and which uses
the highly informative NMT source encoder to
provide its input representation.

4.1 Classifier

At the core of our method is a probabilistic, binary
classifier that attempts to determine whether or not
a source sentence was drawn from our develop-
ment set. Once trained, we expect this classifier to
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assign high probabilities to sentences that are sim-
ilar to our development set, and low probability to
others. This classifier first uses an attention-like
aggregator to transform the encoder hidden states
hi into a fixed-length vector representation rx:

rx =
m∑
i=1

βihi

where βi =
exp(γi)∑m
i exp(γi)

and γi = tanh(W βhi + bβ)>wβ

We then pass the source representation vector rx
into a two-layer perceptron whose top-level activa-
tion is a sigmoid, allowing us to interpret its final
score as a probability.

pd(x) = σ
(

tanh
(
W drx + bd

)>
wd
)

where σ(x) =
1

1 + exp(−x)

We train this classifier with a cross-entropy loss,
maximizing pd(x) for source sentences drawn
from the development set, and minimizing it for
those drawn from the training set. Each classi-
fier minibatch is populated with an equal number
of training and development sentences, randomly
drawn from their respective sets. Crucially, we
do not back-propagate the classifier loss to the en-
coder parameters. The classifier is trained by up-
dating only W β , wβ , bβ , W d, wd and bd, treating
the sequence hi, i = 1 . . .m as an informative, but
constant, representation of its input x.

4.2 Weighted Costs

With our source-sentence domain classifier pd(x)
in place, it is straight-forward to use it to scale our
costs to emphasize training sentences that are sim-
ilar to our development set. Scaling costs with
a multiplicative scalar is similar to adjusting the
learning rate: it changes the magnitude of the pa-
rameter update without changing its direction. We
alter equation 6 as follows:

θ? = arg max
θ

∑
(x,y)∈D

(1 + pd(x)) log p(y|x; θ)

(7)
Note that we scale our log NMT cost by 1 plus
our domain probability pd(x). We do this be-
cause these probabilities tend to be very low: the

classifier is able to correctly determine that train-
ing sentences are not in fact development sen-
tences. By adding 1 to this probability, very low-
probability sentences are updated as normal, while
high-probability sentences are given a bonus. For
the purposes of NMT training pd(x) is treated as
a constant; that is, the NMT loss does not back-
propagate to the classifier parameters.

4.3 Implementation Details

Starting from random parameters for both mod-
els, we alternate between optimizing the weighted
NMT objective in Equation 7, and the classifier’s
cross-entropy objective. Training the two concur-
rently allows the classifier to benefit from and ad-
just to improvements in the encoder representa-
tion. Meanwhile, the NMT objective becomes in-
creasingly focused on in-domain sentences as the
classifier improves. We perform one NMT mini-
batch of size b, and then a classifier minibatch of
size 2b (b training sentences and b development
sentences). Training sentences for NMT and clas-
sifier updates are sampled independently. Note
that classifier updates are much faster than NMT
updates, as the classifier makes only one binary
decision per sentence.

We have also experimented with versions of
the system where we train an unweighted NMT
system first, and use it to initialize training with
weighted costs, similar to fine tuning. This works
as well as using costs throughout, and has the
speed benefits that come from starting with an ini-
tialized NMT model. However, all of the cost
weighting results reported in this paper come from
systems that use costs throughout training.

5 Experiments

5.1 Data

We conducted experiments on two translation
tasks. The first one is the Chinese-to-English
NIST task. We used NIST06 and NIST08 test sets
as the dev set and test set, which contain 1,664
and 1,357 source sentences respectively and each
source sentence has 4 target references. Their
domain is the combination of newswire and we-
blog genre. The training data are from LDC;
we manually selected about 1.7 million sentence
pairs, composed of various sub-domains, such as
newswire, weblog, webforum, short message, etc.
The second task is the English-to-French WMT
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task.1 The dev set is a concatenation of new-
stest2012 and 2013 test sets, which contains 6,003
sentence pairs; the test set is newstest2014, which
contains 3,003 sentence pairs. The training data
contain 12 million sentence pairs, composed of
various sub-domains, such as news commentary,
Europarl, UN, common crawl web data, etc. In the
corpus weighting adaptation experiment, we man-
ually grouped the data into 4 sub-corpora accord-
ing to provenance for both tasks.

5.2 Setting

The NMT system we used is based on the open
source Nematus toolkit (Sennrich et al., 2016b).2

We segmented words via byte-pair encoding on
both the source and target side of the training data
(Sennrich et al., 2016b). The source and target
vocabulary sizes of the Chinese-to-English system
were both 60K, and those of the English-to-French
system were 90K. The source word embedding di-
mension size was 512, and the target word em-
bedding dimension size was 1024. The mini-batch
size was 100, and the maximum sequence length
was 50. We used the Adadelta optimization algo-
rithm to train the system. Our domain classifier
described in Section 4.1 has a hidden-layer size
of 1024. Its attention-like aggregator also uses a
hidden-layer size of 1024. The classifier is also
optimized with Adadelta.

In the data selection experiments, we followed
(Chen and Huang, 2016) to set all parameters for
the cross-entropy difference and semi-supervised
CNN based data selection. For language model
based selection, we used 3-gram LMs with Witten-
Bell3 smoothing. For Semi-supervised CNN
based data selection, we generate one-hot and
word-embedding-based bag-of-word regions and
n-gram regions and input them to the CNN. We
set the region size to 5 and stride size to 1. The
non-linear function we chose is “ReLU”, the num-
ber of weight vectors or neurons is 500. We
use the online available CNN toolkit conText4.
To train the general domain word embedding, we
used word2vec5. The size of the vector was set to
300. We select the top 10% of the sentence pairs

1The data is available at http://www-lium.univ-
lemans.fr/ schwenk/nnmt-shared-task/

2https://github.com/rsennrich/nematus
3For small amounts of data, Witten-Bell smoothing per-

formed better than Kneser-Ney smoothing in our experiments
4http://riejohnson.com/cnn download.html
5https://code.google.com/archive/p/word2vec/

zh2en ∆ en2fr ∆
baseline 32.9 – 35.8 –
avg weighting 33.1 0.2 36.1 0.3
crp weighting 33.5* 0.6 36.3* 0.5
DS xent 33.5* 0.6 36.3* 0.5
DS sscnn 33.8** 0.9 36.4* 0.6
cost weighting 34.1** 1.2 36.6** 0.8

Table 1: BLEU scores for ensembled baseline
and domain adapted systems, which include aver-
age weighting (“avg weighting”), corpus weight-
ing (“crp weighting”) ensemble, ensembled cross-
entropy based data selection (“DS xent”), semi-
supervised CNN based data selection (“DS ss-
cnn”), and cost weighting based systems. */**
means the result is significantly better than the
baseline at p < 0.05 or p < 0.01 level, respec-
tively.

from the whole training data to fine-tune the NMT
system.

5.3 Results

We evaluated the system using BLEU score (Pa-
pineni et al., 2002) on the test set. Following
(Koehn, 2004), we use bootstrap resampling for
significance testing. As shown in (Sennrich et al.,
2016b), simply averaging the models from several
checkpoints can improve NMT translation perfor-
mance. Because the data selection and corpus
weighting methods applied fine-tuning, for a fair
comparison, all of our systems applied a two-pass
training strategy. That is, we train the system us-
ing algorithm Adadelta until it is converged or
early stopped, then resume the training using algo-
rithm RMSProp (Hinton et al., 2012). Moreover,
because the corpus weighting method combines
4 models fine-tuned on different sub-corpora, for
a fair comparison all of our systems are ensem-
ble systems which average the models from the 4
checkpoints with highest BLEU scores on the dev
set. Table 1 summarizes the results for both tasks.

Both tasks are challenging to improve with do-
main adaptation techniques, because the training
data for the baselines in both have already been
selected to a certain extent. However, we still
obtained statistically significant improvements us-
ing the adaptation techniques developed for SMT.
This demonstrates the usefulness of existing adap-
tation techniques. More importantly, we obtained
larger and more significant improvement from the
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cost weighting technique.

5.4 Discussion

All three domain adaptation techniques evaluated
in this paper share a similar idea, namely when
training the system, rely more on those train-
ing samples which are closer to the in-domain
data. The techniques differ in granularity: corpus
weighting operates on the sub-corpus level, while
data selection and cost weighting operate on the
sentence level. They also differ in weighting la-
tency: data selection and corpus weighting mea-
sure domain proximity only once prior to system
training, while cost weighting repeatedly updates
its proximity estimates as the system is trained. Fi-
nally, they differ in proximity metrics: data selec-
tion and corpus weighting measure domain sim-
ilarity with external criteria such as LM cross-
entropy or CNN sentence representations, while
cost weighting uses RNN representations shared
with the sequence-to-sequence model. Also, cost
weighting applies its sentence weights directly to
the training process, instead of thresholding the
weights to select sentences.

6 Conclusions

In this paper, we have successfully applied the
SMT domain adaptation techniques, data selec-
tion and corpus weighting, to neural machine
translation (NMT). We also proposed a new cost
weighting technique for neural machine trans-
lation domain adaptation. This method trains
the classifier and sequence-to-sequence translation
model simultaneously; in-domain proximity val-
ues are computed on the fly with the sequence-to-
sequence model, which is more precise and also
makes online adaptation possible. Experiments on
the Chinese-English NIST task and the English-
French WMT task showed that both existing tech-
niques and the novel cost weighting technique all
improve performance over the baseline, with the
cost weighting method obtaining the best improve-
ment.

7 Future Work

We would like to devise experiments to better un-
derstand whether the improvements we are seeing
in domain adaptation are from our adaptive do-
main classifier, or from applying the classifier out-
puts as cost weights. For example, we could test
cost weighting with fixed weights from the CNN

domain classifier of Chen and Huang (2016), and
see if that results in similar improvements.

We would also like to explore invariant
weighted updates (Karampatziakis and Langford,
2010), which maintain the invariance property that
updating the model with importance weight 2p is
equivalent to updating twice with weight p. In-
variant updates have been shown to perform better
than simply scaling the cost or learning rate as we
do here, but previous work has all been in the con-
text of linear models.
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