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Abstract

A recurrent neural network model of
phonological pattern learning is pro-
posed. The model is a relatively sim-
ple neural network with one recurrent
layer, and displays biases in learning that
mimic observed biases in human learning.
Single-feature patterns are learned faster
than two-feature patterns, and vowel or
consonant-only patterns are learned faster
than patterns involving vowels and conso-
nants, mimicking the results of laboratory
learning experiments. In non-recurrent
models, capturing these biases requires the
use of alpha features or some other rep-
resentation of repeated features, but with
a recurrent neural network, these elabora-
tions are not necessary.

1 Introduction

Models of phonological pattern learning typically
require large numbers of constraints or rules on
where features can occur, and the presence of al-
pha features or some other representation of re-
peated features to allow certain patterns to be
learned more quickly (Hayes and Wilson, 2008;
Moreton et al., 2015). In human learning exper-
iments, certain phonological patterns are learned
more easily, particularly those involving multiple
occurences of the same feature, such as a voicing
agreement pattern.

In order to capture this bias towards single-
feature patterns, many models have some repre-
sentation of repeated features. Alpha features are
one example of this (see McCarthy (1988) for
other approaches, such as feature geometry). Al-
pha features allow a model to learn a harmony pat-
tern with only one predicate - that two features
must be the same, having the value α. Without

alpha features, the model must learn two predi-
cates - that the two features must either both have
the value + or the value −. Therefore, there can-
not be a bias towards single-feature patterns, be-
cause two-feature patterns also require learning
two predicates (Moreton, 2012).

In addition to alpha features, many phonolog-
ical learning models have to test or search over
a large number of possible rules or constraints to
learn a pattern. In models that use conjunctions of
features as constraints (Hayes and Wilson, 2008;
Moreton et al., 2015), if there areN features in the
model, each with three possible values (+,−,±),
there are 3N possible conjunctions of these fea-
tures. With even a small number of features, the
number of conjunctive constraints becomes very
large.

Moreton, Pater, and Pertsova (2015) describe a
cue-based learning model that uses these conjunc-
tive constraints. Their model is a maximum en-
tropy model trained by gradient descent on neg-
ative log-likelihood, and is related to the single-
layer perceptron. It successfully models the bi-
ases found in human phonological learning exper-
iments, but still requires listing all possible con-
straint conjuncions in the input. In unpublished
work, I have found that it is also possible to model
these biases without constraint conjunctions us-
ing a feed-forward neural network with a hidden
layer. See Alderete and Tupper (To appear) for
an overview of other connectionist approaches to
phonology.

Hare (1990) uses a recurrent neural network to
model Hungarian vowel harmony without phono-
logical rules or constraints. In Hare’s model, se-
quences of individual features describing vowels
were the only inputs to the network. Some fea-
tures in the input sequence could be left unspeci-
fied, and after training, fully specified feature se-
quences are output. While the model was only
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trained on sequences of vowels, not entire words,
Hare showed that recurrent neural networks were
capable of modeling vowel harmony patterns us-
ing only individual features as input.

Rodd (1997) also uses recurrent neural net-
works to model Turkish vowel harmony. Individ-
ual phonemes rather than features were used as in-
put to the networks, and the task was to predict the
following phoneme. Rodd showed that the hid-
den units in small recurrent networks were able to
represent distinctions between vowels and conso-
nants, differences in sonority, and differences be-
tween front and back vowels. Although humans
most likely do not perform the task of predicting
the next phoneme in a word, Rodd showed that
simple recurrent network could learn phonological
regularities through differences in the distribution
of phonemes.

Recurrent neural networks are capable of learn-
ing more than just vowel harmony patterns and
feature representations, though. This paper de-
scribes a simple recurrent neural network model
of phonological pattern learning that is biased to-
wards learning single-feature patterns and patterns
over only consonants or vowels without using al-
pha features, separate representations of conso-
nants and vowels, or conjunctive constraints.

2 Model

The model used in these simulations is a simple
recurrent neural network model. The ”words” that
make up the patterns are the inputs in the first layer
of the model. At each time step, the four fea-
tures representing one phoneme are input to the
network. The second layer is a hidden recurrent
layer with ten neurons. The third layer is a log
softmax layer with two output neurons. After the
entire sequence is input to the model, the outputs
at the final timestep will represent the log proba-
bilities of the input belonging to each of the two
classes, which will be referred to as IN the pattern
or OUT of the pattern. The probability of a pat-
tern being IN or OUT is the probability of it being
allowed in the language.

The model was trained using gradient descent
on negative log-likelihood with a learning rate of
0.01. Weights were adjusted after each word in the
training data, rather than in batches. In each epoch
of training, the order of presentation of the train-
ing data was randomly permuted. The output of
the network was considered to be correct when the

log probability of the intended class was greater
than the other class. This criterion for correctness
was used because when the model is trained on a
subset of the full pattern, it prevents overfitting to
that subset. After each epoch of training, all train-
ing examples were checked for correctness. If the
correct class was predicted for every training ex-
ample, training was stopped.

The number of neurons in the recurrent layer
is not important to the model. Ten neurons were
chosen because with fewer neurons, the patterns
tested could not be fully learned, and with more,
the patterns were learned after only a few training
epochs. More complex patterns or patterns requir-
ing more features will likely require a larger num-
ber of neurons in this layer.

3 Patterns

The patterns used in testing the model used four
phonological features - two consonant features,
and two vowel features. Each feature has a value
of +1 or -1. For consonants, the vowel features
have a value of 0, and for vowels, the conso-
nants have a value of 0. The consonant features
used in these patterns are voicing (+/−voi) and
place(+/−cor), and the vowel features are height
(+/−hi) and backness (+/−back). This feature
set corresponds to the consonants [d, t, k, g] and
the vowels [i, u, æ, a]. All ”words” in the patterns
have the form C1V1C2V2, where C and V range
over the four consonants and vowels described by
the four features, so there are 256 total. For each
pattern, the words are divided into the two classes,
IN and OUT, each with 128 examples.

Six patterns, dividing the 256 words based on
their features, were created as simplified versions
of real phonological patterns. The six feature com-
binations that are IN for each pattern are described
in Table 1. The 128 words that do not fit these fea-
ture descriptions are in the OUT class of the pat-
tern.

In pattern 1, there is a feature dependency be-
tween an adjacent consonant and vowel. In pat-
tern 2, this dependency is between a non-adjacent
consonant and vowel. Pattern 3 is a voice assimila-
tion pattern where the two consonants must agree
in voicing. In pattern 4, the consonants must dis-
agree in voicing. In pattern 5, the two features rel-
evant to the pattern are on the same consonant, and
in pattern 6, they are on two separate consonants.

Moreton (2012) claims that there is an advan-
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Pattern Features in Pattern
1 C1+voi and V1+back

C1-voi and V1-back
2 C1+voi and V2+back

C1-voi and V2-back
3 C1+voi and C2+voi

C1-voi and C2-voi
4 C1+voi and C2-voi

C1-voi and C2+voi
5 C1+voi and C1+cor

C1-voi and C1-cor
6 C1+voi and C2+cor

C1-voi and C2-cor

Table 1: Feature descriptions of patterns.

tage for learning intra-dimensional patterns over
inter-dimensional patterns that requires alpha fea-
tures to be captured by a model. The same ad-
vantage was also shown by Moreton, Pater, and
Pertsova (2015) and Saffran and Thiessen (2003).
In the six patterns described here, patterns 3 and 4
are intra-dimentional, single-feature patterns, and
the rest are inter-dimensional, two-feature pat-
terns. Therefore, patterns 3 and 4 should be
learned faster than patterns 1, 2, and 6.

Pattern 5 is also an inter-dimensional pattern,
but the two features are on the same segment rather
than different segments like the rest of the pat-
terns. In the experiments of Moreton, Pater, and
Pertsova (2015), patterns involving features on the
same segment were easier to learn than patterns
involving two segments. Because of this, pattern 5
should be learned faster than pattern 6.

Moreton (2012) also showed in an experiment
that a pattern involving an adjacent consonant and
vowel was learned no faster than a pattern involv-
ing a non-adjacent consonant and vowel. There-
fore, there should be no difference in the amount
of time to learn patterns 1 and 2.

Results from several studies also show that there
is no difference in difficulty of learning harmony
and disharmony patterns (Moreton, 2012; Pycha
et al., 2003; Skoruppa and Peperkamp, 2011). Of
these six patterns, pattern 3 is a harmony pattern,
and pattern 4 is a disharmony pattern, so there
should be no difference in the time to learn these
patterns.

4 Results: Training on full patterns

For each pattern, the model was trained 3000 times
with random initial weights on all 256 examples.
For each training run, the number of epochs taken
to learn the pattern according to the criterion in
section 2 was recorded. Table 2 shows averages
over the 3000 runs for each pattern. The model
was capable of learning the patterns in all but
25 training runs, which were stopped after 400
epochs and excluded from these results. This was
done because weights in these training runs were
likely stuck in local minima, and the model was
incapable of learning the pattern.

Pattern Mean St. Err. St. Dev.
1 22.03 0.22 11.78
2 22.74 0.26 14.49
3 19.91 0.29 15.88
4 20.20 0.29 16.08
5 19.65 0.15 8.42
6 22.46 0.23 12.79

Table 2: Number of epochs to learn patterns with
full training set.

In a two sample t-test, there is no evidence that
there is a significant difference between the num-
ber of epochs taken to learn patterns 3 and 4,
the harmony and disharmony patterns (p >0.01).
Patterns 3 and 4, the one-feature patterns, were
learned significantly faster than patterns 1, 2, and
6, the two-feature patterns involving two segments
in two sample t-tests (p <0.01). However, there
was no difference between the one-feature patterns
3 and 4, and pattern 5, which involved two features
on the same segment (p>0.01). Pattern 5 was also
learned faster than pattern 6, which involved two
features on different consonants (p <0.01). There
was also no difference between pattern 2, which
involved a non-adjacent consonant and vowel, and
pattern 1, which involved an adjacent consonant
and vowel (p >0.01). Individual comparisons and
exact p-values are shown in Table 3.

5 Results: Training on subset of patterns

The model was also trained on randomly cho-
sen subsets of the training data for each pattern.
This was done because when learning phonolog-
ical patterns, people do not have access to every
possible example of the pattern, and every possi-
ble example of something that does not conform
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Comparison p-value
Pattern 1, Pattern 2 0.03934
Pattern 5, Pattern 6 2.2× 10−16

Pattern 1, Pattern 3 4.091× 10−9

Pattern 2, Pattern 3 6.505× 10−13

Pattern 4, Pattern 3 0.4843
Pattern 5, Pattern 3 0.4361
Pattern 6, Pattern 3 8.932× 10−12

Pattern 1, Pattern 4 4.583× 10−7

Pattern 2, Pattern 4 1.414× 10−10

Pattern 5, Pattern 4 0.1006
Pattern 6, Pattern 4 1.909× 10−9

Table 3: Training time comparisons for pairs of
patterns and p-values.

to the pattern. Rather, people are only exposed to
correct examples of their language as they learn.

To test the model under these conditions, 32
examples of each pattern were randomly chosen
from the 128 available. If the model were trained
on only positive examples, it would predict every-
thing to be included in the pattern, so some neg-
ative training examples are needed. As negative
training examples, 32 were chosen from the re-
maining 224, after removing the 32 already se-
lected positive examples. Therefore, the nega-
tive examples are not true negative examples, they
are just randomly chosen examples from the full
dataset.

Although this is an unusual method of training
a neural network model, it was done to test if the
model is capable of generalizing to unseen exam-
ples of the pattern. There is no direct way of using
unsupervised learning with a recurrent neural net-
work, so using randomly selected negative exam-
ples was used as an analogue to it. In training, the
model gets positive examples of the pattern, but
does not get true negative examples.

The model was trained 3000 times on randomly
chosen subsets of each pattern. Training was
stopped when the model correctly classified the
64 examples it was trained on. After each training
run, the proportion of the full dataset that was clas-
sified correctly by the model was recorded. Table
3 shows averages over the 3000 runs for the num-
ber of training epochs taken and proportion correct
in the full dataset for each pattern. 41 training runs
were excluded because the pattern was not learned
in 400 epochs.

When trained on a subset of the pattern, the

Patt. Mean Mean Std. Err. Std. Dev.
Corr.

1 0.73 125.6 0.67 36.6
2 0.64 131.1 0.69 37.6
3 0.72 133.8 0.77 42.3
4 0.72 130.8 0.72 39.3
5 0.76 125.7 0.72 39.6
6 0.69 125.0 0.66 36.0

Table 4: Number of epochs to learn patterns with
partial training set.

mean number of epochs taken to learn each pattern
did not differ in the way they did when trained on
the entire pattern. The mean number of epochs
taken is similar for each pattern, with a much
larger standard deviation than when the model was
trained on the full pattern. This is likely because
the subsets were randomly chosen. Sometimes
the negative examples in the subset would conflict
with the pattern represented by the positive exam-
ples, resulting in much longer training times.

While the training times do not follow the pre-
dicted pattern, these results show that the model is
still able to generalize the pattern to examples it
is not trained on, as shown in the mean proportion
correct column in Table 3. The model was trained
on 25% of the pattern data, only 12.5% of which
were positive examples of the pattern, but can cor-
rectly classify 64% to 76% of the examples.

6 Discussion and conclusion

Without a representation of repeated features, and
using only single features as input, this recurrent
neural network is able to model results from hu-
man phonological learning experiments. Although
non-recurrent neural network models such as the
single-layer perceptron require a representation of
repeated features to allow single-feature patterns
to be learned more easily (Moreton, 2012), the ad-
dition of a recurrent layer seems to have the same
effect. In a recurrent neural network, input is pro-
cessed one segment at a time, rather than simul-
taneously. There is no clear way to represent se-
quential input in non-recurrent models. Although
it is difficult to interpret connection weights in a
recurrent neural network, it is possible that the se-
quential input of the network somehow biases it
towards single-feature patterns.

A non-recurrent, multilayer perceptron may be
able to learn these patterns because they are all
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the same length, but it will not be able to cap-
ture the bias towards patterns with repeated fea-
tures. By concatenating the features of all four
segments into one input to a multilayer perceptron,
there is no connection between segments with re-
peated features; a pattern involving two instances
of a consonant feature will be connected to the hid-
den layer in the same way a pattern with a conso-
nant and a vowel will be. In a recurrent network,
repeated activation of the same input feature will
increase activation in a hidden unit more than ac-
tivation of different features in the input will. For
this reason, a non-recurrent network cannot model
biases towards single-feature patterns.

In addition to the bias towards single-feature
patterns, the recurrent neural network can learn
patterns over only consonants or only vowels more
quickly than patterns involving a consonant and
a vowel. Some models accomplish this with an
additional representation of only the vowels in a
word, or only the consonants in a vowel or con-
sonant ’tier’ (Hayes and Wilson, 2008). A vowel
tier allows for a bias towards vowel-only patterns
because only the vowels in a word are considered,
making finding the pattern much faster.

This recurrent neural network model does not
have any representation of a consonant or vowel
tier, but it is still able to learn consonant-only pat-
terns faster. There are separate features used for
describing vowels and consonants, but they are all
used as input to the network at the same time. This
bias is possibly related to the single-feature bias.
Vowels and consonants never have the same fea-
tures, so patterns with only consonants or vowels
are learned faster because there is some overlap
in the features used to describe them. It is possi-
ble that adding a separate representation of vowels
and consonants could make learning these patterns
faster, but it does not seem necessary. However,
this could be accomplished by having multiple in-
stances of the model where only consonants, only
vowels, or the entire word is input. The outputs
of the recurrent layers of these separate instances
would be connected to a single non-recurrent layer
which would combine the predictions of the three
tiers.

Although the patterns used to test the model
can be described with only one or two features, it
should also be capable of learning more complex
patterns. More neurons in the input and recurrent
layers will allow more input features to be used,

and more complex patterns to be represented.
The model also requires supervised training. To

learn a pattern, both positive and negative exam-
ples are necessary for the model, but humans are
capable of learning these patterns through unsu-
pervised learning (Moreton et al., 2015). Unsu-
pervised learning can be approximated by using
randomly chosen examples from the entire dataset
as negative examples, but it is still not true unsu-
pervised learning. If there is a way to better ap-
proximate unsupervised learning with this model,
it would better fit the human learning experiments.

In conclusion, a simple recurrent neural net-
work was able to model human phonological pat-
tern learning without alpha features or any rep-
resentation of rules or constraints. The model
uses only individual phonological features as in-
put, and has no separate representations of vowels
or consonants. Single-feature patterns are learned
more easily than two-feature patterns, and vowel
or consonant-only patterns are learned more eas-
ily than patterns involving vowels and consonants.
Modeling these biases using a recurrent neural net-
work is possible without any representation of re-
peated features that is necessary in non-recurrent
models.
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