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Introduction

Welcome to the ACL Workshop on Neural Machine Translation. This is a new annual workshop focusing
on Neural Machine Translation (NMT) technology, a simple new architecture for getting machines
to learn to translate. Despite being relatively recent, NMT has demonstrated promising results and
attracted much interest, achieving state-of-the-art results on a number of shared tasks. This workshop
aims to cultivate research in neural machine translation and other aspects of machine translation and
multilinguality that utilize neural models.

In this year’s workshop we are extremely fortunate to be able to host four invited talks from leading lights
in the field, namely: Chris Dyer, Alexander Rush, Kevin Knight and Quoc Le. In addition the workshop
will feature a panel discussion to discuss the burning issues in the field.

We received a total of 24 submissions, and accepted 15 for inclusion in the workshop. Due to the large
number of invited talks, and to encourage discussion, only the two papers selected for best paper awards
will be presented orally, and the remainder will be presented in a single poster session.

We would like to thank all authors for their submissions, and the program committee members for their
valuable efforts in reviewing the papers for the workshop. We would also like to thank Google for their
generous sponsorship.
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Abstract

Recently, the attention mechanism plays
a key role to achieve high performance
for Neural Machine Translation models.
However, as it computes a score function
for the encoder states in all positions at
each decoding step, the attention model
greatly increases the computational com-
plexity. In this paper, we investigate the
adequate vision span of attention mod-
els in the context of machine translation,
by proposing a novel attention framework
that is capable of reducing redundant score
computation dynamically. The term “vi-
sion span” means a window of the en-
coder states considered by the attention
model in one step. In our experiments,
we found that the average window size of
vision span can be reduced by over 50%
with modest loss in accuracy on English-
Japanese and German-English translation
tasks.

1 Introduction

In recent years, recurrent neural networks have
been successfully applied in machine translation.
In many major language pairs, Neural Machine
Translation (NMT) has already outperformed con-
ventional Statistical Machine Translation (SMT)
models (Luong et al., 2015b; Wu et al., 2016).

NMT models are generally composed of an
encoder and a decoder, which is also known
as encoder-decoder framework (Sutskever et al.,
2014). The encoder creates a vector representation
of the input sentence, whereas the decoder gener-
ates the translation from this single vector. This
simple encoder-decoder model suffers from a long
backpropagation path; thus, adversely affected by
long input sequences.

In recent NMT models, soft attention mecha-
nism (Bahdanau et al., 2014) has been a key ex-
tension to ensure high performance. In each de-
coding step, the attention model computes align-
ment weights for all the encoder states. Then a
context vector, which is a weighted summariza-
tion of the encoder states is computed and fed
into the decoder as input. In contrast to the afore-
mentioned simple encoder-decoder model, the at-
tention mechanism can greatly shorten the back-
propagation path.

Although the attention mechanism provides
NMT models with a boost in performance, it
also significantly increases the computational bur-
den. As the attention model has to compute the
alignment weights for all the encoder states in
each step, the decoding process becomes time-
consuming. Even worse, recent researches in
NMT prefer to separate the texts into subwords
(Sennrich et al., 2016) or even characters (Chung
et al., 2016), which means massive encoder states
have to be considered in the attention model at
each step, thereby resulting in increasing com-
putational cost. On the other hand, the atten-
tion mechanism is becoming more complicated.
For example, the NMT model with recurrent at-
tention modeling (Yang et al., 2016) maintains a
dynamic memory of attentions for every encoder
states, which is updated in each decoding step.

In this paper, we study the adequate vision span
in the context of machine translation. Here, the
term “vision span” means a window of encoder
states considered by the attention model in one
step. We examine the minimum window size of
an attention model have to consider in each step
while maintaining the translation quality. For this
purpose, we propose a novel attention framework
which we refer to as Flexible Attention in this pa-
per. The proposed attention framework tracks the
center of attention in each decoding step, and pre-
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Figure 1: (a) An example English-Japanese sen-
tence pair with long-range reordering (b) The vi-
sion span predicted by the proposed Flexible At-
tention at each step in English-Japanese transla-
tion task

dict an adequate vision span for the next step. In
the test time, the encoder states outside of this
range are omitted in the computation of score
function.

Our proposed attention framework is based on
simple intuition. For most language pairs, the
translations of words inside a phrase usually re-
main together. Even the translation of a small
chunk usually does not mix with the translation
of other words. Hence, information about dis-
tant words is basically unnecessary when translat-
ing locally. Therefore, we argue that computing
the attention over all positions in each step is re-
dundant. However, attending to distant positions
remains important when dealing with long-range
reordering. In Figure 1(a), we show an example
sentence pair with long-range reordering, where
the positions of the first three words have mono-
tone alignments, but the fourth word is aligned to
distant target positions. If we can predict whether
the next word to translate is in a local position,
the amount of redundant computation in the atten-
tion model can be safely reduced by controlling

the window size of vision span dynamically. This
motivated us to propose a flexible attention frame-
work which predicts the minimum required vision
span according to the context (See Figure 1(b)).

We evaluated our proposed Flexible Atten-
tion by comparing with the conventional attention
mechanism, and Local Attention (Luong et al.,
2015a) which puts attention on a fixed-size win-
dow. We focus on comparing the minimum win-
dow size of vision span these models can achieve
without hurting the performance too much. Note
that as the window size determines the number
of times the score function is evaluated, reduc-
ing the window size leads to the reduction of
score computation. We select English-Japanese
and German-English language pairs for evaluation
as they consi st of languages with different word
orders, which means the attention model cannot
simply look at a local range constantly and trans-
late monotonically. Through empirical evalua-
tion, we found with Flexible Attention, the aver-
age window size is reduced by 56% for English-
Japanese task and 64% for German-English task,
with modest loss of accuracy. The reduction rate
also achieves 46% for character-based NMT mod-
els.

Our contributions can be summarized as three
folds:

1. We empirically confirmed that the conven-
tional attention mechanism performs a signif-
icant amount of redundant computation. Al-
though attending globally is necessary when
dealing with long-range reordering, a small
vision span is sufficient when translating lo-
cally. The results may provide insights for
future research on more efficient attention-
based NMT models.

2. The proposed Flexible Attention provides a
general framework for reducing the amount
of score computation according to the con-
text, which can be combined with other ex-
pensive attention models of which computing
for all positions in each step is costly.

3. We found that reducing the amount of com-
putation in the attention model can benefit the
decoding speed on CPU, but not GPU.

2 Attention Mechanism in NMT

Although the network architectures of NMT mod-
els differ in various respects, they generally fol-
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low the encoder-decoder framework. In Bahdanau
et al. (2014), a bidirectional recurrent neural net-
work is used as the encoder, which accepts the
embeddings of input words. The hidden states
h̄1, ..., h̄S of the encoder are then used in the de-
coding phase. Basically, the decoder is composed
of a recurrent neural network (RNN). The decoder
RNN computes the next state based on the em-
bedding of the previously generated word, and a
context vector given by the attention mechanism.
Finally, the probabilities of output words in each
time step are predicted based on the decoder states
h1, ...,hN .

The soft attention mechanism (Karol et al.,
2015) is introduced to NMT in Bahdanau et al.
(2014), which computes a weighted summariza-
tion of all encoder states in each decoding step, to
obtain the context vector:

ct =
∑

s

at(s)h̄s , (1)

where h̄s is the s-th encoder state, at(s) is the
alignment weight of h̄s in decoding step t. The
calculation of at(s) is given by the softmax of the
weight scores:

at(s) =
exp(score(ht−1, h̄s))∑
s′ exp(score(ht−1, h̄s′))

. (2)

The unnormalized weight scores are computed
with a score function, defined as1:

score(ht−1, h̄s) = v>a tanh(Wa[ht−1; h̄s]) ,
(3)

where va and Wa are the parameters of the score
function, [ht−1; h̄s] is a concatenation of the de-
coder state in the previous step and an encoder
state. Intuitively, the alignment weight indicates
whether an encoder state is valuable for generat-
ing the next output word. Note that many discus-
sions on alternative ways for computing the score
function can be found in Luong et al. (2015a).

3 Flexible Attention

In this section, we present our main idea for reduc-
ing the window size of vision span. In contrast to

1In the original paper (Bahdanau et al., 2014), the equa-
tion of the score function is a sum. Here, we use a concatena-
tion in Equation 3 in order to align with (Luong et al., 2015a),
which is an equivalent form of the original equation.

conventional attention models, we track the center
of attention in each decoding step with

pt =
∑

s

at(s) · s . (4)

The value of pt provides an approximate focus
of attention in time step t. Then we penalize the
alignment weights for the encoder states distant
from pt−1, which is the focus in the previous step.
This is achieved by a position-based penalty func-
tion:

penalty(s) = g(t)d(s, pt−1) , (5)

where g(t) is a sigmoid function that adjusts the
strength of the penalty dynamically based on the
context in step t. d(s, pt−1) provides the distance
between position s and the previous focus pt−1,
which is defined as:

d(s, pt−1) =
1

2σ2
(s− pt−1)2 . (6)

Hence, distant positions attract exponentially
large penalties. The denominator 2σ2, which is a
hyperparameter, controls the maximum of penalty
when g(t) outputs 1.

The position-based penalty function is finally
integrated into the computation of the alignment
weights as:

at(s) =

exp(score(ht−1, h̄s)− penalty(s))∑
s′ exp(score(ht−1, h̄s′)− penalty(s′))

,
(7)

where the penalty function acts as a second score
function that penalize encoder states only by
their positions. When g(t) outputs zero, the
penalty function will have no effects on align-
ment weights. Note that the use of distance-based
penalties here is similar in appearance to Local At-
tention (local-p) proposed in Luong et al. (2015a).
The difference is that Local Attention predicts the
center of attention in each step and attends to a
fixed window. Further discussion will be given
later in Section 4.

In this paper, the strength function g(t) in Equa-
tion 5 is defined as:

g(t) = sigmoid(v>g tanh(Wg[ht−1; it]) + bg),
(8)

where vg, Wg and bg are parameters. We refer to
this attention framework as Flexible Attention in
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Figure 2: Illustration of the way that Flexible Attention reduces the window of vision span. In each
decoding step, only a portion of the encoder states are selected by the position-based penalty function to
compute the alignment weights.

this paper, as the window of effective attention is
adjusted by g(t) in according to the context.

Intuitively, when the model is translating inside
a phrase, the alignment weights for distant posi-
tions can be safely penalized by letting g(t) out-
put a high value. If the next word is expected to
be translated from a new phrase, g(t) shall out-
put a low value to allow attending to any position.
Actually, the selected output word in the previous
step can greatly influence this decision, as selec-
tion of the output word can determine whether the
translation of a phrase is complete. Therefore, the
embedding of the feedback word it is put into the
equation.

3.1 Reducing Window Size of Vision Span

As we can see from Equation 7, if a position
is heavily penalized, then it will be assigned a
low attention probability regardless of the value
of the score function. In the test time, we can
set a threshold τ , and only compute the score
function for positions with penalties lower than
τ . Figure 2 provides an illustration of the se-
lection process. The selected range can be ob-
tained by solving penalty(s) < τ , which gives
s ∈ ( pt−1 − σ

√
2τ/g(t), pt−1 + σ

√
2τ/g(t)

)
.

Because the strength term g(t) in Equation 5
only needs to be computed once in each step, the
computational cost of the penalty function does
not increase as the input length increases. By uti-
lizing the penalty values to omit computation of
the score function, the totally computational cost
can be reduced.

Although a low threshold would lead to fur-
ther reduction of the window size of vision span,
the performance degrades as information from the

source side will be greatly limited. In practice, we
can find a good threshold to balance the tradeoff
of performance and computational cost on a vali-
dation dataset.

3.2 Fine-tuning for Better Performance

In order to further narrow down the vision span,
we want g(t) to output a large value to clearly dif-
ferentiate valuable encoder states from other states
encoder based on their positions. Thus, we can
further fine-tune our model to encourage it to de-
code using larger penalties with the following loss
function:

J =
D∑

i=1

− log p(y(i)|x(i))− β 1
T

T∑
t=1

g(t)(i), (9)

where β is a hyperparameter to control the bal-
ance of cross-entropy and the average strength of
penalty. In our experiments, we tested β among
(0.1, 0.001, 0.0001) on a development data and
found that setting β to 0.1 and fine-tuning for one
epoch works well. If we train the model with this
loss function from the beginning, as the right part
of the loss function is easier to be optimized, the
value of g(t) saturates quickly, which slows down
the training process.

4 Related Work

To the best of our knowledge, only a limited num-
ber of related studies aimed to reduce the com-
putational cost of the attention mechanism. Lo-
cal Attention, which was proposed in Luong et al.
(2015a), limited the range of attention to a fixed
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window size. In Local Attention (local-p), the cen-
ter of attention pt is predicted in each time step t:

pt = S · sigmoid(v>p tanh(Wpht)) , (10)

where S is the length of the input sequence. Fi-
nally, the alignment weights are computed by:

a′t(s) = at(s) exp(−(s− pt)2

2σ2
)

=
exp(score(ht−1, h̄s))∑
s′ exp(score(ht−1, h̄s′))

exp(− (s− pt)
2

2σ2
),

(11)

where σ is a hyperparameter determined by σ =
D/2, where D is a half of the window size. Lo-
cal Attention only computes attention within the
window [pt − D, pt + D]. In their work, the hy-
perparameter D is empirically set to D = 10 for
the English-German translation task, which means
a window of 21 words.

Our proposed attention model differs from Lo-
cal Attention in two key points: (1) our proposed
attention model does not predict the fixiation of
attention but tracks it in each step (2) the position-
based penalty in our attention model is adjusted
flexibly rather than remaining fixed. Note that in
Equation 11 of Local Attention, the penalty term
is applied outside the softmax function. In con-
trast, we integrate the penalty term with the score
function (Eq. 7), such that the final probabilities
still add up to 1.

Recently, a “cheap” linear model (de Brébisson
and Vincent, 2016) is proposed to replace the at-
tention mechanism with a low-complexity func-
tion. This cheap linear attention mechanism
achieves an accuracy in the middle of Global At-
tention and a non-attention model on a question-
answering dataset. This approach can be con-
sidered as another interesting way to balance
the performance and computational complexity in
sequence-generation tasks.

5 Experiments

In this section, we focus on evaluating our pro-
posed attention models by measuring the mini-
mum average window size of vision span it can
achieve with a modest performance loss2. In de-

2In our experiments, we try to limit the performance loss
to be lower than 0.5 development BLEU. As the threshold τ
is selected using a development corpus, the performance on
test data is not ensured.

tail, we measure the average number of the en-
coder states considered when computing the score
function in Equation 3. Note that as we decode
using Beam Search algorithm (Sutskever et al.,
2014) , the value of window size is further aver-
aged over the number of hypotheses considered in
each step. For the conventional attention mecha-
nism, as all positions have to be considered in each
step, the average window size equals to the aver-
age sentence length of the testing data. Following
Luong et al. (2015a), we refer to the conventional
attention mechanism as Global Attention in exper-
iments.

5.1 Experimental Settings

We evaluate our models on English-Japanese and
German-English translation task. As translating
these language pairs requires long-range reorder-
ing, the proposed Flexible Attention has to cor-
rectly predict when the reordering happens and
look at distant positions when necessary. The
training data of En-Ja task is based on ASPEC par-
allel corpus (Nakazawa et al., 2016), which con-
tains 3M sentence pairs, whereas the test data con-
tains 1812 sentences, which have 24.4 words on
average. We select 1.5M sentence pairs according
to the automatically calculated matching scores,
which are provided along with the ASPEC cor-
pus. For De-En task, we use the WMT’15 train-
ing data consisting of 4.5M sentence pairs. The
WMT’15 test data (newstest2015) contains 2169
pairs, which have 20.7 words on average.

We preprocess the En-Ja corpus with “tok-
enizer.perl” for English side, and Kytea tokenizer
(Neubig et al., 2011) for Japanese side. The pre-
processing procedure for De-En corpus is similar
to Li et al. (2014), except we did not filter sentence
pairs with language detection.

The vocabulary size are cropped to 80k and 40k
for En-Ja NMT models, whereas 50k for De-En
NMT models. The OOV words are replaced with
a “UNK” symbol. Long sentences with more than
50 words on either the source or target side are re-
moved from the training set, resulting in 1.3M and
3.8M training pairs for En-Ja and De-En task re-
spectively. We use mini-batch in our training pro-
cedure, where each batch contains 64 data sam-
ples. All sentence pairs are firstly sorted according
to their length before we group them into batches.
After which, the order of the mini-batches is shuf-
fled.
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Model
English-Japanese German-English

window (words) BLEU(%) RIBES window (words) BLEU(%)

Global Attention baseline 24.4 34.87 0.810 20.7 20.62
Local Attention baseline 18.4 34.52 0.809 15.7 21.09

Flexible Attention (τ=∞) 24.4 35.01 0.814 20.7 21.31
Flexible Attention (τ=1.2) 16.4 34.90 0.812 7.8 21.11

+ fine-tuning (τ=1.2) 10.7 34.78 0.807 7.4 20.79

Table 1: Evaluation results on English-Japanese and German-English translation task. This table pro-
vides a comparison of the minimum window size of vision span the models can achieve with a modest
loss of accuracy.

We adopt the network architecture described in
Bahdanau et al. (2014) and set it as our baseline
model. The size of word embeddings is 1000 for
both languages. For the encoder, we use a bi-
directional RNN composed of two LSTMs with
1000 units. For the decoder, we use a one-layer
LSTM with 1000 units, where the input in each
step is a concatenated vector of the embedding of
the previous output it and the context vector ct
given by attention mechanism. Before the final
softmax layer, we insert a fully-connected layer
with 600 units to reduce the number of connec-
tions in the output layer.

For our proposed models, we empirically select
σ in Equation 6 from (3

2 ,
10
2 ,

15
2 ,

20
2 ) on a develop-

ment corpus. In our experiments, we found the at-
tention models give the best trade-off between the
window size and accuracy when σ = 1.5. Note
that the value of σ only determines the maximum
of penalty when g(t) outputs 1, but does not re-
sults in a fixed window size.

The NMT models are trained using Adam opti-
mizer (Kingma and Ba, 2014) with an initial learn-
ing rate of 0.0001. We train the model for six
epochs and start to halve the learning rate from
the beginning of the fourth epoch. The maximum
norm of the gradients is clipped to 3. Final param-
eters are selected by the smoothed BLEU (Lin and
Och, 2004) on validation set. During test time, we
use beam search with a beam size of 20.

In En-Ja task, we evaluate our implemented
NMT models with BLEU and RIBES (Isozaki
et al., 2010), in order to align with other researches
on the same dataset. The results are reported fol-
lowing standard post-processing procedures3. For

3We report the scores using Kytea tokenizer. The
post-processing procedure for evaluation is described
in http://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/

De-En task, we report tokenized BLEU 4.

5.2 Evaluations of Flexible Attention

We evaluate the attention models to determine the
minimum window size they can achieve with a
modest loss of accuracy (0.5 development BLEU)
compared to Flexible Attention with τ = ∞. The
results we obtained are summarized in Table 1.
The scores of Global Attention (conventional at-
tention model) and Local Attention (Luong et al.,
2015a) are listed for comparison. For Local At-
tention, we found a window size of 21 (D = 10)
gives the best performance for En-Ja and De-En
tasks. In this setting, Local Attention achieves an
average window of 18.4 words in En-Ja task and
15.7 words in De-En task, as some sentences in
the test corpus have fewer than 21 words.

For Flexible Attention, we search a good τ
among (0.8, 1.0, 1.2, 1.4, 1.6) on a development
corpus so that the development BLEU(%) does not
degrade more than 0.5 compared to τ = ∞. Fi-
nally, τ = 1.2 is selected for both language pairs
in our experiments.

We can see from the results that Flexible Atten-
tion can achieve comparable scores even consider
only half of the encoder states in each step. After
fine-tuning, our proposed attention model further
reduces 56% of the vision span for En-Ja task and
64% for De-En task. The high reduction rate con-
firms that the conventional attention model per-
forms massive redundant computation. With Flex-
ible Attention, redundant score computation can
be efficiently cut down according to the context.
Interestingly, the NMT models using Flexible At-
tention without the threshold improves the transla-
tion accuracy by a small margin, which may indi-

4The scores are produced by tokenizing with “tok-
enizer.perl” and evaluating with “multi-bleu.perl”.
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Figure 3: Trade off between window size and
performance on the development and test data of
English-Japanese tanslation task

cates that the quality of attention is improved.

5.3 Trade-off between Window Size and
Accuracy

In order to figure out the relation between accu-
racy and the window size of vision span, we plot
out the curve of the trade-off between BLEU score
and average window size on En-Ja task, which is
shown in Figure 3.

The data points are collected by testing different
thresholds 5 with the fine-tuned Flexible Attention
model. Interestingly, the NMT model with our
proposed Flexible Attention suffers almost no loss
in accuracy even the computations are reduced by
half. Further trails to reduce the window size be-
neath 10 words will result in drastically degrada-
tion in performance.

5.4 Effects on Character-level Attention

Model window BLEU RIBES

Global Attention baseline 144.9 26.18 0.767
Flexible Attention (τ=∞) 144.9 26.68 0.763
Flexible Attention (τ=1.0) 80.4 26.18 0.757

+ fine-tuning (τ=1.0) 77.4 26.23 0.757

Table 2: Evaluation results with character-based
English-Japanese NMT models

In order to examine the effects of Flexible At-
tention on extremely long character-level inputs,
we also conducted experiments on character-based

5In detail, the data points in the plot is based on the thresh-
olds in (0.3, 0.5, 0.8, 1.0, 1.2, 1.4, 1.6, 5.0, 8.0, 999).

NMT models. We adopt the same network ar-
chitecture as word-based models in the English-
Japanese task, unless the sentences in both sides
are tokenized into characters. We keep 100 most
frequent types of character for the English side and
3000 types for the Japanese side. The embedding
size is set to 100 for both sides. In order to train
the models faster, all LSTMs in this experiment
have 500 hidden units. The character-based mod-
els are trained 20 epochs with Adam optimizer
with an initial learning rate of 0.0001. The learn-
ing rate begins to halve from 18-th epoch. After
fine-tuning the model with the same hyperparam-
eter (β = 0.1), we selected the threshold to be
τ = 1.0 in the same manner as the word-level ex-
periment. We did not evaluate Local Attention in
this experiment as selecting a proper fixed window
size is time-consuming when the length of input
sequence is extremely long.

The experimental results of character-based
models are summarized in Table 2. Note that al-
though the performance of character-based models
can not compete with word-based model, the fo-
cus of this experiment is to examine the effects in
terms of the reduction of the window size of vision
span. For this dataset, the character-level tokeniza-
tion will increase the length of input sequences by
6x on average. In this setting, the fine-tuned Flex-
ible Attention model can achieve a reduction rate
of 46% of the vision span. The results indicate
that Flexible Attention can automatically adapt to
the type of training data and learn to control the
strength of penalty properly.

5.5 Impact on Real Decoding Speed
In this section, we examine the impact of the re-
duction of score computation in terms of real de-
coding speed. We compare the fine-tuned Flex-
ible Attention (τ = 1.0) with the conventional
Global Attention on the English-Japanese dataset
with character-level tokenization. 6

We decode 5,000 sentences in the dataset and
report the averaged decoding time on both GPU
7 and CPU 8. For each sequence, the dot produc-
tion with h̄s in the score function (Eq. 3) is pre-
computed and cached before decoding. As differ-

6For word-level tasks, as the “giant” output layer has large
impact on decoding time, we selected the character-level task
to measure real decoding speed.

7NVIDIA GeForce GTX TITAN X.
8Intel CoreTM i7-5960X CPU @ 3.00GHz, single core.

The implementation uses Theano with openblas as numpy
backend.

7



ent attention models will produce different num-
bers of output tokens for a same input, that the de-
coding time will be influenced by different compu-
tation steps of the decoder LSTM. In order to fairly
compare the decoding time, we force the decoder
to use the tokens in the reference as feedbacks.
Thus, the number of decoding steps remains the
same for both models.

Model avg. time (GPU) avg. time (CPU)

Global Attention 123ms 751ms
Flexible Attention 136ms 677ms

Table 3: Average decoding time for one sentence
on the English-Japanese dataset with character-
level tokenization

As shown in Table 3, reducing the amount of
computation in attention model is shown to benefit
the decoding speed on CPU. However, applying
Flexible Attention slows down the decoding speed
on GPU. This is potentially due to the overhead of
computing the strength of penalty in Equation 8.

For the CPU-based decoding, after profiling our
Theano code, we found that the output layer is
the main bottleneck, which accounts for 58% of
the computation time. In a recent paper (L’Hostis
et al., 2016), the authors show that CPU decod-
ing time can be reduced by 90% by reducing the
computation of the output layer, resulting in just
over 140ms per sentence. Our proposed atten-
tion model has the potential to be combined with
their method to further reduce the decoding time
on CPU.

As the score function we use in this paper has
relatively low computation cost, the difference of
real decoding speed is expected to be enlarged
with more complicated attention models, such as
Recurrent Attention (Yang et al., 2016) and Neu-
ral Tensor Network (Socher et al., 2013).

5.6 Qualitative Analysis of Flexible Attention

In order to inspect the behaviour of the penalty
function in Equation 7, we let the NMT model
translate the sentence in Figure 1(a) and record
the word positions the attention model considers
in each step. The vision span predicted by Flexi-
ble Attention is visionized in Figure 1(b).

We can see that the value of g(t) changes dy-
namically in different context, resulting in differ-
ent vision span in each step. In the most of the

time, the attention is constrained in a local span
when translating inside phrases. When emitting
the fifth word “TAIRYOU”, as the reordering oc-
curs, the attention model looks globally to find the
next word to translate. Analyzing the vision spans
predicted by Flexible Attention in De-En task also
shows similar result that the model only attends to
a large span occasionally. The qualitative analy-
sis of Flexible Attention confirms our hypothesis
that attending globally in each step is redundant
for machine translation. More visualizations can
be found in the supplementary material.

6 Conclusion

In this paper, we proposed a novel attention frame-
work that is capable of reducing the window size
of attention dynamically according to the context.
In our experiments, we found the proposed model
can safely reduce the window size by 56% for
English-Japanese and 64% German-English task
on average. For character-based models, our pro-
posed Flexible Attention can also achieve a reduc-
tion rate of 46%.

In qualitative analysis, we found that Flexible
Attention only needs to put attention on a large
window occasionally, especially when long-range
reordering is required. The results confirm the
existence of massive redundant computation in
the conventional attention mechanism. By cutting
down unnecessary computation, NMT models can
translate extremely long sequence efficiently or in-
corporate more expensive score functions.
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Figure 4: A visionization of the vision spans predicted by Flexible Attention for six random long sen-
tences in the De-En development corpus
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Abstract

In this paper, we offer an in-depth anal-
ysis about the modeling and search per-
formance. We address the question if a
more complex search algorithm is nec-
essary. Furthermore, we investigate the
question if more complex models which
might only be applicable during rescoring
are promising.

By separating the search space and the
modeling using n-best list reranking, we
analyze the influence of both parts of an
NMT system independently. By compar-
ing differently performing NMT systems,
we show that the better translation is al-
ready in the search space of the translation
systems with less performance. This re-
sults indicate that the current search algo-
rithms are sufficient for the NMT systems.
Furthermore, we could show that even a
relatively small n-best list of 50 hypothe-
ses already contain notably better transla-
tions.

1 Introduction

Recent advances in NMT systems (Bahdanau
et al., 2014; Cho et al., 2014) have shown im-
pressive results in improving machine translation
tasks. Not only it performed greatly in recent ma-
chine translation campaigns (Cettolo et al., 2015;
Bojar et al., 2016) measured in BLEU (Papineni
et al., 2002), it is considered to be able to generate
sentences with better fluency.

Despite the successful results in translation per-
formance, however, the optimality of the search al-
gorithm in NMT has been left under-explored. In
this work, we analyze the influence of search and
modeling of an NMT system by evaluating them

separately. We aim to demonstrate whether fur-
ther research on the model development is more
promising or the one on the search algorithm
would be more beneficial.

We attempt to simulate this by n-best rescor-
ing using different models. For this, n-best lists
are rescored by different models including the one
which generated them. Additionally we build a
configuration with all n-best lists joined, in order
to see whether rescoring this joined n-best list us-
ing the same model would bring a performance
boost.

2 Related Work

There has been a number of works devoted to com-
bine different systems from the same or different
machine translation (MT) paradigms using n-best
lists of hypotheses (Matusov et al., 2006; Heafield
et al., 2009; Macherey and Och, 2007). The hy-
potheses are aligned, combined and scored by a
model to produce the best candidate according to
a metric. There was a thorough analysis on how
the size of n, the diversity of the outputs from dif-
ferent systems and performance of individual sys-
tems can affect the final translation of the system
combination. Hildebrand and Vogel (2008) exam-
ine the feature impact and the n-best list size of
such a combination of phrase-based, hierarchical
and example-based systems. Gimpel et al. (2013)
show how diversity of the outputs and the size of
the n-best lists determine the performance of the
combined system.

Costa-Jussà et al. (2007) analyze the impact of
the beam size used in statistical machine transla-
tion (SMT) systems. Wisniewski and Yvon (2013)
conduct an in-depth analysis over several types of
errors. Based on their proposal to effectively cal-
culate oracle BLEU score for an SMT system, they
can separate the errors due to the restriction of the
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search space (search error) from the errors due to
models not good enough to cover the best transla-
tion (model error). Although this work is the clos-
est to our work in terms of analysis methods, our
work differs from theirs by addressing the issue
focused on the NMT systems.

In Neubig et al. (2015), the size of the n-best list
produced by a phrase-based SMT and rescored by
an NMT is taken into account for an error investi-
gation. The work also shows which types of errors
from the phrase-based system can be corrected or
improved after NMT rescoring. To the best of our
knowledge, our work is the first to examine the
impact of search and model performance in pure
NMT systems.

2.1 Neural Machine Translation

Neural machine translation, whilst considered to
be in the same direction with phrase-based SMT
from a statistical perspective, is actually separa-
ble from traditional SMT in terms of how it mod-
els the representation of source and target sen-
tences as well as the translation relationship be-
tween them. In this section, we describe the gen-
eral architecture of a NMT system in order to un-
derstand the needs and importance of such an anal-
ysis. The NMT architecture described here is sim-
ilar to the attention-based NMT from Bahdanau
et al. (2014).

An attentional NMT system consists of an
encoder representing a source sentence and an
attention-aware decoder that produces the trans-
lated sentence.

The encoder which is comprised of bidirec-
tional recurrent layers reads words from the source
sentence and encodes them into annotation vec-
tors. Each annotation vector contains the infor-
mation of the source sentence related to the corre-
sponding word from both forward and backward
directions.

A single layer featuring attention mechanism al-
lows the decoder to decide which source words
should take part in the prediction process of the
current target word. Basically, attention layer ex-
amines a context vector of the source sentence
which is weighted sum of all annotation vectors
and normalized, where the weights reflect some
relevance between previous target words and all
the source words.

The decoder, which is also recurrent-based, re-
cursively generates the target candidates with their

probabilities to be selected based on the context
vector from the attention layer, the previous re-
current state and the embedding of the previously
chosen word.

The whole network is then trained in an end-to-
end fashion to learn parameters which maximizes
the likelihood between the outputs and the refer-
ences. In the testing phase, a beam search is uti-
lized to find the most probable target sequences
giving the n-best list from the architecture.

We could see that in NMT, therefore, the model
(e.g. the ways the encoder representing a source
sentence or the attentional layer modeling atten-
tion mechanism) and the search algorithm are one
of the most important aspects to be analyzed.

3 Search and Model Performance

In this analysis we evaluate the search and mod-
eling performance of NMT. In order to evaluate
them individually, we need to separate the mod-
eling errors and the search errors of the system.
While the search in phrase-based MT was rela-
tively complex, the search algorithm in NMT is
relatively straightforward. In state-of-the-art sys-
tem, a beam search algorithm is used with a small
beam between 10− 50.

The goal of this work is to establish whether
improvements on the NMT model itself is more
promising or the ones on the search algorithm. If
there are many search errors due to the pruning
during decoding, a better search algorithm would
be promising. In contrast, if there are relatively
few search errors, further research on the model is
more promising.

3.1 Analysis Setup

A straightforward way would be to evaluate all
possible hypotheses. In this case we do not have
any search error and can directly measure the mod-
eling errors. However this cannot be performed ef-
ficiently since the number of all possible hypothe-
ses is very large. Therefore, we analyzed the per-
formance of two or several systems with different
performances.

In the experiments, for example, we have sys-
tems A and B where the translation performance
of A is better than the one of B. Then we approxi-
mated the search space of A and B by their n-best
lists and evaluated the performance of each system
in the search space of A by scoring the n-best list
with the model and selecting the hypothesis with
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Figure 1: Search space analysis

the highest probability. Figure 1 shows the search
spaces of system A and B, approximated by their
n-best hypotheses. Their 1-best entries are also
marked accordingly.

The question we address is why the system B
did select its best hypothesis  and did not select
the better-performant hypothesis �. One reason
might be that � is not in the system B’s search
space and therefore the system could not find it.
The other reason might be that system B prefers over �. In this case, we need to improve the
modelling.

If the performance of model B on the n-best
list of A is better than the initial score of B, it sug-
gests that the model B is able to select a better
hypothesis and therefore the search is not optimal.
On the other hand, if the performance is similar, it
means that B is not able to select a better hypothe-
sis, even though there are better ones according to
the evaluation metric.

In the experiments, we used two different ways
of constructing the models A and B. In a first se-
ries of experiments, we used the single best sys-
tem as well as ensemble systems. In a second se-
ries, we used systems using different ways to gen-
erate the translations. Details of the systems will
be given in the Section 4.

4 System Description

Our German↔English NMT systems are built us-
ing an encoder-decoder framework with atten-
tion mechanism, nematus.1 Byte pair encod-
ing (BPE) is used in order to generate sub-word
units (Sennrich et al., 2015). Long sentences
whose sentence length exceeds 50 words are ex-

1https://github.com/rsennrich/nematus

empted from the training. We use minibatch size
80 and sentences are shuffled within every mini-
batch. Word embedding of size 500 is applied,
with hidden layers of size 1024. Dropout is ap-
plied at every layer with the probability 0.2 in the
embedding and hidden layers and 0.1 in the input
and output layers. Our models are trained with
Adadelta (Zeiler, 2012) and the gradient norm is
clipped to 1.0. For the single models, we apply
the early stopping based on the validation score.

The baseline system is trained on the WMT
parallel data, namely EPPS, NC, CommonCrawl
and TED corpus. As validation data we used the
newstest13 set from IWSLT evaluation campaign.
Therefore, this data is from TED talks. Test is
applied on two domains. First domain is TED
talks, same as the optimization set. We use new-
stest14 for this testing. Another domain is tele-
phone conversation and we used MSLT (Chris-
tian Federmann, 2016) for testing. Since no ex-
act genre-matching development data is published
for the evaluation campaign (Cettolo et al., 2015),
we used the TED-optimized system for the MSLT
testing. For each experiment, we also offer oracle
BLEU scores on the n-best lists, calculated using
multeval (Clark et al., 2011).

4.1 Configurations

We tried different system configurations to gen-
erate and rescore the n-best lists. By using 40K
operations of BPE we had SmallVoc configura-
tion, and with 80K BigVoc configuration. In Smal-
lVoc.rev, target sentence are generated in the re-
versed order. In SmallVoc.mix, target side corpus
is joined with the source side corpus to form a
mixed input as described in Cho et al. (2016). We
build an NMT system which takes pre-translation
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from a PBMT system following the work in
Niehues et al. (2016), which will be referred as
PrePBMT. A configuration using more monolin-
gual data for this training is called PrePBMT.large.
In Union, we use the joined n-best lists from dif-
ferent systems.

4.2 n-best list

All n-best lists are generated for n = 50 from
a standard beam search. The size of n-best lists
are limited due to time and computational limi-
tation. In our preliminary experiments where we
increased n-best list from 1 to 50, it did not sig-
nificantly change the performance of one model.
Therefore, in this work, we approximate the 50-
best lists our search space and conducted the anal-
ysis. By doing so, we also aim to give a practical
analysis on a model vs. search performance com-
parison in NMT and useful guidelines from it.

5 Analysis on the Results

In this section, we discuss the experimental results
and detailed analysis. In the first part, we discuss
the results of the experiments on the baseline sys-
tems. In the second part, we combine NMT sys-
tems that use different text representations.

5.1 NMT Baseline Systems

In this section, we analyze the performance of
baseline systems. It largely breaks down to two
tasks: TED and MSLT translation.

5.1.1 TED translation
Table 1 shows the baseline system performance on
the TED translation task, from German to English.
The table is showing translation performance of
reranking each n-best list using different models.

PPPPPPPPPn-best
Model

Single Ensemble Oracle

Single 31.96 32.37 41.81
Ensemble 32.09 32.41 42.31
Union 31.95 32.39 44.55

Table 1: Baseline: TED German→English

For the Single system, we took the best-
performant BigVoc system. The Ensemble system
is then generated by combining several training
steps of the single system training. The Union n-
best list is the joined n-best list of all the individ-
ual systems used in the ensemble. For building

a Ensemble system, we combine different models
from several time steps of Single training. Then in
the softmax operation, normalized probabilities of
each word are considered. As mentioned earlier,
we also offer the oracle BLEU scores given each
n-best list.

Model performance As shown in the table, we
can improve the translation performance by 0.5
BLEU point by using the Ensemble system to
rescore n-best list generated by the same system,
compared to the same case for Single system. The
main contribution for this improvement seems to
be the better modeling. When we use the Single
model to rescore the Ensemble or Union n-best
list, we get mainly the same performance. Thus,
the reason for the relatively lower performance of
the Single system is considered to be that it does
not model the translation probabilities better, not
because it does not find better translations. The
oracle scores indicate the similar trend. When the
n-best list is large (Union setup), we have better
translations in the n-best list. However, these hy-
potheses were not selected by either of the models.

Search performance The numbers in Table 1
suggests that the search is well-performant in
NMT. For example, when we use the Ensemble
model to rescore the Single n-best list, the transla-
tion performance reaches 32.37 BLEU points. At
the same time, when we use the same model to
rescore the Ensemble n-best list, we achieve a sim-
ilar performance.

5.1.2 MSLT translation
The performance on the single system on the
MSLT task (Christian Federmann, 2016) is shown
in Table 2.
PPPPPPPPPn-best

Model
Single Ensemble Oracle

Single 34.63 38.35 53.85
Ensemble 35.94 38.80 56.46

Table 2: Baseline: MSLT German→English

In this task, rescoring Single n-best list using
the same model itself performs around 4 BLEU
worse than rescoring Ensemble n-best list using
the Ensemble model. Also, we can observe that
the Single model performs better when using the
n-best list of the Ensemble model.

We find two explanations for this improve-
ment. A) The Ensemble n-best list contains better-
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performing hypotheses that the Single model did
not find during the search. Or alternatively, B) the
Ensemble n-best list does not contain the hypothe-
ses that are good according to the Single model
but not according to the evaluation metric. In this
case, the model would select different hypotheses.

In order to locate search error, we evaluated and
compared the model score of hypothesis chosen
from different n-best lists. Only in 2.5% of the
chosen hypotheses, the score of the hypothesis se-
lected from the Ensemble n-best list is higher than
the one from the Single n-best list. Thus, we have
a search error only in these cases.

In contrast, in 90.7% of the sentences, the score
from the Single n-best list is higher. The main
reason for the improvement, therefore, is not con-
sidered to be better search. Rather, the search
space by the Ensemble system does not contain the
worse-performing translations which are highly
ranked by the Single system.

The n-best lists of the Single model contains
well-performing translations. For example, the
performance achieved when using the Ensemble
model to rescore the Single n-best list is almost
similar to the one achieved when applying the
same model on the Ensemble n-best list. This
performance is nearly 4 BLEU points better than
rescoring the same n-best list using the Single
model.

While the performance of the Ensemble model
on both n-best lists is similar, interestingly, the or-
acle score of the Ensemble n-best list is clearly
higher. Therefore, the models seem not able to se-
lect better translations in the Ensemble n-best list
compared to the Single n-best list.

5.2 NMT Text Representation Systems

As a next line of experiment, we combine NMT
systems that use different text representations.

5.2.1 TED translation
Table 3 lists the systems used in the experiment
and their performance on the TED task.

We can observe that the results of Union
rescored by each model is similar to the perfor-
mance of the model’s n-best list rescoring, as
marked in bold letters in each column. Consid-
ering that the Union n-best list is considerably
larger, it seems again that the model can find the
best hypothesis according to the model.

In contrast, if we use all models (All) by using
sum of log probabilities of all models to rescore

the n-best lists, we achieve similar performance
for all n-best lists. Thus, it seems that all 50-
best lists contain already very good hypotheses.
Only the n-best list of the PrePBMT system seems
to contain relatively worse options. This is also
shown by the oracle scores. One reason could
be that the pre-translation by the PBMT system
is guiding the search and therefore the n-best list
contains relatively limited variety.

In addition, we observe that the performance of
each model on its own n-best list is considerably
worse than the model rescoring other n-best lists.
This can be explained by the following phenom-
ena: some translations of a system A are highly-
ranked by the model itself, but not by the others.
Therefore, they are selected by the system A but
not in the n-best lists of the other systems. If they
are in the n-best list, e.g. in the n-best lists of the
system A and in the Union, they will be selected
only when using the system A, leading to worse
performance in BLEU. In contrast, if we use dif-
ferent n-best lists, the translation performance is
better.

English→German In addition, we extend this
experiment to another language direction. Table
4 shows the results when the same experiment is
applied to En-De TED task.

Here the same phenomena is observed. Again,
the Union n-best list does not improve the transla-
tion quality. Nonetheless, the oracle score is sig-
nificantly higher indicating that the model finds
the better hypotheses. Furthermore, the n-best
lists already contain better hypotheses which can
be chosen using better models, i.g. the combina-
tion of all models.

5.2.2 MSLT translation
Table 5 shows the similar results when the same
experiments are applied to the MSLT task. The
Union configuration performs similar to rescoring
using the same model, while performing consid-
erably worse than the case where the same n-best
list rescored by other models.

6 Conclusion

Our experiments on two language pairs and two
different tasks showed that there are only few
search errors in the state-of-the-art NMT systems.
Even when better hypotheses are added in the n-
best list, the models do not select a different hy-
pothesis. Thus, the search algorithms seem to be
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XXXXXXXXXXXn-best list
Model

SmallVoc SmallVoc.rev BigVoc PrePBMT All Oracle

SmallVoc 31.74 32.17 32.62 32.55 33.03 41.82
SmallVoc.rev 32.24 31.28 32.58 32.06 32.93 40.97
BigVoc 32.57 32.50 32.41 32.63 33.26 42.31
PrePBMT 32.19 31.97 32.53 31.41 32.65 40.67
Union 31.83 31.27 32.42 31.39 33.24 46.58

Table 3: Text representation systems: TED German→English

XXXXXXXXXXXn-best list
Model

SmallVoc.mix BigVoc PrePBMT PrePBMT.large All Oracle

SmallVoc.mix 26.19 27.09 26.93 27.03 27.12 33.71
BigVoc 26.97 27.28 27.26 27.12 27.48 34.16
PrePBMT 26.96 27.00 26.44 27.15 27.14 32.95
PrePBMT.large 27.25 27.47 26.85 27.03 27.41 33.78
Union 26.25 27.28 26.44 27.03 27.76 38.95

Table 4: Text representation systems: TED English→German

sufficient.
Furthermore, we showed that a relatively small

n-best list of 50 entries already contains notably
better translation hypotheses. This result indicates
that improving rescoring models are promising for
performance boost. In this work, we showed that it
is often sufficient to use a model in rescoring only.
This finding also motivates the development of
models which are challenging to use directly dur-
ing the decoding, such as bi-directional decoders.
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Abstract

Interest in neural machine translation has
grown rapidly as its effectiveness has
been demonstrated across language and
data scenarios. New research regu-
larly introduces architectural and algorith-
mic improvements that lead to significant
gains over “vanilla” NMT implementa-
tions. However, these new techniques
are rarely evaluated in the context of pre-
viously published techniques, specifically
those that are widely used in state-of-the-
art production and shared-task systems.
As a result, it is often difficult to de-
termine whether improvements from re-
search will carry over to systems deployed
for real-world use. In this work, we rec-
ommend three specific methods that are
relatively easy to implement and result in
much stronger experimental systems. Be-
yond reporting significantly higher BLEU
scores, we conduct an in-depth analysis of
where improvements originate and what
inherent weaknesses of basic NMT mod-
els are being addressed. We then com-
pare the relative gains afforded by several
other techniques proposed in the literature
when starting with vanilla systems versus
our stronger baselines, showing that exper-
imental conclusions may change depend-
ing on the baseline chosen. This indicates
that choosing a strong baseline is crucial
for reporting reliable experimental results.

1 Introduction

In the relatively short time since its introduction,
neural machine translation has risen to promi-
nence in both academia and industry. Neural mod-
els have consistently shown top performance in

shared evaluation tasks (Bojar et al., 2016; Cet-
tolo et al., 2016) and are becoming the technology
of choice for commercial MT service providers
(Wu et al., 2016; Crego et al., 2016). New work
from the research community regularly introduces
model extensions and algorithms that show sig-
nificant gains over baseline NMT. However, the
continuous improvement of real-world translation
systems has led to a substantial performance gap
between the first published neural translation mod-
els and the current state of the art. When promis-
ing new techniques are only evaluated on very ba-
sic NMT systems, it can be difficult to determine
how much (if any) improvement will carry over
to stronger systems; is new work actually solving
new problems or simply re-solving problems that
have already been addressed elsewhere?

In this work, we recommend three specific tech-
niques for strengthening NMT systems and empir-
ically demonstrate how their use improves relia-
bility of experimental results. We analyze in depth
how these techniques change the behavior of NMT
systems by addressing key weaknesses and discuss
how these findings can be used to understand the
effect of other types of system extensions. Our
recommended techniques include: (1) a training
approach using Adam with multiple restarts and
learning rate annealing, (2) sub-word translation
via byte pair encoding, and (3) decoding with en-
sembles of independently trained models.

We begin the paper content by introducing a
typical NMT baseline system as our experimen-
tal starting point (§2.1). We then present and ex-
amine the effects of each recommended technique:
Adam with multiple restarts and step size anneal-
ing (§3), byte pair encoding (§4), and independent
model ensembling (§5). We show that combining
these techniques can lead to a substantial improve-
ment of over 5 BLEU (§6) and that results for sev-
eral previously published techniques can dramati-
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cally differ (up to being reversed) when evaluated
on stronger systems (§6.2). We then conclude by
summarizing our findings (§7).

2 Experimental Setup

2.1 Translation System

Our starting point for experimentation is a stan-
dard baseline neural machine translation system
implemented using the Lamtram1 and DyNet2

toolkits (Neubig, 2015; Neubig et al., 2017). This
system uses the attentional encoder-decoder archi-
tecture described by Bahdanau et al. (2015), build-
ing on work by Sutskever et al. (2014). The trans-
lation model uses a bi-directional encoder with a
single LSTM layer of size 1024, multilayer per-
ceptron attention with a layer size of 1024, and
word representations of size 512. Translation
models are trained until perplexity convergence
on held-out data using the Adam algorithm with
a maximum step size of 0.0002 (Kingma and Ba,
2015; Wu et al., 2016). Maximum training sen-
tence length is set to 100 words. Model vocabulary
is limited to the top 50K source words and 50K tar-
get words by frequency, with all others mapped to
an unk token. A post-processing step replaces any
unk tokens in system output by attempting a dic-
tionary lookup3 of the corresponding source word
(highest attention score) and backing off to copy-
ing the source word directly (Luong et al., 2015).
Experiments in each section evaluate this system
against incremental extensions such as improved
model vocabulary or training algorithm. Evalu-
ation is conducted by average BLEU score over
multiple independent training runs (Papineni et al.,
2002; Clark et al., 2011).

2.2 Data Sets

We evaluate systems on a selection of public data
sets covering a range of data sizes, language di-
rections, and morphological complexities. These
sets, described in Table 1, are drawn from shared
translation tasks at the 2016 ACL Conference on
Machine Translation (WMT16)4 and the 2016 In-
ternational Workshop on Spoken Language Trans-
lation (IWSLT16)5.

1https://github.com/neubig/lamtram
2https://github.com/clab/dynet
3Translation dictionaries are learned from the system’s

training data using fast align (Dyer et al., 2013).
4http://statmt.org/wmt16 (Bojar et al., 2016)
5https://workshop2016.iwslt.org, https:

//wit3.fbk.eu (Cettolo et al., 2012)

Scenario Size (sent) Sources
WMT German-English 4,562,102 Europarl,

Common Crawl,
news commentary

WMT English-Finnish 2,079,842 Europarl,
Wikipedia titles

WMT Romanian-English 612,422 Europarl, SETimes
IWSLT English-French 220,400 TED talks
IWSLT Czech-English 114,390 TED talks

Scenario Validation (Dev) Set Test Set
DE-EN News test 2015 News test 2016
EN-FI News test 2015 News test 2016
RO-EN News dev 2016 News test 2016
EN-FR TED test 2013+2014 TED test 2015+2016
CS-EN TED test 2012+2013 TED test 2015+2016

Table 1: Top: parallel training data available for
all scenarios. Bottom: validation and test sets.

3 Training Algorithms

3.1 Background

The first neural translation models were optimized
with stochastic gradient descent (Sutskever et al.,
2014). After training for several epochs with
a fixed learning rate, the rate is halved at pre-
specified intervals. This widely used rate “anneal-
ing” technique takes large steps to move parame-
ters from their initial point to a promising part of
the search space followed by increasingly smaller
steps to explore that part of the space for a good
local optimum. While effective, this approach
can be time consuming and relies on hand-crafted
learning schedules that may not generalize to dif-
ferent models and data sets.

To eliminate the need for schedules, subsequent
NMT work trained models using the Adadelta al-
gorithm, which automatically and continuously
adapts learning rates for individual parameters
during training (Zeiler, 2012). Model perfor-
mance is reported to be equivalent to SGD with
annealing, though training still takes a consider-
able amount of time (Bahdanau et al., 2015; Sen-
nrich et al., 2016b). More recent work seeks
to accelerate training with the Adam algorithm,
which applies momentum on a per-parameter ba-
sis and automatically adapts step size subject to a
user-specified maximum (Kingma and Ba, 2015).
While this can lead to much faster convergence,
the resulting models are shown to slightly under-
perform compared to annealing SGD (Wu et al.,
2016). However, Adam’s speed and reputation
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of generally being “good enough” have made it
a popular choice for researchers and NMT toolkit
authors6 (Arthur et al., 2016; Lee et al., 2016; Britz
et al., 2017; Sennrich et al., 2017).

While differences in automatic metric scores
between SGD and Adam-trained systems may be
relatively small, they raise the more general ques-
tion of training effectiveness. In the following sec-
tion, we explore the relative quality of the optima
found by these training algorithms.

3.2 Results and Analysis

To compare the behavior of SGD and Adam, we
conduct training experiments with all data sets
listed in §2.2. For each set, we train instances
of the baseline model described in §2.1 with both
optimizers using empirically effective initial set-
tings.7 In the only departure from the described
baseline, we use a byte-pair encoded vocabulary
with 32K merge operations in place of a limited
full-word vocabulary, leading to faster training and
higher metric scores (see experiments in §4).

For SGD, we begin with a learning rate of 0.5
and train the model to convergence as measured
by dev set perplexity. We then halve the learn-
ing rate and restart training from the best previous
point. This continues until training has been run
a total of 5 times. The choice of training to con-
vergence is made both to avoid the need for hand-
crafted learning schedules and to give the optimiz-
ers a better chance to find good neighborhoods
to explore. For Adam, we use a learning rate
(maximum step size) of 0.0002. While Adam’s
use of momentum can be considered a form of
“self-annealing”, we also evaluate the novel ex-
tension of explicitly annealing the maximum step
size by applying the same halving and restarting
process used for SGD. It is important to note that
while restarting SGD has no effect beyond chang-
ing the learning rate, restarting Adam causes the
optimizer to “forget” the per-parameter learning
rates and start fresh.

For all training, we use a mini-batch size of
512 words.8 For WMT systems, we evaluate dev

6Adam is the default optimizer for the Lamtram, Nema-
tus (https://github.com/rsennrich/nematus),
and Marian toolkits (https://github.com/amunmt/
marian).

7Learning rates of 0.5 for SGD and 0.0002 for Adam or
very similar are shown to work well in NMT implementations
including GNMT (Wu et al., 2016), Nematus, Marian, and
OpenNMT (http://opennmt.net).

8For each mini-batch, sentences are added until the word

set perplexity every 50K training sentences for the
first training run and every 25K sentences for sub-
sequent runs. For IWSLT systems, we evaluate ev-
ery 25K sentences and then every 6,250 sentences.
Training stops when no improvement in perplexity
has been seen in 20 evaluations. For each experi-
mental condition, we conduct 3 independent opti-
mizer runs and report averaged metric scores. All
training results are visualized in Figure 1.

Our first observation is that these experiments
are largely in concert with prior work: Adam with-
out annealing (first point) is significantly faster
than SGD with annealing (last point) and often
comparable or slightly worse in accuracy, with
the exception of Czech-English where SGD under-
performs. However, Adam with just 2 restarts and
SGD-style rate annealing is actually both faster
than the fully annealed SGD and obtains signifi-
cantly better results in both perplexity and BLEU.
We conjecture that the reason for this is twofold.
First, while Adam has the ability to automatically
adjust its learning rate, like SGD it still bene-
fits from an explicit adjustment when it has be-
gun to overfit. Second, Adam’s adaptive learning
rates tend to reduce to sub-optimally low values
as training progresses, leading to getting stuck in
a local optimum. Restarting training when reduc-
ing the learning rate helps jolt the optimizer out of
this local optimum and continue to find parameters
that are better globally.

4 Sub-Word Translation

4.1 Background
Unlike phrase-based approaches, neural transla-
tion models must limit source and target vocab-
ulary size to keep computational complexity man-
ageable. Basic models typically include the most
frequent words (30K-50K) plus a single unk to-
ken to which all other words are mapped. As de-
scribed in §2.1, unk words generated by the NMT
system are translated in post-processing by dictio-
nary lookup or pass-through, often with signifi-
cantly degraded quality (Luong et al., 2015). Real-
world NMT systems frequently sidestep this prob-
lem with sub-word translation, where models op-
erate on a fixed number of word pieces that can
be chained together to form words in an arbitrar-

count is reached. Counting words versus sentences leads to
more uniformly-sized mini-batches. We choose the size of
512 based on contrastive experiments that found it to be the
best balance between speed and effectiveness of updates dur-
ing training.
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Figure 1: Results of training the NMT models with Adam and SGD using rate annealing. Each point
represents training to convergence with a fixed learning rate and translating the test set. The learning rate
is then halved and training resumed from the previous best point. Vertical dotted lines indicate 2 Adam
restarts. The table lists dev set perplexities for the final SGD model and the 2-restart Adam model. All
reported values are averaged over 3 independent training runs.

ily large vocabulary. In this section, we exam-
ine the impact of sub-words on NMT, specifically
when using the technique of byte pair encoding
(Sennrich et al., 2016b). Given the full parallel
corpus (concatenation of source and target sides),
BPE first splits all words into individual characters
and then begins merging the most frequently adja-
cent pairs. Merged pairs become single units that
are candidates for further merging and the process
continues to build larger word pieces for a fixed
number of operations. The final result is an en-
coded corpus where the most frequent words are
single pieces and less frequent words are split into
multiple, higher frequency pieces. At test time,
words are split using the operations learned dur-
ing training, allowing the model to translate with
a nearly open vocabulary.9 The model vocabulary
size grows with and is limited by the number of
merge operations. While prior work has focused
on using sub-words as a method for translating

9It is possible that certain intermediate word pieces will
not appear in the encoded training data (and thus the model’s
vocabulary) if all occurrences are merged into larger units.
If these pieces appear in test data and are not merged, they
will be true OOVs for the model. For this reason, we map
singleton word pieces in the training data to unk so the model
has some ability to handle these cases (dictionary lookup or
pass-through).

WMT IWSLT
DE-EN EN-FI RO-EN EN-FR CS-EN

Words 50K 31.6 12.6 27.1 33.6 21.0
BPE 32K 33.5 14.7 27.8 34.5 22.6
BPE 16K 33.1 14.7 27.8 34.8 23.0

Table 2: BLEU scores for training NMT models
with full word and byte pair encoded vocabularies.
Full word models limit vocabulary size to 50K.
All models are trained with annealing Adam and
scores are averaged over 3 optimizer runs.

unseen words in morphologically rich languages
(Sennrich et al., 2016b) or reducing model size
(Wu et al., 2016), we examine how using BPE ac-
tually leads to broad improvement by addressing
inherent weaknesses of word-level NMT.

4.2 Results and Analysis

We measure the effects of byte pair encoding by
training full-word and BPE systems for all data
sets as described in §2.1 with the incremental
improvement of using Adam with rate annealing
(§3). As Wu et al. (2016) show different levels
of effectiveness for different sub-word vocabulary
sizes, we evaluate running BPE with 16K and 32K
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merge operations. As shown in Table 2, sub-word
systems outperform full-word systems across the
board, despite having fewer total parameters. Sys-
tems built on larger data generally benefit from
larger vocabularies while smaller systems perform
better with smaller vocabularies. Based on these
results, we recommend 32K as a generally effec-
tive vocabulary size and 16K as a contrastive con-
dition when building systems on less than 1 mil-
lion parallel sentences.

To understand the origin of these improvements,
we divide the words in each test set into classes
based on how the full-word and BPE models han-
dle them and report the unigram F-1 score for
each model on each class. We also plot the full-
word and BPE vocabularies for context. As shown
in Figure 2, performance is comparable for the
most frequent words that both models represent
as single units. The identical shapes on the left-
most part of each vocabulary plot indicate that
the two systems have the same number of train-
ing instances from which to learn translations. For
words that are split in the BPE model, perfor-
mance is tied to data sparsity. With larger data,
performance is comparable as both models have
enough training instances to learn reliable statis-
tics; with smaller data or morphologically rich lan-
guages such as Finnish, significant gains can be
realized by modeling multiple higher-frequency
sub-words in place of a single lower-frequency
word. This can be seen as effectively moving to
the left in the vocabulary plot where translations
are more reliable. In the next category of words
beyond the 50K cutoff, the BPE system’s ability
to actually model rare words leads to consistent
improvement over the full-word system’s reliance
on dictionary substitution.

The final two categories evaluate handling of
true out-of-vocabulary items. For OOVs that
should be translated, the full-word system will al-
ways score zero, lacking any mechanism for pro-
ducing words not in its vocabulary or dictionary.
The more interesting result is in the relatively low
scores for OOVs that should simply be copied
from source to target. While phrase-based sys-
tems can reliably pass OOVs through 1:1, full-
word neural systems must generate unk tokens
and correctly map them to source words using
attention scores. Differences in source and tar-
get true vocabulary sizes and frequency distribu-
tions often lead to different numbers of unk to-

kens in source and target sentences, resulting in
models that are prone to over or under-generating
unks at test time. BPE systems address these
weaknesses, although their performance is not al-
ways intuitive. While some OOVs are success-
fully translated using word pieces, overall scores
are still quite low, indicating only limited success
for the notion of open vocabulary translation of-
ten associated with sub-word NMT. However, the
ability to learn when to self-translate sub-words10

leads to significant gains in pass-through accuracy.
In summary, our analysis indicates that while

BPE does lead to smaller, faster models, it also
significantly improves translation quality. Rather
than being limited to only rare and unseen words,
modeling higher-frequency sub-words in place of
lower-frequency full words can lead to significant
improvement across the board. The specific im-
provement in pass-through OOV handling can be
particularly helpful for handling named entities
and open-class items such as numbers and URLs
without additional dedicated techniques.

5 Ensembles and Model Diversity

The final technique we explore is the combination
of multiple translation models into a single, more
powerful ensemble by averaging their predictions
at the word level. The idea of ensemble aver-
aging is well understood and widely used across
machine learning fields and work from the earli-
est encoder-decoder papers to the most recent sys-
tem descriptions reports dramatic improvements
in BLEU scores for model ensembles (Sutskever
et al., 2014; Sennrich et al., 2016a). While this
technique is conceptually simple, it requires train-
ing and decoding with multiple translation mod-
els, often at significant resource costs. However,
these costs are either mitigated or justified when
building real-world systems or evaluating tech-
niques that should be applicable to those systems.
Decoding costs can be reduced by using knowl-
edge distillation techniques to train a single, com-
pact model to replicate the output of an ensemble
(Hinton et al., 2015; Kuncoro et al., 2016; Kim
and Rush, 2016). Researchers can skip this time-
consuming step, evaluating the ensemble directly,
while real-world system engineers can rely on it
to make deployment of ensembles practical. To re-

10Learning a single set of BPE operations by concatenating
the source and target training data ensures that the same word
will always be segmented in the same way whether it appears
on the source or target side.
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Figure 2: Effects of using sub-
word units on model vocabulary
and translation accuracy for spe-
cific types of words.
Left figures: Source vocabulary
visualizations for NMT training
data using full words and byte-
pair encoded tokens. The number
of merge operations is set to ei-
ther 32K or 16K, chosen by best
BLEU score. BPE reduces vo-
cabulary size by 1-2 orders of
magnitude and allows models to
cover the entire training corpus.
Full-word systems for all scenar-
ios use a much larger vocabulary
size of 50K (labeled horizontal
line) that leaves much of the to-
tal vocabulary uncovered.
Right figures: Class-wise test set
unigram F1 scores for NMT sys-
tems using full words and byte-
pair encoded tokens. Scores are
reported separately for the fol-
lowing classes: words in the vo-
cabulary of both the full-word
and BPE models (Full), words
in the vocabulary of the full-
word model that are split in the
BPE model (Split), words outside
the vocabulary of the full-word
model but covered by its dictio-
nary (Dict), words outside the vo-
cabulary of the full-word model
and its dictionary that should be
translated (OOV-T), and words
outside the vocabulary of the full-
word model and its dictionary
that should be passed through
(OOV-P). All reported scores are
averaged over 3 independent op-
timizer runs.

23



WMT IWSLT
DE-EN EN-FI RO-EN EN-FR CS-EN

Vanilla 30.2 11.8 26.4 33.2 20.2
Recommended 33.5 14.7 27.8 34.5 22.6
+Ensemble 35.8 17.3 30.3 37.3 25.5

Table 3: Test set BLEU scores for “vanilla” NMT
(full words and standard Adam), and our recom-
mended systems (byte pair encoding and anneal-
ing Adam, with and without ensembling). Scores
for single models are averaged over 3 independent
optimizer runs while scores for ensembles are the
result of combining 3 runs.

duce training time, some work ensembles different
training checkpoints of the same model rather than
using fully independent models (Jean et al., 2015;
Sennrich et al., 2016a). While checkpoint ensem-
bling is shown to be effective for improving BLEU
scores under resource constraints, it does so with
less diverse models. As discussed in recent work
and demonstrated in our experiments in §6, model
diversity is a key component in building strong
NMT ensembles (Jean et al., 2015; Sennrich et al.,
2016a; Farajian et al., 2016). For these reasons,
we recommend evaluating new techniques on sys-
tems that ensemble multiple independently trained
models for the most reliable results. Results show-
ing both the effectiveness of ensembles and the
importance of model diversity are included in the
larger experiments conducted in the next section.

6 On Trustable Evaluation

6.1 Experimental Setup

In this section, we evaluate and discuss the ef-
fects that choice of baseline can have on experi-
mental conclusions regarding neural MT systems.
First, we build systems that include Adam with
rate annealing, byte pair encoding, and indepen-
dent model ensembling and compare them to the
vanilla baselines described in §2.1. As shown
in Table 3, combining these techniques leads to
a consistent improvement of 4-5 BLEU points
across all scenarios. These improvements are
the result of addressing several underlying weak-
nesses of basic NMT models as described in previ-
ous sections, leading to systems that behave much
closer to those deployed for real-world tasks.

Next, to empirically demonstrate the impor-
tance of evaluating new methods in the context
of these stronger systems, we select several tech-

EN-FR Adam +Annealing +Ensemble
Word BPE Word BPE BPE

Baseline 33.2 33.7 33.6 34.8 37.3
Dropout 33.9 33.9 34.5 34.7 37.2
Lexicon Bias 33.8 34.0 33.9 34.8 37.1
Pre-Translation – 34.0 – 34.9 36.6
Bootstrapping 33.7 34.1 34.4 35.2 37.4

CS-EN Adam +Annealing +Ensemble
Word BPE Word BPE BPE

Baseline 20.2 22.1 21.0 23.0 25.5
Dropout 20.7 22.7 21.4 23.6 26.1
Lexicon Bias 20.7 22.5 20.6 22.7 25.2
Pre-Translation – 23.1 – 23.8 25.8
Bootstrapping 20.7 23.2 21.6 23.6 26.2

Table 4: Test set BLEU scores for several pub-
lished NMT extensions. Entries are evaluated with
and without Adam annealing, byte pair encoding,
and model ensembling. A bold score indicates im-
provement over the baseline while an italic score
indicates no change or degradation. Scores for
non-ensembles are averaged over 3 independent
optimizer runs and ensembles are the result of
combining 3 runs.

niques shown to improve NMT performance and
compare their effects as baseline systems are iter-
atively strengthened. Focusing on English-French
and Czech-English, we evaluate the following
techniques with and without the proposed im-
provements, reporting results in Table 4:
Dropout: Apply the improved dropout tech-
nique for sequence models described by Gal and
Ghahramani (2016) to LSTM layers with a rate of
0.2. We find this version to significantly outper-
form standard dropout.
Lexicon bias: Incorporate scores from a pre-
trained lexicon (fast align model learned on
the same data) directly as additional weights when
selecting output words (Arthur et al., 2016). Tar-
get word lexicon scores are computed as weighted
sums over source words based on attention scores.
Pre-translation: Translate source sentences with
a traditional phrase-based system trained on the
same data. Input for the neural system is the orig-
inal source sentence concatenated with the PBMT
output (Niehues et al., 2016). Input words are
prefixed with either s or t to denote source or
target language. We improve performance with a
novel extension where word alignments are used
to weave together source and PBMT output so that
each original word is immediately followed by its
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suggested translation from the phrase-based sys-
tem. As pre-translation doubles source vocabulary
size and input length, we only apply it to sub-word
systems to keep complexity reasonable.
Data bootstrapping: Expand training data by ex-
tracting phrase pairs (sub-sentence translation ex-
amples) and including them as additional training
instances (Chen et al., 2016). We apply a novel ex-
tension where we train a phrase-based system and
use it to re-translate the training data, providing a
near-optimal phrase segmentation as a byproduct.
We use these phrases in place of the heuristically
chosen phrases in the original work, improving
coverage and leading to more fine-grained trans-
lation examples.

6.2 Experimental Results

The immediately noticeable trend from Table 4
is that while all techniques improve basic sys-
tems, only a single technique, data bootstrapping,
improves the fully strengthened system for both
data sets (and barely so). This can be attributed
to a mix of redundancy and incompatibility be-
tween the improvements we’ve discussed in pre-
vious sections and the techniques evaluated here.

Lexicon bias and pre-translation both incorpo-
rate scores from pre-trained models that are shown
to improve handling of rare words. When NMT
models are sub-optimally trained, they can bene-
fit from the suggestions of a better-trained model.
When full-word NMT models struggle to learn
translations for infrequent words, they can learn
to simply trust the lexical or phrase-based model.
However, when annealing Adam and BPE allevi-
ate these underlying problems, the neural model’s
accuracy can match or exceed that of the pre-
trained model, making external scores either com-
pletely redundant or (in the worst case) harm-
ful bias that must be overcome to produce cor-
rect translations. While pre-translation fares bet-
ter than lexicon bias, it suffers a reversal in one
scenario and a significant degradation in the other
when moving from a single model to an ensem-
ble. Even when bias from an external model im-
proves translation, it does so at the cost of diversity
by pushing the neural model’s preferences toward
those of the pre-trained model. These results fur-
ther validate claims of the importance of diversity
in model ensembles.

Applying dropout significantly improves all
configurations of the Czech-English system and

some configurations of the English-French sys-
tem, leveling off with the strongest. This trend
follows previous work showing that dropout com-
bats overfitting of small data, though the point of
inflection is worth noting (Sennrich et al., 2016a;
Wu et al., 2016). Even though the English-French
data is still relatively small (220K sentences),
BPE leads to a smaller vocabulary of more gen-
eral translation units, effectively reducing spar-
sity, while annealing Adam can avoid getting stuck
in poor local optima. These techniques already
lead to better generalization without the need for
dropout. Finally, we can observe a few key prop-
erties of data bootstrapping, the best performing
technique on fully strengthened systems. Unlike
lexicon bias and pre-translation, it modifies only
the training data, allowing “purely neural” mod-
els to be learned from random initialization points.
This preserves model diversity, allowing ensem-
bles to benefit as well as single models. Further,
data bootstrapping is complementary to annealing
Adam and BPE; better optimization and a more
general vocabulary can make better use of the new
training instances.

While evaluation on simple vanilla NMT sys-
tems would indicate that all of the techniques in
this section lead to significant improvement for
both data sets, only evaluation on systems using
annealing Adam, byte pair encoding, and indepen-
dent model ensembling reveals both the reversals
of results on state-of-the-art systems and nuanced
interactions between techniques that we have re-
ported. Based on these results, we highly recom-
mend evaluating new techniques on systems that
are at least this strong and representative of those
deployed for real-world use.

7 Conclusion

In this work, we have empirically demonstrated
the effectiveness of Adam training with multiple
restarts and step size annealing, byte pair encod-
ing, and independent model ensembling both for
improving BLEU scores and increasing the relia-
bility of experimental results. Out of four previ-
ously published techniques for improving vanilla
NMT, only one, data bootstrapping via phrase ex-
traction, also improves a fully strengthened model
across all scenarios. For these reasons, we recom-
mend evaluating new model extensions and algo-
rithms on NMT systems at least as strong as those
we have described for maximally trustable results.
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rio Miceli Barone, Jozef Mokry, and Maria Nade-
jde. 2017. Nematus: a Toolkit for Neural Machine
Translation. In Proceedings of the Demonstrations
at the 15th Conference of the European Chapter of
the Association for Computational Linguistics. Va-
lencia, Spain.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Edinburgh neural machine translation sys-
tems for wmt 16. In Proceedings of the First Confer-
ence on Machine Translation. Association for Com-
putational Linguistics, Berlin, Germany, pages 371–
376.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics, Berlin, Ger-
many, pages 1715–1725.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems. pages 3104–3112.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the gap
between human and machine translation. CoRR
abs/1609.08144.

Matthew D. Zeiler. 2012. ADADELTA: an adaptive
learning rate method. CoRR abs/1212.5701.

27



Proceedings of the First Workshop on Neural Machine Translation, pages 28–39,
Vancouver, Canada, August 4, 2017. c©2017 Association for Computational Linguistics

Six Challenges for Neural Machine Translation

Philipp Koehn
Computer Science Department

Johns Hopkins University
phi@jhu.edu

Rebecca Knowles
Computer Science Department

Johns Hopkins University
rknowles@jhu.edu

Abstract

We explore six challenges for neural
machine translation: domain mismatch,
amount of training data, rare words, long
sentences, word alignment, and beam
search. We show both deficiencies and
improvements over the quality of phrase-
based statistical machine translation.

1 Introduction

Neural machine translation has emerged as the
most promising machine translation approach in
recent years, showing superior performance on
public benchmarks (Bojar et al., 2016) and rapid
adoption in deployments by, e.g., Google (Wu
et al., 2016), Systran (Crego et al., 2016), and
WIPO (Junczys-Dowmunt et al., 2016). But there
have also been reports of poor performance, such
as the systems built under low-resource conditions
in the DARPA LORELEI program.1

In this paper, we examine a number of chal-
lenges to neural machine translation (NMT) and
give empirical results on how well the technology
currently holds up, compared to traditional statis-
tical machine translation (SMT).

We find that:

1. NMT systems have lower quality out of do-
main, to the point that they completely sacri-
fice adequacy for the sake of fluency.

2. NMT systems have a steeper learning curve
with respect to the amount of training data,
resulting in worse quality in low-resource
settings, but better performance in high-
resource settings.

1https://www.nist.gov/itl/iad/mig/lorehlt16-
evaluations

3. NMT systems that operate at the sub-word
level (e.g. with byte-pair encoding) perform
better than SMT systems on extremely low-
frequency words, but still show weakness in
translating low-frequency words belonging to
highly-inflected categories (e.g. verbs).

4. NMT systems have lower translation quality
on very long sentences, but do comparably
better up to a sentence length of about 60
words.

5. The attention model for NMT does not al-
ways fulfill the role of a word alignment
model, but may in fact dramatically diverge.

6. Beam search decoding only improves trans-
lation quality for narrow beams and deterio-
rates when exposed to a larger search space.

We note a 7th challenge that we do not exam-
ine empirically: NMT systems are much less in-
terpretable. The answer to the question of why
the training data leads these systems to decide on
specific word choices during decoding is buried in
large matrices of real-numbered values. There is a
clear need to develop better analytics for NMT.

Other studies have looked at the comparable
performance of NMT and SMT systems. Ben-
tivogli et al. (2016) considered different lin-
guistic categories for English–German and Toral
and Sánchez-Cartagena (2017) compared different
broad aspects such as fluency and reordering for
nine language directions.

2 Experimental Setup

We use common toolkits for neural machine trans-
lation (Nematus) and traditional phrase-based sta-
tistical machine translation (Moses) with common
data sets, drawn from WMT and OPUS.

28



2.1 Neural Machine Translation

While a variety of neural machine translation ap-
proaches were initially proposed — such as the
use of convolutional neural networks (Kalchbren-
ner and Blunsom, 2013) — practically all re-
cent work has been focused on the attention-based
encoder-decoder model (Bahdanau et al., 2015).

We use the toolkit Nematus2 (Sennrich et al.,
2017) which has been shown to give state-of-the-
art results (Sennrich et al., 2016a) at the WMT
2016 evaluation campaign (Bojar et al., 2016).

Unless noted otherwise, we use default settings,
such as beam search and single model decoding.
The training data is processed with byte-pair en-
coding (Sennrich et al., 2016b) into subwords to
fit a 50,000 word vocabulary limit.

2.2 Statistical Machine Translation

Our machine translation systems are trained using
Moses3 (Koehn et al., 2007). We build phrase-
based systems using standard features that are
commonly used in recent system submissions to
WMT (Williams et al., 2016; Ding et al., 2016a).

While we use the shorthand SMT for these
phrase-based systems, we note that there are other
statistical machine translation approaches such as
hierarchical phrase-based models (Chiang, 2007)
and syntax-based models (Galley et al., 2004,
2006) that have been shown to give superior per-
formance for language pairs such as Chinese–
English and German–English.

2.3 Data Conditions

We carry out our experiments on English–Spanish
and German–English. For these language pairs,
large training data sets are available. We use
datasets from the shared translation task organized
alongside the Conference on Machine Translation
(WMT)4. For the domain experiments, we use the
OPUS corpus5 (Tiedemann, 2012).

Except for the domain experiments, we use the
WMT test sets composed of news stories, which
are characterized by a broad range of topic, for-
mal language, relatively long sentences (about 30
words on average), and high standards for gram-
mar, orthography, and style.

2https://github.com/rsennrich/nematus/
3http://www.stat.org/moses/
4http://www.statmt.org/wmt17/
5http://opus.lingfil.uu.se/

Corpus Words Sentences W/S
Law (Acquis) 18,128,173 715,372 25.3
Medical (EMEA) 14,301,472 1,104,752 12.9
IT 3,041,677 337,817 9.0
Koran (Tanzil) 9,848,539 480,421 20.5
Subtitles 114,371,754 13,873,398 8.2

Table 1: Corpora used to train domain-specific
systems, taken from the OPUS repository. IT
corpora are GNOME, KDE, PHP, Ubuntu, and
OpenOffice.

3 Challenges

3.1 Domain Mismatch

A known challenge in translation is that in dif-
ferent domains,6 words have different transla-
tions and meaning is expressed in different styles.
Hence, a crucial step in developing machine trans-
lation systems targeted at a specific use case is
domain adaptation. We expect that methods for
domain adaptation will be developed for NMT. A
currently popular approach is to train a general do-
main system, followed by training on in-domain
data for a few epochs (Luong and Manning, 2015;
Freitag and Al-Onaizan, 2016).

Often, large amounts of training data are only
available out of domain, but we still seek to have
robust performance. To test how well NMT and
SMT hold up, we trained five different systems us-
ing different corpora obtained from OPUS (Tiede-
mann, 2012). An additional system was trained on
all the training data. Statistics about corpus sizes
are shown in Table 1. Note that these domains are
quite distant from each other, much more so than,
say, Europarl, TED Talks, News Commentary, and
Global Voices.

We trained both SMT and NMT systems for all
domains. All systems were trained for German-
English, with tuning and test sets sub-sampled
from the data (these were not used in training). A
common byte-pair encoding is used for all training
runs.

See Figure 1 for results. While the in-domain
NMT and SMT systems are similar (NMT is better
for IT and Subtitles, SMT is better for Law, Med-
ical, and Koran), the out-of-domain performance
for the NMT systems is worse in almost all cases,
sometimes dramatically so. For instance the Med-

6We use the customary definition of domain in machine
translation: a domain is defined by a corpus from a specific
source, and may differ from other domains in topic, genre,
style, level of formality, etc.
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System ↓ Law Medical IT Koran Subtitles

All Data 30.5 32.8 45.1 42.2 35.3 44.7 17.9 17.9 26.4 20.8

Law 31.1 34.4 12.1 18.2 3.5 6.9 1.3 2.2 2.8 6.0

Medical 3.9 10.2 39.4 43.5 2.0 8.5 0.6 2.0 1.4 5.8

IT 1.9 3.7 6.5 5.3 42.1 39.8 1.8 1.6 3.9 4.7

Koran 0.4 1.8 0.0 2.1 0.0 2.3 15.9 18.8 1.0 5.5

Subtitles 7.0 9.9 9.3 17.8 9.2 13.6 9.0 8.4 25.9 22.1

Figure 1: Quality of systems (BLEU), when trained on one domain (rows) and tested on another domain
(columns). Comparably, NMT systems (left bars) show more degraded performance out of domain.

ical system leads to a BLEU score of 3.9 (NMT)
vs. 10.2 (SMT) on the Law test set.

Figure 2 displays an example. When translating
the sentence Schaue um dich herum. (reference:
Look around you.) from the Subtitles corpus,
we see mostly non-sensical and completely unre-
lated output from the NMT system. For instance,
the translation from the IT system is Switches to
paused.

Note that the output of the NMT system is often
quite fluent (e.g., Take heed of your own souls.)
but completely unrelated to the input, while the
SMT output betrays its difficulties with coping
with the out-of-domain input by leaving some
words untranslated (e.g., Schaue by dich around.).
This is of particular concern when MT is used for
information gisting — the user will be mislead by
hallucinated content in the NMT output.

3.2 Amount of Training Data

A well-known property of statistical systems is
that increasing amounts of training data lead to
better results. In SMT systems, we have previ-
ously observed that doubling the amount of train-
ing data gives a fixed increase in BLEU scores.
This holds true for both parallel and monolin-
gual data (Turchi et al., 2008; Irvine and Callison-
Burch, 2013).

Source Schaue um dich herum.
Ref. Look around you.
All NMT: Look around you.

SMT: Look around you.
Law NMT: Sughum gravecorn.

SMT: In order to implement dich Schaue .
Medical NMT: EMEA / MB / 049 / 01-EN-Final Work

progamme for 2002
SMT: Schaue by dich around .

IT NMT: Switches to paused.
SMT: To Schaue by itself . \t \t

Koran NMT: Take heed of your own souls.
SMT: And you see.

Subtitles NMT: Look around you.
SMT: Look around you .

Figure 2: Examples for the translation of a sen-
tence from the Subtitles corpus, when translated
with systems trained on different corpora. Per-
formance out-of-domain is dramatically worse for
NMT.
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Figure 3: BLEU scores for English-Spanish sys-
tems trained on 0.4 million to 385.7 million
words of parallel data. Quality for NMT starts
much lower, outperforms SMT at about 15 mil-
lion words, and even beats a SMT system with a
big 2 billion word in-domain language model un-
der high-resource conditions.

How do the data needs of SMT and NMT com-
pare? NMT promises both to generalize better (ex-
ploiting word similary in embeddings) and condi-
tion on larger context (entire input and all prior
output words).

We built English-Spanish systems on WMT
data,7 about 385.7 million English words paired
with Spanish. To obtain a learning curve, we used

1
1024 , 1

512 , ..., 1
2 , and all of the data. For SMT, the

language model was trained on the Spanish part of
each subset, respectively. In addition to a NMT
and SMT system trained on each subset, we also
used all additionally provided monolingual data
for a big language model in contrastive SMT sys-
tems.

Results are shown in Figure 3. NMT ex-
hibits a much steeper learning curve, starting with
abysmal results (BLEU score of 1.6 vs. 16.4 for

1
1024 of the data), outperforming SMT 25.7 vs.
24.7 with 1

16 of the data (24.1 million words), and
even beating the SMT system with a big language
model with the full data set (31.1 for NMT, 28.4
for SMT, 30.4 for SMT+BigLM).

7Spanish was last represented in 2013, we used data from
http://statmt.org/wmt13/translation-task.html

Src: A Republican strategy to counter the re-election
of Obama

1
1024

Un órgano de coordinación para el anuncio de
libre determinación

1
512

Lista de una estrategia para luchar contra la
elección de hojas de Ohio

1
256

Explosión realiza una estrategia divisiva de
luchar contra las elecciones de autor

1
128

Una estrategia republicana para la eliminación
de la reelección de Obama

1
64

Estrategia siria para contrarrestar la reelección
del Obama .

1
32

+ Una estrategia republicana para contrarrestar la
reelección de Obama

Figure 4: Translations of the first sentence of
the test set using NMT system trained on varying
amounts of training data. Under low resource con-
ditions, NMT produces fluent output unrelated to
the input.

The contrast between the NMT and SMT learn-
ing curves is quite striking. While NMT is able to
exploit increasing amounts of training data more
effectively, it is unable to get off the ground with
training corpus sizes of a few million words or
less.

To illustrate this, see Figure 4. With 1
1024 of the

training data, the output is completely unrelated to
the input, some key words are properly translated
with 1

512 and 1
256 of the data (estrategia for strat-

egy, elección or elecciones for election), and start-
ing with 1

64 the translations become respectable.

3.3 Rare Words

Conventional wisdom states that neural machine
translation models perform particularly poorly on
rare words, (Luong et al., 2015; Sennrich et al.,
2016b; Arthur et al., 2016) due in part to the
smaller vocabularies used by NMT systems. We
examine this claim by comparing performance on
rare word translation between NMT and SMT
systems of similar quality for German–English
and find that NMT systems actually outperform
SMT systems on translation of very infrequent
words. However, both NMT and SMT systems
do continue to have difficulty translating some
infrequent words, particularly those belonging to
highly-inflected categories.

For the neural machine translation model, we
use a publicly available model8 with the training
settings of Edinburgh’s WMT submission (Sen-
nrich et al., 2016a). This was trained using Ne-

8https://github.com/rsennrich/wmt16-scripts/
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matus9 (Sennrich et al., 2017), with byte-pair en-
codings (Sennrich et al., 2016b) to allow for open-
vocabulary NMT.

The phrase-based model that we used was
trained using Moses (Koehn et al., 2007), and
the training data and parameters match those de-
scribed in Johns Hopkins University’s submission
to the WMT shared task (Ding et al., 2016b).

Both models have case-sensitive BLEU scores
of 34.5 on the WMT 2016 news test set (for the
NMT model, this reflects the BLEU score re-
sulting from translation with a beam size of 1).
We use a single corpus for computing our lexi-
cal frequency counts (a concatenation of Common
Crawl, Europarl, and News Commentary).

We follow the approach described by Koehn
and Haddow (2012) for examining the effect of
source word frequency on translation accuracy.10

9https://github.com/rsennrich/nematus/
10First, we automatically align the source sentence and the

machine translation output. We use fast-align (Dyer et al.,
2013) to align the full training corpus (source and reference)
along with the test source and MT output. We use the sug-
gested standard options for alignment and then symmetrize
the alignment with grow-diag-final-and.

Each source word is either unaligned (“dropped”) or
aligned to one or more target language words. For each tar-
get word to which the source word is aligned, we check if
that target word appears in the reference translation. If the
target word appears the same number of times in the MT out-
put as in the reference, we award that alignment a score of
one. If the target word appears more times in the MT output
than in the reference, we award fractional credit. If the target
word does not appear in the reference, we award zero credit.

The overall average precision is quite similar
between the NMT and SMT systems, with the
SMT system scoring 70.1% overall and the NMT
system scoring 70.3%. This reflects the similar
overall quality of the MT systems. Figure 5 gives
a detailed breakdown. The values above the hor-
izontal axis represent precisions, while the lower
portion represents what proportion of the words
were deleted. The first item of note is that the
NMT system has an overall higher proportion of
deleted words. Of the 64379 words examined, the
NMT system is estimated to have deleted 3769 of
them, while the SMT system deleted 2274. Both
the NMT and SMT systems delete very frequent
and very infrequent words at higher proportions
than words that fall into the middle range. Across
frequencies, the NMT systems delete a higher pro-
portion of words than the SMT system does. (The
related issue of translation length is discussed in
more detail in Section 3.4.)

The next interesting observation is what hap-
pens with unknown words (words which were
never observed in the training corpus). The SMT
system translates these correctly 53.2% of the
time, while the NMT system translates them cor-
rectly 60.1% of the time. This is reflected in Fig-
ure 5, where the SMT system shows a steep curve

We then average these scores over the full set of target words
aligned to the given source word to compute the precision for
that source word. Source words can then be binned by fre-
quency and average translation precisions can be computed.
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Label Unobserved Observed Once
Adjective 4 10
Named Entity 40 42
Noun 35 35
Number 12 4
Verb 3 6
Other 6 3

Table 2: Breakdown of the first 100 tokens that
were unobserved in training or observed once in
training, by hand-annotated category.

up from the unobserved words, while the NMT
system does not see a great jump.

Both SMT and NMT systems actually have
their worst performance on words that were ob-
served a single time in the training corpus, drop-
ping to 48.6% and 52.2%, respectively; even
worse than for unobserved words. Table 2 shows
a breakdown of the categories of words that were
unobserved in the training corpus or observed only
once. The most common categories across both
are named entity (including entity and location
names) and nouns. The named entities can of-
ten be passed through unchanged (for example,
the surname “Elabdellaoui” is broken into “E@@
lab@@ d@@ ell@@ a@@ oui” by the byte-
pair encoding and is correctly passed through un-
changed by both the NMT and SMT systems).
Many of the nouns are compound nouns; when
these are correctly translated, it may be attributed
to compound-splitting (SMT) or byte-pair encod-
ing (NMT). The factored SMT system also has ac-
cess to the stemmed form of words, which can
also play a similar role to byte-pair encoding in
enabling translation of unobserved inflected forms
(e.g. adjectives, verbs). Unsurprisingly, there are
many numbers that were unobserved in the train-
ing data; these tend to be translated correctly (with
occasional errors due to formatting of commas and
periods, resolvable by post-processing).

The categories which involve more extensive
inflection (adjectives and verbs) are arguably the
most interesting. Adjectives and verbs have worse
accuracy rates and higher deletion rates than nouns
across most word frequencies. We show examples
in Figure 6 of situations where the NMT system
succeeds and fails, and contrast it with the fail-
ures of the SMT system. In Example 1, the NMT
system successfully translates the unobserved ad-
jective choreographiertes (choreographed), while
the SMT system does not. In Example 2, the
SMT system simply passes the German verb

Src. (1) ... choreographiertes Gesamtkunstwerk ...
(2) ... die Polizei ihn einkesselte.

BPE (1) chore@@ ograph@@ iertes
(2) ein@@ kes@@ sel@@ te

NMT (1) ... choreographed overall artwork ...
(2) ... police stabbed him.

SMT (1) ... choreographiertes total work of art ...
(2) ... police einkesselte him.

Ref. (1) ... choreographed complete work of art ...
(2) ... police closed in on him.

Figure 6: Examples of words that were unob-
served in the training corpus, their byte-pair en-
codings, and their translations.

einkesselte (closed in on) unchanged into the out-
put, while the NMT system fails silently, selecting
the fluent-sounding but semantically inappropriate
“stabbed” instead.

While there remains room for improvement,
NMT systems (at least those using byte-pair en-
coding) perform better on very low-frequency
words then SMT systems do. Byte-pair encoding
is sometimes sufficient (much like stemming or
compound-splitting) to allow the successful trans-
lation of rare words even though it does not nec-
essarily split words at morphological boundaries.
As with the fluent-sounding but semantically inap-
propriate examples from domain-mismatch, NMT
may sometimes fail similarly when it encounters
unknown words even in-domain.

3.4 Long Sentences

A well-known flaw of early encoder-decoder
NMT models was the inability to properly trans-
late long sentences (Cho et al., 2014; Pouget-
Abadie et al., 2014). The introduction of the at-
tention model remedied this problem somewhat.
But how well?

We used the large English-Spanish system from
the learning curve experiments (Section 3.2), and
used it to translate a collection of news test sets
from the WMT shared tasks. We broke up these
sets into buckets based on source sentence length
(1-9 subword tokens, 10-19 subword tokens, etc.)
and computed corpus-level BLEU scores for each.

Figure 7 shows the results. While overall NMT
is better than SMT, the SMT system outperforms
NMT on sentences of length 60 and higher. Qual-
ity for the two systems is relatively close, except
for the very long sentences (80 and more tokens).
The quality of the NMT system is dramatically
lower for these since it produces too short trans-
lations (length ratio 0.859, opposed to 1.024).
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3.5 Word Alignment

The key contribution of the attention model in neu-
ral machine translation (Bahdanau et al., 2015)
was the imposition of an alignment of the output
words to the input words. This takes the shape
of a probability distribution over the input words
which is used to weigh them in a bag-of-words
representation of the input sentence.

Arguably, this attention model does not func-
tionally play the role of a word alignment between
the source in the target, at least not in the same
way as its analog in statistical machine translation.
While in both cases, alignment is a latent variable
that is used to obtain probability distributions over
words or phrases, arguably the attention model has
a broader role. For instance, when translating a
verb, attention may also be paid to its subject and
object since these may disambiguate it. To fur-
ther complicate matters, the word representations
are products of bidirectional gated recurrent neu-
ral networks that have the effect that each word
representation is informed by the entire sentence
context.

But there is a clear need for an alignment mech-
anism between source and target words. For in-
stance, prior work used the alignments provided
by the attention model to interpolate word transla-
tion decisions with traditional probabilistic dictio-
naries (Arthur et al., 2016), for the introduction of
coverage and fertility models (Tu et al., 2016), etc.

But is the attention model in fact the proper
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Figure 8: Word alignment for English–German:
comparing the attention model states (green boxes
with probability in percent if over 10) with align-
ments obtained from fast-align (blue outlines).

means? To examine this, we compare the soft
alignment matrix (the sequence of attention vec-
tors) with word alignments obtained by traditional
word alignment methods. We use incremental
fast-align (Dyer et al., 2013) to align the input and
output of the neural machine system.

See Figure 8 for an illustration. We compare
the word attention states (green boxes) with the
word alignments obtained with fast align (blue
outlines). For most words, these match up pretty
well. Both attention states and fast-align align-
ment points are a bit fuzzy around the function
words have-been/sind.

However, the attention model may settle on
alignments that do not correspond with our intu-
ition or alignment points obtained with fast-align.
See Figure 9 for the reverse language direction,
German–English. All the alignment points appear
to be off by one position. We are not aware of any
intuitive explanation for this divergent behavior —
the translation quality is high for both systems.

We measure how well the soft alignment (atten-
tion model) of the NMT system match the align-
ments of fast-align with two metrics:

• a match score that checks for each output
if the aligned input word according to fast-
align is indeed the input word that received
the highest attention probability, and

• a probability mass score that sums up the
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desired word alignments (German–English).

probability mass given to each alignment
point obtained from fast-align.

In these scores, we have to handle byte pair encod-
ing and many-to-many alignments11

In out experiment, we use the neural machine
translation models provided by Edinburgh12 (Sen-
nrich et al., 2016a). We run fast-align on the same
parallel data sets to obtain alignment models and
used them to align the input and output of the
NMT system. Table 3 shows alignment scores for
the systems. The results suggest that, while dras-
tic, the divergence for German–English is an out-
lier. We note, however, that we have seen such
large a divergence also under different data condi-
tions.

Note that the attention model may produce bet-
ter word alignments by guided alignment training
(Chen et al., 2016; Liu et al., 2016) where super-
vised word alignments (such as the ones produced
by fast-align) are provided to model training.

11(1) NMT operates on subwords, but fast-align is run on
full words. (2) If an input word is split into subwords by
byte pair encoding, then we add their attention scores. (3)
If an output word is split into subwords, then we take the
average of their attention vectors. (4) The match scores and
probability mass scores are computed as average over output
word-level scores. (5) If an output word has no fast-align
alignment point, it is ignored in this computation. (6) If an
output word is fast-aligned to multiple input words, then (6a)
for the match score: count it as correct if the n aligned words
among the top n highest scoring words according to attention
and (6b) for the probability mass score: add up their attention
scores.

12https://github.com/rsennrich/wmt16-scripts

Language Pair Match Prob.
German–English 14.9% 16.0%
English–German 77.2% 63.2%
Czech–English 78.0% 63.3%
English–Czech 76.1% 59.7%
Russian–English 72.5% 65.0%
English–Russian 73.4% 64.1%

Table 3: Scores indicating overlap between at-
tention probabilities and alignments obtained with
fast-align.

3.6 Beam Search

The task of decoding is to find the full sentence
translation with the highest probability. In statis-
tical machine translation, this problem has been
addressed with heuristic search techniques that ex-
plore a subset of the space of possible translation.
A common feature of these search techniques is a
beam size parameter that limits the number of par-
tial translations maintained per input word.

There is typically a straightforward relationship
between this beam size parameter and the model
score of resulting translations and also their qual-
ity score (e.g., BLEU). While there are dimin-
ishing returns for increasing the beam parameter,
typically improvements in these scores can be ex-
pected with larger beams.

Decoding in neural translation models can be
set up in similar fashion. When predicting the next
output word, we may not only commit to the high-
est scoring word prediction but also maintain the
next best scoring words in a list of partial trans-
lations. We record with each partial translation
the word translation probabilities (obtained from
the softmax), extend each partial translation with
subsequent word predictions and accumulate these
scores. Since the number of partial translation ex-
plodes exponentially with each new output word,
we prune them down to a beam of highest scoring
partial translations.

As in traditional statistical machine translation
decoding, increasing the beam size allows us to
explore a larger set of the space of possible transla-
tion and hence find translations with better model
scores.

However, as Figure 10 illustrates, increasing the
beam size does not consistently improve transla-
tion quality. In fact, in almost all cases, worse
translations are found beyond an optimal beam
size setting (we are using again Edinburgh’s WMT
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Figure 10: Translation quality with varying beam sizes. For large beams, quality decreases, especially
when not normalizing scores by sentence length.
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2016 systems). The optimal beam size varies from
4 (e.g., Czech–English) to around 30 (English–
Romanian).

Normalizing sentence level model scores by
length of the output alleviates the problem some-
what and also leads to better optimal quality in
most cases (5 of the 8 language pairs investigated).
Optimal beam sizes are in the range of 30–50 in
almost all cases, but quality still drops with larger
beams. The main cause of deteriorating quality are
shorter translations under wider beams.

4 Conclusions

We showed that, despite its recent successes, neu-
ral machine translation still has to overcome vari-
ous challenges, most notably performance out-of-
domain and under low resource conditions. We
hope that this paper motivates research to address
these challenges.

What a lot of the problems have in common
is that the neural translation models do not show
robust behavior when confronted with conditions
that differ significantly from training conditions —
may it be due to limited exposure to training data,
unusual input in case of out-of-domain test sen-
tences, or unlikely initial word choices in beam
search. The solution to these problems may hence
lie in a more general approach of training that
steps outside optimizing single word predictions
given perfectly matching prior sequences.
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Abstract

In this paper, we propose a new domain
adaptation technique for neural machine
translation called cost weighting, which
is appropriate for adaptation scenarios in
which a small in-domain data set and a
large general-domain data set are avail-
able. Cost weighting incorporates a do-
main classifier into the neural machine
translation training algorithm, using fea-
tures derived from the encoder representa-
tion in order to distinguish in-domain from
out-of-domain data. Classifier probabili-
ties are used to weight sentences accord-
ing to their domain similarity when updat-
ing the parameters of the neural transla-
tion model. We compare cost weighting
to two traditional domain adaptation tech-
niques developed for statistical machine
translation: data selection and sub-corpus
weighting. Experiments on two large-data
tasks show that both the traditional tech-
niques and our novel proposal lead to sig-
nificant gains, with cost weighting outper-
forming the traditional methods.

1 Introduction

The performance of data-driven machine trans-
lation techniques depends heavily on the degree
of domain match between training and test data,
where “domain” indicates a particular combina-
tion of factors such as genre, topic, national origin,
dialect, or author’s or publication’s style (Chen et
al., 2013). Training data varies significantly across
domains, and cross-domain translations are unre-
liable, so performance can often be improved by
adapting the MT system to the test domain.

Domain adaptation (DA) techniques for SMT
systems have been widely studied. Approaches in-

clude self-training, data selection, data weighting,
context-based DA, and topic-based DA, etc. We
review these techniques in the next section.

Sequence-to-sequence learning (Bahdanau et
al., 2015; Sutskever et al., 2015) has achieved
great success on machine translation tasks recently
(Sennrich et al., 2016a), and is often referred to
as Neural Machine Translation (NMT). NMT usu-
ally adopts the encoder-decoder framework: it
first encodes a source sentence into context vec-
tor(s), then decodes its translation token-by-token,
selecting from the target vocabulary. Attention
based NMT (Bahdanau et al., 2015; Luong et al.,
2015) dynamically generates context vectors for
each target position, and focuses on the relevant
source words when generating a target word.

Domain adaptation for NMT is still a new re-
search area, with only a small number of relevant
publications. Luong et al. (2015) adapted an NMT
model trained on general domain data with further
training (fine-tuning) on in-domain data only. This
was called the continue model by (Freitag and Al-
Onaizan, 2016), who propose an ensemble method
that combines the continue model with the original
model. Chu et al. (2017) propose a method called
mixed fine tuning, which combines fine tuning and
multi domain NMT.

In this paper, we propose a new domain adap-
tation method for NMT called cost weighting,
in which a domain classifier and sequence-to-
sequence translation model are trained simulta-
neously. The domain classifier is trained on in-
domain and general domain data, and provides an
estimate of the probability that each sentence in
the training data is in-domain. The cost incurred
for each sentence is weighted by the probability
of it being in-domain. This biases the sequence-
to-sequence model toward in-domain data, result-
ing in improved translation performance on an in-
domain test set.
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We also study the application of existing SMT
domain adaptation techniques to NMT, specifi-
cally data selection and corpus weighting meth-
ods.

Experiments on Chinese-to-English NIST and
English-to-French WMT tasks show that: 1) data
selection and corpus weighting methods yield sig-
nificant improvement over the non-adapted base-
line; and 2) the new cost weighting method ob-
tains the biggest improvement. The cost weight-
ing scheme has the additional advantage of being
integrated with sequence-to-sequence training.

2 Applying SMT adaptation techniques
to NMT

There are several adaptation scenarios for MT, of
which the most common is: 1) the training ma-
terial is heterogeneous, with some parts that are
not too far from the test domain; 2) a bilingual de-
velopment set drawn from the test domain is avail-
able. In this paper, we study adaptation techniques
for this scenario.

2.1 SMT adaptation techniques

Most SMT domain adaptation (DA) techniques
can be classified into one of five categories: self-
training, context-based DA, topic-based DA, data
selection, and data weighting.

With self-training (Ueffing and Ney, 2007;
Schwenk, 2008; Bertoldi and Federico, 2009), an
MT system trained on general domain data is used
to translate large in-domain monolingual data.
The resulting bilingual sentence pairs are then
used as additional training data. Sennrich (2016b)
has shown that back-translating a large amount of
target-language text and using the resulting syn-
thetic parallel text can improve NMT performance
significantly. We can expect greater improve-
ment if the monolingual data are in-domain. This
method assumes the availability of large amounts
of in-domain monolingual data, which is not the
adaptation scenario in this paper.

Context-based DA includes word sense disam-
biguation for adaptation (Carpuat et al., 2013),
which employs local context to distinguish the
translations for different domains. The cache-
based method (Tiedemann, 2010; Gong et al.,
2011) uses local or document-level context.

Work on topic-based DA includes (Tam et al.,
2007; Eidelman et al., 2012; Hasler et al., 2012;
Hewavitharana et al., 2013), and employs a topic

model to distinguish the translations for different
topics.

Data selection approaches (Moore and Lewis,
2010; Axelrod et al., 2011; Duh et al., 2013; Chen
and Huang, 2016) search for data that are similar
to the in-domain data according to some criterion,
then use the results for training, either alone or in
combination with existing data.

Data weighting approaches weight each data
item according to its proximity to the in-domain
data. This can be applied at corpus (Foster and
Kuhn, 2007; Sennrich, 2012), sentence (Mat-
soukas et al., 2009), or phrase level (Foster et al.,
2010; Chen et al., 2013).

2.2 Application to NMT

In this paper, we apply data selection, corpus
weighting, and sentence weighting strategies to
NMT.
Data selection Some previous work (Luong and
Manning, 2015; Sennrich et al., 2016b) has shown
that the performance of NMT systems is highly
sensitive to data size. Therefore, we follow the
solution in (Luong and Manning, 2015): we first
train an NMT system on all available training data,
then further train on the selected in-domain data.
We adopt two data selection methods in this pa-
per. The first one is based on bilingual language
model cross-entropy difference (Axelrod et al.,
2011). For both the source and target language,
two language models are trained on in-domain and
out-of-domain data respectively; then, a sentence
pair is evaluated with the cross-entropy difference
according to the language models. The second
method is semi-supervised convolutional neural
network based data selection (Chen and Huang,
2016). The in-domain data and randomly sam-
pled general-domain data are used to train a do-
main classifier with semi-supervised CNN, then
this classifier computes domain relevance scores
for all the sentences in the general-domain data
set.
Sub-corpus weighting To weight different sub-
corpora, we first train NMT sub-models on them,
then combine these in a weighted fashion. Specif-
ically, we: 1) train an NMT model on the large
combined general-domain corpus; 2) initialize
with the previous model, and train several new
models on sub-corpora; 3) weight each sub-corpus
according to its proximity to the in-domain data
(dev set), using target-side language model per-
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plexity (Foster and Kuhn, 2007; Sennrich, 2012);
and 4) take a weighted average of the parameters
in the sub-models to form our final adapted model.
Sentence-level weighting Our new method for
weighting individual sentence pairs uses a classi-
fier to assign weights, and applies them when com-
puting the cost of each mini-batch during NMT
training. We defer a detailed description to sec-
tion 4, after first presenting the NMT approach
used in our experiments.

3 Neural machine translation

Attention-based neural machine translation sys-
tems (Bahdanau et al., 2014) are typically imple-
mented with a recurrent neural network (RNN)
based encoder-decoder framework. Suppose we
have a source sentence x = x1, x2, ..., xm and its
translation y = y1, y2, ..., yn. The probability of
the target sentence y given a source sentence x is
modeled as follows:

p(y|x) =
n∏
t=1

p(yt|y<t, x), (1)

where y<t stands for all previous translated words.
The NMT encoder reads the source sentence x

and encodes it into a sequence of hidden states
h = h1, h2, ..., hm. Each hidden state hi is com-
puted from the previous hidden state hi−1 and the
current source word xi, using a recurrent unit such
as Long Short-Term Memory (LSTM) (Sutskever
et al., 2014) or Gated Recurrent Unit (GRU) (Bah-
danau et al., 2014).

−→
h i = f(

−→
h i−1, xi) (2)

As is standard practice, we use the concatena-
tion of the forward hidden state

−→
hi and backward

hidden state
←−
hi for the source word xi to form an

aggregated state hi.
The decoder is a recurrent neural network that

predicts the next word in the target sequence. The
conditional probability of each word yt is com-
puted with its previously generated words y<t, a
recurrent hidden state st, and a context vector ct:

p(yt|y<t, x) = g(yt, st, ct) (3)

The context vector ct is introduced to capture
the relevant part of the source sentence, which is
computed as a weighted sum of the annotations
hi. The weight of each annotation hi is computed

through an alignment model αti , which is a feed-
forward neural network to model the probability
that yt is aligned to xi.

ct =
m∑
i=1

αtihi, (4)

where the αti are normalized outputs from a soft-
max operation.

The hidden state st is the decoder RNN hidden
state at time t, computed by a recurrent unit such
as an LSTM or GRU.

st = q(st−1, yt−1, ct) (5)

In the above equations, f , g, q are all non-linear
functions.

Given a bilingual corpus D, the parameters in
the neural network θ are learned by maximiz-
ing the (potentially regularized) conditional log-
likelihood:

θ? = arg max
θ

∑
(x,y)∈D

log p(y|x; θ) (6)

4 Cost weighting based adaptation

The data selection and corpus-weighting ap-
proaches described above involve fine-tuning one
or more NMT systems on data subsets, where
data selection fine-tunes on subsets that are se-
lected according to similarity to the development
set, and sub-corpus weighting fine-tunes on pre-
determined subsets, with the fine-tuned models
being combined according to the subsets’ similar-
ity to the development set.

Our cost weighting scheme for neural machine
translation departs from these strategies in two
ways. First of all, we do not adopt a fine-tuning
strategy, but instead directly scale the NMT sys-
tem’s top-level costs according to each training
sentence’s similarity to the development set. Sec-
ond, development set similarity is determined by
a feed-forward neural network, which is learned
alongside the NMT parameters, and which uses
the highly informative NMT source encoder to
provide its input representation.

4.1 Classifier

At the core of our method is a probabilistic, binary
classifier that attempts to determine whether or not
a source sentence was drawn from our develop-
ment set. Once trained, we expect this classifier to
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assign high probabilities to sentences that are sim-
ilar to our development set, and low probability to
others. This classifier first uses an attention-like
aggregator to transform the encoder hidden states
hi into a fixed-length vector representation rx:

rx =
m∑
i=1

βihi

where βi =
exp(γi)∑m
i exp(γi)

and γi = tanh(W βhi + bβ)>wβ

We then pass the source representation vector rx
into a two-layer perceptron whose top-level activa-
tion is a sigmoid, allowing us to interpret its final
score as a probability.

pd(x) = σ
(

tanh
(
W drx + bd

)>
wd
)

where σ(x) =
1

1 + exp(−x)

We train this classifier with a cross-entropy loss,
maximizing pd(x) for source sentences drawn
from the development set, and minimizing it for
those drawn from the training set. Each classi-
fier minibatch is populated with an equal number
of training and development sentences, randomly
drawn from their respective sets. Crucially, we
do not back-propagate the classifier loss to the en-
coder parameters. The classifier is trained by up-
dating only W β , wβ , bβ , W d, wd and bd, treating
the sequence hi, i = 1 . . .m as an informative, but
constant, representation of its input x.

4.2 Weighted Costs

With our source-sentence domain classifier pd(x)
in place, it is straight-forward to use it to scale our
costs to emphasize training sentences that are sim-
ilar to our development set. Scaling costs with
a multiplicative scalar is similar to adjusting the
learning rate: it changes the magnitude of the pa-
rameter update without changing its direction. We
alter equation 6 as follows:

θ? = arg max
θ

∑
(x,y)∈D

(1 + pd(x)) log p(y|x; θ)

(7)
Note that we scale our log NMT cost by 1 plus
our domain probability pd(x). We do this be-
cause these probabilities tend to be very low: the

classifier is able to correctly determine that train-
ing sentences are not in fact development sen-
tences. By adding 1 to this probability, very low-
probability sentences are updated as normal, while
high-probability sentences are given a bonus. For
the purposes of NMT training pd(x) is treated as
a constant; that is, the NMT loss does not back-
propagate to the classifier parameters.

4.3 Implementation Details

Starting from random parameters for both mod-
els, we alternate between optimizing the weighted
NMT objective in Equation 7, and the classifier’s
cross-entropy objective. Training the two concur-
rently allows the classifier to benefit from and ad-
just to improvements in the encoder representa-
tion. Meanwhile, the NMT objective becomes in-
creasingly focused on in-domain sentences as the
classifier improves. We perform one NMT mini-
batch of size b, and then a classifier minibatch of
size 2b (b training sentences and b development
sentences). Training sentences for NMT and clas-
sifier updates are sampled independently. Note
that classifier updates are much faster than NMT
updates, as the classifier makes only one binary
decision per sentence.

We have also experimented with versions of
the system where we train an unweighted NMT
system first, and use it to initialize training with
weighted costs, similar to fine tuning. This works
as well as using costs throughout, and has the
speed benefits that come from starting with an ini-
tialized NMT model. However, all of the cost
weighting results reported in this paper come from
systems that use costs throughout training.

5 Experiments

5.1 Data

We conducted experiments on two translation
tasks. The first one is the Chinese-to-English
NIST task. We used NIST06 and NIST08 test sets
as the dev set and test set, which contain 1,664
and 1,357 source sentences respectively and each
source sentence has 4 target references. Their
domain is the combination of newswire and we-
blog genre. The training data are from LDC;
we manually selected about 1.7 million sentence
pairs, composed of various sub-domains, such as
newswire, weblog, webforum, short message, etc.
The second task is the English-to-French WMT
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task.1 The dev set is a concatenation of new-
stest2012 and 2013 test sets, which contains 6,003
sentence pairs; the test set is newstest2014, which
contains 3,003 sentence pairs. The training data
contain 12 million sentence pairs, composed of
various sub-domains, such as news commentary,
Europarl, UN, common crawl web data, etc. In the
corpus weighting adaptation experiment, we man-
ually grouped the data into 4 sub-corpora accord-
ing to provenance for both tasks.

5.2 Setting

The NMT system we used is based on the open
source Nematus toolkit (Sennrich et al., 2016b).2

We segmented words via byte-pair encoding on
both the source and target side of the training data
(Sennrich et al., 2016b). The source and target
vocabulary sizes of the Chinese-to-English system
were both 60K, and those of the English-to-French
system were 90K. The source word embedding di-
mension size was 512, and the target word em-
bedding dimension size was 1024. The mini-batch
size was 100, and the maximum sequence length
was 50. We used the Adadelta optimization algo-
rithm to train the system. Our domain classifier
described in Section 4.1 has a hidden-layer size
of 1024. Its attention-like aggregator also uses a
hidden-layer size of 1024. The classifier is also
optimized with Adadelta.

In the data selection experiments, we followed
(Chen and Huang, 2016) to set all parameters for
the cross-entropy difference and semi-supervised
CNN based data selection. For language model
based selection, we used 3-gram LMs with Witten-
Bell3 smoothing. For Semi-supervised CNN
based data selection, we generate one-hot and
word-embedding-based bag-of-word regions and
n-gram regions and input them to the CNN. We
set the region size to 5 and stride size to 1. The
non-linear function we chose is “ReLU”, the num-
ber of weight vectors or neurons is 500. We
use the online available CNN toolkit conText4.
To train the general domain word embedding, we
used word2vec5. The size of the vector was set to
300. We select the top 10% of the sentence pairs

1The data is available at http://www-lium.univ-
lemans.fr/ schwenk/nnmt-shared-task/

2https://github.com/rsennrich/nematus
3For small amounts of data, Witten-Bell smoothing per-

formed better than Kneser-Ney smoothing in our experiments
4http://riejohnson.com/cnn download.html
5https://code.google.com/archive/p/word2vec/

zh2en ∆ en2fr ∆
baseline 32.9 – 35.8 –
avg weighting 33.1 0.2 36.1 0.3
crp weighting 33.5* 0.6 36.3* 0.5
DS xent 33.5* 0.6 36.3* 0.5
DS sscnn 33.8** 0.9 36.4* 0.6
cost weighting 34.1** 1.2 36.6** 0.8

Table 1: BLEU scores for ensembled baseline
and domain adapted systems, which include aver-
age weighting (“avg weighting”), corpus weight-
ing (“crp weighting”) ensemble, ensembled cross-
entropy based data selection (“DS xent”), semi-
supervised CNN based data selection (“DS ss-
cnn”), and cost weighting based systems. */**
means the result is significantly better than the
baseline at p < 0.05 or p < 0.01 level, respec-
tively.

from the whole training data to fine-tune the NMT
system.

5.3 Results

We evaluated the system using BLEU score (Pa-
pineni et al., 2002) on the test set. Following
(Koehn, 2004), we use bootstrap resampling for
significance testing. As shown in (Sennrich et al.,
2016b), simply averaging the models from several
checkpoints can improve NMT translation perfor-
mance. Because the data selection and corpus
weighting methods applied fine-tuning, for a fair
comparison, all of our systems applied a two-pass
training strategy. That is, we train the system us-
ing algorithm Adadelta until it is converged or
early stopped, then resume the training using algo-
rithm RMSProp (Hinton et al., 2012). Moreover,
because the corpus weighting method combines
4 models fine-tuned on different sub-corpora, for
a fair comparison all of our systems are ensem-
ble systems which average the models from the 4
checkpoints with highest BLEU scores on the dev
set. Table 1 summarizes the results for both tasks.

Both tasks are challenging to improve with do-
main adaptation techniques, because the training
data for the baselines in both have already been
selected to a certain extent. However, we still
obtained statistically significant improvements us-
ing the adaptation techniques developed for SMT.
This demonstrates the usefulness of existing adap-
tation techniques. More importantly, we obtained
larger and more significant improvement from the
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cost weighting technique.

5.4 Discussion

All three domain adaptation techniques evaluated
in this paper share a similar idea, namely when
training the system, rely more on those train-
ing samples which are closer to the in-domain
data. The techniques differ in granularity: corpus
weighting operates on the sub-corpus level, while
data selection and cost weighting operate on the
sentence level. They also differ in weighting la-
tency: data selection and corpus weighting mea-
sure domain proximity only once prior to system
training, while cost weighting repeatedly updates
its proximity estimates as the system is trained. Fi-
nally, they differ in proximity metrics: data selec-
tion and corpus weighting measure domain sim-
ilarity with external criteria such as LM cross-
entropy or CNN sentence representations, while
cost weighting uses RNN representations shared
with the sequence-to-sequence model. Also, cost
weighting applies its sentence weights directly to
the training process, instead of thresholding the
weights to select sentences.

6 Conclusions

In this paper, we have successfully applied the
SMT domain adaptation techniques, data selec-
tion and corpus weighting, to neural machine
translation (NMT). We also proposed a new cost
weighting technique for neural machine trans-
lation domain adaptation. This method trains
the classifier and sequence-to-sequence translation
model simultaneously; in-domain proximity val-
ues are computed on the fly with the sequence-to-
sequence model, which is more precise and also
makes online adaptation possible. Experiments on
the Chinese-English NIST task and the English-
French WMT task showed that both existing tech-
niques and the novel cost weighting technique all
improve performance over the baseline, with the
cost weighting method obtaining the best improve-
ment.

7 Future Work

We would like to devise experiments to better un-
derstand whether the improvements we are seeing
in domain adaptation are from our adaptive do-
main classifier, or from applying the classifier out-
puts as cost weights. For example, we could test
cost weighting with fixed weights from the CNN

domain classifier of Chen and Huang (2016), and
see if that results in similar improvements.

We would also like to explore invariant
weighted updates (Karampatziakis and Langford,
2010), which maintain the invariance property that
updating the model with importance weight 2p is
equivalent to updating twice with weight p. In-
variant updates have been shown to perform better
than simply scaling the cost or learning rate as we
do here, but previous work has all been in the con-
text of linear models.
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Abstract

Despite its promise, neural machine trans-
lation (NMT) has a serious problem in that
source content may be mistakenly left un-
translated. The ability to detect untrans-
lated content is important for the practi-
cal use of NMT. We evaluate two types
of probability with which to detect un-
translated content: the cumulative atten-
tion (ATN) probability and back transla-
tion (BT) probability from the target sen-
tence to the source sentence. Experi-
ments on detecting untranslated content in
Japanese–English patent translations show
that ATN and BT are each more effective
than random choice, BT is more effective
than ATN, and the combination of the two
provides further improvements. We also
confirmed the effectiveness of using ATN
and BT to rerank the n-best NMT outputs.

1 Introduction

Neural machine translation (NMT) (Sutskever et
al., 2014; Bahdanau et al., 2015) outputs flu-
ent translations. However, some of the source
content—not only word-level expressions but also
clause-level expressions—is sometimes missing
from the output translation, especially when NMT
translates long sentences. An example is shown
in Figure 1. The occurrence of untranslated con-
tent is a serious problem limiting practical use of
NMT.

Conventional statistical machine translation
(SMT) (Koehn et al., 2003; Chiang, 2007) explic-
itly distinguishes the untranslated source words
from the translated source words in decoding
and keeps translating until no untranslated source
words remain. However, NMT does not explic-
itly distinguish untranslated words from translated

words. This means NMT cannot use coverage vec-
tors as are used in SMT to prevent translations
from being dropped.

There are methods that use dynamic states,
which are regarded as a soft coverage vector, at
each source word position (Tu et al., 2016b; Mi et
al., 2016). These methods will alleviate the prob-
lem; however, they do not decide whether to termi-
nate decoding on the basis of the detection of un-
translated content. Therefore, the translation drop-
ping problem remains.

We evaluated two types of probability for de-
tecting untranslated content. One type is the
cumulative attention (ATN) probability for each
source position. The other type is the back transla-
tion (BT) probability of each source word from the
MT output. The latter type does not necessarily
require word-level correspondences between lan-
guages, which are not easy to infer precisely in
NMT. We also compared direct use of the proba-
bilities and the use of the ratio of the probabilities,
which compares the negative logarithm of a prob-
ability to the minimum value of the negative log-
arithm of the probability in the n-best outputs. In
addition, we evaluated the effect of using detection
scores to rerank the n-best outputs of NMT.

We conducted experiments for the detection of
untranslated source content words in 100 sen-
tences with MT outputs translated using NMT on
Japanese–English patent translation task data sets.
The results are as follows. The detection accura-
cies achieved using the ratio of probabilities were
higher than those achieved directly using the prob-
abilities. ATN and BT are each more effective than
random choice at detecting untranslated content.
BT was better than ATN. The detection accuracy
further improved when ATN and BT were used
together. Reranking using the scores of the two
types of probabilities improved the BLEU scores.
BLEU scores improved further when the detection
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Input その後、 第 1段から順に第M段まで 、ADC＃ 1と ADC＃ 2のパイプラインゲインエラー補

正を交互に繰り返す（ステップ S 6と S 7、ステップ S 8と S 9、ステップ S 10と S 11）。
Reference After that , the correction of a pipeline gain error of ADC # 1 and ADC # 2 is sequentially repeated alternately

from the first stage to the Mth stage ( steps S6 and S7 , steps S8 and S9 , steps S10 and S11 ) .
Output After that , the pipeline gain error correction of the ADC # 1 and the ADC # 2 is alternately repeated ( steps

S6 and S7 , steps S8 and S11 ) .

Figure 1: Example of untranslated content in Japanese–English translation by NMT. The shaded parts
in the input were mistakenly not translated. The shaded parts in the reference are the corresponding
translations of the untranslated parts.

scores of the two types of probabilities were used
together. We counted the number of untranslated
content words in 100 sentences and found that the
untranslated content in the reranked outputs was
less than that in the baseline NMT outputs.

2 Neural Machine Translation

We briefly describe the baseline attention-based
NMT based on previous work (Bahdanau et al.,
2015) that we used. The NMT consists of an en-
coder that encodes a source sentence and a de-
coder that generates a target sentence.

Given an input sentence, we convert each word
into a one-hot vector and obtain a one-hot vector
sequence x = x1, . . . , xTx. The encoder produces
a vector hj = [

−→
h

⊤
j ;
←−
h

⊤
j ]

⊤
for each source word

position j using long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997) and the word
embedding matrix Ex for the source language.−→
h j = f(

−→
h j−1, Exxj) is the vector output by the

forward LSTM, where f is the LSTM function,
and
←−
h j = f(

←−
h j+1, Exxj) is the vector output by

the backward LSTM.
The decoder calculates the probability of a

translation y = y1, . . . , yTy given x, where yi

is also a one-hot vector at a target word position
i. The decoder searches ŷ = argmaxy p(y|x) to
output ŷ. The probability is decomposed into the
product of the probabilities of each word:

p(y|x) =
∏

i

p(yi|y1, . . . , yi−1,x). (1)

Each conditional probability on the right-hand
side is modeled as

p(yi|y1, . . . , yi−1,x) = sofmax(y⊤i Wtti), (2)

ti = maxout(Ussi + UyEyyi−1 + Ucci), (3)

where si is a hidden state of the LSTM, ci is a
context vector, W. and U. represent weight ma-
trices, and Ey is the word embedding matrix for

the target language. The state si is calculated
as si = f(si−1, [c

⊤
i ; Eyyi−1

⊤
]
⊤
), where f is the

LSTM function. The context vector ci is calcu-
lated as a weighted sum of hj : ci =

∑
j αi,jhj ,

where

αi,j =
exp(ei,j)∑
j exp(ei,j)

, (4)

ei,j = v⊤ tanh(Wssi−1 + WyEyyi−1). (5)

v is a weight vector.
αi,j represents the attention probability, which

can be regarded as a probabilistic correspondence
between yi and xj to some extent.

3 Detection of Untranslated Content

We describe the two types of probabilities and
their use in detecting untranslated content.1

3.1 Cumulative Attention Probability

Heavily attended source words would have been
translated, while sparsely attended source words
would not have been translated (Tu et al., 2016b).
Therefore, the ATN probabilities for each source
word position should provide clues to the detec-
tion of untranslated content. Using Equation (4),
we define an ATN probability score (ATN-P) aj ,
which represents a score of missing the content of
xj from y, as

aj = − log
(∑

i

αi,j

)
. (6)

The value2 in parentheses in Equation (6) is the
ATN probability at the source position j in x. i
represents a target word position in y.

1The use of their combination is explained in Section 5.2.
2Adding a small positive value ϵ to the value is a practical

solution of avoiding calculating log(0). In our experiments,
there was no such case and we did not add ϵ.

48



However, some source words do not inherently
correspond to any target word3, and one source
word may correspond to two or more target words.
Therefore, aj does not always correctly represent
the degree of missing the content of xj .

We solve this problem as follows. We define
an ATN ratio score (ATN-R), which is based on
a probability ratio. Here, the n-best outputs are
represented as y1, . . . ,yn. Furthermore, we make
the following assumption.

Assumption: Existence of translations
The translation of an arbitrary input word
xj , (1 ≤ j ≤ Tx) exists somewhere in the
n-best outputs yd, (1 ≤ d ≤ n), except when
xj does not inherently correspond to any tar-
get words.

Accordingly, we regard mind ad
j as a score without

missing a translation, where ad
j represents aj for

yd. The ATN-R rd
j , which represents a score of

dropping the content of xj from yd, is defined as

rd
j = ad

j −min
d′

(ad′
j ) (7)

This value represents the logarithm of the proba-
bility ratio.

3.2 Back Translation Probability

We define BT as the forced decoding from an MT
output to its input sentence. When the content of
a source word is missing in the MT output, the BT
probability of the source word is expected to be
small. We use this expectation as a clue for de-
tecting untranslated content. A detection method
based on the BT probability has the feature that the
method does not require the specification of word-
level correspondences between languages, which
is not easy to infer precisely. Here, we present a
BT probability score (BT-P) bd

j based on the BT
probability of xj from yd as

bd
j = − log(p(xj |x1, . . . , xj−1,yd)). (8)

The probability in Equation (8) is calculated using
the NMT method described in Section 2.

We again employ the assumption of the “exis-
tence of translations” in the previous section and
accordingly mind(bd

j ) is the score of an output that
contains the content of xj . With this, we calculate

3For example, articles in English do not usually corre-
spond to any words in Japanese.

a score based on a probability ratio. We define the
BT ratio score (BT-R) qd

j , which is a score of miss-
ing the content of xj from yd, as

qd
j = bd

j −min
d′

(bd′
j ). (9)

4 Application to Translation Scores

The scores described in the previous section will
contribute to the selection of a better output (i.e.,
one that has less untranslated content) from the n-
best outputs. We evaluated the effect of reranking
using these scores.

As a sentence score for reranking, we use the
weighted sum of the output score and the detection
score with a weight β:

log(p(yd|x))− β
∑

j

rd
j . (10)

We subtract rd
j , which is a score of missing the

content of xj , from the likelihood of the trans-
lation. When qd

j is used, we replace rd
j with qd

j .
Because reranking compares the n-best outputs of
the same input, the reranking results of ATN-R and
those of ATN-P are the same.4 In the same manner,
the reranking results of BT-R and those of BT-P
are the same. In what follows, we use ATN-R and
BT-R.

When rd
j and qd

j are used together, we use the
score

log(p(yd|x))− γ
∑

j

rd
j − λ

∑
j

qd
j , (11)

where γ and λ are weight parameters.

5 Experiments

As translation data sets including long sentences,
we chose Japanese–English patent translations.
We conducted experiments to confirm the effects
of the scores on the detection of untranslated con-
tent and the effects on translation.

5.1 Common Setup
We used the NTCIR-9 and NTCIR-10 Japanese-
to-English translation task data sets (Goto et al.,
2011; Goto et al., 2013). The number of parallel
sentence pairs in the training data was 3.2M. We

4However, the results differ when we rank translations
among input sentences. The following is an example of such
a situation. The translations of many input sentences are
ranked and the bottom translations are replaced with the out-
puts of SMT to reduce missing translation.
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used sentences that were 100 words or fewer in
length in the training data for Japanese to English
(JE) translation. We used sentences that were 50
words or fewer in length in the training data for
BT to reduce computational costs. We did not use
any monolingual corpus. We used development
data consisting of 1000 sentence pairs, which were
the first half of the official development data. The
numbers of test sentences were 2000 for NTCIR-9
and 2300 for NTCIR-10. We used the Stepp tag-
ger5 as the English tokenizer and Juman 7.016 as
the Japanese tokenizer.

We used Kyoto-NMT (Cromieres, 2016) as
the NMT implementation and modified it to fit
Equation (5). The following settings were used.
The most-frequent 30K words were used for both
source and target words, and the remaining words
were replaced with a special token (UNK). The
numbers of LSTM units of the forward and back-
ward encoders were each 1000, the number of
LSTM units of the decoder was 1000, the word
embedding sizes for the source and target words
were each 620, and the size of the vector just be-
fore the output layer was 500. The number of
hidden layer units and the sizes of the embed-
ding/weight/vocabulary were the same as in (Bah-
danau et al., 2015). The mini-batch size for train-
ing was 64 for JE and 128 for BT. We used Adam
(Kingma and Ba, 2014) to train the NMT mod-
els. We trained the NMT models for a total of six
epochs. The development data were used to select
the best model during the training. The decoding
involved a beam search with a beam width of 20.
We limited the output length to double the length
of the input. We used all of the outputs7 from the
beam search as the n-best outputs.8

β, γ, and λ in Section 4 were selected from
{0.1, 0.2, 0.5, 1, 2} using the development data
such that the BLEU score was the highest.

5.2 Detecting Untranslated Content

We translated the NTCIR-10 test data from
Japanese into English using the baseline NMT sys-
tem and manually specified untranslated source
parts. We then compared the effects of the scores
in Section 3 on the detection of untranslated con-

5http://www.nactem.ac.uk/enju/index.html
6http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN
7Word sequences that were terminated with the end of

sentence (EOS) tokens.
8n was different for each input. n tended to be large when

the input lengths were long.

tent.

Setup
We prepared the evaluation data as follows. Em-
ploying NMT, we translated NTCIR-10 test data
whose lengths and reference lengths were each
100 words or fewer.9 We used the best outputs
from the beam search for each test sentence. To
pick up translations including untranslated con-
tent, we sorted the translations on the basis of
(translation length)/ min(input length, reference
length) in ascending order. We then selected 100
sentences from the top and identified 632 untrans-
lated content words in the 100 selected sentences,
which consisted of 4457 words. The 632 identi-
fied words were used as the gold data. In this pro-
cess, we removed the sentences from the selected
sentences when we could not identify untranslated
parts.

Here, we regarded words including Chinese
characters, Arabic numerals, katakana characters,
or alphabet letters as content words in Japanese.
This is because hiragana characters are basi-
cally used for functional roles in Japanese sen-
tences. Even if the part-of-speech is a verb, words
comprising only hiragana characters (e.g., suru)
mainly play formal roles and do not contain sub-
stantive meaning in most cases for patents and
business documents.

When rd
j and qd

j were used together, we calcu-
lated the detection score

γrd
j + λqd

j , (12)

where γ and λ were those selected in Section 5.1.

Results and Discussion
We ranked words10 in the 100 selected source sen-
tences on the basis of the scores described in Sec-
tion 3 and compared them with the gold data (632
words). The results are shown in Figure 2. The
average precision of random choice was 0.14 =
632/4457. The results were as follows.

• ATN-P and BT-P were more effective than
random choice.

• ATN-R was better than ATN-P, and BT-R was
better than BT-P for the detection.

• Back translation (BT-R) was more effective
than cumulative attention (ATN-R).

9Sentences longer than 100 words were not included in
the training data.

10More properly, we ranked word positions.
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Figure 2: Detection results

Input ISO 感度 値 が 小さい とき に は 増幅 度 が 小さく 、
ISO感度値が大きいときには増幅度が大きい 。

Reference The amplification is small when the ISO sensitivity value is low ,
while the amplification is large when the ISO sensitivity value is high .

Output When the ISO sensitivity value is small , the gain is small .

Figure 3: Unsuccessful example based on BT. Untranslated parts are shaded.

Untranslated content BT-R ATN-R
A content word appears only once in an input sentence Good Fair
A content word appears twice or more in an input sentence Bad Fair

Table 1: Sensitivity of detection of untranslated content.

• The combination of scores (BT-R & ATN-R)
was better than the score of each component
(BT-R or ATN-R).

Figure 3 shows an unsuccessful example of BT-
R. The same content word (ISO) appears twice in
the input. It was thus hard to detect the untrans-
lated underlined ISO in the input on the basis of
BT-R because the corresponding word (ISO) ex-
isted in the output.

On the one hand, the detection sensitivity of BT-
P is thought to be high for a content word that ap-
pears only once in the input sentence. On the other
hand, the detection sensitivity of BT-P is thought
to be low for a content word that appears twice or
more in the input sentence. Because BT-R is based
on BT-P, it has the same characteristics as BT-P. In
contrast, ATN-P is sensitive even when a content

word appears twice or more in the input sentence
because the cumulative probabilities increase de-
pending on the frequency of the word in the MT
output. Because ATN-R is based on ATN-P, it has
the same characteristics as ATN-P.

Therefore, BT-R and ATN-R are complemen-
tary to some extent (Table 1), and this seems to be
why the combination works best.

5.3 Reranking the n-best Outputs

We reranked the n-best NMT outputs following
Section 4 and assessed the effect on the transla-
tion.

Setup

For comparison, we used the baseline NMT sys-
tem with soft coverage models (Mi et al., 2016; Tu

51



NTCIR-10 NTCIR-9
Phrase-based SMT 30.58 30.21
Hierarchical phrase-based SMT 31.99 31.48
NMT Baseline 38.68 37.83
Rerank with ATN-R 39.82 38.88
Rerank with BT-R 40.14 39.16
Rerank with ATN-R & BT-R 40.36 39.46
NMT Baseline with COVERAGE-neural 38.89 37.90
NMT Baseline with COVERAGE-linguistic 39.13 38.03

Table 2: Translation results (BLEU)
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et al., 2016b), which were used in first-pass decod-
ing.11 Whereas these studies used gated recurrent
units (GRUs) (Chung et al., 2014) for the NMT
and coverage models, we used LSTM.12 The soft
coverage model of (Mi et al., 2016) is called a neu-
ral soft coverage model (COVERAGE-neural). Tu
et al. (2016b) proposed linguistic and neural soft
coverage models. We used the linguistic version of
(Tu et al., 2016b). We call this model the linguistic
soft coverage model (COVERAGE-linguistic).

As references, we used conventional SMT using
11These methods are not competing but are cooperative be-

cause they can be used to produce better n-best outputs.
12Our experiments indicated that the BLEU scores of the

baseline NMT system using LSTM were higher than those of
the baseline NMT system using GRUs. The training time of
the neural soft coverage model using the Chainer (Tokui et
al., 2015) LSTM for one epoch was shorter than that of the
neural soft coverage model using the Chainer GRU.

Moses (Koehn et al., 2007) with a distortion-limit
of 20 for phrase-based SMT and a max-chart-span
of 1000 for hierarchical phrase-based SMT.

Results and Discussion
Table 2 gives the results measured by case-
insensitive BLEU-4 (Papineni et al., 2002). Over-
all, the results indicate the effectiveness of using
ATN probabilities and BT probabilities for trans-
lation scores.

We now compare the soft coverage models. Be-
cause the difference between the results of the
NMT baseline and the results of COVERAGE-
neural are small, the effect of COVERAGE-neural
was small for this dataset. The difference be-
tween the results of the NMT baseline and the
results of COVERAGE-linguistic was also small
(less than 0.5 BLEU points), whereas the improve-
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Missing translation Repeated translation
NMT baseline 0.061 (137/2251) 0.004 (9/2251)
Rerank with BT-R & ATN-R 0.020 (45/2251) 0.004 (9/2251)

Table 3: Rate of mistakenly untranslated content words (missing translation) and mistakenly repeated
translations. The values in parentheses denote the number of source content words.

ment of COVERAGE-linguistic was greater than
that of COVERAGE-neural. In contrast, the re-
sults of Rerank with ATN-R obtained improve-
ments of more than 1 BLEU point compared with
the NMT baseline. Both the soft coverage mod-
els and Rerank with ATN-R are based on attention
probabilities. The soft coverage models therefore
have room for improvement on this dataset, which
means that there is a difficulty in training soft cov-
erage models using end-to-end learning to take ad-
vantage of the attention probabilities as well as
Rerank with ATN-R. The difficulties would de-
pend on the data sets.13

We now compare ATN-R and BT-R. ATN-R
and BT-R were effective in reranking. BT-R was
slightly better than ATN-R. The combined use of
ATN-R and BT-R was more effective than using
only one component. These results are consis-
tent with the detection results described in Section
5.2. The difference between reranking with BT-
R and reranking with ATN-R & BT-R was statis-
tically significant at α = 0.01, which was com-
puted using a tool14 of the bootstrap resampling
test (Koehn, 2004).

13We consider possible reasons that the improvements in
the BLEU scores achived with the coverage models were not
as great as improvements in (Tu et al., 2016b; Mi et al., 2016)
as follows. We compare Figure 4 in this paper and Figure
6 in (Tu et al., 2016b) showing the lengths of translations.
Contrary to our baseline results, the output lengths of their
baseline were much shorter than those of the phrase-based
SMT when source sentences were longer than 50 words. This
means that there is less missing content for our baseline than
for their baseline. We therefore believe the following reasons
explain the smaller improvements achieved with the coverage
models.

• There is less room for improvement for our baseline
with the coverage models than for their baseline.

• Because there is less missing content for our baseline,
there are fewer chances that the coverage model effec-
tively improves the translations in our training, which
are necessary to appropriately estimate the coverage
model parameters. Therefore, the estimation of the
coverage model parameters in our training would be
more difficult than that in their training.

The second item is thought to be the reason that the improve-
ments for COVERAGE-linguistic, which has fewer parame-
ters, were larger than those for COVERAGE-neural, which has
more parameters.

14https://github.com/odashi/mteval

We compared the average output lengths us-
ing NTCIR-10 test data for the test sentences no
longer than 100 words. The average output lengths
are shown in Figure 4. The figure shows that the
average output lengths of the NMT baseline tend
to be shorter than the average reference lengths
for long sentences. The average lengths of Rerank
with BT-R & ATN-R were longer than those of the
NMT baseline, and they were closer to the average
reference lengths than those of the NMT baseline.

To check whether the amount of untranslated
content was reduced by Rerank with ATN-R &
BT-R, we counted untranslated content words in
100 randomly selected test sentences from the
NTCIR-10 test data and their translations pro-
duced by the NMT baseline and by Rerank with
ATN-R & BT-R. We removed sentences from the
selected test sentences when the test sentence or
its reference sentence was longer than 100 words.
Words were regarded as content words when the
words met the conditions of content words ex-
plained in Section 5.2. The results are presented
in Table 3. The results confirm that the amount of
untranslated content was reduced by Rerank with
ATN-R & BT-R without increasing the amount of
mistakenly repeated translations.

6 Related Work

We introduced soft coverage models (Tu et al.,
2016b; Mi et al., 2016) in Section 1. In addition
to these published studies, there are several paral-
lel related studies on arXiv (Wu et al., 2016; Li
and Jurafsky, 2016; Tu et al., 2016a).15 Wu et al.
(2016) use ATN probabilities for reranking. Li and
Jurafsky (2016) use BT probabilities for rerank-
ing. Tu et al. (2016a) use probabilities of inputs
given the decoder states for reranking. Their prob-
abilities are similar to the BT probabilities that
we evaluated. However, unlike BT, to calculate

15Reviewers for EACL 2017 short paper mentioned Li and
Jurafsky (2016) and Wu et al. (2016) in their comments. The
neural MT tutorial given at NLP 2017 (Annual meeting of
the Association for Natural Language Processing in Japan)
introduced Tu et al. (2016a).
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their probability, the actual yi selected in the beam
search is not used. These studies did not evalu-
ate the effect on detecting untranslated content and
did not assess the effect of combining ATN and
BT. In contrast, we evaluated the effect on detect-
ing untranslated content for ATN and BT. In addi-
tion, we investigated the effect of combining ATN
and BT.

7 Conclusion

We evaluated the effect of two types of probability
on detecting untranslated content, which is a se-
rious problem limiting the practical use of NMT.
The two types of probabilities are ATN probabili-
ties and BT probabilities. We confirmed their ef-
fectiveness in detecting untranslated content. We
also confirmed that they were effective in rerank-
ing the n-best outputs from NMT. Improvements
in NMT will give a better chance of satisfying the
assumption of the existence of translations. This is
expected to lead to improvements in the detection
of untranslated content.
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Abstract

The basic concept in Neural Machine
Translation (NMT) is to train a large Neu-
ral Network that maximizes the transla-
tion performance on a given parallel cor-
pus. NMT is then using a simple left-to-
right beam-search decoder to generate new
translations that approximately maximize
the trained conditional probability. The
current beam search strategy generates the
target sentence word by word from left-to-
right while keeping a fixed amount of ac-
tive candidates at each time step. First, this
simple search is less adaptive as it also ex-
pands candidates whose scores are much
worse than the current best. Secondly, it
does not expand hypotheses if they are not
within the best scoring candidates, even
if their scores are close to the best one.
The latter one can be avoided by increas-
ing the beam size until no performance im-
provement can be observed. While you
can reach better performance, this has the
drawback of a slower decoding speed. In
this paper, we concentrate on speeding
up the decoder by applying a more flexi-
ble beam search strategy whose candidate
size may vary at each time step depend-
ing on the candidate scores. We speed
up the original decoder by up to 43% for
the two language pairs German→English
and Chinese→English without losing any
translation quality.

1 Introduction

Due to the fact that Neural Machine Translation
(NMT) is reaching comparable or even better per-
formance compared to the traditional statistical
machine translation (SMT) models (Jean et al.,

2015; Luong et al., 2015), it has become very pop-
ular in the recent years (Kalchbrenner and Blun-
som, 2013; Sutskever et al., 2014; Bahdanau et al.,
2014). With the recent success of NMT, attention
has shifted towards making it more practical. One
of the challenges is the search strategy for extract-
ing the best translation for a given source sentence.
In NMT, new sentences are translated by a simple
beam search decoder that finds a translation that
approximately maximizes the conditional proba-
bility of a trained NMT model. The beam search
strategy generates the translation word by word
from left-to-right while keeping a fixed number
(beam) of active candidates at each time step. By
increasing the beam size, the translation perfor-
mance can increase at the expense of significantly
reducing the decoder speed. Typically, there is
a saturation point at which the translation qual-
ity does not improve any more by further increas-
ing the beam. The motivation of this work is two
folded. First, we prune the search graph, thus,
speed up the decoding process without losing any
translation quality. Secondly, we observed that the
best scoring candidates often share the same his-
tory and often come from the same partial hypoth-
esis. We limit the amount of candidates coming
from the same partial hypothesis to introduce more
diversity without reducing the decoding speed by
just using a higher beam.

2 Related Work

The original beam search for sequence to se-
quence models has been introduced and described
by (Graves, 2012; Boulanger-Lewandowski et al.,
2013) and by (Sutskever et al., 2014) for neural
machine translation. (Hu et al., 2015; Mi et al.,
2016) improved the beam search with a constraint
softmax function which only considered a lim-
ited word set of translation candidates to reduce
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the computation complexity. This has the advan-
tage that they normalize only a small set of candi-
dates and thus improve the decoding speed. (Wu
et al., 2016) only consider tokens that have local
scores that are not more than beamsize below the
best token during their search. Further, the au-
thors prune all partial hypotheses whose score are
beamsize lower than the best final hypothesis (if
one has already been generated). In this work, we
investigate different absolute and relative pruning
schemes which have successfully been applied in
statistical machine translation for e.g. phrase table
pruning (Zens et al., 2012).

3 Original Beam Search

The original beam-search strategy finds a transla-
tion that approximately maximizes the conditional
probability given by a specific model. It builds
the translation from left-to-right and keeps a fixed
number (beam) of translation candidates with the
highest log-probability at each time step. For each
end-of-sequence symbol that is selected among
the highest scoring candidates the beam is reduced
by one and the translation is stored into a final can-
didate list. When the beam is zero, it stops the
search and picks the translation with the highest
log-probability (normalized by the number of tar-
get words) out of the final candidate list.

4 Search Strategies

In this section, we describe the different strategies
we experimented with. In all our extensions, we
first reduce the candidate list to the current beam
size and apply on top of this one or several of the
following pruning schemes.

Relative Threshold Pruning. The relative
threshold pruning method discards those
candidates that are far worse than the best
active candidate. Given a pruning threshold
rp and an active candidate list C, a candidate
cand ∈ C is discarded if:

score(cand) ≤ rp ∗max
c∈C
{score(c)} (1)

Absolute Threshold Pruning. Instead of taking
the relative difference of the scores into ac-
count, we just discard those candidates that
are worse by a specific threshold than the best
active candidate. Given a pruning threshold
ap and an active candidate list C, a candidate

cand ∈ C is discarded if:

score(cand) ≤ max
c∈C
{score(c)} − ap (2)

Relative Local Threshold Pruning. In this prun-
ing approach, we only consider the score
scorew of the last generated word and not
the total score which also include the scores
of the previously generated words. Given a
pruning threshold rpl and an active candidate
list C, a candidate cand ∈ C is discarded if:

scorew(cand) ≤ rpl ∗max
c∈C
{scorew(c)}

(3)
Maximum Candidates per Node We observed

that at each time step during the decoding
process, most of the partial hypotheses share
the same predecessor words. To introduce
more diversity, we allow only a fixed number
of candidates with the same history at each
time step. Given a maximum candidate
threshold mc and an active candidate list C,
a candidate cand ∈ C is discarded if already
mc better scoring partial hyps with the same
history are in the candidate list.

5 Experiments

For the German→English translation task, we
train an NMT system based on the WMT 2016
training data (Bojar et al., 2016) (3.9M paral-
lel sentences). For the Chinese→English experi-
ments, we use an NMT system trained on 11 mil-
lion sentences from the BOLT project.

In all our experiments, we use our in-house
attention-based NMT implementation which is
similar to (Bahdanau et al., 2014). For
German→English, we use sub-word units ex-
tracted by byte pair encoding (Sennrich et al.,
2015) instead of words which shrinks the vocabu-
lary to 40k sub-word symbols for both source and
target. For Chinese→English, we limit our vocab-
ularies to be the top 300K most frequent words
for both source and target language. Words not in
these vocabularies are converted into an unknown
token. During translation, we use the alignments
(from the attention mechanism) to replace the un-
known tokens either with potential targets (ob-
tained from an IBM Model-1 trained on the paral-
lel data) or with the source word itself (if no target
was found) (Mi et al., 2016). We use an embed-
ding dimension of 620 and fix the RNN GRU lay-
ers to be of 1000 cells each. For the training proce-
dure, we use SGD (Bishop, 1995) to update model
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Figure 1: German→English: Original beam-
search strategy with different beam sizes on new-
stest2014.
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Figure 2: German→English: Different values of
relative pruning measured on newstest2014.

parameters with a mini-batch size of 64. The train-
ing data is shuffled after each epoch.

We measure the decoding speed by two num-
bers. First, we compare the actual speed relative
to the same setup without any pruning. Secondly,
we measure the average fan out per time step. For
each time step, the fan out is defined as the num-
ber of candidates we expand. Fan out has an up-
per bound of the size of the beam, but can be de-
creased either due to early stopping (we reduce
the beam every time we predict a end-of-sentence
symbol) or by the proposed pruning schemes. For
each pruning technique, we run the experiments
with different pruning thresholds and chose the
largest threshold that did not degrade the transla-
tion performance based on a selection set.

In Figure 1, you can see the German→English
translation performance and the average fan out
per sentence for different beam sizes. Based
on this experiment, we decided to run our prun-
ing experiments for beam size 5 and 14. The

German→English results can be found in Table 1.
By using the combination of all pruning tech-
niques, we can speed up the decoding process by
13% for beam size 5 and by 43% for beam size
14 without any drop in performance. The rela-
tive pruning technique is the best working one for
beam size 5 whereas the absolute pruning tech-
nique works best for a beam size 14. In Figure 2
the decoding speed with different relative prun-
ing threshold for beam size 5 are illustrated. Set-
ting the threshold higher than 0.6 hurts the trans-
lation performance. A nice side effect is that it has
become possible to decode without any fix beam
size when we apply pruning. Nevertheless, the de-
coding speed drops while the translation perfor-
mance did not change. Further, we looked at the
number of search errors introduced by our prun-
ing schemes (number of times we prune the best
scoring hypothesis). 5% of the sentences change
due to search errors for beam size 5 and 9% of the
sentences change for beam size 14 when using all
four pruning techniques together.

The Chinese→English translation results can be
found in Table 2. We can speed up the decoding
process by 10% for beam size 5 and by 24% for
beam size 14 without loss in translation quality. In
addition, we measured the number of search errors
introduced by pruning the search. Only 4% of the
sentences change for beam size 5, whereas 22% of
the sentences change for beam size 14.

6 Conclusion

The original beam search decoder used in Neu-
ral Machine Translation is very simple. It gen-
erated translations from left-to-right while look-
ing at a fix number (beam) of candidates from the
last time step only. By setting the beam size large
enough, we ensure that the best translation per-
formance can be reached with the drawback that
many candidates whose scores are far away from
the best are also explored. In this paper, we in-
troduced several pruning techniques which prune
candidates whose scores are far away from the best
one. By applying a combination of absolute and
relative pruning schemes, we speed up the decoder
by up to 43% without losing any translation qual-
ity. Putting more diversity into the decoder did not
improve the translation quality.
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pruning beam speed avg fan out tot fan out newstest2014 newstest2015
size up per sent per sent BLEU TER BLEU TER

no pruning 1 - 1.00 25 25.5 56.8 26.1 55.4
no pruning 5 - 4.54 122 27.3 54.6 27.4 53.7
rp=0.6 5 6% 3.71 109 27.3 54.7 27.3 53.8
ap=2.5 5 5% 4.11 116 27.3 54.6 27.4 53.7
rpl=0.02 5 5% 4.25 118 27.3 54.7 27.4 53.8
mc=3 5 0% 4.54 126 27.4 54.6 27.5 53.8
rp=0.6,ap=2.5,rpl=0.02,mc=3 5 13% 3.64 101 27.3 54.6 27.3 53.8
no pruning 14 - 12.19 363 27.6 54.3 27.6 53.5
rp=0.3 14 10% 10.38 315 27.6 54.3 27.6 53.4
ap=2.5 14 29% 9.49 279 27.6 54.3 27.6 53.5
rpl=0.3 14 24% 10.27 306 27.6 54.4 27.7 53.4
mc=3 14 1% 12.21 347 27.6 54.4 27.7 53.4
rp=0.3,ap=2.5,rpl=0.3,mc=3 14 43% 8.44 260 27.6 54.5 27.6 53.4
rp=0.3,ap=2.5,rpl=0.3,mc=3 - - 28.46 979 27.6 54.4 27.6 53.3

Table 1: Results German→English: relative pruning(rp), absolute pruning(ap), relative local pruning(rpl)
and maximum candidates per node(mc). Average fan out is the average number of candidates we keep at
each time step during decoding.

pruning beam speed avg fan out tot fan out MT08 nw MT08 wb
size up per sent per sent BLEU TER BLEU TER

no pruning 1 - 1.00 29 27.3 61.7 26.0 60.3
no pruning 5 - 4.36 137 34.4 57.3 30.6 58.2
rp=0.2 5 1% 4.32 134 34.4 57.3 30.6 58.2
ap=5 5 4% 4.26 132 34.3 57.3 30.6 58.2
rpl=0.01 5 1% 4.35 135 34.4 57.5 30.6 58.3
mc=3 5 0% 4.37 139 34.4 57.4 30.7 58.2
rp=0.2,ap=5,rpl=0.01,mc=3 5 10% 3.92 121 34.3 57.3 30.6 58.2
no pruning 14 - 11.96 376 35.3 57.1 31.2 57.8
rp=0.2 14 3% 11.62 362 35.2 57.2 31.2 57.8
ap=2.5 14 14% 10.15 321 35.2 56.9 31.1 57.9
rpl=0.3 14 10% 10.93 334 35.3 57.2 31.1 57.9
mc=3 14 0% 11.98 378 35.3 56.9 31.1 57.8
rp=0.2,ap=2.5,rpl=0.3,mc=3 14 24% 8.62 306 35.3 56.9 31.1 57.8
rp=0.2,ap=2.5,rpl=0.3,mc=3 - - 38.76 1411 35.2 57.3 31.1 57.9

Table 2: Results Chinese→English: relative pruning(rp), absolute pruning(ap), relative local pruning(rpl)
and maximum candidates per node(mc).
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Abstract

Training of neural machine translation
(NMT) models usually uses mini-batches
for efficiency purposes. During the mini-
batched training process, it is necessary to
pad shorter sentences in a mini-batch to
be equal in length to the longest sentence
therein for efficient computation. Previ-
ous work has noted that sorting the cor-
pus based on the sentence length before
making mini-batches reduces the amount
of padding and increases the processing
speed. However, despite the fact that
mini-batch creation is an essential step in
NMT training, widely used NMT toolkits
implement disparate strategies for doing
so, which have not been empirically vali-
dated or compared. This work investigates
mini-batch creation strategies with exper-
iments over two different datasets. Our
results suggest that the choice of a mini-
batch creation strategy has a large effect
on NMT training and some length-based
sorting strategies do not always work well
compared with simple shuffling.

1 Introduction

Mini-batch training is a standard practice in large-
scale machine learning. In recent implementa-
tions of neural networks, the efficiency of loss and
gradient calculation is greatly improved by mini-
batching due to the fact that combining training
examples into batches allows for fewer but larger
operations that can take advantage of the paral-
lelism allowed by modern computation architec-
tures, particularly GPUs.

∗ This work is done while the author was at Nara Institute
of Science and Technology.

In some cases, such as the case of processing
images, mini-batching is straightforward, as the
inputs in all training examples take the same form.
However, in order to perform mini-batching in the
training of neural machine translation (NMT) or
other sequence-to-sequence models, we need to
pad shorter sentences to be the same length as the
longest sentences to account for sentences of vari-
able length in each mini-batch.

To help prevent wasted calculation due to this
padding, it is common to sort the corpus accord-
ing to the sentence length before creating mini-
batches (Sutskever et al., 2014; Bahdanau et al.,
2015), because putting sentences that have sim-
ilar lengths in the same mini-batch will reduce
the amount of padding and increase the per-word
computation speed. However, we can also easily
imagine that this grouping of sentences together
may affect the convergence speed and stability,
and the performance of the learned models. De-
spite this fact, no previous work has explicitly ex-
amined how mini-batch creation affects the learn-
ing of NMT models. Various NMT toolkits in-
clude implementations of different strategies, but
they have neither been empirically validated nor
compared.

In this work, we attempt to fill this gap by sur-
veying the various mini-batch creation strategies
that are in use: sorting by length of the source sen-
tence, target sentence, or both, as well as making
mini-batches according to the number of sentences
and the number of words. We empirically compare
their efficacy on two translation tasks and find that
some strategies in wide use are not necessarily op-
timal for reliably training models.

2 Mini-batches for NMT

First, to clearly demonstrate the problem of mini-
batching in NMT models, Figure 1 shows an ex-
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Figure 1: An example of mini-batching in an encoder-decoder translation model.

ample of mini-batching two sentences of different
lengths in an encoder-decoder model.

The first thing that we can notice from the fig-
ure is that multiple operations at a particular time
step t can be combined into a single operation. For
example, both “John” and ”I” are embedded in a
single step into a matrix that is passed into the en-
coder LSTM in a single step. On the target side
as well, we calcualate the loss for the target words
at time step t for every sentence in the mini-batch
simultaneously.

However, there are problems when sentences
are of different length, as only some sentences will
have any content at a particular time step. To re-
solve this problem, we pad short sentences with
end-of-sentence tokens to adjust their length to the
length of the longest sentence. In the Figure 1,
purple colored “〈/s〉” indicates the padded end-of-
sentence token.

Padding with these tokens makes it possible to
handle variably-lengthed sentences as if they were
of the same length. On the other hand, the com-
putational cost for a mini-batch increases in pro-
portion to the longest sentence therein, and ex-
cess padding can result in a significant amount of
wasted computation. One way to fix this prob-
lem is by creating mini-batches that include sen-
tences of similar length (Sutskever et al., 2014)

Algorithm 1 Create mini-batches
1: C ← Training corpus
2: C ← sort(C) or shuffle(C) . sort or shuffle

the whole corpus
3: B ← {} . mini-batches
4: i← 0, j ← 0
5: while i < C.size() do
6: B[j]← B[j] + C[i]
7: if B[j].size() ≥ max mini-batch size then
8: B[j]← padding(B[j]) .

Padding tokens to the longest sentence in the
mini-batch

9: j ← j + 1
10: end if
11: i← i+ 1
12: end while
13: B ← shuffle(B) . shuffle the order of the

mini-batches

to reduce the amount of padding required. Many
NMT toolkits implement length-based sorting of
the training corpus for this purpose. In the fol-
lowing section, we discuss several different mini-
batch creation strategies used in existing neural
MT toolkits.
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3 Mini-batch Creation Strategies

Specifically, we examine three aspects of mini-
batch creation: mini-batch size, word vs. sentence
mini-batches, and sorting strategies. Algorithm 1
shows the pseudo code of creating mini-batches.

3.1 Mini-batch Size
The first aspect we consider is mini-batch size for
which, of the three aspects we examine here, the
effect is relatively well known.

When we use larger mini-batches, more sen-
tences participate in the gradient calculation mak-
ing the gradients more stable. They also increase
efficiency with parallel computation. However,
they decrease the number of parameter updates
performed in a certain amount of time, which
can slow convergence at the beginning of train-
ing. Large mini-batches can also pose problems
in practice due to the fact that they increase mem-
ory requirements.

3.2 Sentence vs. Word Mini-batching
The second aspect that we examine, which has not
been examined in detail previously, is whether to
create mini-batches based on the number of sen-
tences or number of target words.

Most NMT toolkits create mini-batches with a
constant number of sentences. In this case, the
number of words included in each mini-batch dif-
fers greatly due to the variance in sentence lengths.
If we use the neural network library that constructs
graphs in a dynamic fashion (e.g. DyNet (Neubig
et al., 2017), Chainer (Tokui et al., 2015), or Py-
Torch1), this will lead to a large variance in mem-
ory consumption from mini-batch to mini-batch.
In addition, because the loss function for the mini-
batch is equal to the sum of the losses incurred for
each word, the scale of the losses will vary greatly
from mini-batch to mini-batch, which could be po-
tentially detrimental to training.

Another choice is to create mini-batches by
keeping the number of target words in each mini-
batch approximately stable, but varying the num-
ber of sentences. We hypothesize that this may
lead to more stable convergence, and test this hy-
pothesis in the experiments.

3.3 Corpus Sorting Methods
The final aspect that we examine, which has sim-
ilarly is not yet well understood, is the effect of

1http://pytorch.org

the method that we use to sort the corpus before
grouping consecutive sentences into mini-batches.

A standard practice in online learning shuffles
training samples to ensure that bias in the pre-
sentation order does not adversely affect the final
result. However, as we mentioned in Section 2,
NMT studies (Sutskever et al., 2014; Bahdanau
et al., 2015) prefer uniform length samples in the
mini-batch by sorting the training corpus, to re-
duce the amount of padding and increase per-word
calculation speed. In particular, in the encoder-
decoder NMT framework (Sutskever et al., 2014),
the computational cost in the softmax layer of the
decoder is much heavier than the encoder. Some
NMT toolkits sort the training corpus based on the
target sentence length to avoid unnecessary soft-
max computations on padded tokens in the tar-
get side. Another problem arises in the atten-
tional NMT model (Bahdanau et al., 2015; Luong
et al., 2015); attentions may give incorrect positive
weights to the padded tokens in the source side.
The problems above also motivate the mini-batch
creation with uniform length sentences with fewer
padded tokens.

Inspired by sorting methods in use in current
open source implementations, we compare the fol-
lowing sorting methods:

SHUFFLE: Shuffle the corpus randomly before
creating mini-batches, with no sorting.

SRC: Sort based on the source sentence length.
TRG: Sort based on the target sentence length.
SRC TRG: Sort using the source sentence length,

break ties by sorting by target sentence
length.

TRG SRC: Converse of SRC TRG.

Of established open-source toolkits, OpenNMT
(Klein et al., 2017) uses the SRC sorting method,
Nematus2 and KNMT (Cromieres, 2016) use
the TRG sorting method, and lamtram3 uses the
TRG SRC sorting method.

4 Experiments

We conducted NMT experiments with the strate-
gies presented above to examine their effects on
NMT training.

4.1 Experimental Settings
We carried out experiments with two language
pairs, English-Japanese using the ASPEC-JE cor-

2https://github.com/rsennrich/nematus
3https://github.com/neubig/lamtram
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ASPEC-JE WMT 2016
train 2,000,000 4,562,102
dev 1,790 2,169
test 1,812 2,999

Table 1: Number of sentences in the corpus

pus (Nakazawa et al., 2016) and English-German
using the WMT 2016 news task with news-
test2016 as the test-set (Bojar et al., 2016). Table
1 shows the number of sentences contained in the
corpora.

The English and German texts were tokenized
with tokenizer.perl4, and the Japanese texts
were tokenized with KyTea (Neubig et al., 2011).

As a testbed for our experiments, we used the
standard global attention model of Luong et al.
(2015) with attention feeding and a bidirectional
encoder with one LSTM layer of 512 nodes.
We used the DyNet-based (Neubig et al., 2017)
NMTKit5, with a vocabulary size of 65536 words
and dropout of 30% for all vertical connections.
We used the same random numbers as initial pa-
rameters for each experiment to reduce variance
due to initialization. We used Adam (Kingma and
Ba, 2015) (α = 0.001) or SGD (η = 0.1) as
the learning algorithm. After every 50,000 train-
ing sentences, we processed the test set to record
negative log likelihoods. In the testing, we set the
mini-batch size to 1, in order to calculate negative
log likelihood correctly. We calculated the case-
insensitive BLEU score (Papineni et al., 2002)
with multi-bleu.perl6 script.

Table 2 shows the mini-batch creation settings
compared in this paper, and we tried all sorting
methods discussed in Section 3.3 for each setting.
In method (e), we set the average number of target
words in 64 sentences: 2055 words for ASPEC-
JE, 1742 words for WMT. For all experiments, we
shuffled the processing order of the mini-batches.

4.2 Experimental Results and Analysis

Figure 2, 3, 4 and 5 show the transition of negative
log likelihoods and the BLEU scores according to
the number of processed sentences in ASPEC-JE

4https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl

5https://github.com/odashi/nmtkit We
used the commit number 566e9c2.

6https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

mini-batch units learning algorithm
(a) 64 sentences Adam
(b) 32 sentences Adam
(c) 16 sentences Adam
(d) 8 sentences Adam
(e) 2055 or 1742 words Adam
(f) 64 sentences SGD

Table 2: Compared settings

sorting method average time (hour)
SHUFFLE 8.08

SRC 6.45
TRG 5.21

SRC TRG 4.35
TRG SRC 4.30

Table 3: Average time needed to train a whole
ASPEC-JE corpus using method (a). We used a
GTX 1080 GPU for this experiment.

and WMT2016 test sets. Table 3 shows the aver-
age time to process the whole ASPEC-JE corpus.

The learning curves show very similar tenden-
cies in different language pairs. We discuss the
results in detail on each strategy that we investi-
gated.

4.2.1 Effect of Mini-batch Size
We carried out the experiments with the mini-
batch size of 8 to 64 sentences.7

From the experimental results of the method (a),
(b), (c) and (d), in the case of using Adam, the
mini-batch size affects the training speed and it
also has an impact on the final accuracy of the
model. As we mentioned in Section 3.1, the gra-
dients can be stabler by increasing the mini-batch
size, and it seems to have a positive impact on the
model from the view of accuracy. Thus, we can
first note that mini-batch size is a very important
hyper-parameter for NMT training that should not
be ignored. In our case in particular, the largest
mini-batch size that could be loaded into the mem-
ory was the best for the NMT training.

4.2.2 Effect of Mini-batch Unit
Looking at the experimental results of the meth-
ods (a) and (e), we can see that perplexities drop
faster if we use SHUFFLE for method (a) and SRC

for method (e), but we couldn’t see any large dif-
ferences in terms of the training speed and the final

7We tried the experiments with larger mini-batch size, but
we couldn’t run it due to the GPU memory limitation.
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Figure 2: Training curves on the ASPEC-JE test set. The y- and x-axes shows the negative log likelihoods
and number of processed sentences. The scale of the x-axis in the method (f) is different from others.

Figure 3: Training curves on the WMT2016 test set. Axes are the same as Figure 2.

accuracy of the model. We hypothesize that the
large variance of the loss affects the final model
accuracy, especially when using the learning algo-
rithm that uses momentum such as Adam. How-
ever, these results indicate that these differences
do not significantly affect the training results. We
leave a comparison of memory consumption for
future research.

4.2.3 Effect of Corpus Sorting Method using
Adam

From all experimental results of the method (a),
(b), (c), (d) and (e), in the case of using SHUF-

FLE or SRC, perplexities drop faster and tend to
converge to lower perplexities than the other meth-
ods for all mini-batch sizes. We believe the main
reason for this is due to the similarity of the sen-
tences contained in each mini-batch. If the sen-
tence length is similar, the features of the sentence
may also be similar. We carefully examined the
corpus and found that at least this is true for the
corpus we used (e.g. shorter sentences tend to con-
tain the similar words). In this case, if we sort sen-
tences by their length, sentences that have similar
features will be gathered into the same mini-batch,
making training less stable than if all sentences
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Figure 4: BLEU scores on the ASPEC-JE test set. The y- and x-axes shows the BLEU scores and number
of processed sentences. The scale of the x-axis in the method (f) is different from others.

Figure 5: BLEU scores on the WMT2016 test set. Axes are the same as Figure 4.

in the mini-batch had different features. This is
evidenced by the more jagged lines of the TRG

method.
As a conclusion, the TRG and TRG SRC sorting

methods, which are used by many NMT toolkits,
have a higher overall throughput when just mea-
suring the number of words processed, but for con-
vergence speed and final model accuracy, it seems
to be better to use SHUFFLE or SRC.

Some toolkits shuffle the corpus first, then cre-
ate mini-batches by sorting a few consecutive sen-
tences. We think that this method may be effective
by combining the advantage of SHUFFLE and other

sorting methods, but an empirical comparison is
beyond the scope of this work.

4.2.4 Effect of Corpus Sorting Method using
SGD

By comparing the experimental results of the
methods (a) and (f), we found that in the case of
using Adam, the learning curves greatly depend
on the sorting method, but in the case of using
SGD there was little effect. This is likely because
SGD makes less bold updates of rare parameters,
improving its overall stability. However, we find
that only when using the TRG method, the nega-
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Figure 6: Training curves on the ASPEC test set
using lamtram toolkit. Axes are the same as Fig-
ure 2.

tive log likelihoods and the BLEU scores are not
stable. It can be conjectured that this is an effect
of gathering the similar sentences in a mini-batch
as we mentioned in Section 4.2.3. These results
indicate that in the case of SGD it is acceptable to
TRG SRC, which is the fastest method to process
the whole corpus (see Table 3), for SGD.

Recently, Wu et al. (2016) proposed a new
learning paradigm, which uses Adam for the ini-
tial training, then switches to SGD after several
iterations. If we use this learning algorithm, we
may be able to train the model more effectively by
using SHUFFLE or SRC sorting method for Adam,
and TRG SRC for SGD.

4.3 Experiments with a Different Toolkit

In the previous experiments, we conducted the ex-
periments with only one NMT toolkit, so the re-
sults may be dependent on the particular imple-
mentation provided therein. To ensure that these
results generalize to other toolkits with different
default parameters, we conducted the experiments
with another NMT toolkit.

4.3.1 Experimental Settings
In this section, we used lamtram8 as a NMT
toolkit. We carried out the Japanese-English trans-
lation experiments with ASPEC-JE corpus. We
used Adam (Kingma and Ba, 2015) (α = 0.001)
as the learning algorithm and tried the two sort-
ing algorithms: SHUFFLE which is the best sort-
ing method on previous experiments and TRG SRC

which is the default sorting method used by the

8https://github.com/neubig/lamtram

lamtram toolkit. Normally, lamtram creates mini-
batches based on the number of target words con-
tained in each mini-batch, but we changed it to
fix the mini-batch size to 64 sentences because we
find that larger mini-batch size seems to be bet-
ter in the previous experiments. Other experimen-
tal settings are the same as described in the Sec-
tion 4.1.

4.3.2 Experimental Results
Figure 6 shows the transition of negative log like-
lihoods using lamtram. We can see the tendency
of the training curves are similar to the Figure 2
(a), the combination with SHUFFLE drops negative
log likelihood faster than the TRG SRC one.

From this experiments, we could verify that our
experimental results in the Section 4 do not rely on
the toolkit and we think the observed behavior will
generalize to other toolkits and implementations.

5 Related Work

Recently, Britz et al. (2017) have released a pa-
per about exploring the hyper-parameters of NMT.
This work is similar to our paper in the terms
of finding the better hyper-parameters by doing
a large number of experiments and deriving em-
pirical conclusions. However, notably this paper
fixed the mini-batch size to 128 sentences and did
not treat mini-batch creation strategy as one of the
hyper-parameters of the model. With our experi-
mental results, we argue that the mini-batch cre-
ation strategies also have an impact on the NMT
training, and thus having solid recommendations
for how to adjust this hyper-parameter are also of
merit.

6 Conclusion

In this paper, we analyzed how mini-batch cre-
ation strategies affect the training of NMT models
for two language pairs. The experimental results
suggest mini-batch creation strategy is an impor-
tant hyper-parameter of the training process, and
commonly-used sorting strategies are not always
optimal. We sum up the results as follows:

• Mini-batch size can affect the final accuracy
of the model in addition to the training speed
and the larger mini-batch size seems to be
better.

• Mini-batch units do not effect to the train-
ing process, so it is possible to use either the
number of sentences or target words.
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• We should use SHUFFLE or SRC sorting
method for Adam, and it is sufficient to use
TRG SRC for SGD.

In the future, we plan to do experiments with
larger mini-batch sizes and compare the used
peak memory between making mini-batches by
the number of sentences or target words. We are
also interested in checking the effects of different
mini-batch creation strategies with other language
pairs, corpora and optimization functions.
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Abstract

Parallel corpora are often not as parallel as
one might assume: non-literal translations
and noisy translations abound, even in cu-
rated corpora routinely used for training
and evaluation. We use a cross-lingual tex-
tual entailment system to distinguish sen-
tence pairs that are parallel in meaning
from those that are not, and show that fil-
tering out divergent examples from train-
ing improves translation quality.

1 Introduction

Parallel sentence pairs provide examples of trans-
lation equivalence to train Machine Translation
(MT) and cross-lingual Natural Language Pro-
cessing. However, despite what the term “parallel”
implies, the source and target language often do
not convey the exact same meaning. This is a sur-
prisingly common phenomenon, not only in noisy
corpora automatically extracted from comparable
collections, but also in parallel training and test
corpora, as can be seen in Table 1.

This issue has mostly been ignored in machine
translation, where parallel sentences are assumed
to be translations of each other, and translations
are assumed to have the same meaning. Prior work
on characterizing parallel sentences for MT has fo-
cused on data selection and weighting for domain
adaptation (Foster and Kuhn, 2007; Axelrod et al.,
2011, among others), and on assessing the rele-
vance of parallel sentences by comparison with a
corpus of interest. In contrast, we focus on de-
tecting an intrinsic property of parallel sentence
pairs. Divergent sentence pairs have been viewed
as noise both in comparable and non-parallel cor-
pora (Fung and Cheung, 2004; Munteanu and
Marcu, 2005; AbduI-Rauf and Schwenk, 2009;
Smith et al., 2010; Riesa and Marcu, 2012) and

Divergent segments in OpenSubtitles

en someone wanted to cook bratwurst.
fr vous vouliez des saucisses grillées.
gl you wanted some grilled sausages.

en i don’t know what i’m gonna do.
fr j’en sais rien.
gl i don’t know.

en - has the sake chilled? - no, it’s fine.
fr - c’est assez chaud?
gl - it is hot enough?

en you help me with zander and i helped you with joe.
fr tu m’as aidée avec zander, je t’ai aidée avec joe.
gl you helped me with zander, i helped you with joe.

Divergent segments in newstest2012

en i know they did.
fr je le sais.
gl i know it.

en the female employee suffered from shock.
fr les victimes ont survécu leur peur.
gl the victims have survived their fear.

Table 1: Parallel segments are not always seman-
tically equivalent, as can be seen in these exam-
ples (English sentence (en), French sentence (fr)
and its gloss (gl)) drawn from a random sample
of OpenSubtitles and of the newstest2012 test set
(Bojar et al., 2016).

in parallel corpora (Okita et al., 2009; Jiang et al.,
2010; Denkowski et al., 2012).In contrast, we hy-
pothesize that the translation process inherently
introduces divergences that affect meaning, and
that semantically divergent examples should be
expected in all parallel corpora.

We show that semantically divergent examples
significantly impact the learning curves and trans-
lation quality of neural machine translation sys-
tems. We repurpose the task of cross-lingual tex-
tual entailment (Mehdad et al., 2010) to automati-
cally identify and filter divergent parallel sentence
pairs from the OpenSubtitles corpus (Lison and
Tiedemann, 2016). This approach outperforms
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other data selection criterion, and even a system
trained on twice as much data for two test genres.

2 Non-Divergence as a Data Selection
Criterion

2.1 Motivation

We conjecture that training sequence-to-sequence
models with attention for neural machine transla-
tion (Bahdanau et al., 2015; Sennrich et al., 2017)
is more sensitive to divergent parallel examples
than traditional phrase-based systems. Phrase-
based systems are remarkably robust to noise in
parallel segments: Goutte et al. (2012) showed
that when introducing noise by permuting the tar-
get side of parallel pairs, as many as 30% of train-
ing examples had to be noisy to hurt BLEU score
significantly. However, such artificial noise does
not capture naturally occurring divergences, which
are likely to be more subtle. Syntax-based sys-
tems have been shown to be sensitive to diver-
gences when they generate word-alignment errors:
for instance, using syntax to eliminate word align-
ment links that violate syntactic correspondences
yields better string-to-tree transducer rules, and
better translation quality (Fossum et al., 2008).

In contrast, there is evidence that deep neu-
ral networks are sensitive to the nature and or-
der of training examples in various related set-
tings. On image classification benchmarks, Zhang
et al. (2017) show that convolutional neural net-
works have the capacity to memorize versions of
the training data corrupted in various ways, in-
cluding random labelings of the original images,
and random transformations of the input images.
This suggests that neural models might attempt
to memorize the idiosyncracies of divergent par-
allel segments, which might hurt generalization at
test time. In machine translation, domain adapta-
tion results (Durrani et al., 2016) show that neural
models benefit from early training on the United
Nations corpus before fine-tuning on in-domain
data, while the UN corpus is generally considered
to be too distant from any domain that is not UN
to be useful when training e.g., phrase-based sys-
tems. Online training also motivates curriculum
learning approaches: ordering examples from eas-
ier short sentences to harder long sentences has
also been found advantageous for neural language
modeling (Bengio et al., 2009).

Most directly related to this work, Chen
et al. (2016) suggest that neural MT systems are

more sensitive to sentence pair permutations than
phrase-based systems (Goutte et al., 2012). They
also show that a bilingual convolutional neural
network trained to discriminate in-domain from
out-of-domain sentence pairs effectively selects
training data that is not only in domain but also
less noisy. These results provide further evidence
that the degree of parallelism in training examples
has an impact in neural MT. Yet it remains to be
seen to what extent semantic divergences – rather
than noise – affect translation quality in general –
and not only in domain adaptation settings.

2.2 Approach

In this paper, we seek to measure the impact of
semantic divergence on translation quality when
used as a data selection criterion: if our hypothe-
sis holds, then training on non-divergent examples
should yield better translation quality than train-
ing on the same number of examples selected us-
ing other criteria. Unlike in domain adaptation, se-
mantic divergence is an intrinsic property of a par-
allel sentence pair, and is therefore independent of
domains or specific testing conditions. As we will
see, we treat the detection of the divergent exam-
ples as a classification problem. Training exam-
ples can be ranked based on the confidence of the
classifier that the segment contains two sentences
that are not equivalent in meaning, and use the re-
sulting ranking to filter out examples.

In addition, data selection can help address
practical concerns. Training neural machine trans-
lation systems on large scale parallel corpora has
a prohibitive computational cost. For instance, the
winning neural systems at the WMT evaluation
required two weeks of training (Sennrich et al.,
2016a). Automatically identifying the most use-
ful training examples has the potential to reduce
training time significantly.

3 Detecting Semantic Divergences in
Parallel Segments

We aim to automatically detect whether the source
and target side of a parallel example are seman-
tically equivalent. Since parallel corpora are not
readily annotated with semantic equivalence, we
repurpose related cross-lingual semantic annota-
tions and models for this task.
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3.1 Model

We frame the task of detecting whether parallel
sentences (e, f) are equivalent as a classification
problem. We draw inspiration from related work
on semantic textual similarity (Agirre et al., 2016),
translation quality estimation (Hildebrand and Vo-
gel, 2013), parallel sentence detection (Munteanu
and Marcu, 2006) to design simple features that
can be induced without supervision.

First, differences in sentence lengths are strong
indicators of divergence in content between e and
f . Accordingly, we use four length features: |e|,
|f |, |e|

|f | , and |f |
|e| .

Second, we assume that the configuration of
word alignment links between parallel sentences
(e, f) is indicative of equivalence: if e and f have
the same meaning, then they will be easier to align.
Accordingly, we compute the following features
for each of e and f :

• Ratio of aligned words
• Ratio of unaligned words
• Ratio of unaligned content words (defined as

words that do not appear in a stopword list)
• Number of unaligned contiguous sequences
• Length of longest contiguous unaligned se-

quence
• Average length of aligned sequences
• Average length of unaligned sequences

3.2 Semantic Supervision

We use annotations of Cross-Lingual Textual En-
tailment (Mehdad et al., 2010). This task is framed
as a four-way classification task. Given sentences
e and f , the goal is to predict whether (1) e en-
tails f , (2) f entails e, (3) e and f both entail each
other, (4) there is no entailment relation between
e and f . Negri and Mehdad (2010) showed that
English training and test sets can be created by
crowdsourcing, that are then translated to obtain
cross-lingual datasets. Training and test data were
made available at SemEval 2012 and 2013 (Negri
et al., 2012, 2013). We hypothesize that examples
detected as class (4) are the most divergent exam-
ples that are the least useful for training machine
translation systems. While the 4-way classifica-
tion task is more complex than our end goal of
detecting divergent examples, we found that the
4-way classifier detects divergent examples from
class (4) better than binary classifiers trained on
various partitions of the 4-way training data.

Other relevant semantic annotations of bilin-
gual corpora include cross-lingual semantic tex-
tual similarity (Agirre et al., 2016) and ma-
chine translation quality estimation datasets (Spe-
cia et al., 2010). The latter is not a good fit as it
annotates machine translation output. The former
is a better match but only provides test examples.

4 Experimental Settings

4.1 Divergence Detection Model Settings

We use the cross-lingual textual entailment
datasets released at SemEval (Negri et al., 2012,
2013). The 2012 dataset consists of 1000 sen-
tences per language, with equal train and test
splits, while the 2013 dataset consists of 1500
sentences per language, 500 of which have been
marked as the test set. All datasets are balanced
across the four entailment classes.

Word alignments for features are trained on the
Europarl corpus and the News Commentary cor-
pus 1, with a total of 2.2M sentence pairs. We
use symmetrized IBM 4 alignments obtained via
MGIZA++, and obtain alignments for the CLTE
data as well as the OpenSubtitles data by trans-
ductive training.

The classifier is the linear SVM implementation
from Scikit-Learn 2 with C = 1.0 and a one-vs-
rest multi-class scheme for 4-way classification.

4.2 Machine Translation Task and System

We evaluate on the English-French Microsoft Spo-
ken Language Translation task (Federmann and
Lewis, 2016), which provides a translation sce-
nario motivated by real world applications. Fol-
lowing prior work (Farajian et al., 2016; Lewis
et al., 2016), training data is drawn from the Open-
Subtitles corpus (Lison and Tiedemann, 2016).
The subtitle genre is also appropriate as it presents
many potential divergences due to genre-specific
constraints (Tiedemann, 2007). In addition, the
robustness of the models is evaluated by testing
on a second domain, leveraging publicly available
TED talks test data (Cettolo et al., 2012). French
and English sides of the corpus are uncased and to-
kenized using Moses preprocessing tools, and seg-
mented using byte pair encoding (Sennrich et al.,
2016b).

1http://www.statmt.org/wmt15/
training-parallel-nc-v10.tgz

2http://scikit-learn.org/stable/
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Corpus # Sentences English French
|vocab| # tokens |vocab| # tokens

Training Sets (Open Subtitles)
non-divergent 17M 63917 133.7M 79818 133.6M
random 17M 64640 146.9M 80222 139.1M
natural 17M 64495 147.3M 77646 137.4M
length < 10 22M 63643 133.0M 79264 127.2M
all 33.5M 66935 288.5M 82564 273.2M

Test Sets
MSLT 5292 3739 45197 4389 49562
TED 1305 3987 25466 4481 27513

Table 2: Data statistics for training and test sets. At train time, selecting non-divergent sentences yields
(1) a smaller vocabulary compared to datasets of the same size (2) richer examples than selection based
on length only, with a more diverse vocabulary.

The neural machine translation system is the
encoder-decoder with attention implemented in
Nematus (Sennrich et al., 2017), with suggested
parameters. We use a vocabulary size of 90000,
dimensions of word embeddings and hidden units
are 500 and 1024 respectively. Models are trained
using Adadelta (Zeiler, 2012), with a learning rate
of 0.0001, a batch size of 80, and reshuffling at
each epoch. Dropout is enabled. We use the first
5th of the MSLT test set as a validation set, and
save models every 30000 updates.

4.3 Experimental Conditions

We empirically evaluate the impact of divergence
on translation quality by considering the following
experimental conditions, which correspond to dif-
ferent training sets for the same neural MT model
and training configuration:

• NON-DIVERGENT filtering out the most di-
vergent half of the training data
• RANDOM randomly downsampling the train-

ing corpus to half its size
• NATURAL use the natural order of the corpus

files to select the first half of the corpus
• LENGTH select examples of length shorter

than 10 words (the average sent length in the
corpus)
• ALL default condition which uses the entire

training corpus.

Training data statistics and their coverage of the
test set are summarized in Table 2. Data selec-
tion naturally reduces the vocabulary size avail-
able compared to using all the training data, by

at most 10%. Selecting non-divergent sentences
yields a smaller vocabulary compared to using the
same number of parallel sentence pairs selected
based on natural order or random sampling. At
the same time, non-divergent examples are richer
than those selected based on length alone, with a
more diverse vocabulary.

Test data statistics shows the complementarity
of the two test conditions considered: the MSLT
task consists of shorter sentences similarly to all
training settings, while the TED tasks consists of
much longer segments.

5 Experiment Results

5.1 Preliminary Check on Divergence
Detection

The supervised classifier based on simple fea-
tures yields competitive performance with pub-
lished Cross-Lingual Textual Entailment results.
On the 2012 test set, it achieves an accuracy of
60.4% , outperforming the best published result of
57% (Jimenez et al., 2012). On the harder 2013
test set, it achieves 43.6%, approaching the best
published result of 45.8% (Zhao et al., 2013).

As a sanity check, we annotate a small sample
of 100 randomly selected examples from Open-
Subtitles. A bilingual speaker was asked to evalu-
ate whether parallel segments in the two languages
have exactly the same meaning or not. Surpris-
ingly as many as 37% of examples were found to
diverge in meaning. The nature of the divergences
vary, but can generally be explained by discourse
and explicitation effects (see Table 1).

The classifier detects semantically divergent
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sentence pairs with a precision of 62.5% and a
recall of 13.5%. The low recall shows that there
is room to improve divergence detection, includ-
ing by enriching the model, exploring alternate
sources of supervision and adapting to the domain
of the parallel data classified. Nevertheless, given
that the default MT set-up consists in using all
divergent sentences (i.e. detecting divergent sen-
tences with a precision and recall of 0%), the cur-
rent model represents a significant improvement.

5.2 Impact on Translation Quality

The learning curves (Figure 1) show that bet-
ter translation quality can be achieved faster us-
ing NON-DIVERGENT as a selection criteria, even
when compared to models trained on more data.
On the validation set, the NON-DIVERGENT model
achieves the BLEU score of the ALL model with
only 60% of the updates.

RANDOM data selection yields a curve that is
close to that of the ALL model. Selecting the
first half of the corpus (NATURAL) plateaus about
6 points lower than the best models. The stark
difference in performance between RANDOM and
NATURAL might be explained by the fact that the
RANDOM training set contains a more diverse set
of sentences, sampled from a broader range of
movies than the NATURAL dataset. This is sup-
ported by the corpus statistics in Table 2 which
show that the RANDOM training set has a larger
vocabulary size than the NATURAL one, especially
in French. Training only on short sentences (<
10 words) does much worse as the resulting sys-
tem produces short translations which trigger high
BLEU brevity penalties.

Table 3 shows the translation quality of the sys-
tems considered on two test sets using ensem-
ble decoding. Following Sennrich et al. (2016a),
translations are obtained by decoding with an en-
semble of the 3 best models saved during training.
The NON-DIVERGENCE criterion yields the best
BLEU scores on both test sets, and even outper-
forms the system trained on all data by +1.6 BLEU
on the MSLT task and by +0.6 BLEU on the TED
task. System relative rankings are overall consis-
tent with the learning curve: the NON-DIVERGENT

system is best, either the ALL or RANDOM system
are in 2nd or 3rd place depending on the test set,
and using the NATURAL order of the corpus does
much worse. Training on short sentences hurts in
both cases, but particularly on the TED task which

System TED MSLT

best mix (all data) 33.03 40.11

best mix (non-divergent) 34.23 41.74
+ best model (all data) 34.57 42.13

Table 5: Ensembles of systems (mix) trained on
all data and non-divergent data yield modest im-
provements in BLEU

consists of longer segments.

5.3 Impact of Longer Training

One might wonder whether the trends above still
hold when training longer, since training is ex-
pected to take longer to converge with more ex-
amples to learn from. We therefore continue train-
ing for all promising models (i.e. all but the sys-
tem trained on short sentences only). Figure 5.3
shows that learning curves for NON-DIVERGENT,
RANDOM and ALL eventually converge. However,
Table 4 show that, among systems trained on the
same number of examples, NON-DIVERGENCE re-
mains the best data selection criterion, and that
it yields decoding results that continue to outper-
form ensembles of models trained on ALL.

5.4 Ensembles of Models from Multiple
Training Conditions

Finally, we evaluate whether models trained on
ALL and on the NON-DIVERGENT data are com-
plementary by augmenting the best performing
systems in Table 4, which are all ensembles of
models trained on non-divergent data, with the
best model trained on the entire training set. Ta-
ble 5 shows that the mixed ensemble improves
over the previous best result by +0.34 BLEU on
the TED test set and +0.40 on the MSLT test set.
It is unclear whether these modest gains are worth
the additional training time needed to add the ALL

system to the mix. However, it remains to be seen
whether better model selection could yield further
improvements.

6 Related Work

Translation Divergences Most prior work on
translation divergences has focused on typologi-
cal issues which reflect the fact that languages do
not encode the same information in the same way.
Dorr (1994) formalizes this problem by defining
divergence categories (e.g., thematic, structural,
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Figure 1: Learning curves on validation test set for all training configurations. Solid lines indicate a
system trained on the entire training set, dotted lines use half of the training data with various selection
criteria, and the dashed line indicates data selected by length. Training on the non-divergent half of the
examples yields the top learning curve, even when compared to using all of the training data.

Selected Data Size (M) TED MSLT
3-best 3-last 3-best 3-last

non-divergent 17 32.47 32.90 40.27 40.37
random 17 31.42 31.54 39.03 39.23
natural order 17 29.76 30.26 35.57 35.59
length < 10 22 8.25 8.25 22.55 22.55

all 33.5 31.88 32.12 38.70 38.60

Table 3: Impact of data selection criterion on TED and MSLT test sets translated by an ensemble of
the 3 best models saved during training. Filtering out DIVERGENT examples yields the best translation
quality.

Selected Data Size (M) TED MSLT
3-best 3-last 3-best 3-last

non-divergent 17 33.90 34.23 41.74 41.24
random 17 33.03 33.51 39.64 39.64
natural order 17 31.94 32.29 37.47 36.94

all 33.5 33.03 33.03 40.11 40.11

Table 4: Impact of longer training time on BLEU scores for TED and MSLT test sets translated by
ensembles of 3 models. Filtering out divergent examples still yields the best translation quality, outper-
forming other selection criteria as well as systems trained on all data.
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Figure 2: Longer learning curves on validation test set for most promising models. Training on NON-
DIVERGENT examples remains the top system although RANDOM and ALL eventually converge to the
same validation set performance.

categorical). Follow up work shows that diver-
gences are not outliers but common phenomena
in parallel corpora (Dorr et al., 2002; Habash and
Dorr, 2002). Some of these divergences have been
implicitly addressed by designing MT architec-
tures informed by syntax and structure (Wu, 1997;
Habash and Dorr, 2002; Chiang, 2007; Lavie,
2008, among others). In this work, we focused in-
stead on semantic divergences which happen when
the source and target sentences do not convey ex-
actly the same meaning.

Modeling Cross-Lingual Semantic Divergences
Prior work has addressed cross-lingual seman-
tic textual similarity (Agirre et al., 2016), entail-
ment (Negri and Mehdad, 2010; Negri et al., 2012,
2013), translation quality estimation (Specia et al.,
2010, 2016). While the human judgments ob-
tained for each task differ, all tasks take inputs of
the same form (two segments in two different lan-
guages) and output a prediction that can be inter-
preted as indicating whether they are equivalent in
meaning or not. Models share core intuitions, rely-
ing either on MT to turn the cross-lingual task into
its monolingual equivalent, or on features derived
from MT components such as translation dictio-
naries and word alignments.

Extracting Parallel Sentences from Non-
Parallel Corpora Extracting parallel sentences
or parallel fragments from non-parallel corpora
differs from our work in several ways. The goal
is to identify additional training examples to
augment parallel corpora, rather than to identify
the most useful examples in a parallel corpus
(Zhao and Vogel, 2002; Fung and Cheung, 2004;
Munteanu and Marcu, 2005; AbduI-Rauf and
Schwenk, 2009; Smith et al., 2010; Riesa and
Marcu, 2012). The non-parallel examples tend
to be more extreme than in the parallel corpora
considered in our work.

Data Cleaning This line of work aims to re-
move noise, e.g., from alignment errors, based on
scores from word alignment or language models
(Okita et al., 2009; Jiang et al., 2010; Denkowski
et al., 2012; Matthews et al., 2014). Cleaning
training data in high-resource settings (Denkowski
et al., 2012) and tuning data in lower resource set-
tings (Matthews et al., 2014) has been shown to
improve hierarchical phrase-based systems.

Incorporating Word Alignments into Neural
MT Since our data selection criterion relies on
word alignments, one could view our approach
as part of the family of models that seek to im-
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prove neural machine translation using insights
and models from word alignment and statistical
machine translation models (Cohn et al., 2016; Mi
et al., 2016). These approaches however focus on
improving neural machine translation in low re-
source settings, while our aim was to identify a
subset of examples in large training sets.

Applications beyond MT Detecting cross-
lingual semantic divergences using entailment has
been motivated by the need to synchronize content
across languages in multilingual resources such as
Wikipedia (Negri and Mehdad, 2010; Duh et al.,
2013). It could also be useful to select better train-
ing examples for cross-lingual transfer learning of
semantic models (Yarowsky et al., 2001; Ganchev
and Das, 2013, among others).

7 Conclusion

We showed that neural machine translation is sen-
sitive to semantically divergent parallel segments,
as detected by a simple cross-lingual textual en-
tailment system. When controlling for the number
of training examples, filtering out divergent seg-
ments yields significantly better translation quality
than using a random sample of examples, or short
examples. Selecting non-divergent examples also
improves translation quality compared to a system
trained on twice as much data.

In future work, we will extend our empirical
study to a broader range of tasks including more
distant language pairs than English-French and a
range of training domains in addition to subtitles.
We will also evaluate whether our findings are im-
pacted by the choice of optimizer, since it has
been shown to have an impact on the initial per-
formance and convergence of models on constant
training data (Farajian et al., 2016). Furthermore,
we will aim to answer two open questions raised
by these promising results: can the cross-lingual
entailment detector be replaced by a more direct
approach for detecting divergence? And to what
extent are alignment-based features useful when
compared to neural models that might be closer to
that of neural machine translation systems?
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