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Abstract

In this paper, we present a new and
fast state-of-the-art Arabic diacritizer that
guesses the diacritics of words and then
their case endings. We employ a Viterbi
decoder at word-level with back-off to
stem, morphological patterns, and translit-
eration and sequence labeling based di-
acritization of named entities. For case
endings, we use Support Vector Machine
(SVM) based ranking coupled with mor-
phological patterns and linguistic rules to
properly guess case endings. We achieve
a low word level diacritization error of
3.29% and 12.77% without and with case
endings respectively on a new multi-genre
free of copyright test set. We are mak-
ing the diacritizer available for free for re-
search purposes.

1 Introduction
Modern Standard Arabic (MSA) text is typically
written without diacritics (short vowels). During
reading, Arabic readers need to reintroduce dia-
critics to disambiguate words and to sound them
correctly given their context. Diacritics play two
main roles depending on their position in the word.
The final vowel in a word – case ending – which
typically appears on the last letter of the stem
indicates its syntactic role; while diacritics on
the rest of the letters indicate the lexical choice.
The role of diacritics is crucial for some appli-
cations such as text-to-speech (TTS) and can be
beneficial in other Arabic processing steps such
as part-of-speech (POS) tagging and word sense
disambiguation. A single word can have multi-
ple meaning given the different diacritized forms.
The word “Elm”1 could be viewed as a homo-

1Buckwalter encoding is used exclusively in the paper.

graph for different lexical items. The word can
be diacritized in the following ways: “Eilom”
(knowledge/science), “Ealam” (flag), “Ealima”
(he knew), “Eulima” (it was known), “Eal∼ama”
(he taught), etc. Beginners learning Arabic get ac-
customed to diacritics and gradually learn to dis-
ambiguate the text without them. For final diacrit-
ics, they can help disambiguate the syntactic roles
of words in sentences. Consider the syntactically
ambiguous sentence: “r>Y AlmElm Altlmy∗”.
It most likely means: “The teacher saw the stu-
dent” resulting in the diacritized version “ra>Y
AalomuEal∼imu Aalt∼ilomy∗a”, because Arabic
prefers placing the subject ahead of the object.
However, Arabic allows subjects and objects to
switch positions, and hence the meaning might
be “The student saw the teacher” with diacritized
form “r>Y AalomuEal∼ima Aalt∼ilomy∗u”.

In this paper we present a new state-of-the-art
Arabic diacritizer. The diacritizer works in two
cascaded steps: First, it guesses the diacritics for
the core of words – disambiguating lexical choice;
and then it guesses case endings – disambiguat-
ing syntactic roles. For the first step, we em-
ploy a Viterbi decoder at word-level with back-
off to stem, morphological patterns, and translit-
eration and sequence labeling based diacritization
of named entities. For the second, we employ
SVM-based ranking coupled with morphological
patterns and linguistic rules to properly guess case
endings.

The contributions of this work is as follows:

• We introduce a back-off scheme where OOV
words are diacritized using their morphological
patterns (a.k.a stem templates)

• We use transliteration mining coupled with se-
quence labeling to guess diacritics on Arabic
words based on how the words are transliterated
in English.
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• We employ SVM-based ranking to guess the ap-
propriate cased endings.

• We use morphological patterns and linguistic
rules to better guess case endings.

• We offer a new copyright-free multi-genre test
set to measure diacritization accuracy.

• We offer a state-of-the-art Arabic diacritizer that
is coded entirely in Java and can be used freely
for research purposes.

2 Background
2.1 Arabic Diacritization
Significant research has addressed diacritic
restoration/recovery or diacritization for Arabic
and some other Semitic languages which are typi-
cally written without short vowels. Diacritization
is essential for a variety of applications such as
TTS as well as educational tools for language
learners.
In earlier attempts for automatic diacritization,
Gal (2002) used a Hidden Markov Model for
diacritics restoration, tested on the Quran text,
and achieved 14% word error rate (WER). Vergyri
and Kirchhoff (2004) used acoustic features in
conjunction with morphological and contextual
constrains to train a diacritizer. They evaluated
their automatic diacritization system on two cor-
pora, namely FBIS and LDC CallHome ECA, and
reported a 9% diacritics error rate (DER) without
case ending, and 28% DER with case endings.
The difference between WER and DER is that
the latter measures the percentage of letters with
incorrect diacritics. Consequently, DER values
are typically lower than WER values. Nelken and
Shieber (2005) used a cascade of probabilistic
finite state transducers trained on the LDCs Arabic
treebank news stories (Part 2). The corpus con-
sists of 501 news stories collected from Al-Hayat
newspaper with a total of 144,199 words. The
cascade included a word-based language model, a
letter-based language model, and a morphological
model. This combination of probabilistic models
achieved an accuracy of 7.33% and 23.61% WER
without and with case ending respectively. Zitouni
et al. (2006) trained a maximum entropy model
for sequence classification to restore diacritics
for each character in a word. For training, they
used the LDCs Arabic Tree-bank (Part 3, version
1.0) diacritized corpus, which includes complete
vocalization (full diacritics including case ending)
for each word. The corpus is composed of 600

documents from the An-Nahar Newspaper with
a total of 340,281 words. The maxEnt system
achieved 5.5% DER and 18% WER on words
without case ending. Habash and Rambow (2007)
presented “MADA-D” a system that combines a
tagger and a lexeme language model. The system
showed that the morphological tagger along with
a 3-gram language model were able to achieve
the best performance of 5.5% and 14.9% WER
respectively for diacritized words without and
with case ending. We compare to their system
in our paper. Rashwan et al. (2009) introduced
a two layers stochastic system to automatically
diacritize Arabic text. The system combines both
morphological knowledge and the word full form
features. These information is exploited through
a maximum marginal probability on the full
form supplemented with linguistic factorization
model based on morphological analysis and POS
tagging. While the first is fast, the second one
used as a fall back is more accurate as it exploits
more inner knowledge from the word parts and the
context. Later work by Rashwan et al. (2015) used
deep learning to improve diacritization accuracy
and they reported a WER of 3.0% without case
ending and 9.9% WER for guessing case ending.
We compare to their system in our paper. Recent
work by Abandah et al. (2015) uses recurrent
neural networks to improve diacritization, and
they report results that are better than those of
MADA. Bebah et al. (2014) developed a hybrid
approach that utilizes the output of the open
source morphological Analyzer AlKhalil Morpho
System (Mohamed Ould Abdallahi Ould et al.,
2011) which outputs all possible diacritization
for each word analyzed out of context. These
outputs were then fed to an HMM to guess the
correct diacritized form. The system was trained
on a large body of text consisting of 2,463,351
vowelized words divided between NEMLAR cor-
pus (460,000 words), Tashkeela corpus (780,000
words), and RDI corpus (1,223,351 words). The
training was carried out with 90% of a corpus and
the remaining 10% composed of 199,197 words
was used for testing. The system achieved 9.93%
WER.
For more indepth survey on relevant work on
Arabic diacritization, Azmi and Almajed (2015)
provide a comprehensive survey. To the ex-
ception of Belinkov and Glass (2015) which
performed lower than the state-of-the-art when
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using a recurrent neural network for diacritiza-
tion, traditionally, works on diacritic restoration
rely on linguistic features and tools. MADA
(Morphological Analysis and Disambiguation for
Arabic) (Habash et al., 2009) and its successor
MADAMIRA (Pasha et al., 2014) are among the
few available tools for diacritization. The core of
MADA – MADAMIRA as well – utilizes morpho
syntactic features to select a proper analysis from
a list of potential analyses provided by the Buck-
walter Arabic Morphological Analyzer (BAMA)
(Buckwalter, 2004). Using a set of SVMs trained
on the Arabic Penn Treebank, MADAMIRA
selects the most probable features. The analysis
MADAMIRA selects consists of the diacritized
form along with other features such as its lexeme,
its morphological features, and English glossary.

2.2 ATB

The availability of diacritized text for training is
crucial. Much of the previous work on diacriti-
zation relied on using the Arabic Penn Treebank
(ATB). Though ATB is invaluable for many tasks
such as POS tagging and parsing, it is sub-optimal
for diacritization for the following reasons:
1. ATB is limited in terms of size with less than
570k tokens and in terms of diversity with 87,160
unique surface forms (excluding numerals). In
comparison, the AFP news corpus has approxi-
mately 765,890 unique tokens (Cole et al., 2001).
These limitation would lead to poor coverage.
2. ATB often uses inconsistent diacritizations.
For example the word “<nh” appears 27 as
“<in∼ahu” and 37 as “<inhu” where the first is
the correct one. Also, the diacritic sukon “o” is
sometimes omitted in ATB (ex. “kwbnhAgn” is
diacritized as: “kuwbinohAgin”); and default dia-
critics preceding long vowels are optionally used.
We thus used a large diacritized corpus that we
describe in Section 3.1. When comparing with
systems that were trained on the ATB, some pre-
processing is required, as we show later, to make
sure that we are not unfairly penalizing them.

3 Our Diacritizer

The diacritizer has two main components. The
first component recovers the diacritics for the core
word (i.e. word without case ending), and the sec-
ond only recovers the case ending. In this sec-
tion we describe: the training and test corpora we
used and how we processed them; the training of
our system that diacritizes core-words and guesses

case ending; and our results compared to those of
other systems that are described in the literature,
and some relaxations we applied during evaluation
to insure fair comparison.

3.1 Training and Test Corpora
For this work, we acquired a diacritized cor-
pus from a commercial vendor containing more
than 9.7 million tokens with approximately 194k
unique surface forms (excluding numbers and
punctuation marks). The corpus is composed
mostly of modern standard Arabic (approximately
7 million words) and covers many genres includ-
ing politics, economics, sports, science, etc., and
the remaining 2.7 million words are mostly reli-
gious text in classical Arabic. Thus the corpus is
well balanced and is considerably larger than the
ATB. We manually checked random samples from
the corpus and we estimate diacritization errors
to be less than 1%, and diacritization is thorough
with no omissions of sukon or optional diacritics.
We used the corpus to build several resources as
we describe in Section 3.2.

For testing, we used a new test set composed
of 70 WikiNews articles (majority are from 2013
and 2014) that cover a variety of themes, namely:
politics, economics, health, science and technol-
ogy, sports, arts, and culture. The articles are
evenly distributed among the different themes (10
per theme). The articles contain 18,300 words. We
compare our results to three different systems that
are described in the literature, where the authors
were kind enough to either diacritize our test set
or provide a working system. The systems were
those of Rashwan et al. (2015), Belinkov and
Glass (2015), and MADAMIRA (Habash et al.,
2009; Pasha et al., 2014). The first two are re-
cent systems and MADAMIRA is a popular tool
for processing Arabic.

3.2 Data Preparation
Given a word in the diacritized corpus, we pro-
duce multiple representations of it. To illustrate
the representations, we use the word “wakitAbi-
himo” (and their book) as our running example.
1. diacritized surface form (“wakitAbihimo”). 2.
diacritized surface form without case ending. To
remove case endings, we segment each word in
the corpus to its underlying clitics using the Farasa
segmenter (Darwish and Mubarak, 2016). For ex-
ample, given the diacritized word “wakitAbihimo”
(and their book), it would be segmented to the pre-
fix “wa”, stem “kitAbi”, and suffix “himo”. The
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case ending which is attached in this case to the
stem is removed, leading to “kitAb” and the full
surface form “wakitAbhimo”. A few things are
noteworthy here, namely that diacritized suffixes
are often affected by the case-ending (ex. if the
case ending in the this example was “u”, the suf-
fix would have been “humo”), and the case ending
may be on the attached noun suffix (ex. “p” or
“At”) and not on the last letter in the stem.
3. diacritized stem with and without case end-
ing, which would be ‘kitAbi” and ‘kitAb” respec-
tively for our example. If the surface form had
a noun suffix, then it was considered as part of
the stem. For example, the word “kitAbAt” (writ-
ings) is segmented as “kitAb+At”, where “At” is
the noun suffix indicating feminine plural marker.
In this example, the noun suffix is treated as if it is
a part of the stem.
4. diacritized template of surface form. This step
involves obtaining the root from which the word
is derived and the stem template. Arabic words
are typically derived from a set of a few thousand
roots by fitting the roots into stem templates. For
example, the word “kitAb” is derived by fitting the
root “ktb” into the template “fiEAl”. In our exam-
ple, the surface form template is “wafiEAlihimo”
and “wafiEAlhimo” with and without case ending
respectively. We again used the Farasa to obtain
the roots and stem templates.
5. diacritized stem template with and without case
ending. As shown before for the example, the stem
template is “fiEAl” and “fiEAli” with and without
case ending respectively.
Based on different representations, we created the
following dictionaries and language models:
1. surface form dictionary, which contained sur-
face forms without diacritics and seen diacritized
forms without case ending. For example, the un-
diacritized word “wktAbhm” has two seen dia-
critized forms, namely “wakitAbhimo” and “wak-
itAbhumo”. In this example, the diacritized form
of the suffix actually depends on the case ending.
We have a module that corrects for this when plac-
ing the case ending.
2. stem dictionary, which contains the stem with-
out diacritics and seen diacritized forms without
case ending. From our example, the stem “ktAb”
has the diacritized forms “kitAb” and “kut~Ab”.
3. surface form and stem templates without di-
acritics along with the most common (based on
statistics on the training corpus) diacritized tem-

plates. In our example, the template “wfEAlhm”
would be mapped to “wafiEAlihimo” and the tem-
palte “fEAl” to “fiEAl”.
4. a bigram surface form langauge model and a
unigram stem language model. Both are without
case ending.

3.3 Core word diacritization
For core-word diacritic recovery, our basic sys-
tem uses a bigram word model with back-off to
a stem unigram model, stem template-based di-
acritization, and a sequence labeling based stem
diacritization model. We experimented with a tri-
gram language model instead of a bigram model,
and the bigger model did not yield any gain.
3.3.1 Baseline System
In our baseline system, we used the bigram lan-
guage model using the word surface forms without
case endings. When given a sentence to diacritize,
we would build a lattice with all previously seen
diacritized forms for a word by consulting the pre-
viously constructed dictionary. If a word is not
seen before, it is left as is without any diacritics.
Then we use our bigram model and the Viterbi al-
gorithm to find the most likely path in the lattice.

In the following setups, different back-offs are
used when a word is not found in the dictionary.
3.3.2 Back-off to Stem
For a surface form that is not found in the surface
form dictionary, the surface form is segmented and
the stem is extracted. Then we search for the stem
in the stem dictionary, and we use the most proba-
ble stem diacritization using the stem unigram lan-
guage model. If found, then the prefixes are dia-
critized and attached to the stem. If not, the in-
put surface form is used. To attach the prefixes
and suffixes to the stems, some affixes have one
form (namely “w” (and), “f” (then), “s” (will), “b”
(with), and “l” (to)) and others change form de-
pending on the stem and the case ending. Those
that depend on the case ending (some attached
pronouns) are diacritized properly after we deter-
mine the case ending. One prefix that changes
form and affects the diacritic of the first letter in
the word is “Al” (the). Arabic has so-called lam
qamariyyah (literally meaning “moon l”) and lam
shamsiyyah (“sun l”), where the former is pro-
nounced normally and the later is not pronounced
with the first letter after it being stressed with a
“∼” (shaddah). An example of both are the words
“Aloqamar” (the moon) pronounced as alqamar
and “Al$∼amos” (the sun) pronounced as ashams.
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In the case of lam qamariyyah, it receives a “o” di-
acritic, and the lam shamsiyyah case it is left bare.

3.3.3 Back-off based on Template
If the surface form and stem do not appear in our
dictionaries, we attempt to diacritize using word
and stem templates. To do so, we generate the
equivalent undiacritized template for the surface
form. For example, given the word “wsEAlhm”
(and their coughing), we find that the underlying
root is “sEl” with “wfEAlhm” and “fEAl” being
the undiacritized surface form and stem templates
respectively. If the surface form template is found
in the previously constructed surface form tem-
plate dictionary, the most likely diacritized tem-
plate is used. In this example, this would be
“wafiEAlhimo”. If not, then we search the stem
template dictionary and use the most likely dia-
critized template (“fiEAl” for our example).
3.3.4 Automatically Diacritized

Transliterated Words
One of the important sources of words for which
no diacritization candidates exist in our dictionar-
ies and for which we can not obtain valid tem-
plates are foreign names. We devised a scheme to
automatically diacritize transliterated words using
transliteration mining and sequence labeling. The
intuition for automatic diacritization draws from
the fact that while short vowels are generally omit-
ted in Arabic text, English vowels are often ex-
plicit. For example, the name “klntn” is written in
English as “Clinton”. The vowels on the English
side imply that the proper Arabic diacritization is
“kolinotun”.

The automatic diacritization process has mul-
tiple steps. First, we need Arabic and En-
glish transliterations, which we could obtain from
Wikipedia cross-lingual links. To do so, we used
the Arabic Wikipedia snapshot from September
28, 2012 that has 348,873 titles including redi-
rects, which are alternative names to articles. Of
these articles, 254,145 have cross-lingual links to
English Wikipedia. To find which words in En-
glish and Arabic titles would be transliterations,
we used a transliteration miner akin to that of El-
Kahky et al. (2011) that was trained using 3,452
parallel Arabic-English transliteration pairs. We
aligned the word-pairs at character level using
GIZA++ and the phrase extractor and scorer from
the Moses machine translation package (Koehn et
al., 2007). The alignment produced mappings be-
tween English letter sequences and Arabic letter

sequences with associated mapping probabilities.
Given a word in the Arabic title, we produced all
its possible segmentations along with their asso-
ciated mappings into English letters. We retained
valid target sequences that produced a word in the
corresponding English title. We further filtered out
pairs where the transliteration probability was less
than 0.1, obtaining 125k transliterated pairs.

Second, we trained a sequence labeler that
would automatically assign the proper diacritic
for each Arabic letter in a name given its En-
glish rendition. We constructed a training set
of 500 Arabic-English transliteration pairs, where
the Arabic is fully diacritized. For each pair,
we used our transliteration miner to automatically
map each Arabic letter to one or more English let-
ters. Then given these mappings, we trained a
conditional random fields (CRF) model using the
CRF++ implementation (Kudo, 2005) using the
following features: Arabic Letter, English map-
ping, is first letter in word, is last letter in word,
and English is all vowels. The label was the ob-
served diacritic.

Third, given all the transliterations we found
from Wikipedia titles, we used the trained CRF
model to automatically diacritize the Arabic
words. In doing so, we were able to automati-
cally diacritize more than 68k Arabic translitera-
tions. We were not able to diacritize all of them
because the transliteration miner was not able to
fulfill the requirement that each Arabic letter was
to be mapped to one or more English letters.
An example diacritized name is “rAwlobinody”
(Rawalpindi), which does not exist in the diacriti-
zation dictionary. We took a sample of 200 words
that were automatically diacritized in this fashion
and the accuracy of diacritization was 79%. Per-
haps in the future we can utilize more training data
to further improve the accuracy.
3.3.5 Word Look-up
Another method that we employed entails building
a dictionary of words that we reckoned had only
one possible diacritization or one that dominated
all others. An example of this is the word “En”,
which has two diacritized forms namely “Eano”
(about) and “Ean~a” (appeared). The second di-
acrized form, though possible, is archaic. We
constructed a dictionary of such words using two
methods. First, we manually constructed a set of
about 393 Arabic prepositions, particles, and pro-
nouns with and without prefixes and suffixes. Ex-
ample entries in the dictionary include “fy” (in),
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“wfy” (and in), “fyhm” (in them), and “wfyh” (and
in it). In the second, we collected statistics on the
training corpus, and any word appearing at least 10
times with a diacritized form being used more than
90% of the time, we added the word and the dom-
inating diacritized form to our dictionary. Pick-
ing the dominant form is mostly safe particularly
in case such as words that start with prepositions.
In other cases such as “gzp” (Gaza), the dominant
form is “gaz∼apa”, while we know that it is pos-
sible for it to be diacritized as “gaz∼apu” (with
a different case ending). However, what we ob-
served in our corpus is that it overwhelmingly ap-
pears as part of the collocation “qTAE gzp” (Gaza
Strip), and the collocations forces “gzp” to have a
specific diacritized form.

3.3.6 Results

Table 1 shows the results for the baseline sys-
tem, the baseline with different back-off schemes,
and the baseline with back-off and word look-up.
We used the two common evaluation measures,
namely error rate at word level (WER) and error
rate at character/diacritic level (DER). As the re-
sults show, backing-off to using stems and word
or stem templates, using automatically diacritized
words, and using word look-up all had a posi-
tive effect on diacritizing core words. The most
improvement was achieved when backing-up to
stems and using word look-up. Automatically di-
acritized words had a smaller effect than we ex-
pected, because foreign named entities frequently
use long vowels that are inserted during translit-
eration instead of short vowels. For example,
“John” is typically transliterated as “jwno” (with
the long vowel “w”) rather than “juno”. Combin-
ing the different enhancements led to even greater
drops of 50% and 56% in WER and DER respec-
tively. Compared to systems in the literature, our
core word diacritizer is far ahead of MADAMIRA
and that of (Belinkov and Glass, 2015). How-
ever, we lag behind the system of Rashwan et al.
(2015). When score the output of different sys-
tems, we performed some relaxations to account
for differences in diacritization conventions. The
relaxations involved: removing default diacritics
on letters followed by long vowels as in “jwno”
where putting the diacritic “u” after “j” would be
redundant; assuming that a letter, that is not a long
vowel, with no diacritic to be followed by “o”; and
removing diacritics from the determiner “Al”.

System % WER % DER
B 6.64 2.40
S 4.69 1.44
T 5.96 1.90

TSL 6.56 2.39
WL 4.54 1.75

S+T+TSL 4.51 1.35
S+T+TSL+WL 3.29 1.06

MADAMIRA 6.73 1.91
Rashwan et al. (2015) 3.04 0.95

Belinkov and Glass (2015) 14.87 3.89

Table 1: Core word diacritization results for Base-
line (B) and with back-off to Stem (S), Template
based diacritization (T), and Transliteration and
Sequence Labeling based diacritization (TSL),
and Word look-up (WL).

3.4 Recovering Case Endings
Though the case ending of some words or word
types might be fixed, such as prepositions and past
tense verbs, case ending often depends on the role
a word plays in the sentence. Consider the follow-
ing examples: “*ahaba muHam∼adN” (Muham-
mad went) and “*ahaba >lY muHam∼adK” (he
went to Muhammad). The name “muHam∼ad”
is assigned the case “N” (nominative) when it is a
subject and “K” (genitive) when it is preceded by a
preposition “>lY”. Ascertaining case endings for
simple prepositional phrases may be easy, how-
ever determining if a word is a subject or an ob-
ject may be much hard. Though parsing can help
determine the role of words in a sentence, it is typ-
ically very slow and hence impractical for some
real life applications such as TTS.

To determine case endings, we use a linear
SVM ranking (SVMrank) model that is trained
on a variety of lexical, morphological, and syn-
tactic features. The advantage of an SVMrank

model is that it is very fast, and it has been shown
to be accurate for a variety of ranking problems
(Joachims, 2006). For training, we use the im-
plementation of Joachims (2006) with default pa-
rameter values. We also employ heuristics that in-
clude/exclude possible/impossible case ending to
be considered by the SVMrank model. In the fol-
lowing, we describe our ranking model and how
we determine which case endings to consider.
3.4.1 SVMrank Model
Here we describe the features we used for
SVMrank to determine the case endings of words.
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We use the Farasa segmenter and POS tagger (Dar-
wish and Mubarak, 2016) to determine some of
the morphological, lexical, and syntactic features.
To help explain the features, we use here the
running example “jrY Abn AljyrAn fy AlmlEb”
(the neighbors’ son ran in the playground), where
we will focus on assigning the case ending C
of the word “AljyrAn” (the neighbors), which
is segmented as “Al+jyrAn” and POS tagged as
“DET+NOUNmasculine,plural” by Farasa. All fea-
ture values are computed on our training corpus.
Position “0” is the current position, with “1” and
“-1” being the next and previous positions. The
features are as follows:
• P (C|word0) and P (C|stem0): this captures

the likelihood that case ending can appear
with the current word or stem respectively (ex.
P (C|AljyrAn) and P (C|jyrAn)).

• P (C|word−1), P (C|stem−1), P (C|word1),
and P (C|stem1): this captures the context
of the word (ex. P (C|Abn), P (C|Abn),
P (C|fy), and P (C|fy)).

• P (C|POSword0) and P (C|POSstem0): some
case endings are likely for some POS tags
and nearly impossible for others. For
example, “DET” precludes tanween {“N”,
“K”, “F”} (ex. P (C|POSDET+NOUN ) and
P (C|POSNOUN ))

• P (C|POSword−1), P (C|POSstem−1),
P (C|POSword1), and P (C|POSstem1):
this captures local contextual information
that may help in detecting some syntactic
constructs (ex. P (C|POSDET+NOUN ) and
P (C|POSNOUN ))

• p(C|gen/numword0), p(C|gen/numword−1),
and p(C|gen/numword1): gender and number
agreement may indicate dependency within a
sentence (ex. p(C|masc pl), p(C|masc sing),
and p(C|null)2).

• p(C|prefix0), p(C|POSprefix0),
p(C|suffix0), and p(C|POSsuffix0):
prefixes and suffixes may force or preclude
certain case endings (ex. p(C|Al), p(C|DET ),
p(C|null), p(C|null)).

• p(C|stem template0): Some stem templates
favor particular case endings over others.
For example, the template “mfAEyl” (as in
“msAHyq” (powders)) does not allow tanween
(ex. p(C|fElAn)).
2prepositions don’t have a gender or number

• p(C|last letterword0): the last letter in the
word may force or preclude certain case end-
ings. For example, “Y” does not accept any di-
acritics. For our running example, we compute
p(C|n).

• p(C|POS0, POSword−1 , diacriticword−1):
case endings are affected by the diacritic of the
previous word in the case of NOUN-ADJ con-
structs (ex. p(C|DET +NOUN, NOUN, u)).

• p(C|word,word−1): this helps capture collo-
cations or local constructs such as short prepo-
sitional phrases (ex. p(C|AbnAljyrAn)).

• p(C|POS,POSword−1 , POSword1) and
p(C|POS,POSword−1 , POSword−2): this can
help detect local constructs such as NOUN-
DET+NOUN which is often an idafa construct
(ex. p(C|DET + NOUN, NOUN, PREP )
and p(C|DET + NOUN, NOUN, V )).

3.4.2 Filtering Heuristics
Limiting the possible case endings that the model
has to rank can improve accuracy by disallowing
bad choices. We applied simple heuristics to limit
possible case endings to be scored by SVMRank.
Some of these are based on Arabic grammar, and
others are purely statistical.
• If a word or stem appears more than 1,000 times

in the training corpus, then restrict possible case
endings to those seen in the training corpus.
Though the threshold would not preclude other
cases, it is high enough to make other cases rare.

• If the POS of the stem is VERB then restrict to
{a, o, u, ∼a, ∼u, or null}.

• If stem POS is VERB and VERB is not present
tense, then restrict to {a, o, ∼a, or null}.

• If first suffix is “wn” or “yn” (either plural noun
suffix or plural pronoun), then restrict to {a}.

• If first suffix is “An” (dual noun suffix), then re-
strict to {i}.

• If stem POS is NOUN and more than 80% of
time the case ending was “o” in the training cor-
pus, then restrict to {o}. This is meant to cap-
ture foreign named entities, which by the con-
vention in the training corpus always get a case
ending of “o”.

• If word diacritized using the aforementioned
Transliteration mining and sequence labeling
method, then it is assumed to be a foreign named
entity and the case ending is restricted to {a} or
{null} if it ends with a “A, y, w, or Y”.
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• If suffix POS is CASE, then restrict to {F, ∼F}.
• If word contains non-Arabic letters, then restrict

to {null}.
• If the last letter in the stem is a long vowel “A,

y, w, or Y”, then restrict to {null}.
• If last letter in the stem is not a long vowel and

is not followed by a long vowel, then disallow
{null} to insure a case ending is chosen.

• If prefix POS has DET, then disallow tanween
{K, N, F, ∼K, ∼N, ∼F}.

• If word or stem POS appeared in training more
than 50 times, then restrict case ending to those
seen for the POS during training.

• If word or stem template appeared in training,
then restrict case ending to those seen for the
template during training.

• If stem-template matches “fwAEl, mfAEyl, or
mfAEl”, then disallow tanween.

• If a bigram appeared more than 1,000 in training
with a single case ending for both words in the
bigram, then restrict to the seen case endings.

• If the prefix does not have a DET and the follow-
ing word does, then assume an idafa construct
and disallow tanween.

• If the word matches “>n, <n, or lkn”, then re-
strict case ending to {o} only if followed by a
verb, and to {∼a} otherwise.

3.4.3 Results
Table 2 shows the results of full diacritization
including case ending with and without filtering
heuristics. As can be seen, filtering heuristics led
to 4.3% and 11.1% relative reduction in word and
character error rates respectively. We are doing
better than the other three systems. Though the
system of Rashwan et al. (2015) was more accu-
rate at core-word level, our system was doing a
better job in case ending recovery leading to better
overall diacritization.
3.5 Error Analysis
For error analysis, we inspected 500 random er-
rors from the WikiNews test set. The following
are those constituting more than 5% of the errors:
1. Core word diacritization errors: (21%) wrong
form – ex. “Eadol” (justice) instead of “Ead∼al”
(he adjusted); (8%) out of vocabulary – ex.
“Eab∼ady” (Abbady – proper name).
2. Case ending errors: (12%) wrong ADJ-NOUN
attachment – ex. “wzArp AlSHp AlSEwdyp”

System % WER % DER
SVMRank 13.38 3.98

SVMRank+Heuristics 12.76 3.54
MADAMIRA 19.02 5.42

Rashwan et al. (2015) 15.95 4.29
Belinkov and Glass (2015) 30.50 7.89

Table 2: Full word diacritization results of our
system using SVMRank only (SVMRank)
and SVMRank after using heuristics to
include/exclude possible/impossible case
endings (SVMRank+Heuristics).

(Saudi Health Ministry) where Saudi was attached
to health instead of Ministry; (14%) misidentifica-
tion of SUBJ or OBJ – ex. OBJ is mistaken for
a SUBJ because SUBJ is omitted, or SUBJ ap-
pears several words after VERB; (11%) words fol-
lowing conjunctions where their dependency is not
clear; (7%) appositions; (6%) substitution of tan-
ween with kasra or damma with kasra and damma
respectively {u↔N, i↔K}; (6%) attachments in
NOUN phrases with multiple subsequent nouns;
and (5%) the SUBJ of a nominal sentence switches
place with the predicate.

3.6 Implementation and Speed
The diacritizer is implemented entirely in Java
making it platform independent and is backwards
compatible to JDK 1.5. The diacritizer is pack-
aged as a single jar file that is 100 megabytes in
size. It is able to diacritize a test set composed of
500k words on an Intel i7 laptop with 16 gigabytes
of RAM in 3 minutes and 44 seconds (including
42 sec. loading time) with memory footprint of
2.2 gigabytes. The current implementation is sin-
gle threaded, so it does not make use of the multi-
ple cores. We are providing it for free for research
purposes.

4 Conclusion

In this paper we present a new state-of-the-art pub-
licly available Arabic diacritizer. It uses a Viterbi
decoder for word-level diacritization with back-
offs to stems and morphological patterns. It also
uses transliteration mining in conjunction with se-
quence labeling to diacritize named entities for
which we have English transliterations. For case
ending, it uses SVMRank coupled with filtering
heuristics. The diacritizer achieves 12.76% WER
and 3.54% DER on a new multi-genre free of
copyright test set.
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