
Proceedings of the MultiLing 2017 Workshop on Summarization and Summary Evaluation Across Source Types and Genres, pages 7–11,
Valencia, Spain, April 3, 2017. c©2017 Association for Computational Linguistics

Decoupling Encoder and Decoder Networks for
Abstractive Document Summarization

Ying Xu1, Jey Han Lau2,3, Timothy Baldwin3 and
Trevor Cohn3

1Monash University
2IBM Research

3The University of Melbourne
ying.xu@monash.edu, jeyhan.lau@gmail.com
tb@ldwin.net, trevor.cohn@unimelb.edu.au

Abstract

Abstractive document summarization
seeks to automatically generate a sum-
mary for a document, based on some
abstract “understanding” of the original
document. State-of-the-art techniques tra-
ditionally use attentive encoder–decoder
architectures. However, due to the large
number of parameters in these models,
they require large training datasets and
long training times. In this paper, we
propose decoupling the encoder and
decoder networks, and training them
separately. We encode documents using
an unsupervised document encoder,
and then feed the document vector to
a recurrent neural network decoder.
With this decoupled architecture, we
decrease the number of parameters in
the decoder substantially, and shorten its
training time. Experiments show that the
decoupled model achieves comparable
performance with state-of-the-art models
for in-domain documents, but less well for
out-of-domain documents.

1 Introduction

Abstractive document summarization is a chal-
lenging natural language understanding task. Ab-
stractive methods first encode the original docu-
ment into a high-level representation, and then de-
code it into the target summary.

Rush et al. (2015) proposed the task of head-
line generation as the first step towards abstrac-
tive summarization. Instead of using the full docu-
ment, the authors experimented with using the first
sentence as input, with the aim of generating a co-
herent headline given the sentence.

The current state-of-art system for the task is
based on an attentive encoder and a recurrent de-
coder (Chopra et al., 2016), which is an extension
of the methodology of Rush et al. (2015). The
encoder and decoder are trained jointly, and the
decoder attends to different parts of the document
during generation. It has a large number of param-
eters, and thus requires large-scale training data
and long training times.

In this paper, we propose decoupling the en-
coder and decoder. We encode documents using
doc2vec (Le and Mikolov, 2014), as it has been
demonstrated to be a competitive unsupervised
document encoder (Lau and Baldwin, 2016). We
incorporate doc2vec vectors of input documents
to the decoder as an additional signal, to gener-
ate sentences that are not only coherent but are
also related to the original documents. Compared
to the standard joint encoder–decoder design, the
decoupled architecture has less parameters for the
decoder, and thus requires less training data and
trains faster.1 The downside of the decoupled ar-
chitecture is that the doc2vec signal is not updated
in the decoder, and its document representation
could be sub-optimal for the decoder to generate
good summaries. Our experiments reveal that the
decoupled architecture works well in-domain, but
less well out-of-domain, as a consequence of the
fixed capacity of the document encoding as well
as having no explicit copy mechanism.

2 Attentive Recurrent Neural Network:
A Joint Encoder–decoder Architecture

The attentive recurrent neural network is com-
posed of an attentive encoder and a recurrent de-
coder (Chopra et al., 2016), where the encoder is

1The training time is decreased from 4 days (with full GI-
GAWORD) for the coupled model (Rush et al., 2015) to 2 days
(with 75% GIGAWORD) in our model with comparable in-
domain performance.

7



!(#$ |#&,… , #$)&, *; ,)

.$

ℎ$

01.2345

#$)&
Decoder

Encoder

*

!(#$)&|#&,… , #$)6, *; ,)

.$)&

ℎ$)&

01.2345

#$)6

*

(a) Joint encoder–decoder architecture

!(#$ |#&,… , #$)&, *; ,)

ℎ$

#$)&
Decoder

Encoder

!(#$)&|#&,… , #$)6, *; ,)

ℎ$)&

01.2345

#$)6

*
To hidden unit
To softmax layer 

doc2vec

(b) Decoupled encoder–decoder architecture

Figure 1: Encoder–decoder architectures

a fixed-window feed-forward network and the de-
coder is a recurrent neural network (RNN: Elman
(1998), Mikolov et al. (2010)) language model
and parameters from both networks are trained to-
gether. Let x denote the document, y the sum-
mary, θ the set of parameters to be learnt, and y =
y1, y2, ..., yN a word sequence of length N . When
decoding, y is computed as argmaxP (y|x; θ),
where the conditional probability P (y|x; θ) can
be calculated from each word yt in the sequence,
i.e. P (y|x; θ) =

∏N
t=1 P (yt|{y1, ..., yt−1},x; θ).

For the recurrent decoder, the condi-
tional probability of each word is given as
P (yt|{y1, ..., yi−1},x; θ) = gθ(ht, ct), where
ht represents the hidden state of RNN, i.e.
ht = gθ(yt−1,ht−1, ct), and ct the output of the
encoder at time t.

For the attentive encoder, x is computed by at-
tending to some of the source words using the pre-
vious hidden state ht−1.2 Figure 1a demonstrates
the dependencies between the next generated word
yt and document x, given the parameters θ.

The decoupled architecture ensures that the in-
formation from document x is adapted to the cur-
rent context of the generated summary.

3 Decoupled Encoder–decoder
Architecture for Document
Summarization

A decoupled encoder–decoder architecture has a
clear boundary between the encoder and decoder:
it can be seen as a pipeline model where the output
of the encoder is fed as an input to the decoder, so

2The unnormalised attention weights are computed by
combining ht−1 with the convolutional embedding of each
source word via dot product.

the encoder and decoder modules can be trained
separately. Figure 1b illustrates how the encoder
and decoder are decoupled from each other. Here,
we use doc2vec the document encoder and a long-
short term memory network (LSTM: Hochreiter
and Schmidhuber (1997)) as the decoder.
doc2vec is an extension of word2vec (Mikolov

et al., 2013), a popular deep learning method for
learning word embeddings. In word2vec (based
on the skipgram variant) the embedding of a tar-
get word is learnt by optimising it to predict its
position-indexed neighbouring words. doc2vec

(based on the dbow variant) is based on the same
idea, except that the target word is now the docu-
ment itself, and the document vector is optimised
to predict the document words. Note that the dbow
implementation does not take into account the or-
der of the words (hence its name “distributed bag
of words”). Once the model is trained, embed-
dings of new/unseen documents can be inferred
from the pre-trained model efficiently. As an en-
coder, doc2vec is completely unsupervised, and
uses no labelled information or signal from the de-
coder.

The decoder is an RNN language model
(Mikolov et al., 2010), implemented as an LSTM
(Hochreiter and Schmidhuber, 1997). Formally:

it = Wixt + Uiht−1 + bi
ft = Wfxt + Ufht−1 + bf
ot = Woxt + Uoht−1 + bo
jt = Wjxt + Ujht−1 + bj
ct = ct−1 ∗ σ(ft) + tanh(jt) ∗ σ(it)
ht = tanh(ct) ∗ σ(ot)

(1)

where it, ft and ot are input, forget and output
gates, respectively; jt, ct and ht represent the new

8



Combination Equation
add-input i′t = it + d
add-hidden h′t = ht + d

stack-input i′t = [it;d]
stack-hidden h′t = [ht;d]

mlp-input i′t = tanh(Wiit +Wdd + b)
mlp-hidden h′t = tanh(Wiht +Wdd + b)

Table 1: Incorporation of doc2vec signal in the
decoder. d denotes the doc2vec vector; it (ht)
is the input (hidden) vector at time t; and “[·; ·]”
denotes vector concatenation.

input, new context and new hidden state, respec-
tively; ∗ is the elementwise vector product; and σ
is the sigmoid activation function.

Given an input word and previous hidden state,
the decoder predicts the next word and generates
the summary one word at a time.

To generate summaries that are related to the
document, we incorporate the doc2vec input doc-
ument signal to the decoder using several meth-
ods proposed by Hoang et al. (2016). There are
two layers where we can incorporate doc2vec: in
the input layer (input), or hidden layer (hidden).
There are three methods of incorporation: addi-
tion (add), stacking (stack), or via a multilayer
perceptron (mlp). Table 1 illustrates the 6 possible
approaches to incorporation.

Note that add requires doc2vec to have the
same vector dimensionality as the layer it is com-
bined with, and stack-hidden doubles the hidden
size (assuming they have the same dimensions),
resulting in a large output projection matrix and
longer training time.

4 Experiments and Results

4.1 Datasets
We test our decoupled architecture for the headline
generation task. Following Chopra et al. (2016),
we run experiments using GIGAWORD, DUC03
and DUC04.3

GIGAWORD is preprocessed according to Rush
et al. (2015), yielding 4.3 million examples.
For in-domain experiments, we randomly sam-
ple 2,000 examples for each validation and test
set, and use the remaining examples for training.
We tune hyper-parameters based on validation per-
plexity and evaluate performance on the test set

3GIGAWORD: https://catalog.ldc.upenn.
edu/LDC2003T05; DUC: http://duc.nist.gov/

using the ROUGE metric (Lin, 2004), following
the same evaluation style of benchmark systems
(Rush et al., 2015; Chopra et al., 2016). For out-
of-domain experiments, we use the same models
trained from GIGAWORD, but tune using DUC03
and test on DUC04; DUC03 and DUC04 each have
500 examples.

For the doc2vec encoder, we train using GIGA-
WORD and infer document vectors for validation
and test examples using the trained model. Valid
and test examples are excluded from the doc2vec

training data.

4.2 Hyper-parameter tuning
For the encoder, we explore using a range of docu-
ment lengths (first 20/30/40/50 words) to generate
the input representation. Validation results show
that using the first 20 words produces the best per-
formance, suggesting that this length contains suf-
ficient information to generate headlines.

We next test the 6 different ways to incorporate
doc2vec into the decoder. We find that stacking
the doc2vec vector with the input (stack-input)
has the most consistent performance, while mlp is
competitive, and add performs the worst. Interest-
ingly, for mlp and stack, we find the difference
between input and hidden to be small.

For the recurrent decoder, hyper-parameters
that are tuned include the mini-batch size, hidden
layer size, number of LSTM layers, number of
training epochs, learning rate, and drop out rate.
The best results is achieved with a mini-batch size
of 128, hidden size of 900, and one LSTM layer.
The best perplexity is obtained after 3 to 4 epochs,
with a learning rate of 0.001. More training epochs
are needed when we reduce the learning rate to
0.0001. For in-domain experiments, the best re-
sults are achieved with a dropout rate of 0.1, while
for out-of-domain experiments, the best perfor-
mance prefers a higher dropout rate at 0.4. This
suggests that dropout plays an important role in
combating over-fitting, and it is especially useful
for out-of-domain data.

4.3 Results
We compare our model (RDS: Recurrent De-
coupled Summarizer) with 4 state-of-art models:
ABS, ABS+ (Rush et al., 2015); RAS-LSTM and
RAS-Elman (Chopra et al., 2016), which are all
joint encoder–decoder models. For in-domain
results, we present ROUGE-1/2/L full-length F-
scores in Table 2. For out-of-domain results we

9



System ROUGE-1 ROUGE-2 ROUGE-L
ABS 29.6 11.3 26.4
ABS+ 29.8 11.9 30.0
RAS-LSTM 32.6 14.7 30.0
RAS-Elman 33.8 16.0 31.2

RDS 30.7 11.3 27.6
RDS (75%) 29.1 10.0 26.3
RDS (50%) 27.4 8.9 24.9

Table 2: Comparison of ROUGE scores (full
length F-score) for in-domain experiments.

System ROUGE-1 ROUGE-2 ROUGE-L
Prefix 22.4 6.5 19.7
ABS 26.6 7.1 22.1
ABS+ 28.2 8.5 23.8
RAS-LSTM 27.4 7.7 23.1
RAS-Elman 29.0 8.3 24.1

RDS 16.7 3.7 14.4

Table 3: Comparison of ROUGE scores (recall at
75 bytes) for out-of-domain experiments.

report ROUGE-1/2/L recall at 75 bytes in Table 3,
where only the first 75 bytes of model-generated
summary is used for evaluation against the refer-
ences.
ABS employs an attentive encoder and a feed-

forward neural network decoder. ABS+ works in
the same way as ABS, but further tunes the de-
coder using Z-MERT (Zaidan, 2009). RAS-LSTM

and RAS-Elman are detailed in Section 2; the only
difference between them is that RAS-LSTM uses an
LSTM decoder, while RAS-Elman uses a simple
RNN decoder. Prefix is a baseline model where
the first 75 byte of the document is used as the title.

Looking at Table 2, models with a recurrent de-
coder (RDS and RAS) perform better than those with
a feed-forward decoder (ABS). The decoupled ar-
chitecture RDS achieves competitive performance,
although the fully joint RAS models achieve the
best results. Chopra et al. (2016) found that RAS
models perform best with a beam size of 10,
while we found that RDS performs best with greedy
argmax decoding.

We further experiment with training RDS us-
ing less data (50% and 75%), and find that its
performance degrades slightly. Encouragingly,
its ROUGE-1 is comparable to ABS when RDS is
trained using only 75% of the training data, and
it takes 2 days of training time (RDS) instead of 4
days (ABS).

I A North Korean man arrived in Seoul Wednes-
day and sought asylum after escaping his hunger-
stricken homeland, government officials said.

A North Korean man arrives in Seoul to seek asylum
for homeland security officials say.

D North Korean man defects to South Korea.
I King Norodom Sihanouk has declined requests to

chair a summit of Cambodia ’s top political leaders,
saying the meeting would not bring any progress in
deadlocked negotiations to form a government .

A King Sihanouk declines to meet Cambodian leaders
on eve of talks with Cambodia.

D Cambodian king refuses to meet with leaders of
political leaders.

I Former U.S. president Jimmy Carter , who seems a
perennial Nobel peace prize also-ran , could have
won the coveted honor in 1978 had it not been for
strict deadline rules for nominations.

A Former U.S. president Jimmy Carter wins top honor
for Nobel peace prize nominations.

D Carter wins Nobel prize in literature.

Table 4: System generated article summaries. I:
reference summary; A: RAS-Elman; and D: RDS.

For out-of-domain experiments, we compute
ROUGE recall at 75 bytes and find that RDS per-
forms poorly, even worse than the baseline method
Prefix. This suggests that the decoupled ar-
chitecture is sensitive to domain differences, and
highlights a potential downside of the architec-
ture. Investigating methods that can improve
cross-domain performance is a direction for future
work.

5 Discussion and Conclusion

We present some summaries for DUC documents
generated by RAS-Elman and RDS in Table 4 to
better understand possible reasons for the poor
in-domain performance of RDS. The first obser-
vation is the shorter headlines generated by RDS

compared to the DUC reference summaries and
RAS-Elman headlines. RDS headlines are short
— at an average length of 8.13 — and this is
due to the short length of GIGAWORD titles it
is trained on, at 8.50 words on average. On
the other hand, the average length of DUC refer-
ence summaries and RAS-Elman headlines is 11.63
and 13.08 words respectively; this explains why
RAS-Elman achieves better performance, since a
longer sentence would have a better chance to
score higher in ROUGE.

We also find that RDS often generates similar
words and is penalised by ROUGE as it uses exact

10



word matching, as is evidenced by Sihanouk and
Cambodian king in the second example.4 Lastly,
the bag-of-words view of the doc2vec encoder re-
sults in some meaning loss: in the third example,
Jimmy Carter did not actually win the Nobel peace
prize, for example.

We also computed the source copy rate of the
systems.5 We find that, on average, RDS copies
only 50.7% of its predicted words from input doc-
ument, while ABS and ABS+ copy at a rate of 85.4%
and 91.5%. This is interesting, as it suggests
that it paraphrases more than other systems, while
achieving similar ROUGE performance.

To summarise, we proposed decoupling the
encoder–decoder architecture as is traditionally
used in sequence-to-sequence problems. We
tested the decoupled system on news title genera-
tion, and found that it performed competitively in-
domain. Out-of-domain experiments, however, re-
veal sub-par performance, suggesting that the de-
coupled architecture is susceptible to domain dif-
ferences.

References
Sumit Chopra, Michael Auli, and Alexander M. Rush.

2016. Abstractive sentence summarization with at-
tentive recurrent neural networks. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 93–98, San
Diego, California, June. Association for Computa-
tional Linguistics.

Jeffrey Elman. 1998. Generalization, simple recurrent
networks, and the emergence of structure. In Pro-
ceedings of the Twentieth Annual Conference of the
Cognitive Science Society.

Cong Duy Vu Hoang, Trevor Cohn, and Gholamreza
Haffari. 2016. Incorporating side information into
recurrent neural network language models. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1250–1255, San Diego, California, June. Associa-
tion for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9:1735–
1780.

4Informal manual evaluation for RDS, ABS, ABS+ and RAS

on GIGAWORD reveals that ABS, ABS+ and RAS are also gen-
erating words that are of similar meaning, and that overall,
RDS is less prefered by annotators.

5Source copy rate is defined as the fraction of generated
words that are in the original source documents.

Jey Han Lau and Timothy Baldwin. 2016. An em-
pirical evaluation of doc2vec with practical insights
into document embedding generation. In Proceed-
ings of the 1st Workshop on Representation Learn-
ing for NLP, pages 78–86, Berlin, Germany, August.
Association for Computational Linguistics.

Quoc V Le and Tomas Mikolov. 2014. Distributed
representations of sentences and documents. In In-
ternational Conference on Machine Learning, pages
1188–1196.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. In Stan Szpakowicz
Marie-Francine Moens, editor, Text Summarization
Branches Out: Proceedings of the ACL-04 Work-
shop, pages 74–81, Barcelona, Spain, July. Associa-
tion for Computational Linguistics.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
Cernockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In Inter-
speech, volume 2, page 3.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, pages 3111–3119.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 379–389, Lisbon, Portugal,
September. Association for Computational Linguis-
tics.

Omar F. Zaidan. 2009. Z-MERT: A fully configurable
open source tool for minimum error rate training of
machine translation systems. The Prague Bulletin of
Mathematical Linguistics, 91:79–88.

11


