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Abstract

In this paper, we describe our participation
in phase B of task 5b of the fifth edition of
the annual BioASQ challenge, which in-
cludes answering factoid, list, yes-no and
summary questions from biomedical data.
We describe our techniques with an em-
phasis on ideal answer generation, where
the goal is to produce a relevant, pre-
cise, non-redundant, query-oriented sum-
mary from multiple relevant documents.
We make use of extractive summariza-
tion techniques to address this task and
experiment with different biomedical on-
tologies and various algorithms includ-
ing agglomerative clustering, Maximum
Marginal Relevance (MMR) and sentence
compression. We propose a novel word
embedding based tf-idf similarity metric
and a soft positional constraint which im-
prove our system performance. We eval-
uate our techniques on test batch 4 from
the fourth edition of the challenge. Our
best system achieves a ROUGE-2 score of
0.6534 and ROUGE-SU4 score of 0.6536.

1 Introduction

In recent years, there has been a huge surge
in the number of biomedical articles being de-
posited online. The National Library of Medicine
(NLM) provides MEDLINE, a gigantic database
of 23 million references to biomedical journal pa-
pers. Approximately 200,000 articles 1 from this
database have been cited since 2015. The rapid
growth of information in this centralized repos-
itory makes it difficult for medical researchers
to manually find an exact answer for a question

1https://www.nlm.nih.gov/bsd/medline_
lang_distr.html

or to summarize the enormous content to answer
a query. The problem of extracting exact an-
swers for factoid questions from this data is be-
ing studied extensively, resulting in the develop-
ment of several techniques including inferencing
(Moldovan et al., 2002), noisy-channel transfor-
mation (Echihabi and Marcu, 2003) and exploita-
tion of resources like WordNet (Lin and Hovy,
2003). However, recent times have also seen an in-
terest in developing ideal answer generation sys-
tems which can produce relevant, precise, non-
repetitive and readable summaries for biomedical
questions (Tsatsaronis et al., 2015). A query based
summarization system called “BioSQUASH” (Shi
et al., 2007) uses domain specific ontologies like
the Unified Medical Language System (UMLS)
(Schuyler et al., 1993) to create a conceptual
model for sentence ranking. Experiments with
biomedical ontology based concept expansion and
weighting techniques were conducted, where the
strength of the semantic relationships between
concepts was used as a similarity metric for sen-
tence ranking (Chen and Verma, 2006). Similar
methods (Yenala et al., 2015; Weissenborn et al.,
2013) are used for this task where the difference
lies in query similarity ranking methods.

This paper describes our efforts in creating a
system that can provide ideal answers for biomed-
ical questions. More specifically, we develop a
system which can answer the kinds of biomedical
questions present in the dataset for the BioASQ
challenge (Tsatsaronis et al., 2015), which is a
challenge on large-scale biomedical semantic in-
dexing and question answering. We participate
in Phase B of Task 5b (biomedical question-
answering) for the 2016 edition of this challenge
comprising of factoid, yes/no, list and summary
type questions. We develop a system for biomed-
ical summarization using MMR and clustering
based techniques. To answer factoid, list and
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yes/no questions, we use one of the winning sys-
tems (Yang et al., 2016) from the 2015 edition
of the BioASQ challenge, open-sourced after the
conclusion of the challenge 2.

We build on standard techniques such as Max-
imal Marginal Relevance (Carbonell and Gold-
stein, 1998) and Sentence Compression (Filip-
pova et al., 2015) and incorporate domain-specific
knowledge using biomedical ontologies such
as the UMLS metathesaurus and SNOMEDCT
(Stearns et al., 2001) to build an ideal answer gen-
erator for biomedical questions. We also experi-
ment with several similarity metrics such as jac-
card similarity and a novel word embedding based
tf-idf (w2v tf-idf) similarity metric within our sys-
tem. We evaluate the performance of our system
on the dataset for test batch 4 of the fourth edi-
tion of the challenge and report our system per-
formance on ROUGE-2 and ROUGE-SU4 (Lin
and Hovy, 2003), which are the standard metrics
used for official evaluation in the BioASQ chal-
lenge. Our best system achieves ROUGE-2 and
ROUGE-SU4 scores of 0.6534 and 0.6536 respec-
tively on test batch 4 for task 4b when evaluated on
BioASQ Oracle3. Various configurations and simi-
larity metrics, granularity and algorithms selection
enabled us to secure top 1,2,3 in test batch 4 and
top 1,2,3,4 in test batch 5 on automatic evaluation
metrics of ROUGE-2 and ROUGE-SU4, from our
participation in Task 5b of ideal answer genera-
tion.

The rest of the paper is organized as follows:
Section 2 describes the datasets used. In section
3, we describe our summarization pipeline, while
section 4 gives a brief overview of the system used
for factoid, list and yes-no questions. Section 5
presents the evaluation results of our summariza-
tion system and our observations about various
system configurations. Section 6 presents a com-
parative qualitative error analysis of some of our
system configurations. Section 7 concludes and
describes future work in this area.

2 Dataset

The training data for Phase B of task 5b pro-
vides biomedical questions, where each question
is associated with question type, urls of relevant
PubMed articles and relevant snippets from those
articles. This dataset consists of 1,799 questions.

2https://github.com/oaqa/bioasq
3http://participants-area.bioasq.org/oracle/

Though our ideal answer generation system is un-
supervised, we use a brief manual inspection of
the training data for this edition of the challenge
to make an informed choice of hyperparameters
for the algorithms used by our system.

To develop an ideal answer generator which can
produce query-oriented summaries for each ques-
tion, we can adopt one of two popular approaches:
extractive or abstractive. Extractive summariza-
tion techniques choose sentences from relevant
documents and combine them to form a summary.
Abstractive summarization methods use relevant
documents to create a semantic representation of
the knowledge from these documents and then
generate a summary using reasoning and natural
language generation techniques. Brief analysis on
a randomly sampled subset from the training data
shows us that most of the sentences in the gold
ideal answers are present either in the relevant
snippets or relevant abstracts of PubMed articles.
Hence we perform extractive summarization. We
also observe an interesting ordering trend among
relevant snippets which is used to develop a posi-
tional constraint. Adding this positional constraint
to our similarity metrics gives us a slight boost in
performance. We explain the intuition behind this
idea in more detail in section 3.1.2.

For evaluation, we use the dataset from test
batch 4 of the fourth edition of the BioASQ chal-
lenge which consists of 100 questions.

3 Summarization Pipeline

In this section, we describe our system pipeline
for the ideal answer generation task which mainly
comprises of three stages: question-sentence rel-
evance ranker, sentence selection and sentence
tiling. Each stage has multiple configurations de-
pending upon various choices for algorithms, con-
cept expansion and similarity metrics. Figure 1
shows the overall architecture of our system and
also briefly mentions various algorithms used in
each stage. We describe these stages and choices
in more detail in subsequent sections.

3.1 Question-Sentence Relevance ranker:

In this phase, we retrieve a list of candidate sen-
tences from gold abstracts and snippets provided
for each question and compute relevance scores
with respect to the question for these sentences.
We can choose from several similarity metrics,
biomedical ontologies and different granularities
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Figure 1: System pipeline for Ideal Answer Generation (with configuration choices)

for sentence scoring in this stage.

3.1.1 Granularity for Candidate Sentence
Extraction

The training data provided for the BioASQ task
contains a list of PubMed IDs of gold relevant
documents from NLM, along with gold relevant
snippets from these documents, for each question.
Since, the training data only contains PubMed IDs
of relevant documents, we extract complete ab-
stract text for these documents by first indexing all
Medline abstracts 4 via Lucene and then retrieving
relevant documents based on PubMed IDs.

We now have two choices of granularity for can-
didate sentence extraction: using entire abstract
texts from relevant documents or using only rel-
evant snippets. We experiment with both possi-
bilities. However, since relevant snippets for each
question are a subset of abstract texts, which are
highly relevant to the question, leveraging this in-
sight and using only snippets for candidate sen-
tence extraction gives us better performance, as we
see from the results in Section 5.

3.1.2 Similarity metrics
The performance of both, the relevance ranker and
the sentence selection phase (which is the follow-
ing phase in the pipeline), depends on the sim-
ilarity metrics used to capture question-sentence
relevance and sentence-sentence similarity. In

4https://www.nlm.nih.gov/databases/
download/pubmed_medline.html

this section, we describe various similarity metrics
which we experiment with.
Jaccard similarity: For each sentence, its rele-
vance with respect to the question is computed as
the Jaccard index between the sets containing all
words occurring in the question and the sentence.
This is the simplest metric which captures surface
(word-level) similarity between the question and
the sentence. Including related concepts obtained
by concept expansion in these word sets provides
some measure of semantic overlap, but this tech-
nique is not very effective as we show in section
5.
Tf-idf based similarity with word embeddings:
Using ontologies such as WordNet (for general
English) and UMLS/ SNOMEDCT (for biomed-
ical domain) for concept expansion to incorporate
some semantics while computing sentence simi-
larity, is not sufficient due to the unbounded nature
of such ontologies. Hence, to assimilate semantic
information in a more controlled manner, we use
a novel similarity metric inspired by the widely-
used tf-idf cosine similarity metric which incorpo-
rates semantic information by making use of word
embeddings (Mikolov et al., 2013).

Let W represent the symmetric word-to-word
similarity matrix and ~a, ~b represent tf-idf vectors
for the sentences. The similarity metric is defined
as:

sim(~a,~b) =
~aT W~b√

~aT W~a
√
~bT W~b

(1)
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The word-to-word similarity matrix W is com-
puted using cosine similarity between word em-
beddings for each word. We use word embed-
dings which have been pre-trained on PubMed,
PMC and Wikipedia articles to incorporate do-
main knowledge 5.
Similarity function with positional constraints:
As described in section 2, the data provided for
each question contains a list of relevant abstracts
of PubMed articles, as well as a list of relevant
snippets extracted from these abstracts. The ab-
stracts are ordered by relevance. Snippets on the
other hand, are not ordered by relevance, but are
ordered according to the abstracts that they are ex-
tracted from. Since the abstracts themselves are
ordered by relevance, this gives an inherent dis-
course structure to the snippets. This observa-
tion motivates us to incorporate information about
a snippet’s position in the list into the similarity
function to improve the summaries generated by
our system. We first test this hypothesis using
a simple baseline which gives the first snippet in
the list as the summary for every question. This
simple baseline is able to achieve good ROUGE
scores as shown in Table 1. We experiment with
two different ways of incorporating this constraint:·Hard positional constraint: In this method, we
enforce snippet position as a hard constraint. We
achieve this by restricting the algorithm to select
the first sentence of the summary from the first
snippet (most relevant snippet) in the list. Remain-
ing sentences can be selected from any snippet.
This method does not have much improvement on
our ROUGE scores as explained in section 5.· Soft positional constraint: This method in-
corporates snippet position as a soft constraint
by adding it to the similarity function. The
augmented similarity function after incorporating
snippet position is presented below:

positionalSim(q, s) = α ∗ sim(q, s)+
(1− α) ∗ rank(s) (2)

Here, q and s denote the question and sentence
respectively; sim(q, s) denotes a function which
computes similarity between question and sen-
tence (we experiment with Jaccard and tf-idf
based similarities); rank(s) denotes the boost

5 These pre-trained word vectors are pro-
vided by http://evexdb.org/pmresources/
vec-space-models/

given to the sentence based on the position of the
snippet to which it belongs and α is a weighting
parameter. The value of rank(s) for a sentence is
computed as follows:

rank(s) = 1− pos(s)
pos(s) = snippetPos(s)/#snippets

Here, snippetPos(s) denotes the position (index)
of the snippet, to which the sentence belongs, in
the list of relevant snippets. If a sentence belongs
to multiple snippets, we consider the lowest index.
#snippets denotes the number of relevant snip-
pets for the current question. This positional boost
gives higher weight to sentences with lower posi-
tion values (since they occur earlier in the list) and
returns a normalized value in the range 0-1, to en-
sure that it is comparable to the range of values
produced by the similarity function. Adding this
constraint boosts our ROUGE scores.

3.1.3 Biomedical Tools and Ontologies
We experiment with various biomedical tools and
ontologies for concept expansion, in order to in-
corporate relations between concepts while com-
puting similarity. To perform concept expansion,
the first step is to identify biomedical concepts
from a sentence. We choose the MetaMap con-
cept identification tool and use a python wrapper,
pymetamap6 for this purpose. This API identifies
biomedical concepts from a sentence and returns a
Concept Unique Identification (CUI) for each con-
cept. This CUI acts as a unique identifier for the
concept which is shared across ontologies, i.e it
can be used as an ID to retrieve the same concept
from the UMLS ontology. After biomedical con-
cepts are identified, we experiment with two on-
tologies for concept expansion: UMLS Metathe-
saurus and SNOMEDCT.

• UMLS Metathesaurus: The UMLS
Metathesarus contains many types of rela-
tions for each biomedical concept. For our
task, three relation types are of interest to us:
‘RB’ (broader relationship), ‘RL’ (similar
or alike relationship) and ‘RQ’ (related
and possibly synonymous relationship).
However, none of the biomedical concepts
identified from questions and sentences in

6https://github.com/AnthonyMRios/
pymetamap
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our training dataset contained relations of
the type ‘RL’ or ‘RQ’. Hence we perform
expansion for each biomedical concept by
collecting all concepts linked to it by the
‘RB’ relation.

• SNOMEDCT: The SNOMEDCT ontology
does not contain CUIs for biomedical con-
cepts. Hence, we need to use a different
technique to locate concepts in this ontol-
ogy. In addition to CUI, pymetamap also
provides a “preferred name” for each con-
cept. We use this preferred name to perform a
full-text search in the SNOMEDCT ontology.
All concepts returned by this search are then
considered to be related concepts and used
for expansion. Using this ontology for con-
cept expansion returns a much larger number
of related concepts, due to the nature of our
search (using fuzzy text search instead of pre-
cise identifiers).

We use these techniques to perform concept ex-
pansion on both questions and sentences from rel-
evant snippets. In Section 6, we present the results
of various system configurations with and without
domain specific concept expansion.

3.2 Sentence Selection

In this stage, we want to select sentences for the
final summary from candidate sentences extracted
by the previous stage. Since the BioASQ task
has a word limit of 200, we limit the number of
sentences selected for the final summary to five.
This sentence limit gives us good ROUGE scores
across multiple system configurations.

The simplest way of performing sentence selec-
tion is to continue selecting the sentence with the
highest relevance score with respect to the ques-
tion, till the sentence limit is reached. However,
sentences having high relevance with respect to
the question may be semantically similar, thus in-
troducing redundancy in the generated summary.
We use two algorithms to combat this issue: ag-
glomerative clustering based on sentence similar-
ity and Maximum Marginal Relevance (MMR)
(Carbonell and Goldstein, 1998). Both algorithms
require effective similarity metrics to compute se-
mantic similarity between sentences. We experi-
ment with various similarity metrics described in
section 3.1.2. We also experiment with concept
expansion using multiple biomedical ontologies.

3.2.1 Agglomerative Clustering
Redundancy reduction via clustering is one of
the techniques that was proposed for biomedical
query-oriented summarization (Chen and Verma,
2006). In this technique, we create all possible
sentence pairs from our set of candidate sentences
and compute pair-wise similarities. We then per-
form agglomerative clustering on the sentences us-
ing these pair-wise similarity scores. Finally, we
select one sentence from each cluster to generate
the final summary, in such a way that the sentence
having maximum question relevance score is se-
lected from every cluster. The number of clus-
ters is set to the maximum number of sentences
we need in the final summary (five in this case).
The intuition behind this technique is that agglom-
erative clustering forces semantically similar sen-
tences to fall into the same cluster. Since we only
select one sentence from each cluster in the end,
we discard sentences which are highly similar to
the selected ones.

3.2.2 Maximal Marginal Relevance
Maximal Marginal Relevance (Carbonell and
Goldstein, 1998) is a widely-used summarization
algorithm which was proposed to tackle the issue
of redundancy while maintaining query relevance
in summarization. This algorithm selects new sen-
tences based on a combination of relevance score
with respect to the question as well as similarity
score with respect to the sentences which have al-
ready been selected for the final summary. Thus,
this algorithm incorporates sentence similarity as
a constraint, instead of explicitly clustering sen-
tences.

3.3 Sentence Tiling
In the final stage, we combine all selected sen-
tences to produce the final summary. The simplest
way is to append all selected sentences while con-
straining summary length (because of the word-
limit constraint for this task). We also experi-
ment with an LSTM-based sentence compression
method. We train a neural network based on a
work done previously (Filippova et al., 2015) for
sentence compression. We generate training data
for this network by pairing sentences from abstract
texts with their full text versions. Given that this
dataset is too small to train the neural network,
we add in training instances from existing sen-
tence compression data-sets. Input to this model
includes the word vector representation for a word
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Experiment ROUGE-2 ROUGE-SU4
1 Clustering + Abstract texts (with average constraint) 0.2906 0.3138
2 Clustering + Snippets (with average constraint) 0.4314 0.4347
3 Clustering + Snippets (without average constraint) 0.5609 0.5632
4 Clustering + UMLS expansion 0.5488 0.5521
5 Clustering + SNOMEDCT expansion 0.5514 0.5586
6 Clustering + UMLS expansion + weighting 0.5402 0.5431
7 Clustering + SNOMEDCT expansion + weighting 0.5530 0.5588
8 Clustering + UMLS expansion + weighted normalization 0.5592 0.5632
9 Clustering + SNOMEDCT expansion + weighted normalization 0.5585 0.5650
10 MMR 0.6338 0.6296
11 MMR + w2v tf-idf similarity 0.6168 0.6126
12 First snippet baseline 0.3363 0.3308
13 MMR + Hard positional constraint + Jaccard similarity 0.6338 0.6296
14 MMR + Soft positional constraint + Jaccard similarity 0.6419 0.6410
15 Hard positional constraint + Jaccard similarity 0.6328 0.6254
16 Soft positional constraint + Jaccard similarity 0.6433 0.6429
17 Soft positional constraint + w2v tf-idf similarity 0.6534 0.6536
18 MMR + tf-idf similarity + LSTM compression 0.5689 0.5723

Table 1: ROUGE scores with different algorithms, ontologies and similarity metrics

and a binary value to indicate whether the previous
word was included in the output sentence. Based
on these inputs, the output of the model predicts
whether the word should be deleted or not. Sen-
tences generated after word deletion are concate-
nated together to generate the final summary. It is
to be noted that this model does not require any
linguistic features.

4 Overview of system for exact answer
generation

To answer factoid, list and yes/no questions, we
use the publicly available system (Yang et al.,
2016), which builds on participation in 2015
(Yang et al., 2015). This system uses TmTool
in place of UTS (unlike (Yang et al., 2015)) for
concept identification as some of the constituent
parsers of TmTool identify concepts based on mor-
phological features instead of previously coded
ontologies. Also, the c-value method is used to
mine frequent multi-word concepts that might not
have been identified by tools such as TmTool,
MetaMap and LingPipe. The idea of reranking a
candidate answer based on its similarity to other
candidate answers is introduced in this system for
list type questions. The intuition behind this ap-
proach is that all answers to a list type question
should have the same semantic type and therefore,
it is useful to increase the score of a low-ranked

candidate answer that has the same semantic type,
and vice-versa.

Yes/No questions are answered using the tech-
nique of question inversion. The last biomedical
concept present in the question is considered to be
the expected answer. The concept mentions and
tokens of the expected answer are removed from
the question, which is then converted to a factoid
type question. Candidate answers are generated
for this factoid question using the snippets for the
original question. The expected answer is then
compared to the ranked list of candidate answers
retrieved. The answer to the yes/no type question
will be yes if the expected answer is among the top
ranked candidate answers and no otherwise.

5 Evaluation and Discussion

We experiment with ideal answer generation using
various system configurations which differ in sim-
ilarity metrics, biomedical ontologies, sentence
selection algorithms(clustering/MMR) and tiling
algorithms used. The official evaluation for ideal
answers includes manual evaluation by biomedi-
cal experts in the BioASQ team as well as auto-
matic evaluation via ROUGE scores. To present
comparable and standardized results, we run our
system on the batch 4 dataset for Phase B of task
4b and get our results evaluated via the BioASQ
Oracle. These results are shown in Table 1. We
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Category Question/Summary

Question What is the effect that EZH2 has on chromatin?

Gold Ideal 
Answer

Ez that catalyzes di- and trimethylation of histone H3 lysine 27 (H3K37me2/3), marks repressive to transcription.[1] The mammalian 
homologs Ezh1 and Ezh2 form similar PRC2 complexes but exhibit contrasting repressive roles.[2] PRC2-Ezh2 catalyzes H3K27me2/3 and 
its knockdown affects global H3K27me2/3 levels.[3] EZH2 thus maintains chromatin in a repressive state.

Clustering + 
Snippets

During progenitor cell differentiation and ageing, PcG silencer EZH2 attenuates, causing loss of PRC binding and transcriptional activation of INK4b 
and INK4a Treg-specific ablation of Ezh2 resulted in spontaneous autoimmunity with reduced Foxp3(+) cells in non-lymphoid tissues and impaired 
resolution of experimental autoimmune encephalomyelitis We report that the mammalian homologs Ezh1 and Ezh2 form similar PRC2 complexes 
but exhibit contrasting repressive roles.[2] In this study, we found the inverse correlation between FOXP3 and Ezh2, an enzyme for histone H3K27 
trimethylation (H3K27me3) and a central epigenetic regulator in cancer the PRC2-Ezh2 complex, which is bound to the myogenin (MyoG) promoter 
and muscle creatine kinase (mCK) enhancer in proliferating myoblasts, and the PRC2-Ezh1 complex, which replaces PRC2-Ezh2 on MyoG promoter 
in post-mitotic myotubes.

Clustering + 
UMLS 
expansion + 
weighted 
normalization

During progenitor cell differentiation and ageing, PcG silencer EZH2 attenuates, causing loss of PRC binding and transcriptional activation of INK4b 
and INK4a. We report that the mammalian homologs Ezh1 and Ezh2 form similar PRC2 complexes but exhibit contrasting repressive roles. 
[2] Treg-specific ablation of Ezh2 resulted in spontaneous autoimmunity with reduced Foxp3(+) cells in non-lymphoid tissues and impaired resolution 
of experimental autoimmune encephalomyelitis Ez that catalyzes di- and trimethylation of histone H3 lysine 27 (H3K37me2/3) [3], marks 
repressive to transcription.[1] the PRC2-Ezh2 complex, which is bound to the myogenin (MyoG) promoter and muscle creatine kinase (mCK) 
enhancer in proliferating myoblasts, and the PRC2-Ezh1 complex, which replaces PRC2-Ezh2 on MyoG promoter in post-mitotic myotubes.

Clustering + 
SNOMEDCT 
expansion + 
weighted 
normalization

During progenitor cell differentiation and ageing, PcG silencer EZH2 attenuates, causing loss of PRC binding and transcriptional activation of INK4b 
and INK4a Treg-specific ablation of Ezh2 resulted in spontaneous autoimmunity with reduced Foxp3(+) cells in non-lymphoid tissues and impaired 
resolution of experimental autoimmune encephalomyelitis We report that the mammalian homologs Ezh1 and Ezh2 form similar PRC2 complexes 
but exhibit contrasting repressive roles.[2] Ez that catalyzes di- and trimethylation of histone H3 lysine 27 (H3K37me2/3), marks repressive 
to transcription.[1] the PRC2-Ezh2 complex, which is bound to the myogenin (MyoG) promoter and muscle creatine kinase (mCK) enhancer in 
proliferating myoblasts, and the PRC2-Ezh1 complex, which replaces PRC2-Ezh2 on MyoG promoter in post-mitotic myotubes.

MMR Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms.[1] The chromatin-modifying enzyme Ezh2 is critical for the 
maintenance of regulatory T cell identity after activation. Treg-specific ablation of Ezh2 resulted in spontaneous autoimmunity with reduced Foxp3(+) 
cells in non-lymphoid tissues and impaired resolution of experimental autoimmune encephalomyelitis. the PRC2-Ezh2 complex, which is bound to the 
myogenin (MyoG) promoter and muscle creatine kinase (mCK) enhancer in proliferating myoblasts, and the PRC2-Ezh1 complex, which replaces 
PRC2-Ezh2 on MyoG promoter in post-mitotic myotubes. In this study, we found the inverse correlation between FOXP3 and Ezh2, an enzyme for 
histone H3K27 trimethylation (H3K27me3) and a central epigenetic regulator in cancer.

MMR + w2v
 tf-idf

Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms.[1] In this study, we found the inverse correlation between FOXP3 
and Ezh2, an enzyme for histone H3K27 trimethylation (H3K27me3) and a central epigenetic regulator in cancer. These studies reveal a critical role 
for Ezh2 in the maintenance of Treg cell identity during cellular activation. We report that the mammalian homologs Ezh1 and Ezh2 form similar 
PRC2 complexes but exhibit contrasting repressive roles.[2] The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T 
cell identity after activation.

Soft 
constraint + 
w2v tf-idf

Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms.[1] We report that the mammalian homologs Ezh1 and Ezh2 
form similar PRC2 complexes but exhibit contrasting repressive roles.[2] Ez that catalyzes di- and trimethylation of histone H3 lysine 27 
(H3K37me2/3), marks repressive to transcription. During progenitor cell differentiation and ageing, PcG silencer EZH2 attenuates, causing loss of 
PRC binding and transcriptional activation of INK4b and INK4a. the PRC2-Ezh2 complex, which is bound to the myogenin (MyoG) promoter and 
muscle creatine kinase (mCK) enhancer in proliferating myoblasts, and the PRC2-Ezh1 complex, which replaces PRC2-Ezh2 on MyoG promoter in 
post-mitotic myotubes.

MMR + w2v 
tf-idf + LSTM 
sentence 
compression

and ezh2 maintain repressive chromatin through different mechanisms.[1] this study , found the inverse correlation between foxp3 and ezh2 , an 
enzyme for histone h3k27 trimethylation (h3k27me3) and a central epigenetic regulator in cancer . prc2-ezh2 complex , which is bound to the 
myogenin (myog) promoter and muscle creatine kinase (mck) enhancer in proliferating myoblasts , and the prc2-ezh1 complex , which replaces 
prc2-ezh2 on myog promoter in post-mitotic myotubes .

Figure 2: Summaries generated with different techniques

obtain the best results among these configurations
by using soft positional constraint with tf-idf based
similarity on snippets.

The first three rows in Table 1 show our experi-
ments with different granularities for sentence ex-
traction. While using abstract texts for sentence
selection, we observe that our clustering technique
frequently puts sentences with low query rele-
vance into the same clusters. Since our selec-
tion method picks one sentence from each clus-
ter, some sentences with low query relevance from
these “bad” clusters are also selected for the final
summary. To solve this issue, we imposed a con-
straint which filtered out sentences having a lower-
than-average relevance score with respect to the
question before clustering. We also tried adding
this constraint while using relevant snippets, but
this reduced our scores, because sentences from
snippets are already relevant to the question and
we end up discarding important information by fil-

tering. We also observed that switching granular-
ity from abstract texts to relevant snippets signifi-
cantly boosted the ROUGE scores. Hence all sub-
sequent experiments (rows 4-18) use snippets for
sentence extraction.

Rows 4-9 show our experiments with concept
expansion using various biomedical ontologies
and weighting techniques. We use the following
weighting technique: while calculating similarity,
words from the original question and sentences
carry a weight of 1, while words obtained added
after concept expansion carry a weight of 0.5. We
do not observe significant gains using concept ex-
pansion. The unbounded nature of concept expan-
sion hurts our performance and so we refrain from
using this technique in further experiments. Row
10 shows our experiment using MMR for sentence
selection instead of clustering. MMR provides a
significant boost in ROUGE score. Row 11 shows
our experiment with the w2v tf-idf based similar-
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ity metric instead of Jaccard similarity, which de-
creases our ROUGE scores slightly, but is still
better than previous system configurations. Row
12 shows the scores of a baseline system which
returns the first snippet from the list, which is
quite high, validating our assumption that snip-
pet position is an important factor. Rows 13-
17 shows our experiments with different ways
of adding positional constraints described in sec-
tion 3.1.2. While using a hard constraint does
not show much improvement, soft positional con-
straint gives a slight boost. Results with and with-
out MMR for this metric are nearly comparable.
Soft constraint gives a huge boost when used with
w2v tf-idf based similarity. Row 18 shows our ex-
periment adding LSTM-based compression on top
of MMR with w2v tf-idf based similarity, which
reduces our scores. Row 17 is the system con-
figuration with the highest ROUGE score on our
dataset, which uses soft positional constraint with
w2v tf-idf similarity.

6 Comparative Qualitative Error
Analysis

Figure 2 presents ideal answers generated by some
of our system configurations for a randomly se-
lected summary question from Task 4b Phase B
data to provide a comparative qualitative error
analysis. Each sentence in the ideal gold answer
is indexed with a number as shown in the figure.
We perform a relative analysis of the extent of in-
formation captured by a selected subset of system
configurations from Table 1.

The sentence indexed [1] in the gold ideal
answer is present word-for-word in summaries
created by two configurations: Clustering +
SNOMEDCT expansion + weighted normaliza-
tion and Soft constraint + w2v tf-idf. Clustering +
UMLS expansion + weighted normalization con-
tains a longer version of this sentence. We also
observe that this sentence does not contain any of
the terms from the original question. Hence, sum-
maries generated by all configurations using only
Jaccard similarity (Clustering + Snippets, MMR)
do not contain this sentence since there is no
surface-level similarity. However, methods which
incorporate some semantic information via word
embeddings (w2v tf-idf similarity) or concept ex-
pansion (UMLS/ SNOMEDCT) include this sen-
tence in the final summary, which shows that in-
corporating semantic information is important to

bridge the vocabulary gap in some situations.
The sentence indexed [2] in the gold answer is

present in summaries generated by most of the
configurations as shown but with extra phrases
such as ‘We report that’ at the beginning of the
sentence. Though the presence of such words
does not have a major impact on automatic scores
like ROUGE, it influences the manual evaluation
which also judges summary readability. How-
ever, the LSTM-based compression method re-
moves these words via deletion. We observe that
this sentence contains the concept “Ezh2” which is
also present in the question. Hence, some configu-
rations which use surface-level similarity (Cluster-
ing+Snippets) also pick this sentence for the final
summary. But this sentence is not present in the
summary generated by the MMR + snippets con-
figuration. This happens because many sentences
selected by the algorithm already contain the con-
cept “Ezh2” and so this sentence is excluded due
to its similarity to already selected sentences.

7 Conclusion and Future Work

In this paper, we present a system for query-
oriented summary generation. Our comparison
of MMR and agglomerative clustering-based tech-
niques shows that while clustering selects distinct
sentences, it is unable to select sentences with
high query relevance. This can be improved by
learning hyperparameters like number of clusters
and number of sentences to be selected from each
cluster based on the type of question. We plan
to investigate this in the future. We find that
unbounded concept expansion hurts our system
scores. LSTM-based compression also hurts our
system scores and we need to investigate upon
this in the future to select the optimal parame-
ters for compression ratio in order to maximize
recall and precision. We also find that incorporat-
ing word embedding based tf-idf similarity along
with soft positional constraints outperforms sur-
face level word similarity with soft positional con-
straints. This is because the former captures both
semantic information of the content as well as rel-
evance to query based on sentence position.
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