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Abstract 

We propose in this paper a semi-

supervised method for labeling terms of 

texts with concepts of a domain ontology. 

The method generates continuous vector 

representations of complex terms in a se-

mantic space structured by the ontology. 

The proposed method relies on a distribu-

tional semantics approach, which gener-

ates initial vectors for each of the extracted 

terms. Then these vectors are embedded in 

the vector space constructed from the 

structure of the ontology. This embedding 

is carried out by training a linear model. 

Finally, we apply a cosine similarity to de-

termine the proximity between vectors of 

terms and vectors of concepts and thus to 

assign ontology labels to terms. We have 

evaluated the quality of these representa-

tions for a normalization task by using the 

concepts of an ontology as semantic la-

bels. Normalization of terms is an im-

portant step to extract a part of the infor-

mation contained in texts, but the vector 

space generated might find other applica-

tions. The performance of this method is 

comparable to that of the state of the art 

for this task of standardization, opening up 

encouraging prospects. 

1 Introduction 

A lot of biomedical or biological knowledge is 

in a non-structured form, such as that expressed 

in scientific articles (Kang et al., 2013). For ex-

perts from these fields, the substantial increase in 

the specialized literature has created a significant 

need for automatic methods of information ex-

traction (Ananiadou and McNaught, 2006). The 

task of normalization is one of the main tasks to 

respond to this need. 

Normalization consists in standardizing terms 

(single- or multi-word) extracted from texts by 

linking them to non-ambiguous references, such 

as entries from existing knowledge bases. Con-

cepts from an ontology can be used to represent 

these references in a formal and structured way. 

Term and their relationships carry a lot of the 

knowledge contained in texts, thus successful 

term identification is a key to getting access to 

the information (Krauthammer and Nenadic, 

2004).  

Standardization encounters several difficulties, 

such as the significant variability of the form of 

the terms, whether they are represented by one 

word (e.g. “child” / “kid” or “accommodation” / 

”home”, etc.) or by several (e.g. “child” / ”little 

boy” or “accommodation” / ”dwelling place”, 

etc.) (Nazarenko et al., 2006). Multiword terms, 

which have varied morphosyntactic structures 

and complex imbrications (mainly complex noun 

phrases), are particularly difficult to normalize 

(e.g. only with a different syntactic organization: 

“breast cancer” / “cancer of the breast”). In the 

literature, such as scientific articles in life sci-

ences, complex noun groups are abundant (Ma-

niez, 2007). An approach based on the similarity 

of form between term and semantic label appears 

limited to perform this task (Golik et al., 2011), 

because the form of the labels of the concepts is 

not necessarily close to the form of the terms to 

be annotated. Another difficulty arises from the 

large number of ontology concepts, making a su-

pervised classification approach costly in manual 

annotation (e.g. over 2,000 categories for exam-

ple in the ontology of bacterial habitats OntoBi-

otope (Bossy et al., 2015)). 

An alternative approach is to calculate the se-

mantic proximity between terms by distributional 

semantics. It is an approach based on the correla-

tion between the similarity of meaning and the 

distribution similarity of semantic units (word, 

combination of words, sentence, documents, ...) 

(Firth, 1957; Harris, 1954). A semantic unit can 

then be represented by a vector: it is constructed 

from the context information in which the se-

mantic unit is found. The proximity of vectors in 
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this space can be transposed to a semantic prox-

imity (Fabre and Lenci, 2015). Today, there are 

many methods for generating such vector spaces, 

such as Word2Vec (Mikolov et al., 2013), but 

they usually focus on massive data sets (Fabre et 

al., 2014) in which information is often repeated.  

The question is: how to use distributional se-

mantics to normalize terms by an ontology? In 

other words how to relate distributional infor-

mation to the categories of ontology? In the con-

text of specialized literature, we often deal with 

relatively small corpora and a large number of 

semantic categories. 

We propose an original method in which we 

represent complex terms based on word embed-

ding, embed the ontology in a vector space, and 

learn a transformation from term vectors to con-

cept vectors.  Then, this transformation is used to 

determine the most suitable concept for an input 

term. 

2 Material 

The data used are those of the Bacteria Biotope 

categorization task (Task 3) of the 2016 BioNLP 

Shared Task (Deléger et al., 2016). The documents 

are references from MEDLINE, composed of ti-

tles and abstracts of scientific articles in the field 

of biology. The task consists in assigning a cate-

gory from the OntoBiotope ontology to given cor-

pus terms related to bacterial habitats. The corpus 

is divided into three subparts: the training corpus, 

the development corpus and the test corpus. In the 

training and development corpus, the categories of 

terms are given: they have been used to train our 

method. The terms from the test corpus are those 

which categories have to be predicted: it is the 

corpus used to evaluate our method for the task of 

normalization. The entities of each of these corpo-

ra have been manually annotated. Table 1 pro-

vides a summary of their characteristics: 

 
  Train Dev. Test Total 

Documents 71 36 54 161 

Words 16,295 8,890 13,797 38,982 

Entities 747 454 720 1,921 

Distinct  

entities 

476 267 478 1,125 

Semantic cat. 825 535 861 2,221 

Distinct cat. 210 122 177 329 
 

Table 1: Descriptive statistics for the Bacteria Bi-

otope corpus (“cat.” = categories, “Dev.” = devel-

opment corpus) 

In addition to this corpus, an extended corpus 

of the same domain is used to generate vector 

representations of each word. It is composed of 

approximately 100,000 sentences (4,800,000 

words) from titles and abstracts of scientific arti-

cles in the field of biology available on PubMed. 

This represents a relatively small size corpus, 

which contains a majority of words with a low 

frequency of occurrence (cf. Table 2). Other cor-

pus, larger and/or more general could be used, 

also direct words embedding as the one released 

by BioASQ (Pavlopoulos et al., 2014). Neverthe-

less, the very accurate domain of the used ex-

tended corpus and its desired small size seemed 

to be more adapted.   

 

Repeated >2 72,412 35% 

Repeated 2 times 31,569 15% 

Not repeated 105,364 50% 

Words (without stopwords) 209,345 100% 
 

Table 2: Descriptive statistics of extended corpus 

3 Method 

 

Figure 1: A. Process to create word vectors.  

B. Process to create term vectors.  

3.1 Word vectors  

The vector space of the terms (VST) is ob-

tained by generating a vector for each word of 

the extended corpus and the Bacteria Biotope 

corpus. For this, we used the Word2Vec tool 
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(Mikolov et al., 2013), taking as context of a 

word, a list containing all the words of their sen-

tence. To have enough training data for the gen-

eration of meaningful word vectors, and also to 

avoid taking into account typos or errors, it is 

usually advisable to use Word2Vec without the 

infrequent words appearing only once or twice 

throughout the corpus. But our corpus contains 

many words of interest with a low frequency, so 

we choose not to apply this frequency threshold. 

After some performance tests, the dimension 200 

was selected for the output vectors (cf. Figure 

1A), which is of the same order of magnitude as 

what is usually advised (Mikolov et al., 2013). 

3.2 Term vectors 

To compute the vector representations of the 

multiword terms (cf. Figure 1B), segmenting 

them into words is the first step. For each word, 

which is not a stopword, the vector calculated by 

Word2Vec is used. Then the vector of the multi-

word term is obtained by averaging the vectors of 

the words which compose it: 

𝑣𝑡𝑘
=   ∑ 𝑣

𝑚𝑖
𝑘

𝑛𝑘
𝑖=1 𝑛𝑘⁄  (1)  

where 𝑣𝑡𝑘
 is the associated vector of the term 𝑡𝑘, 

𝑛𝑘 is the number of words (without stopwords) of 

the term 𝑡𝑘, 𝑣
𝑚𝑖

𝑘 is the vector of the word 𝑚𝑖
𝑘 

from our Word2Vec computation, and the term 𝑡𝑘 

is such that : 

∀𝑖 ∈ [1, 𝑛𝑘], 𝑚𝑖
𝑘  ∈  𝑡𝑘 (2) 

Even if it is not the aim of this paper, future 

works could test other methods.   

3.3 Concept vectors 

 

Figure 2: Process to create concept vector 

 

To construct the concept vectors and thus a vec-

tor space of an ontology (VSO), null vectors with 

as many dimensions as the number of concepts in 

the ontology are initialized. Each value of the vec-

tor is thus related to one of the concepts of the on-

tology, which is set to 1 for the considered con-

cept. The value is also 1 if the current axis is relat-

ed to a concept which is an ancestor of the consid-

ered concept, and 0 otherwise: 

𝑣𝑐𝑘
= ( 𝑤𝑐k

0 , … , 𝑤𝑐𝑘
𝑖 , … , 𝑤𝑐𝑘

𝑛 )          (3) 

where 𝑣𝑐𝑘
 is the vector related to the concept 𝑐𝑘, n 

is the number of concepts in the ontology and 𝑤𝑐𝑘
𝑖  

is the value of vector 𝑣𝑐𝑘
 for the axis i, such as: 

𝑤𝑐𝑘
𝑖 =  {

1, 𝑖𝑓 𝑖 = 𝑘
1, 𝑖𝑓 𝑐𝑖  𝑝𝑎𝑟𝑒𝑛𝑡 𝑜𝑓 𝑐𝑘 

0, otherwise
       (4) 

This representation has the advantage of pre-

serving the similarity arrangement (with cosine 

distance) expected between the concepts (cf. Fig-

ure 3 and Table 3): a concept is more similar to 

his children and his parents. 

 

Figure 3: Abstract ontology representation (dis-

played by Protégé) 

 

Concept 02 Similarity 

    Concept 02 1,0000 

    Concept 021 0,8165 

    Concept 022 0,8165 

    Concept 0 0,7071 

    Concept 01 0,5000 

    Concept 011 0,4082 
 

Table 3: Cosine distances between concepts of 

an abstract ontology (cf. Figure 3) 

 

We can notice that the dimension of the gener-

ated VSO is the number of concepts of the ontol-

ogy (e.g. more than 2,000 for the OntoBiotope on-

tology). It is a high dimension in comparison to 

the VST but concept vectors are very sparse (with 

a maximum of 13 non-zero values in a vector) and 

they only contain binary values. Therefore, to 

make them more comparable to term vectors, we 

experimented with reducing the VSO to denser 
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representations in a lower-dimension space (cf. 

Figure 2). Two methods have been tested: Princi-

pal Component Analysis (PCA) and Multi-

Dimensional Scaling (MDS). 

3.4 Training with general linear model 

 

Figure 4: Training process to determine a trans-

formation VST to VSO 

 

The objective of the training step is to deter-

mine a transformation from VST to VSO, which 

minimizes all the distances between the vectors of 

terms resulting from this transformation and the 

vectors of the associated concepts. In this paper, a 

linear transformation is studied with the aim of 

keeping a strong similarity between the distribu-

tion of term vectors in the VST and the distribu-

tion of the projections in the VSO. Indeed, a non-

linear transformation could strongly distort the re-

sulting distribution to fit better to training data. 

This training aims to obtain the best parameters 

to approximate this matrix equation: 

𝑌 = 𝑋. 𝐵 + 𝑈 (5)  

where Y is a matrix resulting in a series of concept 

vectors, X is a matrix resulting in a series of term 

vectors (where the ith line of X is the vector of a 

term which has for category a concept which has 

for vector the ith line of Y), B is a matrix contain-

ing parameters that are usually to be estimated and 

U is a matrix containing noise following a multi-

variate Gaussian distribution. This training is per-

formed on the training and development corpora 

(cf. Figure 4).  

The obtained matrix enables us to design a lin-

ear transformation function then make it possible 

to predict new vectors associated with the terms of 

the test corpus expressed in the VSO: 

𝑓: (
𝑉𝑆𝑇 → 𝑉𝑆𝑂

𝑣term  →  𝑣term
′ = 𝑓(𝑣term))          (6)  

where 𝑣term is a vector of term in the VST and 

𝑣term
′  is the resulting vector of the same term pro-

jected in the VSO. To satisfy the requirements of 

the evaluation task, the concept vector nearest to 

𝑣term
′  (as determined by cosine distance) is cho-

sen as category for the annotated term (cf. Figure 

5). 

 

 

Figure 5: Process of predicting semantic catego-

ries associated with extracted terms 

3.5 Evaluation  

We evaluate the performance of our normal-

ization method on the Bacteria Biotope normal-

ization task of the BioNLP Shared Task 2016. The 

dataset was presented in Section 2. The predicted 

concepts identifiers are compared to the gold 

standard concepts according to the similarity 

measure of (Wang et al., 2007), with the weight 

parameter set to 0.65. The evaluation was per-

formed by submitting our results to the evaluation 

server run at the BioNLP-ST 2016 challenge site. 

4 Results 

4.1 Normalization 

Team Similarity score 

BOUN 0.6200 

CONTES 0.5968 

LIMSI 0.4380 

Baseline 0.3217 
 

Table 4: Results on the normalization task of  

BioNLP-ST 2016 

 

We applied our concept normalization method 

to the test dataset of the Bacteria Biotope 2017 

Task 3. We computed baseline results by assigning 

all terms to the concept "bacteria habitat", which 

is the root of the OntoBiotope ontology hierarchy. 

We also compared these results to those of the two 

teams who participated in this task of BioNLP-ST 

2016. We report all results in Table 4. The base-

line obtains a score of 0.3217. Our method 
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(CONTES - CONcept-TErm System) obtained a 

score of 59.68%, much higher than the baseline, 

and close to that of the top team (Tiftikci et al., 

2016). This score is also significantly above the 

method of LIMSI (Grouin, 2016), which is based 

on a morphological approach. 

4.2 Term vectors 

In spite of the low frequency of occurrence of 

the words of the extended corpus (cf. Table 2), the 

resulting word vectors seem to have relatively sat-

isfactory proximities, from the point of view of 

the semantic similarity of the associated terms. 

Moreover, the method used to compute vectors for 

complex terms also seems satisfactory, as illus-

trated Table 5. 

 

cell Similarity 

     HCE cell 0.9999 

     13C-labeled cell 0.9998 

     parietal cell 0.9989 

     Schwann cell 0.9965 

     CD8+ T cell 0.9770 

     PMN cell 0.9669 

     macrophage cell 0.9473 
 

Table 5: Terms nearest to the term “cell” 

 

It also appears that lexical variation can be 

overcome (cf. Table 6 and Table 7), which was 

one of the desired properties. Although more gen-

erally, it seems that terms with similar lexical 

forms are closer (Table 5). 

Nevertheless, the co-occurrence of some words 

seems to cluster certain terms from different cate-

gories: two words appearing frequently in com-

mon contexts are then found close. This similarity 

persists when calculating multiword term vectors. 

This applies, for example, to the terms relating to 

fish and those relating to fish farms (cf. Table 8). 

These cases are less satisfactory because they do 

not differentiate between terms which should be 

annotated with different semantic categories (e.g. 

“fish” and “healthy fish” should be annotated by 

<OBT:001902: fish>, “fish farm” and “disease-free 

fish farm” by <OBT:000295: fish farm> and “fish 

farm sediments” by <OBT:000704: sediment>). 

 

younger ones  Similarity 

     children less than five years of age  0.8087 

     children less than 2 years of age  0.8060 

     children less than two years of age  0.7995 
 

Table 6: Terms nearest to the term  

‘younger ones’ 

seawater  Similarity 

     sediments  0.7696 

     sediment sample from a disease-free      

     fish farm  0.7499 

     fish farm sediments  0.7342 

     subterranean brine  0.7320 

     lagoon on the outskirts of the city  

     of Cagliari  0.7128 

     petroleum reservoir  0.7095 

     marine environments  0.7077 

     marine bivalves  0.6896 

     sediment samples from diseased  

     farms  0.6870 

     urine sediments  0.6819 

     petroleum  0.6576 

     subterranean environment  0.6497 

     fresh water  0.6494 

     fresh water supply  0.6395 

     Seafood  0.6390 

     marine  0.6366 
 

Table 7: Terms nearest to the term ‘seawater’ 

 

fish Similarity 

     fish farming 0.9875 

     fish farm 0.9170 

     disease-free fish farm 0.9124 

     fish farm sediments 0.8683 

     healthy fish 0.8145 
 

Table 8: Terms nearest to the term ‘fish’ 

4.3 Concept vectors 

<OBT:001922: algae> sans ACP Similarity 

<OBT:001777: aquatic plant> 0.9258 

<OBT:001895: submersed aquatic 

plant> 0.8571 

<OBT:001967: seaweed> 0.8018 
 

Table 9: Concepts nearest to the concept 

<OBT:001922: algae> 

 

We can estimate the quality of the created con-

cept vectors by observing the consistency between 

the proximity of two vectors and the similarity of 

their meanings. Table 9 and Figure 6 show the 

example of the 'algae' concept: the nearest neigh-

bors of its vector are its father in the ontology, its 

sibling and the immediate descendant of its sib-

ling. 
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Figure 6: Taxonomy of concepts around concept 

"algae"  (displayed by Protégé) 

 

By comparing several examples, it seems that 

PCA does not modify the order of proximity of 

the concepts, but an increase in vector density can 

be observed (cf. comparison between Table 9 and 

Table 10). 

 

<OBT:001922: algae> avec ACP Similarity 

<OBT:001777: aquatic plant> 0.9990 

<OBT:001895: submersed aquatic 

plant> 0.9982 

<OBT:001967: seaweed> 0.9943 

<OBT:000372: sponge>  0.9303 

<OBT:000269: marine eukaryotic spe-

cies>  0.9303  
 

Table 10: Concepts nearest to the concept 

<OBT:001922: algae> after a PCA with a final 

dimension of 100 

4.4 Impact of the size of the VST 

 

Figure 7: Comparison between CBOW and 

Skip-Gram architectures for the VST 

 

Word2Vec allows the use of 2 different archi-

tectures to generate word vectors from a corpus: 

Continuous Bag Of Words (CBOW) and Skip-

Gram. We tested the 2 architectures on different 

output vector sizes (cf. Figure 7). For vector spac-

es generated with a dimension between 100 and 

250, the final scores appear to be relatively stable, 

especially with CBOW. Similarly, the score dif-

ference between the two architectures remains be-

low 3%. Above a dimension of 250, there is a de-

crease in the score for the 2 architectures, with a 

greater slope for CBOW. 

4.5 Impact of a dimension reduction on the 

VSO 

 

Figure 8: Evolution of performance depending 

on the final size of the VSO after reduction 

(here with a VST with 100 dimensions) 

 

The VSO has a large dimension compared to 

the specific information that it contains (i.e. the 

ontology structure). This may present combinato-

rial but also theoretical difficulties: a linear projec-

tion of the VST on the VSO (with a higher dimen-

sion than the VST) should then only be performed 

on a subspace of the VSO. Thus, it theoretically 

limits the results. It was therefore interesting to 

study the impact of a reduction of the VSO size on 

the final score. We can then observe that a reduc-

tion PCA (with similar results with MDS) system-

atically decreases the score obtained when using a 

non-reduced VSO (cf. Figure 8).  

Nevertheless, there is a level with relatively 

high performance (less than 3% below the score 

without reduction) which collapses below a cer-

tain dimension. This threshold might have a link 

with the number of concepts that have at least 2 

distinct parents. 

5 Discussion 

To extend the interpretations derived from ex-

amples, it would be interesting to evaluate the 

overall quality of the generated vector spaces: 

vector spaces of words, terms, concepts as well as 

the final space containing the transformations of 

the vectors of the terms. We plan to perform this 

in further work. 
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One of the difficulties of the task is that in this 

normalization task, a term can be annotated by 

several distinct concepts of the ontology (e.g. 

"school age children with wheezing illness" 

should be annotated by the concept <OBT: 

002307: pediatric patient> as well as the concept 

<OBT: 002187: patient with disease>). This diffi-

culty is linked to the ontology of interest. In 2016, 

all participating systems of the task skip this diffi-

culty, which is not anecdotal among the extracted 

terms. 

6 Future work 

For future work, it would be relevant to apply 

methods of global evaluation of the quality of the 

generated vector spaces. In particular, this would 

make it possible to evaluate the intermediate pro-

cesses more thoroughly and to observe the impact 

of the modifications on their internal parameters 

more precisely. New methods could then be con-

sidered to improve outcomes. For example, it 

would certainly be positive to use a method of 

vector representation of an ontology that would 

generate a space with a smaller dimension while 

retaining the possibility of discerning the initial 

structure of the ontology. Similarly, the method 

used here to generate the VST vectors could be 

improved to take into account the syntactic con-

text of the terms. This could solve the semantic 

similarity problems between "fish" and "fish 

farm" (cf. Table 8). 

In the Bacteria Biotope normalization task, 

terms often have to be annotated with several con-

cepts of the target ontology (for example, "chil-

dren greater than 9 years of age who had lower 

respiratory illness" should be annotated by the 

concept <OBT: 002307: pediatric patient> and by 

the concept <OBT: 002187: patient with dis-

ease>). Having a completely defined ontology 

(i.e. containing all the concepts sufficient to anno-

tate uniquely each possible extracted term - for 

example, a concept 'pediatric patient with disease' 

which is a subset of <OBT: 002307: pediatric pa-

tient> and of <OBT: 002187: patient with dis-

ease>) should improve the results. If such ontolo-

gies seem to be relatively rare in the biological 

domain, it might be interesting to start by auto-

matically generating all the concepts equivalent to 

the intersection of the non-disjoint concepts to an-

swer this problem. Nevertheless, if the concepts 

share many intersections between them or the dis-

joint property has not been formalized, the size of 

the generated ontology may pose combinatorial 

difficulties. 

We addressed a task in which entities have al-

ready been detected in text. Since entity detection 

and terminology extraction methods have relative-

ly acceptable performance, it would be useful to 

use them to extend the current task to an end-to-

end concept detection and normalization system. 

Finally, despite the inherent limitation of nor-

malization methods based on word form similari-

ty, these could nevertheless be used to carry out a 

pre-normalization of the corpus. As a result, one 

might consider using these annotations to drive 

the training part of the method (cf. 3.4 Training 

with general linear model) instead of using a manu-

al annotation (i.e. a test corpora). Thus, this would 

transform this method into a fully unsupervised 

method. 

7 Conclusion 

The aim of this article was to propose an ap-

proach for the creation of vector representations 

for (complex or non-complex) terms in a semantic 

space. In addition, it aimed to propose a method 

capable of adapting to a small specialized corpus 

where the interest terms appear with a relatively 

low frequency. The most widely used methods 

currently generate vector spaces which meaning is 

difficult to interpret other than in terms of spatial 

proximity / semantic similarity. Our method 

seems to show that by combining relatively clas-

sical approaches, it is possible to use an ontology 

to generate vectors in a more interpretable vector 

space. The results are comparable to those of the 

state of the art, which seems to open up encourag-

ing prospects. Beyond the standardization task, 

new efficient methods of generating interpretable 

vector spaces could apply to a number of further 

tasks. 
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