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Abstract

We present a new method to bootstrap
filter Twitter language ID labels in our
dataset for automatic language identifica-
tion (LID). Our method combines geo-
location, original Twitter LID labels, and
Amazon Mechanical Turk to resolve miss-
ing and unreliable labels. We are the
first to compare LID classification per-
formance using the MIRA algorithm and
langid.py. We show classifier perfor-
mance on different versions of our dataset
with high accuracy using only Twitter
data, without ground truth, and very few
training examples. We also show how
Platt Scaling can be use to calibrate MIRA
classifier output values into a probability
distribution over candidate classes, mak-
ing the output more intuitive. Our method
allows for fine-grained distinctions be-
tween similar languages and dialects and
allows us to rediscover the language com-
position of our Twitter dataset.

1 Introduction

Every second, the Twitter microblogging webser-
vice relays as many as 6,0001 short written mes-
sages (less than 140 characters), called tweets,
from people around the world. The tweets are
created and viewed publicly by anyone with inter-
net access. Tweets obtained from the Twitter API
are tagged with metadata such as language ID and
geo-location (Graham et al, 2014).

∗ This material is based upon work supported by the De-
fense Advanced Research Projects Agency under Air Force
Contract No. (FA8721-05-C-0002 and/or FA8702-15-D-
0001). Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the Defense Ad-
vanced Research Projects Agency.

1http://www.internetlivestats.com/twitter-statistics/

Currently there is a mismatch between the built-
in language identification support provided by the
Twitter API and the needs of the natural lan-
guage processing (NLP) community. While there
are around 7,0002 human languages spoken to-
day, only 34 of the most common languages are
currently recognized and tagged by Twitter3 us-
ing automatic methods for language identification
(LID). In addition to Twitter’s low-coverage of
languages, Twitter’s default language tags are not
always accurate (Zubiaga et al, 2015; Lui and
Baldwin, 2014; Bergsma et al, 2012) making it
very challenging to obtain the necessary ground-
truth for training a language classifier.

Twitter data is linguistically diverse and has
tremendous global reach and influence. Discrim-
inating languages and dialects automatically is
a critical pre-processing step for more advanced
NLP applications (Dagli et al, 2016). Heavy,
worldwide use of Twitter has created a very rich
landscape for developing NLP applications such
as support for disaster relief (Sakaki et al., 2010;
Kumar et al., 2011), sentiment analysis (Volkova
et al., 2013), as well as recognizing named enti-
ties (Ritter et al., 2011) and temporal reasoning for
events and habits (Williams and Katz, 2012).

In this work we show how geo-location can be
used to identify the language of a tweet when
appropriate language tags are seemingly incor-
rect, or absent. Specifically, we are interested in
discriminating similar languages English, Malay
and Indonesian (en, ms, id) as well as dialects
of Spanish from Europe and Mexico (es-ES, es-
MX) and dialects of Portuguese from Europe and
Brazil (pt-PT, pt-BR). Language names are rep-
resented using the ISO-639-2 language codes and
2-letter country abbreviation added for dialects.
The methods we present in this paper provide a
fast, low-cost approach to filtering Twitter LID la-

2https://www.ethnologue.com/
3https://dev.twitter.com/web/overview/languages
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bels. It is very important to have data with reliable
language labels because it allows us to make fine-
grained distinctions between dialects and similar
languages, in order to expand the linguistic scope
of NLP applications.

This paper is organized as follows: Section 2
describes related work, Section 3 describes the
data collection and preparation, Section 4 de-
scribes classification algorithms, Section 5 shows
our re-annotation experiments and results, Section
6 presents results using Platt Scaling, and finally
Section 7 is discussion and future work.

2 Related Work

Language identification has a rich history in nat-
ural language processing (Cavnar and Trenkle,
1994; Dunning, 1994). Recently, many dif-
ferent language combinations have appeared in
benchmark shared tasks, most notably in the DSL
(Discriminating Similar Languages) Shared Task
2014, 2015, and 2016 (Lui et al, 2014; Zampieri
et al, 2014; Zampieri et al, 2015, Malmasi et al,
2016). In these shared-tasks the train/test data is
not composed entirely of social media while si-
multaneously providing support for the languages
and dialects that we are interested in. Addition-
ally, English is sometimes used by Twitter users
within the country geo-boundaries of Indonesia
and Malaysia. Therefore we cannot rely on user
profile settings as in previous work (Saloot et al.,
2016), including Kevin Scannell’s ongoing Indige-
nous Tweets Project4 which relies on self-reported
minority language usage but does not guarantee
homogeneity of labeled language collections.

Ranaivo-Malançon (2006) was the first to work
on Malay-Indonesian LID using n-gram profiling
and other linguistic features. While their work
capitalizes on nuanced linguistic differences be-
tween Malay and Indonesian, it does not address
whether or not this technique can be expanded
to include English, or dialect pairs, and the re-
sults for classifier accuracy are not reported. We
are also interested in discriminating dialects of
Spanish and Portuguese, as these are widely spo-
ken languages with important dialect distinctions
(Zampieri et al, 2016; Çöltekin and Rama, 2016).

The 2014 DSL Shared-Task was the first
large-scale task for distinguishing between sim-
ilar languages and dialects in a language group,
including: Malay/Indonesian, Brazilian Por-

4http://indigenoustweets.com/

tuguese/Portuguese, and Spanish/Mexican Span-
ish. The data for this shared-task, compiled by Tan
et al (2014), was collected from the web, cleaned,
and consists of 18,000 training sentences per lan-
guage group. Performance results per language
group are reported for the top 8 systems, with
the best performing system, NRC-CNRC (Goutte
et al, 2014), achieving overall accuracy between
91%-99% on the language groups that we are in-
terested in. Our work is distinct from the DSL
Shared-Tasks for language and dialect identifica-
tion because we are interested in learning a classi-
fier using only Twitter data, without ground truth,
using very few training examples.

3 Data Collection

We collected tweets from Twitter using the 10%
firehose that we obtained from GNIP5 between
January 2014 and October 2014. The 10% fire-
hose is a real-time random sampling of all tweets
as they are relayed through the Twitter webservice.
As part of their service, GNIP provided a filtering
with geo-tagging enabled, so that all of the tweets
in our collection were geographically tagged with
longitude and latitude, allowing us to pin-point the
exact location of the tweet. Initially, we collected
over 25.6 million tweets during that time period.
In our collection, 24 languages were automatically
identified by the Twitter API using the ISO-639-2
and ISO-639-3 language codes6.

Figure 1: Twitter LID label composition (relative
frequency) for our collected Twitter dataset

The most commonly occurring languages in our
dataset were English, Spanish, Indonesian, and
Portuguese. We note that our dataset did not con-
tain any tweets initially identified as being in the
Malay language. Figure 1 shows the distribution
of languages relative to the overall collection. The

5https://gnip.com/
6https://dev.twitter.com/rest/reference/get/help/languages
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language distribution in our data does not accu-
rately represent the languages used on Twitter for
two reasons: 1) Twitter’s own language ID codes
are not always accurate in identifying the language
of a tweet, and 2) this distribution in Figure 1 rep-
resents 10% geo-enabled firehose from GNIP col-
lected during a specific time period. Furthermore
without adequate language ID technology and re-
liable language labels, the true distribution of lan-
guages on Twitter is not known with certainty.

4 Classification Algorithms

In this section we describe two classification algo-
rithms that we used in our experiments. We com-
pared performance of the MIRA algorithm with
the popular pre-trained software called langid.py.

4.1 MIRA
Advances in statistical learning theory have made
it possible to expand beyond binary classifica-
tion with perceptrons (Rosenblatt, 1958) to mul-
ticlass online learners such as the Margin Infused
Relaxed Algorithm (MIRA) from Crammer and
Singer (2003). The MIRA algorithm is formulated
as a multiclass classifier which maintains one pro-
totype weight vector for each class. MIRA per-
forms similar to Support Vector Machines (SVM)
without batch training (Crammer et al, 2006).

For multiclass classification, MIRA is formu-
lated as shown in equation (1):

c∗ = arg max
c∈C

fc(d) (1)

where
fc(d) = w · d (2)

and w is the weight vector which defines the
model for class c. The output of the classifier, for
each class, is the dot product between a document
vector d and the weight vector for each class c,
shown in equation (2). Therefore the predicted
class is chosen by selecting the argmax. The val-
ues for each class, from equation (2) are neither
normalized or scaled, and so they do not represent
a probability distribution over candidate classes.
We discuss this in greater depth in Section 6 with
regard to calibrating the classifier output.

To train MIRA, we swept values for the margin
slack (0.0005 to 0.00675) and number of training
epochs (5 to 30). The value for training epochs de-
noted a hard-stop for training iterations and served
as the stopping criterion. The feature vectors con-
tained log-normalized frequency counts for word

and character n-grams, with values for n swept
separately for words (1 to 5) and characters (1
to 5), to allow various word and character-level
n-gram combinations. After sweeping all possi-
ble feature combinations, we report experiment re-
sults based on the highest achieved overall accu-
racy. Words were defined by splitting on whites-
pace and we did not do any pre-processing or
text normalization of the original tweets, similar
to Lui and Baldwin (2014). For MIRA we used
the open-source software suite called LLClass7,
which proved useful for other types of text cate-
gorization tasks (Shen et al, 2013).

4.2 langid.py

For comparison, we used the off-the-shelf tool
langid.py from Lui and Baldwin (2012). This tool
employs a multinomial näive Bayes classifier, and
n-gram feature set. The n-gram features are se-
lected using information gain to maximize infor-
mation with respect to language while minimizing
information with respect to data source. A pre-
trained model also comes off-the-shelf and covers
97 languages, including the specific languages that
we use for this work. At the time of this writing
the pre-trained model does not include support for
dialect distinction. While we did not sweep pa-
rameters for the langid.py software, as we wanted
to evaluate off-the-shelf performance, we did use
their built-in feature “label constraint” which re-
stricts the multinomial distribution to a specified
set of target labels, rather than all 97 supported
languages. For example, with experiments involv-
ing English/Malay/Indonesian, we restricted the
language label set to these three languages.

5 Re-Annotation Experiments

In this section we present our method to bootstrap
filter our Twitter dataset to re-annotated data and
arrive at ground truth labels. Our data processing
technique is fast, easy, cheap, and independent of
the classification algorithm. We also present clas-
sification results for each dataset using MIRA and
langid.py classifiers. All classification results are
reported as the overall average accuracy with an
80/20 train/test split. Each experiment is based on
N total tweets per target language and classes were
stratified irrespective of tweet length.

7https://github.com/mitll/LLClass
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5.1 Exp 1: Twitter Labels
First for Experiment 1, we used Twitter API labels
as ground truth for language classification. Unfor-
tunately, our dataset did not contain Twitter LID
labels for Malay, or the Portuguese and Spanish
dialects.

Languages N/class MIRA langid.py
en, id 500 98.0 90.1
pt, es, en, id 500 93.5 85.95

Table 1: Exp 1 results using Twitter API language
labels as ground truth

The performance shown for the En-
glish/Indonesian pair in Table 1 is competitive
with the DSL Shared Task performance for this
language pair (Zampieri et al, 2016). We also used
Twitter labels to evaluate multiclass classification
for pt, es, en, id and note that the MIRA classifier
outperforms langid.py for this set.

5.2 Exp 2: Geo-Boundary Filtering
In Experiment 2, we filtered our Twitter dataset
by establishing geo-bounding boxes to geographi-
cally define countries where the language of inter-
est is suspected to be most prominent. For exam-
ple, we used the country Malaysia as a represen-
tative geo-source for Malaysian tweets. We used
a free website to set up the latitudinal and longi-
tudinal geo-bounding boxes around the countries
8 and there are additional alternative websites to
obtain similar geo-boundaries910. Each bounding
box corner was defined by a latitude/longitude co-
ordinate pair corresponding to SW, NW, SE, NE.
Multiple bounding boxes were used for approxi-
mating the shape of each country and we made
every effort to include major metropolitan cities
within the bounds. In some cases, our bounding
boxes were slightly overspecified and slightly un-
derspecified depending on the geometric shape of
the country as shown for Portugual in Figure 2.

We recognize that Twitter users in each of the
geo-bounded countries are able to tweet in any lan-
guage. Our data filtering method was based on
the assumption that the majority of tweets from
a country would be composed in that country’s
most common language. We calculated how fre-
quently different Twitter API language labels oc-
curred within the bounds of the target country de-

8http://boundingbox.klokantech.com/
9http://www.naturalearthdata.com/

10https://help.openstreetmap.org/

Figure 2: Example of geo-bounding box to iden-
tify tweets that originated from Portugal

fine a target label purity, with respect to the ex-
pected majority language. This is the conditional
probability of the target Twitter LID label occur-
ring in the target country, shown in equation (3)

p(label|country) =
countlabel

countcountry
(3)

Geo-Bound Country Language Label Purity
Malaysia Malaysian ms 0%
Indonesia Indonesian id 63%
United States English en 85%
Portugal Portuguese pt 68%
Brazil Portuguese pt 71%
Spain Spanish es 72%
Mexico Spanish es 69%

Table 2: Twitter LID label purity within geo-
graphic country boundaries

The majority of tweets originating from
Malaysia were tagged as id and en. We observed
similar scarcity of Malay tweets in Twitter’s pub-
licly released language identification datasets 11.
In fact, Malay tweets make up less than 0.001% of
Twitter’s uniformly sampled dataset despite API
support for Malay language identification. Our
estimates of label purity, in addition to Twitter’s
dataset coverage of Malay, emphasize the persist-
ing need for automatic language disambiguation.
We compared classifier performance using geo-
boundary as a stand-in for ground truth labels, and
our results are shown in Table 3.

5.3 Exp 3: Geo Filtering + Twitter Labels
To generate ground truth in Experiment 3, we took
the intersection of labels from geo-bounds and

11https://blog.twitter.com/2015/evaluating-language-
identification-performance
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Languages N/class MIRA langid.py
en, id, ms 1000 80.8 54.2
en, id 1000 93.5 79.5
id, ms 1000 86.3 51.7
en, ms 1000 86.0 76.6
pt-PT, pt-BR 1000 75.0 –
es-ES, es-MX 1000 66.8 –
en, id, ms, pt-PT,
pt-BR, es-ES, es-MX 1000 68.5 –

Table 3: Exp 2 results using geo-boundaries to
represent ground truth LID labels (i.e. country la-
bels = language labels)

original Twitter LID labels. For example, we ex-
tracted all tweets from Brazil that the Twitter API
had labeled as pt for Portuguese, and re-labeled
them as Brazilian Portuguese, pt-BR. We repeated
the classification experiment using a separate sub-
set of tweets and these new labels. As shown in Ta-
ble 4, the classification results for MIRA in Exper-
iment 3 are competitive with results from related
benchmarking tasks, such as DSL 2016 (Malmasi
et al, 2016).

Languages N/class MIRA langid.py
en, id, ms 1000 85.5 60.7
en, id 1000 99.5 92.8
id, ms 1000 90.5 49.0
en, ms 1000 88.7 78.9
pt-PT, pt-BR 1000 80.5 –
es-ES, es-MX 1000 67.2 –
en, id, ms, pt-PT,
pt-BR, es-ES, es-MX 1000 77.2 –

Table 4: Exp 3 results using combined geo-
boundary definitions and Twitter LID labels

5.4 Exp 4: Mechanical Turk-Verified Labels
Finally, in Experiment 4 we further refined the
ground truth labels obtained from earlier experi-
ments. We verified the target language of tweets
using Amazon Mechanical Turk Human Intelli-
gence Tasks (HITs), using the same train/test data
from Experiment 3 (before classification). Each
HIT contained one tweet. We assigned 3 work-
ers per HIT at the rate of $0.02 USD per HIT
and the total cost for MTurk annotation in this
work was $360.00 USD. In an effort to ensure that
workers were qualified for the task, we allowed
only workers who had an MTurk approval rating
>95%, however we did not administer a language
performance test in this work. To complete a HIT,
workers selected one answer to a multiple-choice
question, described below, and we did not inform
workers that the text was from Twitter.

Instructions: Please indicate which language
the text is in. Some text snippets are full sentences
while others are partial sentences or phrases. If
the text contains more than one language, indicate
that in your response. Note that you can ignore
URLs, punctuation, and emoticons to decide the
language. In order to be paid you must answer
each question correctly.

The authors would like to note that this final
statement of the instructions to workers was to mo-
tivate them to complete the task meaningfully. All
workers who completed tasks in the allotted time
frame were paid automatically.

Workers were asked to select one of the follow-
ing three statements, where language X the lan-
guage label used for train/test in Experiment 3.
A1. The text is entirely composed in language X
A2. The text is composed in language X and at

least one other language
A3. None of the text is composed in language X

Target # HITs A1 A2 A3
ms 900 614 205 81
id 912 736 158 18
pt-PT 904 816 66 22
pt-BR 874 778 66 30
es-ES 889 845 36 8
es-MX 838 762 72 4

Table 5: MTurk annotations per language

The annotation results of our MTurk experiment
are shown in Table 5. Columns A1, A2, and A3
show the frequency that at least 2 of 3 human an-
notators agreed on the language condition. We
began with 1000 tweets per language for annota-
tion. If fewer than 2 annotators agreed on a condi-
tion, the HIT for that tweet was not counted in this
analysis. This method of filtering both reduced
the amount of data and simultaneously increased
our confidence in the labels as ground truth. Our
analysis with MTurk shows that the majority of
train/test tweets in Experiment 3 were composed
entirely in the target language X, with some in-
stances of code-mixing of two or more languages.
We used the tweets verified by Mechanical Turk
to learn another set of classifiers for Experiment
4, shown in Table 6. The number of tweets per
language class is reduced in this dataset, because
we used only tweets verified as being 100% in the
target language (column A1 from Table 5). While
the classifier accuracy between Experiment 3 and
Experiment 4 is similar, we believe that the perfor-
mance is lower in Experiment 4 because of fewer
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training examples.

Languages N/class MIRA langid.py
en, id, ms 600 92.5 63.8
id, ms 600 87.9 53.4
pt-PT, pt-BR 750 79.6 –
es-ES, es-MX 750 70.3 –
en, id, ms, pt-PT,
pt-BR, es-ES, es-MX 1000 79.3 –

Table 6: Exp 4 results using MTurk verified labels

6 MIRA Classifier Calibration

Classifier output scores for MIRA and similar al-
gorithms, like SVM, do not correspond to proba-
bilities. For example, the raw score cannot guide
the researcher or end user to knowing if a tweet is
80% likely to be English or 50% likely to be En-
glish. The ability to transform raw classifier scores
into probabilities is very important if the technol-
ogy is to be used as a consumable for text analytics
or as part of an advanced NLP pipeline. In this sec-
tion, we show how we calibrated scores using out-
put from the MIRA classifier for 3 different exper-
iments from Section 5. As with many classifiers,
the raw score output can be difficult to interpret
intuitively since the scalar values for each class
do not represent a probability distribution over the
classes. We used a technique called Platt Scaling,
which learns logistic regression from the raw score
output of the MIRA classifier. The Platt Scaling
technique provides us with a probability distribu-
tion on classes and is easy to train and test. For
our reliability plots and calibration, we used clas-
sifier output scores of test sets from experiments
described in Section 5. For the purpose of brevity,
we describe classifier scaling using results for one
language pair: Indonesian and Malay.

6.1 Score Reliability Plots
Reliability plots show how well a classifier’s out-
put is calibrated when the true probability distri-
bution for classes is not known (Niculescu-Mizil
and Caruana, 2005; Zadronzy and Elkan, 2002;
DeGroot and Feinberg, 1983). For this visualiza-
tion, the classifier output scores, also called pre-
dicted values, are normalized between 0 and 1 and
then values are binned into 10 bins. The values
plotted are the binned scores s versus the condi-
tional probability of correct class prediction given
the score, P (c|s(x) = s). A classifier that is well-
calibrated will have values that fall close to the di-
agonal line x = y.

We normalized the raw classifier output val-
ues so that the scores fell between 0 and 1, using
exponent-normalization as in equation (4), for a
given tweet:

expc =
esc∑
c∈C es

(4)

where expc is the normalized score for class c,
and sc is the raw classifier output score for class c.
We further divide by the sum, so that the normal-
ized class scores for a given tweet sum to 1.

We created reliability plots for the id, ms pre-
diction task from Experiments 2, 3, and 4. Fig-
ures 3 - 11 show the histogram distribution of nor-
malized classifier scores with the corresponding
reliability plot. Recall that each experiment was
based on different kinds of ground truth. All of
the reliability plots before Platt-scaling exhibit a
sigmoidal distribution. The prevalence of our ob-
served sigmoidal distribution is similar to findings
from Niculescu-Mizil and Caruana (2005), who
noted this shape for learning algorithms based on
maximum margin methods, such as SVM. MIRA
and SVM both use maximum margin principles
and are known to perform similarly, with the ad-
ditional benefit that MIRA does not require batch
training because it is online (Crammer et al., 2006)

6.2 Platt Scaling
Platt scaling uses logistic regression to learn a
mapping between classifier output scores and
probability estimates (Platt, 1999). The output
of Platt scaling is a probability distribution over
candidate classes, rather than raw scores from the
classifier which are often non-intuitive and diffi-
cult to interpret (Zadronzy and Elkan, 2002). Platt
scaling is traditionally used in binary problems,
and adapted to multiclass problems by develop-
ing the original classifier as an ensemble of one-
vs-all classifiers, then fitting logistic regression for
each binary model (Niculescu-Mizil and Caruana,
2005; Zadronzy and Elkan, 2002). We trained and
tested logistic regression on a binary class problem
with MIRA output using the Logistic Regression
library in Python Scikit-Learn, which is designed
to handle binary, one-vs-rest, and multinomial lo-
gistic regression (Pedregosa et al, 2011).

To build and evaluate logistic regression, we
used the test data from our previous experiments,
as in Section 6.1, and divided that data into train
and test sets with an 80/20 split. For example, the
test data from Experiment 2 for id, ms consisted
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Figure 3: Geo-only, normalized scores

Figure 4: Geo-only, reliability plot

Figure 5: Geo-only, with Platt-scaling

Figure 6: Geo+Twitter, normalized scores

Figure 7: Geo+Twitter, reliability plot

Figure 8: Geo+Twitter, with Platt-scaling
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Figure 9: MTurk, normalized scores

Figure 10: MTurk, reliability plot

Figure 11: MTurk, with Platt-scaling

of 200 tweets per class. To do Platt scaling on this
dataset, we used 160 tweets per class for training
and 40 per class for testing.

With each of the datasets, Platt-scaling tends
to affect calibration probabilities for Indonesian
tweets more than for Malay tweets. This is ob-
served as Indonesian data points are closer to the
diagonal line. At the same time, the Platt-scaling
plots also reveal that predicted values, especially
for Malay, are pushed closer to 0 and 1. For exam-
ple, logistic regression will always correctly pre-
dict ms for Malay, when the probability of Malay
is > 0.5, but not for Indonesian. This could indi-
cate a need for further data purification.

We examined the accuracy of logistic regres-
sion, where the predicted class is taken to be the
argmax class probability. In Figure 12, the over-
all classification accuracy on each dataset is simi-
lar for MIRA with and without Platt-scaling. We
think this is an important finding because it shows
that LID classifier output can be converted into
probability distributions without loss of accuracy.

Figure 12: MIRA and Platt-scaling Test Accuracy

What do scores look like for a given tweet?
In Table 7 we show raw classifier output scores,
normalized scores, and probabilities from Platt-
scaling for the following Malay tweet:

Malay: Nak tengok wayang. Rindu tempat
kerja. Hehehe

English12: Want to see a movie. Miss work.
hehehe

ma id
Raw scores 0.514 -0.514
Exponent Normalized 0.737 0.263
Platt + Exponent Normalized 0.535 0.465

Table 7: Score distribution for Malay tweet

12Translation obtained from https://translate.google.com/
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The raw output scores from MIRA, while
clearly separating binary classes, are not easily in-
terpreted as a measure of certainty or probability.
While the exponent normalized scores do sum to
1, and appear to situate probability mass towards
the predicted class, it is not a true probability. The
probabilities that are output during Platt-scaling
are true probabilities and this method preserves
the original MIRA classifier accuracy, thus it is a
valid and meaningful technique, especially when
language ID is a consumable pre-processing tech-
nology for NLP pipelines.

7 Discussion and Future Work

In this work, we showed that geo-bounding com-
bined with “best-guess” language labels can be
used to annotate language labels on easily con-
fused language pairs and dialects, when ground
truth is unreliable. In each experiment, we showed
how our data purification method resulted in in-
creasing accuracy and classifier performance for
both classifiers, MIRA and langid.py. Further,
our method to purify language labels is easy to
implement for tweets that are geo-tagged with
latitude and longitude. Once a model has been
learned from geo-tagged tweets, the model can
also be used for tweets that are not geo-tagged.

We uncovered hidden Malay tweets in our
dataset with high accuracy. We also showed that
MIRA is useful for LID, with performance ac-
curacy near state-of-the-art on very few training
examples without pre-processing or text clean-
ing. While previous work has shown that
Malay/Indonesian can be learned using 18,000
training sentences with accuracy as high as 99.6%
(Goutte et al., 2014), our result of 90.5% trained
on 1600 tweets is competitive with previous work.
We believe performance will further increase as
more training examples are added with high con-
fidence ground truth labels. Using geo-bounding,
we were also able to separate dialects of Spanish
and Portuguese to achieve finer-grained distinc-
tions at the dialect level, which the Twitter API
does not currently provide.

The highest weighted MIRA n-gram features
correspond to high-frequency characters in each
target language, suggesting that MIRA is learn-
ing features of languages and not Twitter artifacts
(URLs, hashtags, @mentions, emoticons, etc).

In future work, we want to explore other eas-
ily confused language pairs, such as Ukrainian and

Russian. Also, since MIRA is well-formulated for
multiclass classification, we are interested in see-
ing how well it performs on a large multi-language
dataset that includes several easily confused lan-
guage pairs. Sometimes a single tweet will be
written in more than one language, for example
with code-switching or code-mixing (Barman et
al, 2014). We are especially interested in adapting
the MIRA classifier for code-switching and lan-
guage segmentation problems. In the case of code-
switching, it may be possible to utilize raw scores
from classifier output or the results of Platt-scaling
to construct a model that predict language mixture
in a single utterance.
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Cyril Goutte, Serge Léger, Marine Carpuat. “The NRC
System for Discriminating Similar Languages”. In
Proceedings of First Workshop on Applying NLP
Tools to Similar Languages, Varieties, and Dialects,
139-145, Dublin, Ireland, August 2014.

Cyril Goutte, Serge Lger, Shervin Malmasi and Mar-
cos Zampieri. “Discriminating Similar Languages:
Evaluations and Explorations”. In Proceedings of
10th International Conference on Language Re-
sources and Evaluation (LREC), 2016.

Mark Graham, Scott A. Hale, and Devin Gaffney
“Where in the world are you? Geolocation and lan-
guage identification in Twitter”. The Professional
Geographer, 66, no. 4 (2014): 568-578.

Shamanth Kumar, Geoffrey Barbier, Mohammad Ali
Abbasi, and Huan Liu. “TweetTracker: An Analysis
Tool for Humanitarian and Disaster Relief.” In Pro-
ceedings of International Conference on Weblogs
and Social Media (ICWSM), AAAI, 2011.

Marco Lui and Tim Baldwin. “langid. py: An off-the-
shelf language identification tool.”. In Proceedings
of ACL 2012 system demonstrations, pp. 25-30. As-
sociation for Computational Linguistics, 2012.

Marco Lui and Tim Baldwin. “Accurate Language
Identification of Twitter Messages”. In Proceed-
ings of Joint Workshop on Language Technology for
Closely Related Languages, Varieties and Dialects
(LT4VarDial), 2015, 35-43.

Marco Lui, Ned Letcher, Oliver Adams, Long Duong,
Paul Cook, Timothy Baldwin. “Exploring methods
and resources for discriminating similar languages”.
In Proceedings of First Workshop on Applying NLP
Tools to Similar Languages, Varieties and Dialects,
pp. 129-138. 2014.

Shervin Malmasi and Mark Dras “Language Identifi-
cation Using Classifier Ensembles”. In Proceedings
of Fifth Workshop on Language Analysis for Social
Media (LASM), European Association for Compu-
tational Linguistics (EACL), Gothenburg, Sweden,
2014: 17-25.

Shervin Malmasi, Marcos Zampieri, Nikola Ljubes̆ic,
Preslav Nakov, Ahmed Ali, and Jörg Tiedemann.
“Discriminating between similar languages and ara-
bic dialect identification: A report on the third
dsl shared task”. In Proceedings of 3rd Workshop
on Language Technology for Closely Related Lan-
guages, Varieties and Dialects (VarDial), Osaka,
Japan. 2016.

Alexandru Niculescu-Mizil, and Rich Caruana. “Pre-
dicting good probabilities with supervised learning”.
In Proceedings of 22nd International Conference
on Machine learning (ICML), Opp. 625-632. ACM,
2005.
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Marcos Zampieri, Liling Tan, Nikola Ljubes̆ic, and
Jörg Tiedemann. “A report on the DSL shared task
2014.” In Proceedings of First Workshop on Apply-
ing NLP Tools to Similar Languages, Varieties and
Dialects 2014, 58-67.

Marcos Zampieri, Liling Tan, Nikola Ljubes̆ic, and
Jörg Tiedemann. “Overview of DSL Shared Task
2015”. In Proceedings of Joint Wokrshop on Closely
Related Languages, Varieties, and Dialects 2015.

Marcos Zampieri, Shervin Malmasi, Octavia-Maria
Sulea and Liviu P. Dinu. “A Computational Ap-
proach to the Study of Portuguese Newspapers Pub-
lished in Macau”. In Proceedings of Workshop
on Natural Language Processing Meets Journalism
(NLPMJ) 2016, 47-51.
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