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Abstract

The last decade saw a surge in digitisation
efforts for ancient manuscripts in Sanskrit.
Due to various linguistic peculiarities in-
herent to the language, even the prelimi-
nary tasks such as word segmentation are
non-trivial in Sanskrit. Elegant models for
Word Segmentation in Sanskrit are indis-
pensable for further syntactic and seman-
tic processing of the manuscripts. Current
works in word segmentation for Sanskrit,
though commendable in their novelty, of-
ten have variations in their objective and
evaluation criteria. In this work, we set the
record straight. We formally define the ob-
jectives and the requirements for the word
segmentation task. In order to encourage
research in the field and to alleviate the
time and effort required in pre-processing,
we release a dataset of 115,000 sentences
for word segmentation. For each sentence
in the dataset we include the input charac-
ter sequence, ground truth segmentation,
and additionally lexical and morphologi-
cal information about all the phonetically
possible segments for the given sentence.
In this work, we also discuss the linguistic
considerations made while generating the
candidate space of the possible segments.

1 Introduction

Sanskrit was the prevalent medium of knowledge
transfer in the demographic of Indian Subconti-
nent for over four millennia. The culture bear-
ing language of India has about 30 million extant
manuscripts that are potent for digitisation (Goyal
et al., 2012). The last decade witnessed tremen-
dous excitement in digitisation attempts of ancient
manuscripts in Sanskrit. The Digital Corpus of

Sanskrit1, The Sanskrit Library2 and GRETIL3 are
some such laudable efforts. These attempts aim to
preserve the cultural heritage of the subcontinent
embedded in the works written in Sanskrit.

The writings in Sanskrit follow a ‘scriptio con-
tinua’ (Hellwig, 2016), thereby making Word Seg-
mentation in Sanskrit a challenging task. Lack
of visible markers in written scripts is a prevalent
feature observed in numerous Asian languages.
Additionally, the sentence constructs in Sanskrit
show a high degree of inflection (Scharf and Hy-
man, 2011), phonemes at the word boundary un-
dergo phonetic transformations called as ‘sandhi’
(Goyal and Huet, 2016), and the sentence con-
structs in Sanskrit follow a loose word order (Hell-
wig, 2016; Kulkarni et al., 2015). The combina-
tion of the aforementioned properties makes the
segmentation in Sanskrit a complex task.

Given an input Sanskrit sentence, the word seg-
mentation task can be defined as identification
of the semantically most valid split of the input
sentence. There have been commendable efforts
to tackle the word segmentation task in Sanskrit.
Mittal (2010) designed Finite State Transducers
(FST) incorporating the rules of sandhi obtained
from documented grammatical tradition. With the
defined FSTs, Mittal (2010) generates all possi-
ble splits followed by a probabilistic scoring pro-
cedure to select the ideal split. Natarajan and
Charniak (2011) proposed ‘S3 - Statistical Sandhi
Splitter’, a Bayesian word segmentation approach
for Sanskrit. The work is an extension of Gold-
water et al. (2006) and was adapted to handle
sandhi formations. Hellwig (2015) proposed a
neural model that jointly solves the problem of

1http://kjc-sv013.kjc.uni-heidelberg.
de/dcs/

2http://sanskritlibrary.org/
3http://gretil.sub.uni-goettingen.de/

gretil.htm
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Figure 1: Example instances of sandhi formation in Sanskrit. a) Phonetic transformation of ‘u’ and ‘ā’
to ‘vā’ in the joint form. b) ‘ā’ and ‘ā’ at the word boundaries of vidyā and āpyate join together to form a
single ‘ā’ in the final form. Both the split words have an overlap at the juncture (Goyal and Huet, 2016).
c) and d) Two possible analyses for the sandhied chunk ‘kurvannāpnoti’ (Krishna et al., 2016a), where
c) is the negation of d).

compound splitting and sandhi resolution. Kr-
ishna et al. (2016a) handled the word segmenta-
tion problem as an iterative query expansion task.
The authors used Path Constrained Random Walks
(PCRW) (Lao and Cohen, 2010) for identifying
word segments that are likely to co-occur in the
given sentence. This work considers compound
splitting as part of the word segmentation task it-
self.

As the task of Sanskrit word segmentation is
gaining traction, it also calls for uniformity and
easiness in comparing the competing models. For
instance, the aforementioned approaches vary in
their defined objectives and are evaluated under
different settings, making a direct comparison of
the models difficult. For example, Mittal (2010);
Natarajan and Charniak (2011) do not discuss the
effect of compounds and compound splitting on
the dataset. Hellwig (2015) presents the same as
a separate task from that of word segmentation,
while Krishna et al. (2016a) do not make an ex-
plicit difference between both the tasks. Krishna
et al. (2016a) report an F-Score of 90.61 % when
tested on a curated dataset of 2148 sentences, com-
pared to competing models with an F-Score of
70.07% (Natarajan and Charniak, 2011) and 66.26
% (Mittal, 2010). But, Krishna et al. (2016a) re-
port an F-Score of 77.72 %, when the authors
tested their method on a larger dataset of about
10,000 sentences obtained from a digitised cor-
pus. Additionally, The aforementioned systems
focus primarily on the correctness of the word-
form predicted. Sanskrit is an agglutinative lan-
guage and the same inflection of a lemma can
signify multiple possible morphological classes.
Therefore, correctness of the morphological class
is also important, when the segmentation is per-

formed. Though Krishna et al. (2016a) report
the performance of their system when considering
the correctness of lemma and morphological class
prediction, they primarily focus on the word-from
prediction task.

In perspective of the current scenario of this
field, our contributions in this work are two fold:

1. We formally define the objective for word
segmentation task in Sanskrit. We see word
segmentation not as an end but as a means
to facilitate further processing of text in San-
skrit. We define our requirements with an
end-goal of making the current digitised con-
tent accessible to an end-user when seen from
the perspective of an Information Retrieval
system. To achieve this, the segmentation
task should output the information that is
valuable for the subsequent syntactic and se-
mantic tasks such as POS Tagging, depen-
dency parsing, sentence summarisation, etc.
The distinction for the correctness of lemma
and morphological class, and not just the cor-
rectness of the final word-from, is of utmost
importance for this.

2. We release4 a dataset of 115,000 sentences
which can be used for further research in
word segmentation task in the Sanskrit. With
this dataset we aim to alleviate the effort and
time that often needs to be spent in prepos-
sessing data. The pre-processing efforts of-
ten require the use of multiple sub-systems,
and this can lead to inconsistencies with the
assumptions made by each of the subsystems
involved.

4https://zenodo.org/record/803508#
.WTuKbSa9UUs
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In Section 2, we discuss in detail about the chal-
lenges that need to be tackled in word segmenta-
tion in Sanskrit. Section 3 discusses the prelim-
inaries followed by the formal definition of word
segmentation task. Section 4 details the structure
of the dataset we use. In Section 5, we explain var-
ious linguistic considerations that we have made,
while preparing the dataset.

2 Challenges in Word Segmentation

Word segmentation is an important prerequisite
for further processing of Sanskrit Texts. In addi-
tion to having no visible markers in Sanskrit sen-
tence constructs, the linguistic peculiarities inher-
ent in the language make the task a non-trivial
one. Sanskrit, primarily being a language used
orally, has passed on the euphonic assimilation of
phones into the writing as well (Goyal and Huet,
2016). This leads to phonetic transformations at
the word boundaries called as ‘sandhi’. Figure
1 shows some cases of sandhi. In Figure 1a, the
words ‘guru’ and ‘ālambana’ join together to form
‘gurvālambana’, where the ‘u’ at the boundary of
‘guru’ gets transformed to ‘v’. In case of vidyā +
āpyate → vidyāpyate, the ‘ā’ at the word bound-
aries of both the words join together to form a
‘ā’. Here, the position for ‘ā’ in the joint form
is shared by both the words. Due to Sandhi, the
word boundaries disappear and the sounds are of-
ten replaced or elided. Given two words, the gen-
eration of the joint form or what can be called as
the ‘sandhied’ form is deterministic. The ancient
grammar treatise As. t.ādhyāyı̄ mentions the sandhi
rules by which phonemes at the word boundaries
undergo changes, when two words are combined.
But analysis of a sentence with sandhi in it leads
to multiple phonetically valid segments. The anal-
ysis for a given sentence may often lead to several
semantically valid segments as well. For example,
consider the expression kurvannāpnoti kilbis.am.
The expression may be split into two possible
statements, ‘kurvan āpnoti kilbis.am’ (While do-
ing, you will accumulate sin) and ‘kurvan na
āpnoti kilbis.am’ (While doing, you will not accu-
mulate any sin) (Krishna et al., 2016a). The splits
shown in Figure 1c and 1d gives a very specific ex-
ample, where both the possible segmentation anal-
yses differ by a negation term na. A more generic
example is shown in Figure 2. Figure 2a shows
all possible segmentations for the given sentence.
Figure 2b the only analysis for the input sentence

which is semantically valid.
Sandhi operation does not modify the sentence

constructs at syntactic or semantic levels. It only
makes difference at the phonetic level. There is no
rationale for two words to undergo ‘sandhi’, other
than the proximity of these words at the time of
enunciation. Simply put, successive words tend to
form sandhi, and it is the discretion of the com-
poser to choose whether or not to perform sandhi
between the pair of words. This brings us to the
second challenge. Writings in Sanskrit follow free
(loose) word order especially in poetry (Kulka-
rni et al., 2015; Melnad et al., 2015). The free
word order in Sanskrit is a convenient tool for po-
ets to arrange the words in accordance with the
prescribed meter. By this, the proximity between
two words cannot be deemed as an indicator for
syntactic or semantic compatibility between them.
We need to consider the entire sentence context
while processing the text and use the entire co-
occurrence context of the words in the sentence.

In addition to the aforementioned linguistic pe-
culiarities, the fact that Sanskrit has a rich mor-
phology, compounds the problem further. Sanskrit
expresses high degree of inflection, with 90 and
72 different inflections for verbs and nouns respec-
tively. The inflections for a word generally happen
at the boundary of a word. The inflections lead
to different final word-forms for a given lemma.
To illustrate the problem, let us consider the char-
acter sequence ‘nagarān. i’. Now, ‘nagarān. i’ can
be analysed as ‘na garān. i’ which means ‘no dis-
eases’. But the character sequence ‘nagarān. i’ can
alternatively be analysed as an inflection, specifi-
cally the nominative case neuter gender plural, of
the lemma ‘nagara’ (town). The scenario points to
an instance where we have to decide whether there
exists a split or not for the character sequence, and
the decision changes the number of segments one
ends up with.

2.1 Computational Analysis of Sandhi

The rules related to sandhi are well docu-
mented in the ancient Sanskrit grammar treatise
As. t.ādhyāyı̄ by Pān. ini. Hyman (2008) observed
that the external sandhi can be computationally
tackled using finite state methods. An efficient
Finite State Transducer for segmentation in San-
skrit was later developed by (Huet, 2009). Sanskrit
Heritage Reader (Goyal et al., 2012; Goyal and
Huet, 2013, 2016), a lexicon driven morphologi-
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Figure 2: (a): Candidate segments for the sentence ‘niśāh. śaśāṅkaks.hatanīlarājayah. kvacidvicitam
jalayantramandiram’ as output by the Sanskrit Heritage Reader (b): The correct segmentation for the
given sentence. The image also shows the lemma information and possible morphological classes for the
word ‘vicitram’ (in a blue box) as shown by the morphological analyser

cal analyser for Sanskrit, when input with a sen-
tence, provides all the phonetically valid segmen-
tations for the given sentence. Figure 2a shows
the shallow analysis provided by the Sanskrit Her-
itage Reader for a given sentence. The analyser
not only provides the possible word forms, but
also gives the morphological analysis for each of
the segments. Figure 2b shows the morphologi-
cal analysis for the word vicitram. For the word
vicitram, it shows that the lemma for the word is
‘vicitra’, and the given word-form can belong to
three possible morphological classes, namely ac-
cusative case singular with masculine or neuter,
or it can be nominative case singular neuter class.
Similar to the case of Sandhi, while the generation
of word form for a given morphological class is
deterministic, the analysis of given word form is
not deterministic and can lead to ambiguities.

3 Sanskrit Word Segmentation Task

Given an input sentence s, represented as a se-
quence of characters, it is possible to obtain all the
possible segmentations for the sentence as output
by the Sanskrit Heritage Reader. For the word seg-
mentation task, we assume that the analysis from
Sanskrit Heritage Reader is available for an input

sentence, and we reduce our task of word segmen-
tation to finding the proper sequence of segments
from the set of all candidate segments as output
by the Heritage Reader. We define the word seg-
mentation task formally, with the Heritage Reader
being the cornerstone for the entire task. The task
is described based on the definitions taken from
Goyal and Huet (2016). Sanskrit Heritage Reader
is a lexicon driven system and the system is built
based on Finite State Methods. The system can be
defined as a lexical juncture system.

A lexical juncture system on a finite alphabet
Σ is composed of a finite set of words L ⊆ Σ∗

and a finite set R of rewrite rules of the form
u|v → f/x (Kaplan and Kay, 1994) , with
x, v, f ∈ Σ∗ and u ∈ Σ+. In this formalization,
Σ is the set of phonemes, R is the set of sandhi
rules, and L is the vocabulary as a set of lexical
items. We define, zi ∈ L as a 3-tuple (l,m,w),
where l denotes the lemma of the word, m de-
notes the morphological class of the word and w
denotes the inflected word form for the lemma l
with morphological classm. Given a sentence s, a
sandhi analysis for s, Si can be seen as a sequence
〈z1, σ1, k1〉; ...〈zp, σp, kp〉. Here, 〈zj , σj , kj〉 is a
segment with zj ∈ L, kj ∈ N denotes the posi-
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tion at which the word wj begins in the sentence s
and σj = [xj ]uj |vj → wj ∈ R for (1 ≤ j ≤ p),
vp = ε and vj = ε for j < p only if σj = o, sub-
ject to the matching conditions: zj = vj−1yjxjuj

for some yj ∈ Σ∗ for all (1 ≤ j ≤ p), where
by convention v0 = ε. Finally s = s1...sp with
sj = yjxjwj for (1 ≤ j ≤ p). ε denotes the
empty word.

But for s, there can be multiple possible seg-
mentation analyses. Let S be the set of all such
possible analyses for s. We find a shared forest
representation of all such segmentation analyses

D(S) =
⋃

Si∈S
Si

.
A segment 〈zj , σj , kj〉 ∈ D(S), iff 〈zj , σj , kj〉

exists in at least one Si.
We define our word segmentation task formally

as follows. For a given sentence s with the set
of segmentation analyses D(S), we need to iden-
tify a set of segments 〈zj , σj , kj〉 ∈ D(S), such
that this sequence of segments corresponds to the
ground truth analysis (segmentation) SGT . Figure
2b shows the ground truth segments for the sen-
tence ‘niśāh. śaśāṅkaks.hatanīlarājayah. kvacidvici-
tam jalayantramandiram’

4 Dataset

In order to alleviate the time and effort that is of-
ten required to spend for preprocessing of San-
skrit data, we release a dataset of 115,000 Sanskrit
sentences with all the candidate segments as men-
tioned in Section 3. Since the sentence constructs
in Sanskrit follow a free word order, the proximity
between two words cannot be used as an indicator
for semantic and syntactic compatibility between
both the words. So, we assume that all the words
that co-occur in a sentence, are equally prone to in-
fluence one another. In order to reflect this in our
dataset, we assume our candidate segment repre-
sentation as a Graph G(V,E). For the graph G,
a node v ∈ V is a unique segment 〈zj , σj , kj〉.
There exists an edge e ∈ E between every pair of
vertices vi, vj ∈ V , provided vi, vj are not ‘con-
flicting’ with each other. Two nodes are ‘conflict-
ing’ if they have an overlap in the position relative
to the sentence and the overlapped portion does
not adhere to any of the rules that follow sandhi.

Given a sentence in swith nwords, the sentence
will have t breaks (spaces) between the characters

such that t < n. If t = n−1, all the words are seg-
mented. Otherwise, there are at least two words
which are joined together and will be in the sand-
hied form. We call such fused forms as chunks in
our dataset. For example in Figure 2a, there are
four chunks. Every node is a possible candidate
in the segmentation task. Two nodes are said to
be conflicting, if they cannot co-occur in the given
sentence, i.e, if two nodes share a character posi-
tion with respect to the input, and the shared por-
tion does not result in a proper sandhi transfor-
mation then the nodes are said to be conflicting.
In Figure 2a, the words ‘ājayah. ’ and ‘jayah. ’ share
a common portion of the input and hence if one
of them exists in the sentence, the other needs to
be eliminated. Formally, consider two nodes, rep-
resented as (k, z) and (k′, z′) in a given chunk.
Here k and k′ are the starting position (offsets)
of these nodes relative to the chunk, let |z| and
|z′| be the length of the words which nodes rep-
resent. We say that (k, z) and (k′, z′) conflict if
k ≤ k′ < k + |z| − 1 or k′ ≤ k < k′ + |z′| − 1
(Goyal and Huet, 2016). If two nodes are not con-
flicting, then there is a possibility that the two may
co-occur in the sentence and hence one can be-
come the context in resolving the other. Hence we
add the edge to all such possible nodes.

4.1 The Corpus

We use the Digital Corpus of Sanskrit (DCS) for
obtaining the sentences and the ground truth splits
for our segmentation dataset. The DCS consists
of about 560,000 sentences tagged with lemma
and morphological information for each of the
words in the corpus. The corpus essentially con-
sists of partial or fully digitised versions of about
225 manuscripts in Sanskrit. The manuscripts are
written as prose, poetry or a mix of both. The
manuscripts range from different domains includ-
ing science, philosophy, religion, literature and
poetry. The time period of the various digitised
works vary for more than 1000 years. So, in
essence, the corpus is a representative sample of
various writing styles, time period and domains of
writing.

Our dataset is a subset of the mentioned corpus.
Our dataset contains all the candidate space seg-
ments as output by the Sanskrit Heritage Reader
for the 115,000 sentences. Since DCS and the
Sanskrit Heritage Reader have differences in the
design decisions they have made, it was not en-
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tirely trivial to match the entries in the DCS with
the candidate segments provided by the Sanskrit
Heritage Reader. We made sure that the entries in
DCS and Heritage reader candidates are matched
for 115,000 sentences, taking into consideration
the lemma matches, morphological classes and the
compound splits.

Since, we require our dataset to be structured
for automated processing and also interpretable by
humans, we decided to use the XML based graph
specification GraphML for representing the candi-
date space segments.

GraphML - GraphML (Brandes et al., 2001) is
an XML based file format, specifically designed
for handling Graphs. We considered graphML as
the standard for the representation of segments pri-
marily due to the human readability and structured
storage of information the format provides, when
compared to other space efficient binary formats
like pickles or other structured formats like JSON.
Additionally, standard libraries across various pro-
gramming languages exist that can read GraphML
structures and if required convert them to other ex-
isting formats including the aforementioned ones.
By sticking onto a general purpose data represen-
tation we make the programming efforts required
to process the data easier. Standard graph process-
ing libraries (Schult and Swart, 2008; Leskovec
and Sosič, 2016) can be used to apply various net-
work metrics, graph algorithms and use the format
for visualisation (Bastian et al., 2009) of the data
as well. We represent each sentence in the dataset
as a separate GraphML file.

Graph Structure - Each node in the graph
stores a set of attributes, which show useful in-
formation about the node. The different attributes
that are stored in the node and their description are
as follows.

1. Word - The final inflected form of the seg-
mented word that can be a possible candidate.
The word is the generated form of a lemma
after the affixation.

2. Lemma - The root word of the given form as
recognized by the Sanskrit Heritage Reader.

3. Morphological Information - The morpho-
logical information about a given word as
provided by the Sanskrit Heritage Reader.

4. Morphological Tags by DCS - The field
consists of integer values which is used in

DCS to represent the morphological informa-
tion. We add the redundant information as
the mapping between DCS and the Heritage
Reader are not one to one and hence to cross
check the correctness, we are keeping the re-
dundant information.

5. Chunk Number - Every contiguous stream
of sounds in the input sentence is referred to
as a chunk. A chunk contains at least one
word or pada. The position information of
each candidate segment is stored relative to
the chunk’s position.

6. Word Position - The field stores integer val-
ues which basically refers to the starting po-
sition of a given candidate segment relative to
the chunk. The first word of every chunk has
a position 0.

7. Word Length - The length of the generated
word form, i.e., the field ‘word’.

8. Pre-verbs - Certain words might be prefixed
with pre-verbs. We store the pre-verbs sep-
arately as an additional attribute. But this
is also counted when we calculate the ‘word
length’.

Currently, in the graph we keep the morphologi-
cal information provided by DCS corpus as well as
the Heritage Reader. Though the information is re-
dundant, it acts as a means of validating our map-
ping scheme. With the aforementioned node at-
tributes we have one edge attribute in the graph. In
the graph, we store the information about whether
two nodes are conflicting or not by forming edges
between them and labeling them with different
values. All the edges marked with attribute value
‘1’ are non-conflicting nodes and hence can po-
tentially co-occur. All those node pairs with edges
marked with ‘2’ are those nodes which are con-
flicting with each other, in other words, at most
only one among the pair will exist in the final solu-
tion. It can be observed that in some files the edge
type attribute has a value of ‘-1’. This implies that
the edge is between two nodes where one of the
nodes provides supplementary information about
the other and hence will not be part of the segmen-
tation. For example, consider the word ‘madya’,
which is a noun in vocative case with its lemma
as ‘madya’. But as an additional information, it
can be observed that the word is derived from the
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root ‘mad’ which is in causative periphrastic future
tense. Now, ‘mad’ is not directly part of the input
sentence but is supplementing the node ‘madya’.
So the edge between the nodes ‘mad’ and ‘madya’
will have a label -1. Additionally the position at-
tribute of ‘mad’ node will also have the value -
1, implying that it is not a node in the candidate
space, but is supplementary to one of the candi-
date nodes.

5 Discussion

In this section, we detail the various linguistic
properties that we leverage for mapping the out-
put provided by the Sanskrit Heritage Reader with
the information from DCS.

5.1 Compounds and Named Entities

We find that some of the compounds, especially
the exo-centric compounds (and few endocen-
tric compounds), are treated as a single word
unit in DCS. The component information for the
compounds are not provided. This is proba-
bly done in order to make the analysis seman-
tically correct, as the resulting compound might
be a named entity referring to either the name
of a person or the name of a place. For exam-
ple, the word ‘daśaratha’ is a compound word,
so is ‘rāmalaks. man. abharataśatrughnāh. ’ (Krishna
et al., 2016a). ‘Daśaratha’ literally refers to any
person who has ten chariots. But, when used in the
sentence ‘rāmasya pitā daśarathah. asti’ (Daśaratha
is the father of rāma), daśarathah. does not re-
fer to any person who has ten chariots but to a
specific person. In such circumstances, it is of-
ten desired not to split compounds and represent
it in terms of the components, as it is semanti-
cally not correct. In DCS, named entities like
‘daśaratha’ are not decomposed into their com-
ponents, but are represented as single nouns. But,
‘rāmalaks. man. abharataśatrughnāh. ’ is a conjunc-
tive compound containing names of four different
people. DCS decomposes the compound into its
components. The Heritage Reader, which does not
consider the semantic context, gives the compo-
nent information for all of the compounds.

To provide mapping between both the resources
in such cases, we replace the components sug-
gested by the heritage reader with a sandhied ver-
sions of the compound components. The sandhied
version is used as the candidate segment, so as to
match it with the scheme of the DCS. But multi-

ple component combinations may lead to the same
sandhied versions. For example, DCS treats the
word nāradam as a single unit which is desirable,
on the other hand Heritage Reader produces dif-
ferent splits for the same word. Figure 3a shows
the treatment of the word nāradam in DCS, while
Figure 3b shows the analysis of the same word by
the Heritage Reader. Here, all the possible com-
ponent combinations that lead to the correct sand-
hied form are added as nodes in the graph but as
supplementary nodes with an edge type value of
-1. The supplementary information need not be of
direct impact for the word segmentation task, and
hence can be ignored for the task. But it will be
beneficial when it comes to syntactic parsing tasks
like dependency parsing or other semantic tasks.

5.2 Secondary Derivative Affixes
The secondary derivative affixes such as ‘vat’
and ‘tva’ are treated differently in both the sys-
tems. While, Sanskrit Heritage Reader remains
faithful to the traditional means of analysis, by
keeping the morpheme as part of the root word,
DCS deviates from this representation. In DCS,
the morphemes, i.e., the root word and the sec-
ondary derivative affix, are treated as separate
words. For example, in the sentence ‘śarātisarge
śīghratvāt kālāntakayamopamah. ’, consider the
word ‘śīghratvāt’. The word is an ablative case
neuter gender singular noun of ‘śīghratva’. Now,
this can further be represented as the combination
of the morphemes, ‘śīghra’ and ‘tva’, where the
former is a noun and the latter is the secondary
derivative affix. In heritage reader, this is rep-
resented as ‘śīghratva’, implying the traditional
analysis of the word into its morphemes. But, in
DCS both the morphemes are represented as two
individual lemma. Same applies with ‘vat’ as well.
We take care of this in our dataset.

5.3 Markers in Lemma
The inflections in compounds in Sanskrit are gen-
erally added to the final component of the com-
pound (Krishna et al., 2016b). This implies that all
the other components are devoid of the inflection
and are in pure form. But, certain words in San-
skrit often have additional markers in them when
the word is mentioned as its base form. But, when
the base form is used as component, the markers
are removed. There are entries in DCS where the
form of the component is assumed to be the base
form. For example, in the compound ‘mahādeva’
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Figure 3: (a) - Morphological analysis of nāradam in the DCS. (b) - Morphological analysis of nāradam
in the Sanskrit Heritage Reader

(The great god or Lord Śiva), the compound has
the components ‘mahān’ (great) and ‘deva ’(deity,
god). But, the lemma or the base form for ‘mahā’
is ‘mahat’. Heritage Reader follows this conven-
tion. But in DCS, ‘mahān’ is considered as the
lemma. We find such cases where similar issues
are present and resolve them.

5.4 Phonetic Variations

In Sanskrit, ‘m. ’, known as the anusvāra, when fol-
lowed by one of the predefined set of phonemes
from the phoneme list, can optionally undergo
a transformation where it is replaced by a nasal
(anunāsika) variation corresponding to the phone.
This can be seen as an internal sandhi. DCS does
not consider this internal transformation and the
heritage reader does so. In effect there are five
such different anunāsika variations possible cor-
responding to various places of articulation. In
the case of Śam. kara, the m. is followed by ‘k’.
The anunāsika for ‘k’ is ‘ṅ’. Thus, Śaṁkara be-
comes Śaṅkara. Similarly, for sam. jaya where m.
is preceded by ‘j’, sam. jaya gets transformed to
‘sañjaya’.

Phonetic Variations due to Pre-verbs - Lin-
guistically, preverbs are treated as bound mor-
phemes. But in DCS, there are numerous instances
when a verb is prefixed with a preverb, the joint
form is treated as a different lemma altogether.
This distinction needs to be taken care of, as the
Heritage Reader provides the original verbal root.
Additionally, internal sandhi can take place when
the preverb is prefixed to a verb. When obtaining
the analysis for each of the morphemes, we need
to split the morphemes by undoing the sandhi op-
eration as well. But, in DCS whenever the preverb

is not separated, the sandhi operation also remains
embedded in the form. The internal sandhi also
needs to be taken care of, in order to deal with the
analysis from the heritage reader. For example in
case of ‘pran. am’, the word is an inflection of the
verbal root ‘nam’ with ‘pra’ prefixed as a preverb.
Here, due to internal sandhi, ‘n’ transforms to ‘n. ’.
Similarly, ‘s’ changes to ‘s. ’ in case of ‘abhis. ic’,
which is joint form for the morphemes ‘abhi’ and
‘sic’.

6 Conclusion

We release the dataset hoping to catalyse the re-
search in computational processing of Sanskrit.
Here, we abstract out language specific details that
are often required in handling the data, and makes
the data accessible to researchers who otherwise
required to rely on linguistic experts in Sanskrit. A
considerable amount of time and expertise is often
required in pre-processing the data and aligning
the ground truth with the output of the morpho-
logical analyser. This acts as a barrier to the entry
point in the field of Sanskrit Computational Lin-
guistics. We present the pre-processed data by re-
moving all the inconsistencies that are often faced.
We expect to eventually roll out the data for all the
560,000 files. Currently we release 115,000 files.
Please note that the GraphML files store directly
the output of the Heritage Reader for the input
sentence in a structured format. The ground truth
segmentation is directly taken from DCS, which
is manually tagged, and is assumed to be correct.
The mapping between the schemes used for defin-
ing the morphological classes in both the Sanskrit
Heritage Reader and the DCS is not completely
unambiguous. Currently, we provide the morpho-
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logical class information for each word in both the
schemes. Hence, the dataset will not be affected
by the changes that may occur to the said map-
ping between the schemes. The current dataset
may not be directly usable for dependency parsing,
as the current sentences are not properly aligned
to sentence boundaries, especially for sentences in
poetry formats. Computational means of finding
sentence boundaries is a research topic of its own
(Hellwig, 2016). Summarily, we bring clarity with
regards to the requirements for the word segmenta-
tion task and release a dataset for the experiments.
We hope to not only increase the collective pro-
ductivity of the community which would have oth-
erwise been spent on preprocessing, but also be-
lieve that this endeavour makes benchmarking of
different systems straightforward, as their perfor-
mance can be tested on the same dataset.
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