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Introduction

Welcome to the EMNLP 2016 Workshop on Uphill Battles in Language Processing: Scaling Early
Achievements to Robust Methods.

Early researchers in Natural Language Processing had lofty goals, including getting computers to
understand stories, engage in natural, cooperative dialogues with people, and translate text and speech
fluently and accurately from one human language to another. While there were significant early
achievements (including systems such as SHRDLU, LUNAR and COOP), the knowledge they were
based on and the techniques they employed could not be scaled up for practical use.

While much of what early researchers set out to achieve has been either forgotten or sidelined in favor
of what can be done by exploiting large data sets and processing power, its potential value has not gone
away: There is much to be gained from recognizing not just what was said, but why; from identifying
conclusions naturally drawn from what has been said and what hasn’t; and from representing domains
in a sufficiently rich way to reduce reliance on only what a text makes explicit. As such, we believe
there can be a broad and positive impact of reviving early aspirations in the current context of large
data sets and “deep" and probabilistic methods.

The workshop program is split into four panel sessions and a poster session. Each panel leads a
discussion on a different area of natural language processing: document understanding, natural
language generation, dialogue and speech, and language grounding. Each panel session consists of
four short (10 minute) presentations, two by established researchers who carried out early work in the
area, and two by more junior researchers who are known for their work on specific problems in the
area. Following the presentations, workshop participants are invited to discuss challenges and potential
approaches for challenges in that field. In addition, the program includes twelve research abstracts that
were selected out of 16 submissions. These abstracts are presented as poster boasters at the workshop,
as well as in a poster session.

Our program committee consisted of 25 researchers who provided constructive and thoughtful reviews.
This workshop would not have been possible without their hard work. Many thanks to you all. We also
thank the U.S. National Science Foundation for financial support. Finally, a huge thank you to all the
authors who submitted abstracts to this workshop and made it a big success.

Annie, Michael, Bonnie, Mike and Luke
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Abstract

In this paper, we focus on the synthetic un-
derstanding of documents, specifically read-
ing comprehension (RC). A current problem
with RC is the need for a method of analyz-
ing the RC system performance to realize fur-
ther development. We propose a methodol-
ogy for examining RC systems from multi-
ple viewpoints. Our methodology consists of
three steps: define a set of basic skills used for
RC, manually annotate questions of an exist-
ing RC task, and show the performances for
each skill of existing systems that have been
proposed for the task. We demonstrated the
proposed methodology by annotating MCTest,
a freely available dataset for testing RC. The
results of the annotation showed that answer-
ing RC questions requires combinations of
multiple skills. In addition, our defined RC
skills were found to be useful and promising
for decomposing and analyzing the RC pro-
cess. Finally, we discuss ways to improve our
approach based on the results of two extra an-
notations.

1 Introduction

Reading comprehension (RC) tasks require ma-
chines to understand passages and respond to ques-
tions about them. For the development of RC sys-
tems, precisely identifying what systems can and
cannot understand is important. However, a criti-
cal problem is that the RC process is so complicated
that it is not easy to examine the performances of RC
systems.

Our present goal is to construct a general evalua-
tion methodology that decomposes the RC process

and elucidates the fine-grained performance from
multiple points of view rather than based only on
accuracy, which is the approach used to date. Our
methodology has three steps:

1. Define a set of prerequisite skills that are re-
quired for understanding documents (Section
2.1)

2. Annotate questions of an RC task with the
skills (Section 2.2)

3. Analyze the performances of existing RC sys-
tems for the annotated questions to grasp the
differences and limitations of their individual
performances (Section 2.3)

In Section 2, we present an example of our
methodology, where we annotated MCTest (MC160
development set) (Richardson et al., 2013)1 for Step
2 and analyzed systems by Smith et al. (2015) for
Step 3. In Section 3, we present two additional an-
notations in order to show the outlook for the devel-
opment of our methodology in terms of the classifi-
cation of skills and finer categories for each skill. In
Section 4, we discuss our conclusions.

2 Approach

2.1 Reading Comprehension Skills
We investigated existing tasks for RC and defined a
set of basic prerequisite skills, which we refer to as
RC skills. These are presented in Table 1.

The RC skills were defined to understand the re-
lations between multiple clauses. Here, we assumed

1http://research.microsoft.com/en-us/um/
redmond/projects/mctest/
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RC skills Freq. Descriptions or examples
Smith

no RTE
Smith
RTE

List/Enumeration 11.7% Tracking, retaining, and list/enumeration of entities or states 78.6% 71.4%
Mathematical operations 4.2% Four basic operations and geometric comprehension 20.0% 20.0%
Coreference resolution 57.5% Detection and resolution of coreferences 65.2% 69.6%
Logical reasoning 0.0% Induction, deduction, conditional statement, and quantifier - -
Analogy 0.0% Trope in figures of speech, e.g., metaphor - -
Spatiotemporal relations∗ 28.3% Spatial and/or temporal relations of events 70.6% 76.5%
Causal relations∗ 18.3% Why, because, the reason, etc. 63.6% 68.2%
Commonsense reasoning 49.2% Taxonomic/qualitative knowledge, action and event change 59.3% 64.4%
Complex sentences∗ 15.8% Coordination or subordination of clauses 52.6% 68.4%
Special sentence structure∗ 10.0% Scheme in figures of speech, constructions, and punctuation marks 50.0% 50.0%

- - (Accuracy in all 120 questions) 67.5% 70.0%

Table 1: Reading comprehension skills, their frequencies (in percentage) in MCTest (MC160 development set, 120
questions), their descriptions or examples, and the accuracies of the two systems (Smith et al., 2015) for each skill.
The asterisks (∗) with items represent “understanding of.”

ID: MC160.dev.29 (1) multiple:
C1: The princess climbed out the window of the high

tower and climbed down the south wall when her
mother was sleeping.

C2: She wandered out a good ways.
C3: Finally she went into the forest where there are no

electric poles but where there are some caves.
Q: Where did the princess wander to after escaping?
A: Forest

Coreference resolution:
· She in C2 = the princess in C1
· She in C3 = the princess in C1

Temporal relations:
· the actions in C1→ wandered out ... in C2
→ went into... in C3

Complex sentence and special sentence structure:
· C1 = the princess climbed out...

and [the princess] climbed down... (ellipsis)
Commonsense reasoning:
· escaping in Q⇒ the actions in C1
· wandered out in C2 and went into the forest

in C3⇒ wander to the forest in Q and A

Figure 1: Example of task sentences in MCTest and an-
notations with comments for verification (itemized).

that, when an RC system uses an RC skill, it must
already recognize individual facts described in those
clauses to which the skill relates.

There are two exceptional RC skills:

Complex sentences target the understanding of
relations between clauses in one sentence (except
those having spatiotemporal or causal meanings).
Such relations have schematic or rhetorical mean-
ings. For example, the words “and” and “or” intro-
duce coordinating clauses (we regard them as hav-

ing schematic relations). In addition, the word “al-
though” introduces a subordinate clause that rep-
resents concession (i.e., it modifies the rhetorical
meaning).

Special sentence structure is defined as recogniz-
ing linguistic symbols or structures in a sentence and
introducing their interpretations as new facts. For
example, if we take “scheme” in figures of speech,
this skill deals with apposition, ellipsis, transposi-
tion, and so on. This skill also targets linguistic con-
structions and punctuation marks.

These two skills target a single sentence, while
the other skills target multiple clauses and sentences.
We did not list the skill of recognizing textual en-
tailment (TE) because we assumed that TE involves
a broad range of knowledge and inferences and is
therefore a generic task itself (Dagan et al., 2006).

2.2 Annotation of RC Questions
We manually annotated the questions of the MC160
development set (120 questions) with the RC skills
that are required to answer each question. In the an-
notation, we allow multiple labeling.

Because the RC skills are intended for under-
standing relations between multiple clauses, we ex-
cluded sentences that had no relations with others
and required only simple rules for answering (e.g.,
mc160.dev.2 (3) Context: Todd lived in a town out-
side the city. Q: Where does Todd live in? A: in a
town). These questions were considered to require
no skills.

An example of the annotations is shown in Fig-
ure 1. The percentages of the questions in which RC

2



skills appear are in the second column of Table 1.
Some of the questions are annotated with multiple
labels. The number of skills required in each ques-
tion is 0 for 9.2% of the questions, 1 for 27.5%, 2
for 30.0%, 3 for 26.7%, 4 for 5.8%, and 5 for 0.8%.

2.3 Analysis of Existing Systems

The accuracies of the system by Smith et al. (2015)
and its extension with RTE (Stern and Dagan, 2011)
are represented in the last two columns of Table 1.

The results showed that adding RTE to the Smith
et al. (2015)’s original system provided the most
effective contribution to the skill of complex sen-
tences; however, it did not affect the skills of math
operations and special sentence structure. Adding
RTE had a relatively small contribution to the skill
of causal relations. This did not exactly meet our
expectation because we still do not have sufficient
number of annotations to determine the differences
between combinations of skills.

3 Additional Annotations

In order to improve our methodology, we considered
two questions: (i) What is the difference between
distributions of RC skills in two RC tasks? (ii) Can
RC skills be broken up into finer categories?

To answer these questions, here we present two
additional annotations. The first treated SQuAD
(Rajpurkar et al., 2016). We counted the frequencies
of RC skills required in that task and compared their
distribution with that of MCTest. This gave clues for
establishing the ideal categorization of RC skills.

For the second, we divided the skill of common-
sense reasoning into three subcategories and used
them to annotate MCTest. This should help for a
sharper definition of common sense.

3.1 SQuAD with RC Skills

SQuAD2 is an RC task based on a set of Wikipedia
articles. The questions are made by crowdworkers,
and their answers are sure to appear in the context
as a word sequence. We chose 80 questions over
seven articles from the development set (v1.1) and
annotated them with RC skills. Figure 2 shows an
example of the annotations.

2http://stanford-qa.com

RC skills
Frequency
SQuAD

Frequency
MCTest

List/Enumeration 5.0% 11.7%
Mathematical operations 0.0% 4.2%
Coreference resolution 6.2% 57.5%
Logical reasoning 1.2% 0.0%
Analogy 0.0% 0.0%
Spatiotemporal relations 2.5% 28.3%
Causal relations 6.2% 18.3%
Commonsense reasoning 86.2% 49.2%
Complex sentences 20.0% 15.8%
Special sentence structure 25.0% 10.0%

Table 2: Reading comprehension skills and their frequen-
cies (in percentage) in SQuAD and MCTest (MC160 de-
velopment set).

The annotation results are presented in Table
2. Most questions require commonsense reason-
ing. This is because the crowdworkers were asked
to avoid copying words from their context as much
as possible. That is, most questions require under-
standing of paraphrases. Compared with MCTest,
the frequencies were generally low except for a few
skills. This was due to the task formulation of
SQuAD. For example, because SQuAD does not in-
volve multiple choice (a candidate answer can con-
tain multiple entities), the skill of list/enumeration
is not required. Additionally, except for articles
on a particular person or historical event, there are
fewer descriptions that require spatiotemporal re-
lations than in MCTest, whose datasets mainly de-
scribe tales about characters and events for young
children. On the other hand, complex sentences and
spacial sentence structure appear more frequently
in SQuAD than in MCTest because the documents
of SQuAD are written for adults. In this way, by
annotating RC tasks and comparing the results, we
can see the difference in characteristics among those
tasks.

3.2 MCTest with Commonsense Types

By referring to Davis and Marcus (2015), we defined
the following three types of common sense, as given
in Table 3, and annotated the MC160 development
set while allowing multiple labeling. We found three
questions that required multiple types.

Lexical knowledge focuses on relations of words
or phrases, e.g., synonyms and antonyms, as in
WordNet. This includes hierarchical relations of

3



ID: Civil disobedience, paragraph 1, question 1
C1: One of its earliest massive implementations was

brought about by Egyptians against the British occu-
pation in the 1919 Revolution.

C2: Civil disobedience is one of the many ways people
have rebelled against what they deem to be unfair laws.

Q: What is it called when people in society rebel against
laws they think are unfair?

A: Civil disobedience

Coreference resolution:
· they in C2 = people in C2 (different clauses)
· they in Q = people in Q (different clauses)

Temporal relation:
· people have rebelled... in C2
→ when people in society rebel... in Q

Complex sentences:
· C2 = one of the many ways people have (relative clause)
· C2 = Civil disobedience is... against [the object]

and [it is] what they deem to... (relative clause)
· Q = What is it called... laws

and they think [the laws] unfair?
Commonsense reasoning:
· What is it called in Q⇒ Civil disobedience is
· laws they think... in C2 = what they deem to in Q

Figure 2: Example of task sentences (excerpted) in the de-
velopment set of SQuAD and their annotations with com-
ments for verification (itemized).

content words. Therefore, this knowledge is taxo-
nomic and categorical.

Qualitative knowledge targets various relations of
events, including “about the direction of change in
interrelated quantities” (Davis and Marcus, 2015).
In addition, this knowledge deals with implicit
causal relations such as physical law and theory of
mind. Note that these relations are semantic, so this
type of knowledge ignores the understanding of syn-
tactic relations, i.e., the skills of spatiotemporal re-
lations and causal relations.

The skill of known facts targets named entities
such as proper nouns, locations, and dates. Davis
and Marcus (2015) did not mention this type of
knowledge. However, we added this just in case be-
cause we considered the first two types as unable to
treat facts such as a proper noun indicating the name
of a character in a story.

Table 3 presents the frequencies of these types and
accuracies of Smith et al. (2015)’s RTE system. Be-
cause MCTest was designed to test the capability of
young children’s reading, known facts were hardly
required. Although not reported here, we found that

Commonsense type Frequency
Accuracy

Smith RTE

Lexical knowledge 19.2% 67.2%
Qualitative knowledge 30.8% 67.6%
Known facts 2.5% 33.3%

Table 3: Commonsense types, their frequencies (in per-
centage) in MCTest (MC160 development set), and accu-
racies by Smith et al. (2015)’s RTE system.

understanding them was more required in MC500
(e.g., days of a week). While the frequencies of
the first two types were relatively high, their accu-
racies were comparable. Unfortunately, this meant
that they were inadequate for revealing the weak-
ness of the system on this matter. We concluded that
finer classification is needed. However, the distribu-
tion of the frequencies showed that even these com-
monsense types can characterize a dataset in terms
of the knowledge types required in that task.

4 Discussion and Conclusion

As discussed in Section 2.3, our methodology has
the potential to reveal differences in system perfor-
mances in terms of multiple aspects. We believe that
it is necessary to separately test and analyze new and
existing RC systems on each RC skill in order to
make each system more robust. We will continue to
annotate other datasets of MCTest and RC tasks and
analyze the performances of other existing systems.

From the observations presented in this paper,
we may be able to make a stronger claim that re-
searchers of RC tasks (more generally, natural lan-
guage understanding) should also provide the fre-
quencies of RC skills. This will help in developing
a standard approach to error analysis so that systems
can be investigated for their strengths and weak-
nesses in specific skill categories. We can determine
the importance of each skill by weighting them ac-
cording to their frequencies in the test set.
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Abstract

An important goal in text understanding is
making sense of events. However, there is
a gap between computable representations on
the one hand and expressive representations
on the other hand. We aim to bridge this gap
by inducing distributional semantic clusters as
labels in a frame structural representation.

1 Introduction

We experience events in our everyday life, through
witnessing, reading, hearing, and seeing what is hap-
pening. However, representing events computation-
ally is still an unsolved challenge even when deal-
ing with well-edited text. As soon as non-standard
text varieties such as Social Media are targeted,
representations need to be robust against alterna-
tive spellings, information compression, and neol-
ogisms.

The aim of our envisioned project is bridging the
gap between argument-level representations which
are robustly computable, but less expressive and
frame-level representations which are highly expres-
sive, but not robustly computable. The distinction
and the gap between the two main representation
types is presented in Figure 1. On the argument-
level, the event give and all its arguments are identi-
fied, whereas on the frame-level additional semantic
role labels are assigned.

We envision a representation that enables opera-
tions such as equivalence, entailment, and contradic-
tion. In this paper, we will focus on the equivalence
operation due to space constraints. These operations
are not only necessary to compress the amount of

information, which is especially important in high-
volume, high redundancy Social Media posts, but
also for other tasks such as to analyze and under-
stand events efficiently.

We plan to achieve building a robustly com-
putable and expressive representation that is suited
to perform the discussed operations by using Social
Media domain specific clusters and topic labeling
methods for the frame-labeling. We intend to eval-
uate the validity of our representation and approach
extrinsically and application-based.

2 Types of representations

We distinguish between representations on two lev-
els: (i) argument-level, which can be robustly im-
plemented more easily, and (ii) frame-level, which
is highly expressive.

Argument-level As shown in Figure 1, most ar-
gument representations consist of an event trig-
ger, which is mostly a verb, and its correspond-
ing arguments (Banarescu et al., 2013; Kingsbury
and Palmer, 2003). Argument-level representations
based on Social Media posts are used in applications
such as e.g. creating event calendars for concerts and
festivals (Becker et al., 2012) or creating overviews
of important events on Twitter (Ritter et al., 2012).

Frame-level On this level, events are represented
as frame structures such as proposed by Fillmore
(1976) that built upon the argument-level, i.e. the ar-
guments are labeled with semantic roles.

A well-known frame semantic tagger is
SEMAFOR (Das, 2014).
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Figure 1: Representations of an exemplary event on argument and frame-level

3 Challenges

The main challenge is to bridge the gap between ar-
gument and frame-level representation.

3.1 Performance of operations

Our goal is to develop a representation that is both
computable even on noisy Social Media text and ex-
pressive enough to support all required operations
like equivalence. A semantically equivalent sen-
tence for our examplary sentence “The witch gave
an apple to Snow White” would be “Snow White re-
ceived an apple from the witch.”, as receive is the
antonym of give and the roles of Giver and Receiver
are inverted.

On the argument-level, it remains a hard problem
to establish the equivalence between the two sen-
tences, while that would be easy on the frame-level.
However, getting to the frame-level is an equally
hard problem and frame representations suffer from
low coverage (Palmer and Sporleder, 2010).

3.2 Coverage

Palmer and Sporleder (2010) categorized and eval-
uated the coverage gaps in FrameNet (Baker et al.,
2003). Coverage, whether of undefined units, lem-
mas, or senses, is of special importance when deal-
ing with non-standard text that contains spelling
variations and neologisms that need to be dealt with.

In our opinion, the lack of undefined units is an
especially problematic issue in Social Media texts.
Furthermore, it may contain innovative, informal or
incomplete use of frames, due to space restrictions
such as presented by Twitter. Also by cause of space
restrictions, which lead to a lack of context, and con-
sidering the variety of topics that is addressed in So-

cial Media, it is more challenging to find a fitting
frame out of an existing frame repository (Ritter et
al., 2012; Li and Ji, 2016).

Giuglea and Moschitti (2006) and Mùjdricza-
Mayd et al. (2016) tried to bridge the gap by
combing repositories on frame and argument level
and representing them based on Intersective Levin
Classes (ILC) (Kipper et al., 2006). ILC, which
are used in VerbNet (Kipper et al., 2006), are more
fine-grained than classic Levin verb classes, formed
according to alternations of the grammatical ex-
pression of their arguments (Levin, 1993). Classic
Levin verb classes were used for measuring seman-
tic evidence between verbs (Baker and Ruppenhofer,
2002).

However, these approaches also have to deal with
coverage problems due to their reliance on manually
crafted frame repositories.

4 Approach

According to Modi et al. (2012) frame semantic
parsing conceptually consists of 4 stages:

1. Identification of frame-evoking elements
2. Identification of their arguments
3. Labeling of frames
4. Labeling of roles

We summarize these tasks in groups of two, namely
identification and labeling, and discuss our approach
towards them in the following subsections.

4.1 Identification of frame-evoking elements
and their arguments

We regard the first two tasks as tasks of the
argument-level, which we plan to solve with part-of-
speech tagging and dependency parsing, by extract-
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ing all main verbs to solve the first task and consid-
ering all its noun dependencies as arguments in the
second task. This is similar to the approach of Modi
et al. (2012).

4.2 Labeling of predicates and their arguments
Like Modi et al. (2012), we focus on the last two
tasks, which we regard as tasks of the frame-level.
We observe this task under the aspect of fitting the
realization of operation tasks as discussed earlier. As
we only regard predicate frames and their arguments
for the role labeling, we will use predicate as a term
for the unlabeled form of frame and argument as the
unlabeled form of role.

Pre-defined frame labels There have been at-
tempts to bridge the gap on Social Media texts by
projecting ontological information in the form of
computed event types on the event trigger on the
argument-level (Ritter et al., 2012; Li et al., 2010;
Li and Ji, 2016) in order to solve the task of frame
labeling. However, according to Ritter et al. (2012)
the automatic mapping of pre-defined event types
is insufficient for providing semantically meaning-
ful information on the event.

We aim to augment those approaches by inducing
frame-like structures based on distributional seman-
tics. Moreover, we want to use similarity clusters
for the labeling of arguments in frames. We seek
to compute the argument labels by the use of super-
sense tagging, similarly to the approach presented
by Coppola et al. (2009). They successfully used the
WordNet supersense labels (Miller, 1995) for verbs
and nouns as a pre-processing step for the automatic
labeling of frames and their arguments.

Approaches using Levin classes, ILC, or WordNet
supersenses tackle the same tasks, namely labeling
the frame and their corresponding roles. However,
all of these suffer from the discussed coverage prob-
lem.

Clusters as labels To circumvent the coverage is-
sue, there have been approaches using clusters sim-
ilarly to frame labels. Directly labeling predicates
and their arguments has been performed by Modi et
al. (2012), who iteratively clustered verbal frames
with their arguments.

As our main goal is to perform operations on
event representations, we do not need human-

Figure 2: Representations of our approach to bridge the gap

readable frames as proposed by FrameNet, but a
level that is semantically equivalent to it, thus our
first goal is to compute domain specific clusters for
the labeling.

In contrast to Modi et al. (2012), we plan to clus-
ter the verbal predicates and the arguments sepa-
rately. Although this might seem less intuitive, we
believe that due to the difficulties with Social Media
data, the structures of full frames are less repetitive
and are more difficult to cluster. Thus, by dividing
the two tasks of predicate and argument clustering,
we hope to achieve better results in our setting.

Furthermore, in order to deal with the issues of
the previously discussed peculiarities of the Social
Media domain, we plan to train clusters on large
amounts of Tweets.

An example of our envisioned representation is
shown in Figure 2, which was produced using the
Twitter Bigram model of JoBimViz (Ruppert et al.,
2015). Figure 2 shows the clustering for finding the
correct sense in the labeling task, for both the pred-
icate and its arguments. As the example shows, this
representation has some flaws that need to be dealt
with. It should be mentioned that the model used
for this computation is pruned due to performance
reasons, which is a cause for some of the flaws.

For example, Snow White is not recognized as a
Named Entity or a multi-word expression. To deal
with the issue of the false Named Entity representa-
tion of Snow White presented in the exemplary rep-
resentation, we plan to experiment with multi-word
or Named Entity recognizers. Thus, we plan to train
a similar model on a larger set of Tweets, without
pruning due to performance reasons.

The main flaw is that the wrong sense cluster of
give is selected. To improve the issues that occurred
above, we plan to use soft-clustering for the step
of finding the correct sense cluster. Allowing soft
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classes not only facilitates disambiguation (Riedl,
2016), but may also be helpful when identifying the
argument role in the frame and thus allow for the
previously described operations of equality. By pro-
viding only one cluster per predicate Modi et al.
(2012) put the task of disambiguation aside, which
we want to tackle as mentioned above.

Furthermore, aiming at representations that are
suited for operations such as equality, the known
problems of antonyms being in the same cluster
needs to be solved. Similarly to Lobanova et al.
(2010), who automatically extracted antonyms in
text, we plan to solve this issue with a pattern-based
approach.

Topic-clustered labels After succeeding in the
clustering task, we plan to experiment with human-
readable frame clusters. In contrast to using pre-
defined WordNet supersenses and mapping these to
frames, we want to solve the task of finding labels
for the clusters by using supersenses computed from
domain-specific clusters to directly label the frames
and their arguments.

Our hypothesis is that by using more and soft
clusters for the supersense tagging, the role labels
of the event arguments become semantically richer,
because more specific semantic information on the
arguments and their context in the event is encoded.

Thus, we plan to use the supersense tagging by
using an LDA extension, in which a combination of
context and language features is used, as described
by Riedl (2016).

5 Evaluation plan

We plan to evaluate our approach in an extrinsic,
application-based way on a manual gold standard
containing event paraphrases. In order to test how
well our approach performs in comparison to state-
of-the-art approaches of both argument and frame
representations, such as Das (2014) or Li and Ji
(2016) in the task of equivalence computation, we
will compare the results of all approaches.

For this purpose, we plan to develop a dataset that
is similar to Roth and Frank (2012), but tailored to
the Social Media domain. They produced a corpus
of alignments between semantically similar predi-
cates and their arguments from news texts on the
same event.

6 Summary

In this paper we present our vision on a new event
representation that enables the use of operations
such as equivalence. We plan to use pre-processing
to get the predicates and their arguments. The main
focus of the work will be using sense clustering
methods on domain-specific text and to apply these
clusters on text. We plan to evaluate this application
in an extrinsic, application-based way.

Further on, we plan to tackle tasks such as: topic-
model based frame labeling on the computed clus-
ters; pattern-based antonym detection in the clusters
for enabling the operation of contradiction and im-
prove the task of equivalence; and experiment with
Named Entity and multiword recognizers in order to
improve the results in argument recognition.
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Abstract

We describe some of our recent efforts in
learning statistical models of co-occurring
events from large text corpora using Recurrent
Neural Networks.

1 Introduction

Natural language scripts are structured models of
stereotypical sequences of events used for document
understanding. For example, a script model may en-
code the information that from Smith landed in Bei-
jing, one may presumably infer Smith flew in an air-
plane to Beijing, Smith got off the plane at the Bei-
jing airport, etc. The world knowledge encoded in
such event co-occurrence models is intuitively use-
ful for a number of semantic tasks, including Ques-
tion Answering, Coreference Resolution, Discourse
Parsing, and Semantic Role Labeling.

Script learning and inference date back to AI
research from the 1970s, in particular the semi-
nal work of Schank and Abelson (1977). In this
work, events are formalized as quite complex hand-
encoded structures, and the structures encoding
event co-occurrence are non-statistical and hand-
crafted based on appeals to the intuitions of the
knowledge engineer. Mooney and DeJong (1985)
give an early non-statistical method of automatically
inducing models of co-occurring events from docu-
ments, but their methods are non-statistical.

There is a growing body of more recent work
investigating methods of learning statistical mod-
els of event sequences from large corpora of raw
text. These methods admit scaling models up to be

much larger than hand-engineered ones, while being
more robust to noise than automatically learned non-
statistical models. Chambers and Jurafsky (2008)
describe a statistical co-occurrence model of (verb,
dependency) pair events that is trained on a large
corpus of documents and can be used to infer im-
plicit events from text. A number of other sys-
tems following similar paradigm have also been pro-
posed (Chambers and Jurafsky, 2009; Jans et al.,
2012; Rudinger et al., 2015). These approaches
achieve generalizability and computational tractabil-
ity on large corpora, but do so at the expense of de-
creased representational complexity: in place of the
rich event structures found in Schank and Abelson
(1977), these systems model and infer structurally
simpler events.

In this extended abstract, we will briefly sum-
marize a number of statistical script-related systems
we have described in previous publications (Pichotta
and Mooney, 2016a; Pichotta and Mooney, 2016b),
place them within the broader context of related re-
search, and remark on future directions for research.

2 Methods and results

In Pichotta and Mooney (2016a), we present a sys-
tem that uses Long Short-Term Memory (LSTM)
Recurrent Neural Nets (RNNs) (Hochreiter and
Schmidhuber, 1997) to model sequences of events.
In this work, events are defined to be verbs with in-
formation about their syntactic arguments (either the
noun identity of the head of an NP phrase relating to
the verb, the entity identity according to a corefer-
ence resolution engine, or both). For example, the
sentence Smith got off the plane at the Beijing air-
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port would be represented as (get off, smith, plane,
(at, airport)). This event representation was investi-
gated in Pichotta and Mooney (2014) in the context
of count-based co-occurrence models. Balasubra-
manian et al. (2013), Modi and Titov (2014), and
Granroth-Wilding and Clark (2016) describe sys-
tems for related tasks with similar event formula-
tions.

In Pichotta and Mooney (2016a), we train an
RNN sequence model by inputting one component
of an event tuple at each timestep, representing se-
quences of events as sequences of event compo-
nents. Standard methods for learning RNN sequence
models are applied to learning statistical models of
sequences of event components. To infer probable
unobserved events from documents, we input ob-
served document events in sequence, one event com-
ponent per timestep, and then search over the com-
ponents of a next event to be inferred using a beam
search. That is, the structured prediction problem of
event inference is reduced to searching over proba-
ble RNN output sequences. This is similar in spirit
to a number of recent systems using RNN models for
structured prediction (Vinyals et al., 2015; Luong et
al., 2016; Dong and Lapata, 2016).

While the count-based event co-occurrence sys-
tem we investigated in Pichotta and Mooney (2014)
treats events as atomic—for example, the plane flew
and the plane flew over land are unrelated events
with completely independent statistics—this method
decomposes events into components, and the two
occurrences of the verb flew in the above exam-
ples have the same representation. Further, a low-
dimensional embedding is learned for every event
component, so flew and soared can get similar rep-
resentations, allowing for generalization beyond the
lexical level. Given the combinatorial number of
event types,1 decomposing structured events into
components, rather than treating them as atomic, is
crucial to scaling up the number of events a script
system is capable of inferring. In fact, the system
presented in Pichotta and Mooney (2014) does not
use noun information about event arguments for this
reason, instead using only coreference-based entity

1With a vocabulary of V verb types, N noun types, P
preposition types, and event tuples of arity k, there are about
V PNk−1 event types. For V = N = 10000, P = 50, and
k = 4, this is 5× 1017.

information.

System Recall at 25 Human
Unigram 0.101 -
Bigram 0.124 2.21
LSTM 0.152 3.67

Table 1: Next event prediction results in Pichotta and Mooney

(2016a). Partial credit is out of 1, and human evaluations are

out of 5 (higher is better for both). More results can be found in

the paper.

Table 1 gives results comparing a naive baseline
(“Unigram,” which always deterministically guesses
the most common events), a co-occurrence based
baseline (“Bigram,” similar to the system of Pichotta
and Mooney (2014)) and the LSTM system. The
metric “Recall at 25” holds an event out from a test
document and judges a system by its recall of the
gold-standard event in its list of top 25 inferences.
The “Human” metric is average crowdsourced judg-
ments of inferences on a scale from 0 to 5, with
some post hoc quality-control filtering applied. The
LSTM system outperforms the other systems. More
results and details can be found in Pichotta and
Mooney (2016a).

These results indicate that RNN sequence mod-
els can be fruitfully applied to the task of predicting
held-out events from text, by modeling and inferring
events comprising a subset of the document’s syn-
tactic dependency structure. This naturally raises
the question of to what extent, within the current
regime of event-inferring systems trained on doc-
uments, explicit syntactic dependencies are neces-
sary as a mediating representation. In Pichotta and
Mooney (2016b), we compare event RNN models,
of the sort described above, with RNN models that
operate at the raw text level. In particular, we inves-
tigate the performance of a text-level sentence en-
coder/decoder similar to the skip-thought system of
Kiros et al. (2015) on the task. In this setup, dur-
ing inference, instead of encoding events and de-
coding events, we encode raw text, decode raw text,
and then parse inferred text to get its dependency
structure.2 This system does not obviously encode
event co-occurrence structure in the way that the

2We use the Stanford dependency parser (Socher et al.,
2013).
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previous one does, but can still in principle infer im-
plicit events from text, and does not require a parser
(and can be therefore be used for low-resource lan-
guages).

System Accuracy BLEU 1G P
Unigram 0.002 - -
Copy/paste - 1.88 22.6
Event LSTM 0.023 0.34 19.9
Text LSTM 0.020 5.20 30.9

Table 2: Prediction results in Pichotta and Mooney (2016b).

More results can be found in the paper.

Table 2 gives a subset of results from Pichotta and
Mooney (2016b), comparing an event LSTM with
a text LSTM. The “Copy/paste” baseline determin-
istically predicts a sentence as its own successor.
The “Accuracy” metric measures what percentage of
argmax inferences were equal to the gold-standard
held-out event. The “BLEU” column gives BLEU
scores (Papineni et al., 2002) for raw text inferred
by systems (either directly, or via an intermediate
text-generation step in the case of the Event LSTM
output). The “1G P” column gives unigram preci-
sion against the gold standard, which is one of the
components of BLEU. Figure 1, reproduced from
Pichotta and Mooney (2016b), gives some example
next-sentence predictions. Despite the fact that it is
very difficult to predict the next sentence in natural
text, the text-level encoder/decoder system is capa-
ble of learning learning some aspects of event co-
occurrence structure in documents.

These results indicate that modeling text directly
does not appear to appreciably harm the ability to
infer held-out events, and greatly helps in inferring
held-out text describing those events.

3 Related Work

There are a number of related lines of research inves-
tigating different approaches to statistically model-
ing event co-occurrence. There is, first of all, a body
of work investigating systems which infer events
from text (including the above work). Chambers and
Jurafsky (2008) give a method of modeling and in-
ferring simple (verb, dependency) pair-events. Jans
et al. (2012) describe a model of the same sorts of
events which gives superior performance on the task

of held-out event prediction; Rudinger et al. (2015)
follow this line of inquiry, concluding that the task
of inferring held-out (verb, dependency) pairs from
documents is best handled as a language modeling
task.

Second, there is a body of work focusing on au-
tomatically inducing structured collections of events
(Chambers, 2013; Cheung et al., 2013; Nguyen et
al., 2015; Ferraro and Van Durme, 2016), typically
motivated by Information Extraction tasks.

Third, there is a body of work investigating high-
precision models of situations as they occur in the
world (as opposed to how they are described in text)
from smaller corpora of event sequences (Regneri et
al., 2010; Li et al., 2012; Frermann et al., 2014; Orr
et al., 2014).

Fourth, there is a recent body of work investi-
gating the automatic induction of event structure in
different modalities. Kim and Xing (2014) give a
method of modeling sequences of images from or-
dered photo collections on the web, allowing them to
perform, among other things, sequential image pre-
diction. Huang et al. (2016) describe a new dataset
of photos in temporal sequence scraped from web
albums, along with crowdsourced story-like descrip-
tions of the sequences (and methods for automati-
cally generating the latter from the former). Bosse-
lut et al. (2016) describe a system which learns a
model of prototypical event co-occurrence from on-
line photo albums with their natural language cap-
tions. Incorporating learned event co-occurrence
structure from large-scale natural datasets of differ-
ent modalities could be an exciting line of future re-
search.

Finally, there are a number of alternative ways
of evaluating learned script models that have been
proposed. Motivated by the shortcomings of eval-
uation via held-out event inference, Mostafazadeh
et al. (2016) recently introduced a corpus of crowd-
sourced short stories with plausible “impostor” end-
ings alongside the real endings; script systems
can be evaluated on this corpus by their ability
to discriminate the real ending from the impostor
one. This corpus is not large enough to train a
script system, but can be used to evaluate a pre-
trained one. Hard coreference resolution problems
(so-called “Winograd schema challenge” problems
(Rahman and Ng, 2012)) provide another possible
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Input: As of October 1 , 2008 , 〈OOV〉 changed its company name to Panasonic Corporation.
Gold: 〈OOV〉 products that were branded “National” in Japan are currently marketed under

the “Panasonic” brand.
Predicted: The company’s name is now 〈OOV〉.
Input: White died two days after Curly Bill shot him.
Gold: Before dying, White testified that he thought the pistol had accidentally discharged

and that he did not believe that Curly Bill shot him on purpose.
Predicted: He was buried at 〈OOV〉 Cemetery.
Input: The foundation stone was laid in 1867.
Gold: The members of the predominantly Irish working class parish managed to save £700

towards construction, a large sum at the time.
Predicted: The 〈OOV〉 was founded in the early 20th century.
Input: Soldiers arrive to tell him that 〈OOV〉 has been seen in camp and they call for his

capture and death.
Gold: 〈OOV〉 agrees .
Predicted: 〈OOV〉 is killed by the 〈OOV〉.

Figure 1: Examples of next-sentence text predictions, reproduced from Pichotta and Mooney (2016b). 〈OOV〉 is the out-of-

vocabulary pseudo-token, which frequently replaces proper names.

alternative evaluation for script systems.

4 Future Work and Conclusion

The methods described above were motivated by the
utility of event inferences based on world knowl-
edge, but, in order to leverage large text corpora,
actually model documents rather than scenarios in
the world per se. That is, this work operates un-
der the assumption that modeling event sequences
in documents is a useful proxy for modeling event
sequences in the world. As mentioned in Section 3,
incorporating information from multiple modalities
is one possible approach to bridging this gap. In-
corporating learned script systems into other useful
extrinsic evaluations, for example coreference reso-
lution or question-answering, is another.

For the task of inferring verbs and arguments ex-
plicitly present in documents, as presented above,
we have described some evidence that, in the con-
text of standard RNN training setups, modeling raw
text yields fairly comparable performance to explic-
itly modeling syntactically mediated events. The ex-
tent to which this is true for other extrinsic tasks
is an empirical issue that we are currently explor-
ing. Further, the extent to which representations
of more complex event properties (such as those
hand-encoded in Schank and Abelson (1977)) can
be learned automatically (or happen to be encoded
in the learned embeddings and dynamics of neural
script models) is an open question.
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Abstract

Entities and events in the world have no fre-
quency, but our communication about them
and the expressions we use to refer to them
do have a strong frequency profile. Language
expressions and their meanings follow a Zip-
fian distribution, featuring a small amount of
very frequent observations and a very long
tail of low frequent observations. Since our
NLP datasets sample texts but do not sam-
ple the world, they are no exception to Zipf’s
law. This causes a lack of representativeness
in our NLP tasks, leading to models that can
capture the head phenomena in language, but
fail when dealing with the long tail. We there-
fore propose a referential challenge for seman-
tic NLP that reflects a higher degree of ambi-
guity and variance and captures a large range
of small real-world phenomena. To perform
well, systems would have to show deep under-
standing on the linguistic tail.

1 Introduction

Semantic processing addresses the relation between
natural language and a representation of a world,
to which language makes reference. A challeng-
ing property of this relation is the context-bound
complex interaction between lexical expressions and
world meanings.1 Like many natural phenomena,
the distribution of expressions and their meanings
follows a power law such as Zipf’s law (Newman,
2005) , with a few very frequent observations and a

1We use meaning as an umbrella term for both concepts or
lexical meanings and instances or entities, and lexical expres-
sion as a common term for both lemmas and surface forms.

very long tail of low frequent observations.2 Still,
the world itself has no frequency. All entities and
events in the world appear to us with a frequency
of 1. Nevertheless, we dominantly talk about only
a few instances in the world and refer to them with
a small set of expressions, which can only be ex-
plained by the contextual constraints within a lan-
guage community, a topic, a location, and a period
of time. Without taking these into account, it is im-
possible to fully determine meaning.

Given that instances in the world do not have fre-
quencies, language and our writing about the world
is heavily skewed, selective, and biased with respect
to that world. A name such as Ronaldo can have an
infinite amount of references and in any world (real
or imaginary) each Ronaldo is equally present. Our
datasets, however, usually make reference to only
one Ronaldo. The problem, as we see it, is that
our NLP datasets sample texts but do not sample the
world. This causes lack of representativeness in our
NLP tasks, that has big consequences for language
models: they tend to capture the head phenomena
in text without considering the context constraints
and thus fail when dealing with less dominant world
phenomena. As a result, there is little awareness
of the full complexity of the task in relation to the
contextual realities, given language as a system of
expressions and the possible interpretations within
contexts of time, location, community, and topic.
People, however, have no problem to handle local
real-world situations that are referenced to in text.

We believe it is time to create a task that encour-

2We acknowledge that there also exist many long tail phe-
nomena in syntactic processing, e.g. syntactic parsing.
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ages systems to model the full complexity of disam-
biguation by enriched context awareness. We hence
propose a semantic referential challenge, event-
based Question Answering (QA), that reflects a high
degree of ambiguity and variance and captures a
wide range of small real-world phenomena. This
task requires a deeper semantic understanding of the
linguistic tail of several disambiguation challenges.

2 Related work

We present related work on the representativeness of
the disambiguation datasets (Section 2.1), as well as
the representativeness of the QA task (Section 2.2).

2.1 The Long Tail in disambiguation tasks

Past work tried to improve the disambiguation com-
plexity. Vossen et al. (2013) created a balanced
corpus, DutchSemCor, for the Word Sense Disam-
biguation (WSD) task in which each sense gets an
equal number of examples. Guha et al. (2015) cre-
ated the QuizBowl dataset for Entity Coreference
(EnC), while Cybulska and Vossen (2014) extended
the existing Event Coreference (EvC) dataset ECB
to ECB+, both efforts resulting in notably greater
ambiguity and temporal diversity. Although all these
datasets increase the complexity for disambiguation,
they still contain a limited amount of data which is
far from approximating realistic tasks.

Properties of existing disambiguation datasets
have been examined for individual tasks. For WSD,
the correct sense of a lemma is shown to often co-
incide with the most frequent sense (Preiss, 2006).
Van Erp et al. (2016) conclude that Entity Linking
(EL) datasets contain very little referential ambi-
guity and focus on well-known entities, i.e. enti-
ties with high PageRank (Page et al., 1999) values.
Moreover, the authors note a considerable overlap of
entities across datasets. Cybulska and Vossen (2014)
and Guha et al. (2015) both stress the low ambiguity
in the current datasets for the tasks of EvC and EnC.

In Ilievski et al. (2016), we measure the proper-
ties of existing disambiguation datasets for the tasks
of EL, WSD, EvC, EnC, and Semantic Role Label-
ing (SRL), through a set of generic representation
metrics applicable over tasks. The analyzed datasets
show a notable bias with respect to aspects of ambi-
guity, variance, dominance, and time, thus exposing

a strong semantic overfitting to a very limited, and
within that, popular part of the world.

The problem of overfitting to a limited set of test
data has been addressed by the field of domain adap-
tation (Daume III, 2007; Carpuat et al., 2013; Jiang
and Zhai, 2007). In addition, unsupervised domain-
adversarial approaches attempt to build systems that
generalize beyond the specifics of a given dataset,
e.g. by favoring features that apply to both the
source and target domains (Ganin et al., 2016). By
evaluating on another domain than the training one,
these efforts have provided valuable insights into
system performance. Nevertheless, this research
has not addressed the aspects of time and location.
Moreover, to our knowledge, no approach has been
proposed to generalize the problem of reference to
unseen domains, which may be due to the enormous
amount of references that exist in the world leading
to an almost infinite amount of possible classes.

2.2 The Long Tail in QA tasks

The sentence selection datasets WikiQA (Yang et
al., 2015) and QASent (Wang et al., 2007) consist
of questions that are collected from validated user
query logs, while the answers are annotated man-
ually from automatically selected Wikipedia pages.
WIKIREADING (Hewlett et al., 2016) is a re-
cent large-scale dataset that is based on the struc-
tured information from Wikidata (Vrandečić and
Krötzsch, 2014) and the unstructured information
from Wikipedia. Following a smart fully-automated
data acquisition strategy, this dataset contains ques-
tions about 884 properties of 4.7 million instances.
While these datasets require semantic text process-
ing of the questions and the candidate answers, there
is a finite set of answers, many of which represent
popular interpretations from the world, as a direct
consequence of using Wikipedia. To our knowledge,
no QA task has been created to deliberately address
the problem of (co)reference to long tail instances,
where the list of potential interpretations is enor-
mous, largely ambiguous, and only relevant within
a specific context. The long tail aspect could be em-
phasized by an event-driven QA task, since the ref-
erential ambiguity of events in the world is much
higher than the ambiguity of entities. No event-
driven QA task has been proposed in past work. As
Wikipedia only represents a tiny and popular subset
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of all world events, the Wikipedia-based approaches
could not be applied to create such a task, thus sig-
naling the need for a novel data acquisition approach
to create an event-driven QA task for the long tail.

Weston et al. (2015) propose 20 skill sets for a
comprehensive QA system. This work presents rea-
soning categories (e.g. spatial and temporal rea-
soning) and requires within-document coreference,
which are very relevant skills for understanding lin-
guistic phenomena of the long tail. However, the an-
swer in these tasks is usually mentioned in the text,
thus not addressing the referential complexity of the
long tail phenomena in the world.

3 Moving away from semantic overfitting

Current datasets only cover a small portion of the
full complexity of the disambiguation task, focusing
mostly on the head. This has encouraged systems
to overfit on the head and largely ignore the linguis-
tic tail. Due to this lack of representativeness, we
are not able to determine to which degree systems
achieve language understanding of the long tail.

As described in the previous Section, the chal-
lenge of semantic overfitting has been recognized by
past work. QA datasets, such as WIKIREADING,
have increased the complexity of interpretation by
using a large number of entities and questions, also
allowing for subsets to be sampled to tackle spe-
cific tasks. The skill sets presented by Weston et al.
(2015) include long tail skills that are crucial in or-
der to interpret language in various micro-contexts.
None of these approaches has yet created a task that
addresses the long tail explicitly and recognizes the
full referential complexity of disambiguation. Con-
sidering the competitiveness of the field, such task is
necessary to motivate systems that can deal with the
long tail and adapt to new contexts.

We therefore advocate a task that requires a deep
semantic processing linked to both the head and the
long tail. It is time to create a high-level referential
challenge for semantic NLP that reflects a higher de-
gree of ambiguity and variation and captures a wide
range of small real-world phenomena. This task
can not be solved by only capturing the head phe-
nomena of the disambiguation tasks in any sample
text collection. For maximum complexity, we pro-
pose an event-driven QA task that also represents lo-

cal events, thus capturing phenomena from both the
head and the long tail. Also, these events should be
described across multiple documents that exhibit a
natural topical spread over time, providing informa-
tion bit-by-bit as it becomes available.

4 Task requirements

We define five requirements that should be satisfied
by an event-driven QA task in order to maximize
confusability, to challenge systems to deal with the
tail of the Zipfian distribution, and to adapt to new
contexts. These requirements apply to a single event
topic, e.g. murder. Each event topic should contain:
R1 Multiple event instances per event topic, e.g. the
murder of John Doe and the murder of Jane Roe.
R2 Multiple event mentions per event instance
within the same document.
R3 Multiple documents with varying document cre-
ation times in which the same event instances are
described to capture topical information over time.
R4 Event confusability by combining one or multi-
ple confusion factors:
a) ambiguity of event surface forms, e.g. John Smith
fires a gun, and John Smith fires an employee.
b) variance of event surface forms, e.g. John Smith
kills John Doe, and John Smith murders John Doe.
c) time, e.g. murder A that happened in January
1993, and murder B in October 2014.
d) participants, e.g. murder A committed by John
Doe, and murder B committed by the Roe couple.
e) location, e.g. murder A that happened in Okla-
homa, and murder B in Zaire.
R5 Representation of non-dominant events and enti-
ties, i.e. instances that receive little media coverage.
Hence, the entities would not be restricted to celebri-
ties and the events not to general elections.

5 Proposal

We propose a semantic task that represents the lin-
guistic long tail. The task will consist of one high-
level challenge (QA), for which an understanding of
the long tail of several disambiguation tasks (EL,
WSD, EvC, EnC) is needed in order to perform
well on the high-level challenge. The QA task
would feature two levels of event-oriented ques-
tions: instance-level questions (e.g. Who was killed
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last summer in Vienna?) and aggregation-level ques-
tions (e.g. How many white people have been
poisoned in the last 2 years?). The setup would
be such that the QA challenge could in theory be
addressed without performing any disambiguation
(e.g. using enhanced Information Retrieval), but
deeper processing, especially on the disambiguation
tasks, would be almost necessary in practice to be
able to come up with the correct answers.

To some extent, the requirements in Section 4 are
satisfied by an existing corpus, ECB+ (Cybulska and
Vossen, 2014), which contains 43 event topics. For
each event topic in the corpus, there are at least 2
different seminal events (R1). Since the corpus con-
tains 7,671 intra-document coreference links, on av-
erage 7.8 per document, we can assume that require-
ment R2 is satisfied to a large extent. Although there
are multiple news articles per event instance, they
are not spread over time, which means that R3 is
not satisfied. Furthermore, the event confusability
factors (R4) are not fully represented, since the am-
biguity and variance of the event surface forms and
the participants are still very low, whereas the domi-
nance is quite standard (R5), which is not surprising
given that these aspects were not considered during
the corpus assembly period. Additionally, only 1.8
sentences per document were annotated on average.
Potential references in the remaining sentences need
to be validated as well.

We will start with the ECB+ corpus and expand it
by following an event topic-based strategy:3

1) Pick a subset of ECB+ topics, by favoring:
a) seminal events (e.g. murder) whose surface forms
have a low lexical ambiguity, but can be referred to
by many different surface forms (execute, slay, kill)
b) combinations of two or more seminal events that
can be referred to by the same polysemous form (e.g.
firing).
2) Select one or more confusability factors from R4,
e.g. by choosing participants and variance. This
step can be repeated for different combinations of
the confusability factors.
3) Increase the amount of events for an event topic
(to satisfy R1). We add new events based on the
confusability factors chosen in step 2 and from local

3The same procedure can be followed for an entity-centric
expansion approach.

news sources to ensure low dominance (R5). These
events can come from different documents or the
same document.
4) Retrieve multiple event mentions for each event
based on the decision from the confusability factors
(R4). We use local news sources to ensure low domi-
nance (R5). They originate from the same document
(R2) and from different documents with (slightly)
different creation times (R3).

In order to facilitate the expansion described in
steps 3 and 4, we will add documents to ECB+
from The Signal Media One-Million News Articles
Dataset (Signal1M) (Corney et al., 2016). This will
assist in satisfying requirement R5, since the Sig-
nal1M Dataset is a collection of mostly local news.
For the expansion, active learning will be applied
on the Signal1M Dataset, guided by the decisions in
step 2, to decide which event mentions are corefer-
ential and which are not. By following our four-step
acquisition strategy and by using the active learn-
ing method, we expect to obtain a high accuracy on
EvC. As we do not expect perfect accuracy of EvC
even within this smart acquisition, we will validate
the active learning output. The validation will lead
to a reliable set of events on a semantic level for
which we would be able to pose both instance-level
and aggregation-level questions, as anticipated ear-
lier in this Section. As the task of QA does not re-
quire full annotation of all disambiguation tasks, we
would be able to avoid excessive annotation work.

6 Conclusions

This paper addressed the issue of semantic over-
fitting to disambiguation datasets. Existing dis-
ambiguation datasets expose lack of representative-
ness and bias towards the head interpretation, while
largely ignoring the rich set of long tail phenomena.
Systems are discouraged to consider the full com-
plexity of the disambiguation task, since the main
incentive lies in modelling the head phenomena. To
address this issue, we defined a set of requirements
that should be satisfied by a semantic task in order
to inspire systems that can deal with the linguistic
tail and adapt to new contexts. Based on these re-
quirements, we proposed a high-level task, QA, that
requires a deep understanding of each disambigua-
tion task in order to perform well.
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Abstract

We introduce a novel approach for resolving
coreference when the trigger word refers to
multiple (sometimes non-contiguous) clauses.
Our approach is completely unsupervised, and
our experiments show that Neural Network
models perform much better (about 20% more
accurate) than traditional feature-rich baseline
models. We also present a new dataset for
Biomedical Language Processing which, with
only about 25% of the original corpus vocab-
ulary, still captures the essential distributional
semantics of the corpus.

1 Introduction

Event coreference is a key module in many NLP
applications, especially those that involve multisen-
tence discourse. Current event coreference systems
restrict the problem to finding a correspondence be-
tween trigger words or phrases and their fully coref-
erent event (word or phrase). This approach is rather
limited since it does not handle the case when the
trigger refers to several events as a group, as in

We worked hard all our lives. But one
year we went on vacation. There was
boating, crazy adventure sports, and
pro-golfing. We also spent time in the
evenings strolling around the park. But
eventually we had to go home. There
couldn’t have been a better vacation.

In this paper we generalize the idea of coreference
to 3 levels based on the degree of abstraction of the
coreference trigger:

1. Level 1 – Direct Mention: The trigger phrase
is specific and usually matches the referring
event(s) word-for-word or phrase-for-phrase.

2. Level 2 – Single Clause: While there is a sim-
ilar word-to-phrase or word-to-word relation-
ship as in level 1, the trigger is a more generic
event compared to level 1.

3. Level 3 – Multiple Clauses: The trigger is
quite generic and refers to a particular instance
of an event that is described over multiple
clauses or sentences (either contiguous or non-
contiguous). Typically, the abstract event refers
to a set of [sub]events, each of them with its
own own participants or arguments.

See Table 1 for examples.
We use PubMed1 as our primary corpus.
Almost all work on event coreference (for exam-

ple, (Liu et al., 2014) (Lee et al., 2012)) applies to
levels 1 or 2. In this paper, we propose a general-
ized coreference classification scheme and address
the challenges related to resolving level-3 corefer-
ences.

Creating gold-standard training and evaluation
materials for such coreferences is an uphill chal-
lenge. First, there is a significant annotation over-
head and, depending on the nature of the corpus, the
annotator might require significant domain knowl-
edge. Each annotation instance might require multi-
ple labels depending the number of abstract events
mentioned in the corpus. Second, the vocabulary
of the corpus is rather large due to domain-related

1http://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
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level 1 In turn the activated ERK phospho-
rylates Stim1 at serine 575, and
this phosphorylation enhances com-
plex formation of Stim1

level 2 (a) BMI1 enhances hTERT activity.
(b) This effect was attenuated by PTEN
, PTEN ( CS ) , PTEN ( GE ) , and C-
PTEN.

level 3 (a) To determine whether these
clumps were also associated with
the cell cortex, we used confocal mi-
croscopy. (b) The actin clumps were
found associated with the cell cortex
in only a minority of cases ( Fig .
4 ). (c) Immuno-EM using anti-actin
antibodies has verified this observation

Table 1: Examples of various levels of Coreference (triggers

are underlined and referent indicated in bold)

named entities like proteins, cell-types, DNA and
RNA names. The large vocabulary size necessitates
longer and sparser vectors for representing the doc-
uments, resulting in significant data sparsity. Last,
evaluating such a system in an unsupervised setting
usually leads to debatable justifications for evaluat-
ing the models. We address these challenges in the
following ways:

1. We construct a new dataset, derived from the
PubMed corpus, by replacing all named entities
with their respective NE label. We normalize
Proteins, Cell lines, Cell types, RNA and DNA
names using the tagger described in (Tsuruoka
et al., 2005). Also, we normalize all figure and
table references to “internal link”, and citations
to other studies as “external link”. This signif-
icantly reduces the vocabulary of the dataset.

2. We present an unsupervised model to represent
abstract coreferences in text. We present multi-
ple baseline systems using the traditional Bag-
of-Words model and a Neural Network archi-
tecture that outperforms the baseline models.

3. We define a cloze-test evaluation method that
requires no annotation. Our procedure stems
from the following insight. Instead of starting
with the coreference trigger word/phrase and
asking “which clauses can refer to this?”, we

train an algorithm to predict for a given clause
which trigger word/phrase it would ‘prefer to’
link to, and then apply this algorithm to [se-
quences of] clauses within the likely scope of
reference of a trigger. An example is shown in
Table 2. A similar idea was mentioned in (Her-
mann et al., 2015).

Passage :
BAF57 has been shown to directly interact
with the androgen and estrogen receptors. We
used co-immunoprecipitation experiments to
test whether BAF57 forms a complex with PR
in cultured cells. In the absence of hormone,
a certain proportion of BAF57 already copre-
cipitated with PR probably due to the large
proportion of PR molecules already present in
the nucleus in the uninduced state; however
30 minutes after hormone addition the extent
of coprecipitation was increased. In contrast,
no complex of PR with the PBAF specific
subunit, BAF180 was observed independently
of the addition of the hormone. As a posi-
tive control for ABSTRACT COREF EVENT
we used BAF250, a known BAF specific sub-
unit.
Task: Predict ABSTRACT COREF EVENT
from the list of all abstract events of interest
Answer: this experiment

Table 2: A sample cloze-test evaluation task

2 Related Work

Entity coreference has been studied quite exten-
sively. There are primarily two complementary ap-
proaches. The first focuses mainly on identifying
entity mention clusters (see (Haghighi and Klein,
2009), (Raghunathan et al., 2010), (Ponzetto and
Strube, 2006), (Rahman and Ng, 2011), (Ponzetto
and Strube, 2006)). These models employ feature-
rich approaches to improve the clustering models
and are limited to noun pairs. The second focuses
on jointly modeling mentions across all the entries
in the document (see (Denis et al., 2007), (Poon and
Domingos, 2008), (Wick et al., 2008) and (Lee et
al., 2011)). Some more recent work uses event ar-
gument information to assist entity coreference; this
includes (Rahman and Ng, 2011), (Haghighi and
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Klein, 2010).
The distinct problem of Event Coreference has

been relatively underexplored. Some earlier work in
this area includes (Humphreys et al., 1997) but the
work was very specific to selected events. More re-
cently, there have been approaches to model event
coreferences separately (Liu et al., 2014) as well
as jointly with entities (Lee et al., 2012). All this
work makes the limiting assumption of word/phrase
to word/phrase coreference (levels 1 and 2 described
earlier). Our work aligns with the event coreference
literature but assumes longer spans of text and tack-
les the more challenging problem of abstract multi-
event/clause coreference.

3 Model

Figure 1: Architecture Diagram for the Coreference Model

Let βi be the coreference word/phrase generated
from a distribution parameterized by θ. Each βi

generates antecedents A1..n (sentences that lead to-
wards the coreference) that contain the coreferent
span. These antecendents also obey a dependency
relationship between two adjacent sentences in dis-
course. Since multi-clause coreference shows a dis-
tinct effect of recency, we also define a decay func-
tion D parameterized by α. The decay function D
dictates how the level of association of each ante-
cendent varies over increasing sentence distance.

3.1 Distributed Representation of Sentences
To simplify modeling complexity, we first ensure
that all the antecedents are represented by vectors of
the same dimension. We use the sentence2vec repre-
sentation from (Le and Mikolov, 2014) to generate a
300-dimensional continuous distributed representa-
tion for each sentence in the PubMed corpus. These

vectors are trained using gradient descent, with gra-
dients are obtained though back-propagation. This
allows us to reduce the parameters that would have
been necessary to model the number of words in
each sentence. Table 3 shows some example events
and their preferred coreference trigger.

phosphorylation phophorylation, phospory-
lation, phoshorylation,
dephosphorylation, phos-
phorylations, Phospho-
rylation, autophosphory-
lation, phosphorilation,
auto-phosphorylation, phos-
phorylated

ubiquitination ubiquitylation, ubiquitiny-
lation, polyubiquitination,
poly-ubiquitination, SUMOy-
lation, polyubiquitylation,
deubiquitination, sumoy-
lation, autoubiquitination,
mono-ubiquitination

concluded speculated, hypothesized, hy-
pothesised, argued, surmised,
conclude, postulated, noticed,
noted, postulate

Table 3: Top trigger words (left) under Word2Vec similarity for

sample events (right)

3.2 Multilayer Perceptron Model
The MultiLayer Perceptron (MLP) model is given
by the function f : RD → RL, where D is the size
of input vector x and L is the size of the output vector
f(x),

f (x) = G
(
b(2) +W (2)

(
s
(
b(1) +W (1)x

)))
(1)

with bias vectors b(1) , b(2) ; weight matrices W (1),
W (2) and activation functions G (softmax) and s
(tanh).

For our model, the input dimensions are 300-
dimensional sentence vectors. We define 6 classes (6
distinct trigger words) for output. The antecedents
are represented using a single vector, composed
from the N chosen input clauses, where we vary N
from 1 ato 5. For composition we currently use sim-
ple average. We assume no decay currently. The
architecture diagram is shown in Figure 2.
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Figure 2: Architecture Diagram for MLP

4 Experiments

The Cloze-test evaluation is inspired by the
reading comprehension evaluation from Question-
Answering research. In this evaluation, the sys-
tem first reads a passage and then attempts to pre-
dict missing words from sentences that contain in-
formation from the passage. For our evaluation, we
use a slightly modified version of the Cloze-test, in
which the model is trained for each coreference with
sentences that appear before and after the corefer-
ence. Currently, we arbitrarily limit the number of
sentences in the antecedent and precedent span for
coreference to 5. Also, we consider only 6 labels
for now, namely these changes, these responses, this
analysis, this context,this finding, this observation.

4.1 Experimental Setup
In order to maintain the even distribution of coref-
erence candidates, we derived our dataset from the
PubMed corpus by selecting 1000 samples of each
of the 6 coreferent labels for a total of 6000 train-
ing samples, each sample containing the coreference
trigger and we pick antecedent sentences based on
the following criteria. If the coreference occurs in
the same paragraph, the number of antecedent sen-
tences are limited to sentences from the start of the
paragraph or upto five antecedent sentence candi-
dates otherwise. For the MLP model, we use a 70-30
train-test split and apply the early stopping criteria
based on accuracy drop on the validation dataset.

4.2 Results
Our results show that our MLP model outperforms
all other feature-rich baseline models of traditional
classifiers. Although there is general skepticism

Classifier Accuracy
Linear SVM 0.436

SGD Classifer 0.39
BernoulliNB 0.349

Random Forest 0.34
AdaBoost 0.359

DecisionTree 0.286
MLP 0.62

Table 4: Results for various baselines and our work

around sentence vectors, our experiments show that
RNN and LSTM models are suitable for the gener-
alized coreference task.

Although we train using a window of N clauses
together, during run-time we obtain the prediction
for individual sentences rather than taking the av-
erage over a window. The label of each sentence
or clause depends on the preference of its imme-
diate neighbours, and how these sentences form a
‘span’, to arrive at a general ‘consensus’ label. This
testing criteria can be further improved by using ad-
vanced similarity and coherence detection methods.
For now, if the predicted class for that particular sen-
tence is the same as the true label, then that sentence
is labeled as part of the coreference.

5 Conclusion and Future Work

We presented a classification taxonomy that gener-
alizes types of event coreference. We presented a
model for unsupervised abstract coreference. We
described a new dataset for biomedical text that is
suitable for any generalized biomedical NLP task.
Our Cloze-test evaluation method makes annotation
unnecessary.

Since this one of the first works to explore abstract
event coreference, there is an uphill task of develop-
ing more principled approaches towards modeling
and evaluation. We also plan to explore more so-
phisticated models for our architecture and get more
insights into sentence vectors. Also, we plan to ex-
tend this idea of coreference into other data domains
like News corpus and probably extend to entity-
coreference work as well.
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1 Introduction

Representing the underlying meaning of text has
been a long-standing topic of interest in computa-
tional linguistics. Recently there has been a renewed
interest in computational modeling of meaning for
various tasks such as semantic parsing (Zelle and
Mooney, 1996; Berant and Liang, 2014). Open-
domain and broad-coverage semantic representation
(Banarescu et al., 2013; Bos, 2008; Allen et al.,
2008) is essential for many language understanding
tasks such as reading comprehension tests and ques-
tion answering.

One of the most common way for expressing eval-
uative sentiment towards different entities is to use
comparison. Comparison can happen in very sim-
ple structures such as ‘John is taller than Susan’, or
more complicated constructions such as ‘The table
is longer than the sofa is wide’. So far the compu-
tational semantics of comparatives and how they af-
fect the meaning of the surrounding text has not been
studied effectively. That is, the difference between
the existing semantic and syntactic representation of
comparatives has not been distinctive enough for en-
abling deeper understanding of a sentence. For in-
stance, the general logical form representation of the
sentence ‘John is taller than Susan’ using the Boxer
system (Bos, 2008) is the following:

named(x0, john, per)

& named(x1, susan, nam)

&than(taller(x0), x1) (1)

Clearly, the above meaning representation does

My Mazda drove faster than his Hyundai
Self_mover Self_motion Manner

Figure 1: The frame-semantic parsing of the sen-
tence My Mazda drove faster than his Hyundai.

not fully capture the underlying semantics of the ad-
jective ‘tall’ and what it means to be ‘taller’. A hu-
man reader can easily infer that the ‘height’ attribute
of John is greater than Susan’s. Capturing the under-
lying meaning of comparison structures, as opposed
to their surface wording, is crucial for accurate eval-
uation of qualities and quantities. Consider a more
complex comparison example, ‘The pizza was great,
but it was still worse than the sandwich’. The state-
of-the-art sentiment analysis system (Manning et al.,
2014) assigns an overall ‘negative’ sentiment value
to this sentence, which clearly lacks the understand-
ing of the comparison happening in the sentence.

As another example, consider the generic mean-
ing representation of the sentence ‘My Mazda drove
faster than his Hyundai’, according to frame seman-
tic parsing using Semafor1 tool (Das et al., 2014) as
depicted in Figure 1. It is evident that this meaning
representation does not fully capture how the seman-
tics of the adjective fast relates to the driving event,
and what it actually means for a car to drive faster
than another car. More importantly, there is an ellip-
sis in this sentence, the resolution of which results
in complete reading of ‘My Mazda drove faster than
his Hyundai drove fast’, which is in no way captured
in Figure 12.

1http://demo.ark.cs.cmu.edu/parse
2The same shortcomings are shared among other generic

meaning representations such as LinGO English Resource
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Although the syntax and semantics of compari-
son in language have been studied in linguistics for a
long time (Bresnan, 1973; Cresswell, 1976; Von Ste-
chow, 1984), so far, computational modeling of the
semantics of comparison components of natural lan-
guage has not been developed fundamentally. The
lack of such a computational framework has left
the deeper understanding of comparison structures
still baffling to the currently existing NLP systems.
In this paper we summarize our efforts on defin-
ing a joint framework for comprehensive semantic
representation of the comparison and ellipsis con-
structions. We jointly model comparison and ellip-
sis as inter-connected predicate-argument structures,
which enables automatic ellipsis resolution. In the
upcoming sections we summarize our main contri-
butions to this topic.

2 A Comprehensive Semantic Framework
for Comparison and Ellipsis

We introduce a novel framework for modeling
the semantics of comparison and ellipsis as inter-
connected predicate-argument structures. Accord-
ing to this framework, comparison and ellipsis op-
erators are the predicates, where each predicate has
a set of arguments called its semantic frame. For ex-
ample, in the sentence ‘[Sam] is the tallest [student]
[in the gym]’, the morpheme -est is the comparison
operator (hence, the comparison predicate) and the
entities in the brackets are the arguments.

2.1 Comparison Structures

2.1.1 Predicates
We consider two main categories of compar-

ison predicates (Bakhshandeh and Allen, 2015;
Bakhshandeh et al., 2016), Ordering and Extreme,
each of which can grade any of the four parts of
speech including adjectives, adverbs, nouns, and
verbs.
• Ordering: Shows the ordering of two or more
entities on a scale, with the following subtypes:

– Comparatives expressed by the morphemes
more/-er and less, with ‘>’, ‘<’ indicating that one
degree is greater or lesser than the other.

(1) The steak is tastier than the potatoes.

Grammar (ERG) (Flickinger, 2011), Boxer (Bos, 2008), or
AMR (Banarescu et al., 2013), among others.

Superlative+

Joe is the most eager boy ever.

Figure Scale/+

Domain
Domain-specifier

Figure 2: An example predicate-argument structure
consisting of superlative predicate type and its cor-
responding semantic frame of arguments.

– Equatives expressed by as in constructions such
as as tall or as much, with ‘≥’ indicating that one
degree equals or is greater than another.

(2) The Mazda drives as fast as the Nissan.

– Superlatives expressed by most/-est and least,
indicates that an entity or event has the ‘highest’
or ‘lowest’ degree on a scale.

(3) That chef made the best soup.

The details of the Extreme type can be found in
the earlier work (Bakhshandeh and Allen, 2015;
Bakhshandeh et al., 2016).

2.1.2 Arguments
Each predicate takes a set of arguments that we re-

fer to as the predicate’s ‘semantic frame’. Following
are the main arguments included in our framework:

– Figure (Fig): The main role which is being com-
pared.
– Ground: The main role Figure is compared to.
– Scale: The scale for the comparison, such as
length, depth, speed. For a more detailed study on
scales please refer to the work on learning adjective
scales (Bakhshandeh and Allen, 2015).
Our framework also includes ‘Standard’, ‘Differ-

ential’, ‘Domain’, and ‘Domain Specifier’ argument
types. Figure 2 shows an example meaning repre-
sentations based on our framework.

2.2 Ellipsis Structures
As mentioned earlier in Section 1, resolving ellip-
sis in comparison structures is crucial for language
understanding and failure to do so would deliver
an incorrect meaning representation. In linguis-
tics various subtypes of elliptical constructions are
studied (Kennedy, 2003; Merchant, 2013; Yoshida
et al., 2016). In our framework we mainly in-
clude six types which are seen in comparison struc-
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tures (Bakhshandeh et al., 2016): ‘VP-deletion’,
‘Stripping’3, ‘Pseudo-gapping’, ‘Gapping’, ‘Sluic-
ing’, and ‘Subdeletion’. Ellipsis more often occurs
in comparative and equative comparison construc-
tions. A few examples of ellipsis in comparative
constructions are as follows:
• Comparatives: Ellipsis site is the dependent
clause headed by than. Three ellipsis possibilities
for these clauses resuming (4) are shown below.
The elided materials are written in subscript.

(4) Mary drank more tea ...

– VP-deletion (aka ‘Comparative Deletion’):
... than John did drink coffee.

– Stripping (aka ‘Phrasal Comparative’):
... than John drank coffee.

– Gapping:
... than John, drank how-much coffee.

– Pseudogapping:
... than John did drank coffee.

Furthermore, we define three argument types for
ellipsis, which help thoroughly construct the an-
tecedent of the elided material by taking into ac-
count the existing words of the context sentence:
Reference, Exclude, and How-much.

3 Data Collection Methodology

Given the new semantic representation, we aim at
annotating corpora which then enables developing
and testing models. The diversity and comprehen-
siveness of the comparison structures represented
in our dataset is dependent on the genre of sen-
tences comprising it. Earlier, we had experimented
with annotating semantic structures on OntoNotes
dataset (Bakhshandeh and Allen, 2015). Recently
(Bakhshandeh et al., 2016), We have shifted our fo-
cus to actual product and restaurant reviews, which
include many natural comparison instances. For this
purpose we mainly use Google English Web Tree-
bank4 which comes with gold constituency parse
trees. We augment this dataset with the Movie Re-
views dataset (Pang and Lee, 2005), where we use
Berkeley parser (Petrov et al., 2006) to obtain parse
trees.

We trained linguists by asking them to read the
semantic framework annotation manual as summa-

3VP-deletion and stripping are the more frequent types.
4https://catalog.ldc.upenn.edu/

LDC2012T13

Figure 3: The number of various predicate types
across different resources.

ILP Model
P R F1

Average 0.72/0.78 0.91/0.97 0.76/0.80
Baseline

Average 0.62/0.64 0.87/0.97 0.66/0.69

Table 1: Predicate prediction Precision (P), Recall
(R) and F1 scores on test set, averaged across all
predicate types. Each cell contains scores according
to Exact/Head measurement.

rized in Section 2. The annotations were done via
our interactive two-stage tree-based annotation tool.
For this task, the annotations were done on top of
constituency parse trees. This process yielded a to-
tal of 2,800 annotated sentences. Figure 3 visual-
izes the distribution of predicate types from the var-
ious resources. As this Figure shows, reviews are
indeed a very rich resource for comparisons, having
more comparison instances than any other resource
of even a bigger size. There are a total of 5,564 com-
parison arguments in our dataset, with ‘scale’ and
‘figure’ being the majority types. The total number
of ellipsis predicates is 240, with 197 Stripping, 31
VP-deletion and 12 Pseudo-gapping.

4 Predicting Semantic Structures

We model the prediction problem as a joint
predicate-argument prediction of comparison and el-
lipsis structures. In a nutshell, we define a glob-
ally normalized model for the probability distribu-
tion of comparison and ellipsis labels over all parse
tree nodes as follows:

pC(c|v, T, θC) ∝ exp(fC(c, T )TθC) (2)

pAc(ac|c, e, v, T, θac) ∝ exp(fAC
(c, e, T )Tθac) (3)

where T is the underlying constituency tree, pC is
the probability of assigning predicate type c as the
predicate type and pAc is the probability of assign-
ing the argument type ac as the argument type. In
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ILP Model (Exact/Head) ILP No Constraints (Exact/Head) Baseline (Exact/Head)
P R F1 P R F1 P R F1

Average 0.37/0.61 0.54/0.87 0.43/0.71 0.01/0.01 0.86/1.00 0.10/0.10 0.20/0.42 0.36/0.73 0.25/0.52

Table 2: Results of argument prediction on test set, averaged across various argument types.

each of the above equations, f is the correspond-
ing feature function. For predicates and the argu-
ments the main features are lexical features and bi-
gram features, among many others. θC , θE , θac is
the parameters of the log-linear model. We calculate
these parameters using Stochastic Gradient Descent
algorithm.

For inference, we model the problem as a struc-
tured prediction task. Given the syntactic tree of
a given sentence, for each node we first select the
predicate type with the highest pC . Then for each
selected comparison predicate, we find the corre-
sponding ellipsis predicate that has the highest pE

probability. We tackle the problem of argument
assignment by Integer Linear Programming (ILP),
where we pose domain-specific linguistic knowl-
edge as constraints. Any specific comparison label
calls for a unique set of constraints in the ILP for-
mulation, which ensures the validity of predictions5.
The details of this modeling can be found in earlier
work (Bakhshandeh et al., 2016).

5 Experimental Results

We trained our ILP model on the train-dev part of
the dataset (70%), and tested on the test set (30%).
Evaluation is done against the reference gold anno-
tation, with Exact and partial (Head) credits to an-
notating the constituency nodes. We mainly report
on two models: our comprehensive ILP model (de-
tailed in Section 4), and a rule-based baseline. In
short, the baseline encodes the same linguistically
motivated ILP constraints via rules and uses a few
pattern extraction methods for finding comparison
morphemes.

The average results on predicate prediction
(across all types) is shown in Table 1. As the re-
sults show, overall, the scores are high for predict-
ing the predicates, what is not shown here is ellipsis
predicates being the most challenging. The baseline

5For instance, the Superlative predicate type never takes
anyGround arguments, or the argument Standard is only ap-
plicable to the excessive predicate type.

is competitive, which shows that the linguistic pat-
terns can capture many of the predicate types. Our
model performs the poorest on Equatives, achiev-
ing 71%/73% F1 score, which is a complex mor-
pheme used in various linguistic constructions. Our
analysis shows that the errors are often due to inac-
curacies in automatically generated parse trees6. As
you can see in Table 2, The task of predicting argu-
ments is a more demanding task. The baseline per-
forms very poorly at predicting the arguments. Our
comprehensive ILP model consistently outperforms
the No Constraints model, showing the effectiveness
of our linguistically motivated ILP constraints.

6 Conclusion

In this work we summarized our work which fo-
cuses on an aspect of language with a very rich
semantics: Comparison and Ellipsis. The current
tools and methodologies in the research community
are not able to go beyond surface-level shallow rep-
resentations for comparison and ellipsis structures.
We have developed widely usable comprehensive
semantic theory of linguistic content of comparison
structures. Our representation is broad-coverage and
domain-independent, hence, can be incorporated as
a part of any broad-coverage semantic parser (Ba-
narescu et al., 2013; Allen et al., 2008; Bos, 2008)
for augmenting their meaning representation.
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Abstract

This paper describes a new spoken dialog
portal that connects systems produced by the
spoken dialog research community and gives
them access to real users. We introduce a
prototype dialog framework that affords easy
integration with various remote dialog agents
as well as external knowledge resources. To
date, the DialPort portal has successfully con-
nected to two dialog systems and several pub-
lic knowledge APIs. We present current
progress and envision our future plan.

1 Introduction

Much fundamental research in the spoken dialog
domain remains to be done, including adaption for
user modeling and management of complex dialogs.
In recent years, there has been increasing interest
in applying deep learning to modeling the process
of human-computer conversation (Vinyals and Le,
2015; Serban et al., 2015; Wen et al., 2016; Williams
and Zweig, 2016; Zhao and Eskenazi, 2016). One of
the prerequisites for the success of these methods is
having a large conversation corpus to train on. In
order to advance the research in these uphill areas
of study with the state-of-the-art data-driven meth-
ods, large corpora of multi-type real user dialogs are
needed. At present, few existing large corpora cover
a wide set of research domains. It is also extremely
difficult for any one group to devote time to collect-
ing and curating a significant amount of real user
data. The users must be found and kept interested,
and the interface must be created and maintained.

Our proposed solution is DialPort, a data gather-
ing portal that groups various types of dialog sys-
tems, gives potential users a variety of interesting
applications, and shares the collected data amongst
all participating research groups. The connected dia-
log systems are not simply listed on a website. They
are fully integrated into a single virtual agent. From
the user’s perspective, DialPort is a dialog system
that can provide information in many domains and
it becomes increasingly more attractive as new re-
search groups join and resulting more functionalities
to discover.

2 Challenges

Besides creating new corpora for advanced dialog
research, DialPort encounters new research chal-
lenges.

• Advanced Dialog State Representation Learn-
ing: Traditional dialog states are represented
as sets of symbolic variables that are related
to domain-specific ontology and are tracked
by statistical methods (Williams et al., 2013).
Such an approach soon becomes intractable if
we want to capture all the essential dialog state
features within nested multi-domain conversa-
tions, such as modeling user preferences and
tracking discourse features. DialPort must ad-
dress this challenge if it is to effectively serve
as a portal to many systems.

• Dialog Policy that Combines Various Types
of Agents: DialPort is powered by multiple
dialog agents from research labs around the
world. It is different from the traditional sin-
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gle dialog agent and requires new methods to
develop decision-making algorithms to judi-
ciously switch amongst various systems while
creating a homogenous users experience.

• Dialog System Evaluation with Real Users:
Evaluation has always be challenging for dia-
log systems because inexpensive methods, (e.g.
user simulator or recruited users) are often not
accurate. The best evaluation, real users, is
costly. DialPort will create streams of real user
data, which opens the possibility of develop-
ing a principled evaluation framework for dia-
log systems.

3 Proposed Approach

The prototype DialPort system includes the user
interface, remote agents/resources and the master
agent.

3.1 User Interface
The user interface is the public front-end1. The au-
dio interface uses the web-based ASR/TTS to rec-
ognize the user’s speech and generate DialPort’s
speech output. The visual representation is a vir-
tual agent that has animated embodiments powered
by the Unity 3D Engine2.

3.2 Remote Agents and Resources
A Remote agent is a turn-based dialog system, which
inputs the ASR text output of the latest turn and re-
turns the next system response. Every external di-
alog system connecting to DialPort is treated as a
remote agent. DialPort also deals with remote re-
sources, which can be any external knowledge re-
source, such as a database of bus schedules. DialPort
is in charge of all of the dialog processing and uses
the remote resources as knowledge backends in the
same way as a traditional goal-oriented SDS (Raux
et al., 2005).

3.3 The Master Agent
The master agent operates on a set of remote agents
U , and a set of remote resources R. In order to
serve information in R, the master agent has a set
of primitive actions P , such as request or inform.

1https://skylar.speech.cs.cmu.edu
2unity3d.com/

Together P
⋃
U composes the available action setA

for the master agent. The dialog state S is made up
of the entire history of system output and user input
and distributions over possible slot values. Given the
new inputs from the user interface, the master agent
updates its dialog state and generates the next system
response based on its policy, π : S → A, that will
choose the action a that is the most appropriate. One
key note is that for a ∈ U , it takes more than one
turn to finish a session, i.e. a remote agent usually
will span several turns with the users, while a ∈ P is
primitive action that only spans for one turn. There-
fore, we formulate the problem as a sequential de-
cision making problem for Semi-Markov Decision
Process (SMDP) (Sutton et al., 1999), so a ∈ U is
equivalent to a macro action. Therefore, when Dial-
Port hands over control to a remote agent, the user
input is directly forwarded to the remote system un-
til the session is finished by the remote side. Core
research on DialPort is about how to construct an ef-
ficient representation for S, and how to learn a good
policy π.

3.4 Current Status

To date, the DialPort has connected to two re-
mote agents, the dialog system at Cambridge Uni-
versity (Gasic et al., 2015) and a chatbot, and to two
remote resources: Yelp food API and NOAA (Na-
tional Oceanic and Atmospheric Administration)
Weather API.

4 Evaluation

Given the data collected by DialPort, assessment has
several aspects. In order to create labeled data for
the first two challenges mentioned in Section 2, we
developed an annotation toolkit to label the correct
system responses and state variables of the dialogs.
The labeled data can then be used for new models for
advanced dialog state tracking and multi-agent dia-
log policy learning. We will also solicit subjective
feedback from users after a session with the system.

5 Travel Funding

Two authors are respectively PhD and postdoctoral
students that need travel funding.
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Abstract

This paper introduces a deceptively simple
entity extraction task intended to encourage
more interdisciplinary collaboration between
fields that don’t normally work together: di-
arization, dialog and entity extraction. Given a
corpus of 1.4M call center calls, extract men-
tions of trouble ticket numbers. The task is
challenging because first mentions need to be
distinguished from confirmations to avoid un-
desirable repetitions. It is common for agents
to say part of the ticket number, and customers
confirm with a repetition. There are opportu-
nities for dialog (given/new) and diarization
(who said what) to help remove repetitions.
New information is spoken slowly by one side
of a conversation; confirmations are spoken
more quickly by the other side of the conver-
sation.

1 Extracting Ticket Numbers

Much has been written on extracting entities from
text (Etzioni et al., 2005), and even speech (Kubala
et al., 1998), but less has been written in the context
of dialog (Clark and Haviland, 1977) and diarization
(Tranter and Reynolds, 2006; Anguera et al., 2012;
Shum, 2011). This paper describes a ticket extrac-
tion task illustrated in Table 1. The challenge is to
extract a 7 byte ticket number, “902MDYK,” from
the dialog. Confirmations ought to improve commu-
nication, but steps need to be taken to avoid unde-
sirable repetition in extracted entities. Dialog the-
ory suggests it should be possible to distinguish first
mentions (bold) from confirmations (italics) based
on prosodic cues such as pitch, energy and duration.

t0 t1 S1 S2
278.16 281.07 I do have the new hard-

ware case number for you
when you’re ready

282.60 282.85 okay
284.19 284.80 nine
285.03 285.86 zero
286.22 286.74 two
290.82 291.30 nine
292.87 293.95 zero two
297.87 298.24 okay
299.30 300.49 M. as in Mike
301.97 303.56 D. as in delta
304.89 306.31 Y. as in Yankee
307.50 308.81 K. as in kilo
310.14 310.57 okay
310.77 311.70 nine

zero
two

311.73 312.49 M. D.
312.53 313.18 Y. T.
313.75 314.21 correct
314.21 317.28 and thank you for calling

IBM is there anything else
I can assist you with

Table 1: A ticket dialog: 7 bytes (902MDYK) at 1.4 bps. First

mentions (bold) are slower than confirmations (italics).

phone matches calls ticket matches (edit dist)
66% 238 0
59% 82 1
55% 40 2
4.1% 4033 3+

Table 2: Phone numbers are used to confirm ticket matches.

Good ticket matches (top row) are confirmed more often than

poor matches (bottom row). Poor matches are more common

because ticket numbers are relatively rare, and most calls don’t

mention them.
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In Table 1, “zero two” was 55% slower the first time
than the second (1.7 vs. 1.1 seconds).

Much of Table 1 was produced by machine, using
tools that are currently available for public use, or
will be available soon. Words came from ASR (au-
tomatic speech recognition) and speaker labels (S1
and S2) from diarization.1 We plan to label bold
and italics automatically, but for now, that was done
by hand.

It is remarkable how hard it is to transmit ticket
numbers. In this case, it takes 39 seconds to trans-
mit 7 bytes, “902MDYK,” a mere 1.4 bps (bits per
second).2 Agents are well aware of the difficulty of
the task. In Table 1, the agent says the first three
digits slowly in citation form (more like isolated dig-
its than continuous speech) (Moon, 1991). Citation
form should be helpful, though in practice, ASR
is trained on continuous speech, and consequently
struggles with citation form.

After a few back-and-forth confirmations, the cus-
tomer confirms the first three digits with a backchan-
nel (Ward and Tsukahara, 2000) “okay,” enabling
the agent to continue transmitting the last four bytes,
“MDYK,” slowly at a byte/sec or less, using a com-
bination of military and conventional spelling: in
Mike,” “D. as in delta,” etc. When we discuss Fig-
ure 1, we will refer to this strategy as slow mode. If
the agent was speaking to another agent, she would
say, “Mike delta Yankee kilo,” quickly with no inter-
vening silences. We will refer to this strategy as fast
mode.

Finally, the customer ends the exchange with an-
other backchannel “okay,” followed by a quick rep-
etition of all 7 bytes. Again we see that first men-
tions (bold) take more time than subsequent men-
tions (italics). In Table 1, the bold first mention
of “902MDYK” takes 12.1 = 286.74 − 284.19 +
308.81 − 299.30 seconds, which is considerably
longer than the customer’s confirmation in italics:
2.4 = 313.18− 310.77 seconds.

Ticket numbers are also hard for machines. ASR
errors don’t help. For example, the final “K” in the
final repetition was misheard by the machine as “T.”

1The ASR tools are currently available for public
use at: https://www.ibm.com/watson/developercloud/text-to-
speech.html, and diarization will be released soon.

2The estimate of 1.4 bps would be even worse if we included
opportunities for compressing tickets to less than 7 bytes.

t0 transcript
344.01 and I do have a hardware case number

whenever you’re ready for it
348.86 hang on just one moment
353.65 okay go ahead that will be Alfa zero nine
358.18 the number two
359.85 golf Victor Juliet
363.55 I’m sorry what was after golf
366.46 golf and then V. as in Victor J. as in Juliet
370.28 okay
371.86 Alfa zero niner two golf Victor Juliet that

is correct Sir you can’t do anything else for
today

Table 3: An example with a retransmission: 1.7 bits per second

to transmit “A082GVJ”

After listening to the audio, it isn’t clear if a human
could get this right without context because the cus-
tomer is speaking quickly with an accent. Neverthe-
less, the confirmation, “correct,” makes it clear that
the agent believes the dialog was successfully con-
cluded and there is no need for additional confirma-
tions/corrections. Although it is tempting to work
on ASR errors forever, we believe there are bigger
opportunities for dialog and diarization.

2 Communication Speed

The corpus can be used to measure factors that
impact communication speed: given/new, familiar-
ity, shared conventions, dialects, experience, correc-
tions, etc. In Table 1, first mentions are slower than
subsequent mentions. Disfluencies (Hindle, 1983)
and corrections (“I’m sorry what was after golf”)
take even more time, as illustrated in Table 3.

Figure 1 shows that familiar phone numbers are
quicker than less familiar ticket numbers, especially
in slow mode, where each letter is expressed as a
separate intonation phrase. Agents speed up when
talking to other agents, and slow down for cus-
tomers, especially when customers need more time.
Agents have more experience than customers and
are therefore faster.

Agents tend to use slow mode when speaking
with customers, especially the first time they say the
ticket number. Table 1 showed an example of slow
mode. Fast mode tends to be used for confirmations,
or when agents are speaking with other agents. Fig-
ure 1 shows that fast mode is faster than slow mode,
as one would expect.
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Figure 1: Time to say phone numbers and tickets, computed

over a sample of 552 simple/robust matches. The plot shows

that phone numbers are faster than ticket numbers. Ticket num-

bers are typically spoken in one of two ways which we call fast

mode and slow mode. The plot shows that fast mode is faster

than slow mode, as one would expect.

Figure 1 gives an optimistic lower bound view of
times. The figure was computed over a small sample
of 552 calls where simple (robust) matching meth-
ods were sufficient to find the endpoints of the match
in the audio. Tables 1 and 3 demonstrate that total
times tend to be much longer because of factors not
included in Figure 1 such as prompts, confirmations
and retransmissions.

Shared knowledge helps. Phone numbers are
quicker than tickets because everyone knows their
own phone number. In addition, everyone knows
that phone numbers are typically 10 digits, parsed:
3 + 3 + 4. Communication slows down when phone
numbers are expressed in unfamiliar ways such as
“double nine” and “triple zero,” common in Indian
English and Australian English, but not American
English.

3 Materials

We are working with a call center corpus of 1.4M
calls. Table 4 shows call duration by number of
speakers. The average call is 5.6 minutes, but most

Speakers Calls Seconds/Call
0 565 20
1 405 61
2 5021 342
3 837 533
4 107 986
5 22 1121

6+ 13 1166
Table 4: Most of our calls have two speakers, a customer and

an agent, though some have more speakers and some have less.

The duration of the call tends to increase with the number of

speakers. These counts were computed from a relatively small

sample of nearly 7k calls that were manually transcribed.

calls are shorter than average, and a few calls are
much longer than average. The 50th, 95th and 99th
percentiles are 4, 15 and 31 minutes, respectively.
The longer calls are likely to involve one or more
transfers, and therefore, longer calls tend to have
more speakers.

A relatively small sample of almost 7k calls was
transcribed by a human transcription service, mainly
to measure WER (word error rates) for recognition,
but can also measure diarization errors. Unfortu-
nately, ground truth is hard to come by for entity
extraction because we didn’t ask the service to ex-
tract phone numbers and tickets.

Heuristics are introduced to overcome this defi-
ciency. The first 4-5 bytes of the ticket are pre-
dictable from side information (timestamps), not
available to the dialog participants. Edit distance
is used to match the rest with tickets in a database.
Matches are confirmed by comparing phone num-
bers in the database with phone numbers extracted
from the audio. Table 2 shows good ticket matches
(top row) are confirmed more often than poor
matches (bottom row).3 Given these confirmed
matches, future work will label bold and italics au-
tomatically. An annotated corpus of this kind will
motivate future work on the use of dialog and di-
arization in entity extraction.

3The phone matching heuristic is imperfect in a couple of
ways. The top row is far from 100% because the customer may
use a different phone number than what is in the database. The
bottom row contains most of the calls because the entities of
interest are quite rare and do not appear in most calls.

37



4 Conclusions

This paper introduced a deceptively simple entity
extraction task intended to encourage more interdis-
ciplinary collaboration between fields that don’t nor-
mally work together: diarization, dialog and entity
extraction. First mentions need to be distinguished
from confirmations to avoid undesirable repetition
in extracted entities. Dialog theory suggests the use
of prosodic cues to distinguish marked first mentions
from unmarked subsequent mentions. We saw in Ta-
ble 1 that first mentions (bold) tend to be slower than
subsequent confirmations (italics).

It also helps to determine who said what (diariza-
tion), because new information tends to come from
one side of a conversation, and confirmations from
the other side. While our corpus of 1.4M calls can-
not be shared for obvious privacy concerns, the ASR
and diarization tools are currently available for pub-
lic use (or will be available soon). While much
has been written on given/new, this corpus-based ap-
proach should help establish more precise numerical
conclusions in future work.

The corpus can be used to measure a number
of additional factors beyond given/new that impact
communication speed: familiarity, shared conven-
tions, dialects, experience, corrections, etc. Ta-
ble 3 shows an example of corrections taking even
more time (“I’m sorry what was after golf”). Fig-
ure 1 shows that familiar phone numbers are quicker
than less familiar ticket numbers, especially in slow
mode, where each letter is expressed as a separate
intonation phrase. Agents speed up when talking to
other agents, and slow down for customers, espe-
cially when customers need more time. Agents have
more experience than customers and are therefore
faster.
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Abstract

We present the problem of “bringing text to
life” via 3D interactive storytelling, where nat-
ural language processing (NLP) techniques are
used to transform narrative text into events in
a virtual world that the user can interact with.
This is a challenging problem, which requires
deep understanding of the semantics of a story
and the ability to ground those semantic ele-
ments to the actors and events of the 3D world’s
graphical engine. We show how this problem
has motivated interesting extensions to some
classic NLP tasks, identify some of the key
lessons learned from the work so far, and pro-
pose some future research directions.

1 Introduction

Our primary goal is to take as input natural language
text, such as children’s stories, translate the text into
formal knowledge that represents the actions, actors,
plots, and surrounding world, and render this formal
representation as virtual 3D worlds via a graphical
engine. We believe that translating text to another
modality (in our case, a visual modality) is a good test
case for evaluating language understanding systems.

We have developed an initial approach to this text-
to-virtual-world translation problem based on a prob-
abilistic graphical model that maps text and its se-
mantic annotations (generated by more traditional
NLP modules, like semantic role labelers or corefer-
ence resolvers) to the knowledge representation of
the graphical engine, which is defined in predicate
logic. In the process, we discovered several failings
of traditional NLP systems when faced with this task:

Semantic Role Labeling We observed that current
state-of-the-art semantic role labeling (SRL)
systems perform poorly on children’s stories,
failing to recognize many of the expressed argu-
ment roles. Much of this is due to the domain
mismatch between the available training data
(primarily newswire) and our evaluation (stories
for 3D visualization).

To address this, we introduced a technique based
on recurrent neural networks for automatically
generating additional training data that was sim-
ilar to the target domain (Do et al., 2014; Do et
al., 2015b). For each selected word (predicate,
argument head word) from the source domain,
a list of replacement words from the target do-
main which we believe can occur at the same
position as the selected word, are generated by
using a recurrent neural network (RNN) lan-
guage model (Mikolov et al., 2010). In addition,
linguistic resources such as part of speech tags,
WordNet (Miller, 1995), and VerbNet (Schuler,
2005), are used as filters to select the best re-
placement words.

We primarily targeted improving the results
of the four circumstance roles AM-LOC, AM-
TMP, AM-MNR and AM-DIR, which are impor-
tant for semantic frame understanding but not
well recognized by standard SRL systems. New
training examples were generated specifically
for the four selected roles. In an experiment with
the out-of-domain setting of the CoNLL 2009
shared task and the SRL system of (Björkelund
et al., 2009), training the semantic role labeller
on the expanded training data outperforms the
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model trained on the original training data by
+3.36%, +2.77%, +2.84% and +14% F1 over
the roles AM-LOC, AM-TMP, AM-MNR and
AM-DIR respectively (Do et al., 2015b), but
we still need linguistic resources to filter the
words obtained by the language model. In an
experiment where the same model was again
trained on CoNLL 2009 training data, but the
RNN training included a collection of 252 chil-
dren stories (mostly fairy tales), we obtained F1
gains of +9.19,% +7.67%, +17.92% and +7.84%
respectively over the four selected roles AM-
LOC, AM-TMP, AM-MNR and AM-DIR, when
testing on the story “The Day Tuk Became a
Hunter” (Ronald and Carol, 1967) (Do et al.,
2014).

Coreference Resolution We observed that current
state-of-the-art coreference resolution systems
are ignorant of some constraints that are impor-
tant in storytelling. For example, a character is
often first presented as an indefinite noun phrase
(such as “a woman”), then later as a definite
noun phrase (such as “the woman”), but this
change in definiteness often resulted on missed
coreference links.

To address this, we replaced the inference of the
Berkeley coreference resolution system (Dur-
rett and Klein, 2013) with a global inference
algorithm which incorporated narrative specific
constraints through integer linear programming
(Do et al., 2015a). Our formulation models three
phenomena that are important for short narrative
stories: local discourse coherence, which we
model via centering theory constraints, speaker-
listener relations, which we model via direct
speech act constraints, and character-naming,
which we model via definite noun phrase and
exact match constraints. When testing on the
UMIREC1 and N22 corpora with the corefer-
ence resolution system of (Durrett and Klein,
2013) trained on OntoNotes3, our inference
substantially improves the original inference
on the CoNLL 2011 AVG score by +5.42 (for
UMIREC) and +5.22 (for N2) points when using

1http://dspace.mit.edu/handle/1721.1/57507
2http://dspace.mit.edu/handle/1721.1/85893
3https://catalog.ldc.upenn.edu/LDC2011T03

gold mentions and by +1.15 (for UMIREC) and
+2.36 (for N2) points when using predicted men-
tions. When testing on the story “The Day Tuk
Became a Hunter” (Ronald and Carol, 1967),
our inference outperforms the original inference
by 4.46 points on the CoNLL 2011 AVG score4.

Having corrected some of the more serious failures
of NLP systems on stories, we turn to the problem
of mapping the semantic analysis of these NLP sys-
tems to the knowledge representation of the graphi-
cal engine. Our initial approach is implemented as
a probabilistic graphical model, where the input is a
sentence and its (probabilistic) semantic and coref-
erence annotations, and the output is a set of logical
predicate-argument structures. Each structure rep-
resents an action and the parameters of that action
(e.g., person/object performing the action, location
of the action). The domain is bounded by a finite
set of actions, actors and objects, representable by
the graphical environment. In our implementation,
decoding of the model is done through an efficient
formulation of a genetic algorithm that exploits con-
ditional independence (Alazzam and Lewis III, 2013)
and improves parallel scalability.

In an evaluation on three stories (“The Day Tuk
Became a Hunter” (Ronald and Carol, 1967), “The
Bear and the Travellers”5, and “The First Tears”6),
this model achieved F1 scores of 81% on recognizing
the correct graphical engine actions, and above 60%
on recognizing the correct action parameters (Ludwig
et al., Under review). Example scenes generated by
the MUSE software are shown in Figure 1, and a
web-based demonstration can be accessed at http:
//roshi.cs.kuleuven.be/muse_demon/.

2 Lessons learned

Studying the problem of translating natural language
narratives to 3D interactive stories has been instruc-
tive about the capabilities of current natural process-
ing for language understanding and the battles that
still have to be fought. The truthful rendering of lan-
guage content in a virtual world acts as a testbed for

4We only evaluate the entities that are available in our virtual
domain such as tuk, father, mother, bear, sister, igloo, sled, etc.

5http://fairytalesoftheworld.com/quick-reads/

the-bear-and-the-travellers/
6http://americanfolklore.net/folklore/2010/09/

the\_first\_tears.html
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Figure 1: MUSE-generated scenes from “The Day Tuk Became a Hunter” (Ludwig et al., Under review).

natural language understanding, making this multi-
modal translation a real-life evaluation task.

On the positive side, some NLP tasks such as
semantic role labeling and coreference resolution
proved to be useful for instantiating the correct ac-
tion frames in the virtual world with their correct
actors. However, some NLP tasks that we imagined
would be important turned out not to be. For example,
temporal relation recognition was not very important,
since children’s stories have simpler timelines, and
since the constraints of the actions in the 3D inter-
active storytelling representation could sometimes
exclude the inappropriate interpretations. Moreover,
across all of the NLP tasks, we saw significant drops
in performance when applied to narratives like chil-
dren’s stories. While we introduced solutions to some
of these problems, much work remains to be done
to achieve easy and effective transfer of the learning
models to other target texts.

Given the almost complete lack of training data for
translating children’s stories to the representations
needed by the graphical engine (we only used two
quite unrelated annotated stories to optimize the in-
ference in the Bayesian network when our system
parsed a test story), we had to rely on a pipelined ap-
proach. In this way we could exploit the knowledge
obtained by the semantic role labeler and coreference
resolver, which were trained on other annotated texts
and adapted by the novel methods described above.
The Bayesian framework of the probabilistic graph-
ical model allows it to realize the most plausible
mapping or translation to a knowledge representa-
tion given the provided evidences obtained from the

features in a sentence and a previous sentence, the
(probabilistic) outcome of the semantic role labeler
and the (probabilistic) outcome of the coreference
resolver, and to model dependencies between the
variables of the network. This Bayesian framework
for evidence combination makes it possible to re-
cover from errors made by the semantic role labeler
or coreference resolver.

Our most striking finding was that the text leaves
a large part of its content implicit, but this content is
actually needed for a truthful rendering of the text in
the virtual world. For instance, often the action words
used in the story were more abstract than the actions
defined by the graphical engine (e.g., “take care” in
reference to a knife, where actually “sharpen” was
meant). Sometimes using word similarities based on
embeddings (Mikolov et al., 2013) helped in such
cases, but more often the meaning of such abstract
words depends on the specific previous discourse,
which is not captured by general embeddings. Adapt-
ing the embeddings, which are trained on a large
corpus to the specific discourse context as is done
in (Deschacht et al., 2012) is advisable. Moreover,
certain content was not mentioned in the text, but a
human could infer. For example, given “Tuk and his
father tied the last things on the sled and then set off,”
a human would infer that the two people most likely
sat down on the sled. Such knowledge is important
for rendering a believable 3D interactive story, but
can hardly be inferred from text data, instead need-
ing grounding in the real world, perhaps captured by
other modalities, such as images.

Another problem we encountered was scalability.
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If the goal is to allow users to bring any text “to
life”, then all of the parsing and translation to the 3D
world needs to happen online. Although the compu-
tational complexity when the machine comprehends
the story is reduced by limiting the possible actions
and actors (e.g., characters, objects) to the ones men-
tioned in the story and the ones inferred, parsing of
the story is still slow. But even with the genetic al-
gorithm inspired parallel processing we introduced,
our graphical model is still too slow to operate in an
online environment. Instead of considering parallel
processing, it would be interesting to give priority
to the most likely interpretation based on event lan-
guage models (Do et al., Under review).

Finally, while working closely with researchers in
3D interactive storytelling, we learned that there is lit-
tle consistency across designers of graphical worlds
on the structure of basic actions, actors, objects, etc.
Thus a model that has been trained to translate stories
that take place in one digital world will produce in-
valid representations for other digital worlds. Gener-
alizing across different digital worlds is a challenging
but interesting future direction. Proposing standards
could make a major impact in this field, and in addi-
tion could promote cross-modal translation between
language and graphical content. We witness an in-
creasing interest in easy to program languages for
robotics that operate in virtual worlds (e.g., Mind-
storms, ROBOTC) and in formalizing knowledge
of virtual words by ontologies (Mezati et al., 2015).
Although valuable, such approaches translate yet to
another human made language. If we really want
to test language understanding in a real-life setting,
translation to perceptual images and video might be
more suited, but more difficult to realize unless we
find a way of composing realistic images and video
out of primitive visual patterns.
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Abstract

Linguistic style conveys the social context in
which communication occurs and defines par-
ticular ways of using language to engage with
the audiences to which the text is accessi-
ble. In this work, we are interested in the
task of stylistic transfer in natural language
generation (NLG) systems, which could have
applications in the dissemination of knowl-
edge across styles, automatic summarization
and author obfuscation. The main challenges
in this task involve the lack of parallel train-
ing data and the difficulty in using stylistic
features to control generation. To address
these challenges, we plan to investigate neural
network approaches to NLG to automatically
learn and incorporate stylistic features in the
process of language generation. We identify
several evaluation criteria, and propose man-
ual and automatic evaluation approaches.

1 Introduction

Linguistic style is an integral aspect of natural lan-
guage communication. It conveys the social context
in which communication occurs and defines particu-
lar ways of using language to engage with the audi-
ences to which the text is accessible.

In this work, we examine the task of stylistic
transfer in NLG systems; that is, changing the style
or genre of a passage while preserving its seman-
tic content. For example, given texts written in one
genre, such as Shakespearean texts, we would like a
system that can convert it into another, say, that of
simple English Wikipedia. Currently, most knowl-
edge available in textual form is locked into the par-

ticular data collection in which it is found. An auto-
matic stylistic transfer system would allow that in-
formation to be more generally disseminated. For
example, technical articles could be rewritten into a
form that is accessible to a broader audience. Al-
ternatively, stylistic transfer could also be useful for
security or privacy purposes, such as in author ob-
fuscation, where the style of the text is changed in
order to mask the identity of the original author.

One of the main research challenges in stylistic
transfer is the difficulty in using linguistic features
to signal a certain style. Previous work in computa-
tional stylistics have identified a number of stylistic
cues (e.g., passive vs active sentences, repetitive us-
age of pronouns, ratio of adjectives to nouns, and
frequency of uncommon nouns). However, it is un-
clear how a system would transfer this knowledge
into controlling realization decisions in an NLG sys-
tem. A second challenge is that it is difficult and ex-
pensive to obtain adequate training data. Given the
large number of stylistic categories, it seems infeasi-
ble to collect parallel texts for all, or even a substan-
tial number of style pairs. Thus, we cannot directly
cast this as a machine translation problem in a stan-
dard supervised setting.

Recent advances in deep learning provide an op-
portunity to address these problems. Work in im-
age recognition using deep learning approaches has
shown that it is possible to learn representations that
separate aspects of the object from the identity of
the object. For example, it is possible to learn fea-
tures that represent the pose of a face (Cheung et al.,
2014) or the direction of a chair (Yang et al., 2015),
in order to generate images of faces/chairs with new
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poses/directions. We plan to design similar recurrent
neural network architectures to disentangle the style
from the semantic content in text. This setup not
only requires less hand-engineering of features, but
also allows us to frame stylistic transfer as a weakly
supervised problem without parallel data, in which
the model learns to disentangle and recombine la-
tent representations of style and semantic content in
order to generate output text in the desired style.

In the rest of the paper, we discuss our plans to
investigate stylistic transfer with neural networks in
more detail. We will also propose several evaluation
criteria for stylistic transfer and discuss evaluation
methodologies using human user studies.

2 Related Work

Capturing stylistic variation is a long-standing prob-
lem in NLP. Sekine (1997) and Ratnaparkhi (1999)
consider the different categories in the Brown cor-
pus to be domains. These include general fiction,
romance and love story, press: reportage. Gildea
(2001), on the other hand, refers to these categories
as genres. Different NLP sub-communities use the
terms domain, style and genre to denote slightly dif-
ferent concepts (Lee, 2001). From a linguistic point
of view, domains could be thought of as broad sub-
ject fields, while genre can be seen as a category as-
signed on the basis of external criteria such as in-
tended audience, purpose, and activity type. Style
conveys the social context in which communication
occurs and define particular ways of using language
to engage with the audiences to which the text is ac-
cessible. Some linguists would argue that style and
domain are two attributes characterizing genre (e.g.,
(Lee, 2001)) while others view genre and domain as
aspects representing style (e.g., (Moessner, 2001)).

The notion of genre has been the focus of related
NLP tasks. In genre classification (Petrenz and Web-
ber, 2011; Sharoff et al., 2010; Feldman et al., 2009),
the task is to categorize the text into one of several
genres. In author identification (Houvardas and Sta-
matatos, 2006; Chaski, 2001), the goal is to iden-
tify the author of a text, while author obfuscation
(Kacmarcik and Gamon, 2006; Juola and Vescovi,
2011) consists in modifying aspects of the texts so
that forensic analysis fails to reveal the identity of
the author.

In (Pavlick and Tetreault, 2016), an analysis of
formality in online written communication is pre-
sented. A set of linguistic features is proposed based
on a study of human perceptions of formality across
multiple genres. Those features are fed to a statis-
tical model that classifies texts as having a formal
or informal style. At the lexical level, Brooke et al.
(2010) focused on constructing lexicons of formality
that can be used in tasks such as genre classification
or sentiment analysis. In (Inkpen and Hirst, 2004), a
set list of near-synonyms is given for a target word,
and one synonym is selected based on several types
of preferences, e.g., stylistic (degree of formality).
We aim to generalize this work beyond the lexical
level.

A similar work is that of Xu et al. (2012) which
propose using phrase-based machine translation sys-
tems to carry out paraphrasing while targeting a par-
ticular writing style. Since the problem is framed
as a machine translation problem, it relies on par-
allel data where the source “language” is the origi-
nal text to be paraphrased–in that case, Shakespeare
texts–and the “translation” is the equivalent mod-
ern English version of those Shakespeare texts. Ac-
cordingly, for each source sentence, there exists a
parallel sentence having the target style. They also
present some baselines which do not make use of
parallel sentences and instead rely on manually com-
piled dictionaries of expressions commonly found in
Shakespearean English. In a more recent work, Sen-
nrich et al. (2016) carry out translation from English
to German while controlling the degree of polite-
ness. This is done in the context of neural machine
translation by adding side constraints. Specifically,
they mark up the source language of the training data
(in this case, English) with a feature that encodes the
use of honorifics seen in the target language (in this
case, German). This allows them to control the hon-
orifics that are produced at test time.

3 Proposed Approach

Recently, RNN-based models have been success-
fully used in machine translation (Cho et al., 2014b;
Cho et al., 2014a; Sutskever et al., 2014) and di-
alogue systems (Wen et al., 2015). Thus, we pro-
pose to use an LSTM-based RNN model based on
the encoder-decoder structure (Cho et al., 2014b)
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to automatically process stylistic nuances instead of
hand-engineering features. The model is a vari-
ant of an autoencoder where the latent representa-
tion has two separate components: one for style
and one for content. The learned stylistic features
would be distinct from the content features and spe-
cific to each style category, such that they can be
swapped between training and testing models to per-
form stylistic transfer. The separation, or disentan-
glement, between stylistic and content features is re-
inforced by modifying the training objective from
(Cho et al., 2014b) that maximizes the conditional
log-likelihood (of the output given the input). In-
stead, our model is trained to maximize a training
objective that also includes a cross-covariance term
dedicated for the disentanglement.

At a high level, our proposed approach consists of
the following steps:

1. For a given style transfer task between two
styles A and B, we will first collect relevant cor-
pora for each of those styles.

2. Next, we will train the model on each of the
styles (separately). This would allow the sys-
tem to disentangle the content features from the
stylistic features. At the end of this step, we
will have (separately) the features that charac-
terize styles A and those that characterize style
B.

3. During the testing phase, for a transfer, say,
from style A to style B, the system is fed texts
having style A while the stylistic latent vari-
ables of the model are fixed to be those learned
for style B (from the previous step). This would
force the model to generate text using style B.
For a transfer from style B to A, the system is
fed texts having style B and we fix the stylistic
latent variables of the model to be those learned
for style A.

We intend to apply the model to datasets with rea-
sonably differing styles between training and test-
ing. Examples include the complete works of Shake-
speare1, the Wikpedia Kaggle dataset 2, the Oxford

1http://norvig.com/ngrams/shakespeare.txt
2https://www.kaggle.com/c/wikichallenge/Data

Text Archive (literary texts) 3, and Twitter data. A
future research direction would be to further im-
prove the system to process texts that have differing
but similar styles.

4 Evaluation

We first present a simple example that shows the
input and output of the system during the testing
phase. Assuming the system was trained on texts
taken from Simple English Wikipedia, it would learn
the stylistic features that are particular to that genre.
During the testing phase, if we feed the system the
following sentence taken from Shakespeare’s play
As You Like It (Act 1, Scene 1):

As I remember, Adam, it was upon this
fashion bequeathed me by will but poor
a thousand crowns, and, as thou sayest,
charged my brother on his blessing to
breed me well. And there begins my sad-
ness.

we expect the system to produce a version that might
be similar to the following:

I remember, Adam, that’s exactly why my
father only left me a thousand crowns in
his will. And as you know, my father asked
my brother to make sure that I was brought
up well. And that’s where my sadness be-
gins.

We see three main criteria for the evaluation of
stylistic transfer systems: soundness (i.e., the gen-
erated texts being textually entailed with the orig-
inal version), coherence (e.g., free of grammatical
errors, proper word usage, etc.), and effectiveness
(i.e., the generated texts actually match the desired
style). We propose to evaluate systems using both
human and automatic evaluations. Snippets of orig-
inal and generated texts will be sampled and re-
viewed by human evaluators, who will judge them
on these three criteria using Likert ratings. This type
of evaluation technique is also used in related tasks
such as to evaluate author obfuscation systems (Sta-
matatos et al., 2015). A future research direction is

3https://ota.ox.ac.uk/
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to investigate automatic evaluation measures simi-
lar to ROUGE and BLEU, which compare the con-
tent of the generated text against human-written gold
standards using word or n-gram overlap.

5 Conclusion

We present stylistic transfer as a challenging gener-
ation task. Our proposed research will address chal-
lenges to the task, such as the lack of parallel train-
ing data and the difficulty of defining features that
represent style. We will exploit deep learning mod-
els to extract stylistic features that are relevant to
generation without requiring explicit parallel train-
ing data between the source and the target styles.
We plan to evaluate our methods using human judg-
ments, according to criteria that we propose, derived
from related tasks.
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Abstract

In this paper, we present the concept
of using language groundings for context-
sensitive text prediction using a seman-
tically informed, context-aware language
model. We show initial findings from a
preliminary study investigating how users
react to a communication interface driven
by context-based prediction using a simple
language model. We suggest that the re-
sults support further exploration using a
more informed semantic model and more
realistic context.

Keywords— Grounded language, context sensitive
generation, predictive text

1 Introduction

Advances in natural language and world percep-
tion have led to a resurgence of work on the lan-
guage grounding problem. Most work to date has
focused on learning a model of language describ-
ing the world, then using it to understand novel
language, e.g., following directions, (Artzi and
Zettlemoyer, 2013; MacGlashan et al., 2015) or
learning to understand commands in a space of
plans or commands (Misra et al., 2014).

Generating language based on context is ar-
guably more difficult, although the additional
information provided by context makes this a
promising area for natural language generation
in general. There is a growing body of work
on context-based generation in limited domains,
such as sportscasting (Chen and Mooney, 2010),

asking questions (Tellex et al., 2014), or gener-
ating spatial descriptions or narratives (Huo and
Skubic, 2016; Rosenthal et al., 2016). In order
to provide communication suggestions for users,
it is not necessary to solve the problem of ar-
bitrary natural language generation. Instead,
the system must be able to provide predictions
that support a predictive language interface, in
which a user is continuously provided with a set
of suggestions for possible speech.

We propose an approach, in which a joint
linguistic/perceptual model is used to drive
a predictive text tool, targeting augmentative
and alternative communication (AAC) tools for
wheelchair users with motor apraxia of speech.
We propose to use the speaker’s environment as
context to make more relevant predictions.

Sensed context will be used to drive the prob-
ability of predictions and reduce ambiguity; for
example, while “button” may refer to a fastener
for clothing or a control for an electronic device,
someone in front of an elevator is probably re-
ferring to the latter, which in turn focuses what
they are likely to want to say. Instrumented
wheelchairs can capture a large corpus of lan-
guage paired with context to support develop-
ment of a user-specific model trained before and
during degradation of the ability to speak.

This paper discusses a pilot study using a
preliminary language model with simulated con-
text. Participants responded to scenarios using
a prototype interface to communicate. Using re-
sults and observations from this user study, we
hypothesize that context-based predictive lan-
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guage can improve usability of a predictive text
interface and represents a promising direction
for future work.

2 Approach

In grounded language acquisition, a combination
of language and physical context are used to de-
velop a language model for understanding future
utterances. (Mooney, 2008) The context can be
physical (depending on physical sensors, some-
times on a robot), (Fasola and Mataric, 2014)
a simulation of some physical context, (Chen
and Mooney, 2011) or more abstract descrip-
tions. (Kress-Gazit and Fainekos, 2008) We pro-
pose to collect and learn from a similar set of
data, with a language model targeting genera-
tion rather than understanding.

2.1 Corpus Collection

In order to learn a model of contextualized
speech, it is necessary to collect both spoken lan-
guage and context describing the environment
when communication is occurring. We propose
to perform this collection in three stages, from
general to user-focused, as we build a better cor-
pus and model.

(1) Crowdsourcing To gain a better understand-
ing of how people may respond in different sit-
uations, Mechanical Turk will be leveraged to
solicit responses from users about various sce-
narios. Each scenario presents a speaker with
text describing a certain situation (and images
when appropriate) and asked what they would
say. This provides us with an initial corpus of
typed responses to known scenarios. The pre-
liminary study (see Section 3) was performed
on a small-scale crowdsourced corpus.

(2) Telepresence For the second stage, we will
use a telepresence robot (see Figure 1). The
Beam robot provides insight into situations that
may require assistance (for example, having the
robot travel between floors of a building via the
elevator, or delivering a package from one office
to another). The Beam’s existing video cam-
eras and microphone/speaker interactions can
be captured to provide a time-aligned corpus.

Figure 1: Telepresence-based context and language.

(left) Bystanders push a button in response to a ver-

bal request from the robot. (right) Video feed from the

robot’s sensors. In this example, the most visually salient

elements of context are the elevator and people.

(3) End Users When a sufficiently robust model
exists, we will instrument wheelchairs of pro-
posed end users (e.g., ALS patients). This sen-
sor array must be unobtrusive and relatively low
power. This will include one or more time-
of-flight Kinect 2 RGB-D cameras, an omni-
directional powered microphone, and a high-
resolution camera.

2.2 Context Interpretation

While any feature of as environment or actions
may provide important context, we will focus
on gathering sensor observations describing the
most salient elements of the environment. We
expect this to be primarily: 1) People in the
environment, who will circumscribe the set of
things the user is likely to want to say; 2) Ob-
jects in the environment, including fixed objects
such as elevators; and 3) The environment itself.

Identifying elements of a scene is a difficult
problem; initial efforts will use crowdsourcing or
other low-cost, high-speed annotation of sensor
data, but the broader intention is to use recent
work on automatic identification of important
visual elements (Carl Vondrick, 2016) and se-
mantic labeling. (Anand et al., 2012)

Existing efforts on building language models
from observations collect and train on corpora
that are targeted to a particular scenario. Be-
cause we are gathering ongoing speech in a va-
riety of settings, we are trying to learn from
non-targeted speech, where the connection be-
tween the language and the sensor observations
may be tenuous or non-existent. (For example,
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a person may be talking about medication side
effects while navigating.) Gathering data over
a long period should allow irrelevant context to
be weighted down in the learned model.

2.3 Language Learning

Our approach to text prediction inverts an exist-
ing model (Matuszek et al., 2013), in which the
authors trained a joint model of language and
context, and then treated language as a query
against a perceived world state. In that work,
the goal is to find a set of groundings in the
world referred to by language x. The induced
model is then P (G|x, C), given data of the form
D = {(xi, Ci, Gi)|i = 1...n}, where each exam-
ple i contains a sentence xi, the world context
Ci, and the actual referent (grounding) Gi.

In this work, we treat perceptual context as
‘input’ and language as ‘output.’ Given a sim-
ilar dataset, the model to be induced is then
P (x|G, C). Our intention is to learn a simi-
lar model, incorporating semantic parsing and
perceptual information and giving a probability
distribution over possible generated outputs, as
done elsewhere (FitzGerald et al., 2013). How-
ever, our initial experiments were performed us-
ing an n-gram prediction model.

The generation goal is a list of predictions
from which a user can select. Since generated
predictions can range in complexity from words
to full sentences, generation strategies based on
certainty can be applied, where more complex
constructs are generated in higher-certainty sit-
uations. In this setting, providing a top-n list
of results is useful, reducing the need for finding
the single best generation.

3 Preliminary Study

For the preliminary user study, a set of four
scenarios were shown to a group of fifteen par-
ticipants. The scenarios asked each participant
what they would say in each of four situations:
a social interaction; answering questions from a
doctor; asking someone to push an elevator but-
ton; and asking someone to retrieve a water bot-
tle. The context was described to participants
in text, simplifying out the question of how to

represent real-world context. (See box for an
example scenario and some responses.)

You have been having stomach pains after eating
each day for the past week. You are visiting your
doctor, who asks how you are doing. What is your
response?

– “My stomach has been bothering me after I eat.”

– “My stomach hurts whenever I eat.”

– “I’m ok but I’ve been having stomach issues.”

– “Good aside from the gut pain I’m having after eating.”

– “I have been having stomach pains after eating each day
for the past week.”

3.1 Prediction Experiments

An interface was developed to test four differ-
ent methods for generating predictions, of which
three are novel to this work. These meth-
ods vary in the length of generated predictions:
users were presented with combinations of sin-
gle words, short phrases, or full sentences (see
Table 1). A simulated qwerty keyboard was
available for fallback text entry. A new pool of
participants were asked to use the interface to
communicate responses to the same four scenar-
ios, rather than typing responses on a keyboard.

In order to generate a predictive language
model that is context driven based on these
scenarios, n-gram models were constructed us-
ing the Presage predictive text entry program1.
Four different prediction methods were tested
using this model (see Table 1).

Method Corpus W. P. S.

StdEng
Standard
English

X X
ContWord Contextual X
Context Contextual X X
ContSent Contextual X X X

Table 1: The four text prediction methods tested, which

vary in whether they generate words (W), Phrases (P),

and sentences (S), and whether they are based on an ex-

isting English corpus or a preliminary contextual corpus.

For each participant/scenario pair, the num-
ber of selections (clicks) necessary to communi-
cate was recorded. After each participant com-
pleted the tasks, they filled out a survey about
the usability of the interface, how effectively

1http://presage.sourceforge.net, 2016-08-01
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they felt they were able to communicate, and
the perceived speed of each entry method.

Figure 2: The prototype interface used in the prelim-

inary study. The interface provides various options for

text selection including full sentences and a virtual key-

board.

This pilot supported the hypothesis that users
communicate faster with context-sensitive pre-
diction (Figure 3); of the most-comparable
methods, Context was faster than StdEng.
While communication is fastest when complete
sentences are shown, the users did not qualita-
tively prefer this option, underscoring the im-
portance of personalized communication.

Figure 3: Participants’ qualitative perception of the rel-

ative speed of different methods (green), compared to

the number of selections actually used (blue). Perceived

speed is shown as a weighted average of non-numeric

rankings, and aligns closely with the number of selections

required to complete a task.

4 Discussion and Future Work

We intend to pursue further experiments using
more complete language and grounding mod-
els. For this, some simplifications must be ad-

dressed. The most immediate are the best way
of modeling language and incorporating real-
world context; this is necessary to know whether
building a semantically informed, context-aware
prediction model will present large gains in accu-
racy and acceptability. We believe this work will
be able to contribute to the research community,
providing leads and methods for more intelligent
and usable language models. Nonetheless, while
ambitious, our initial results support the belief
that this approach has promise for text predic-
tion and context-aware generation.
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Abstract

Humans continuously adapt their style and
language to a variety of domains. However, a
reliable definition of ‘domain’ has eluded re-
searchers thus far. Additionally, the notion of
discrete domains stands in contrast to the mul-
tiplicity of heterogeneous domains that hu-
mans navigate, many of which overlap. In or-
der to better understand the change and varia-
tion of human language, we draw on research
in domain adaptation and extend the notion
of discrete domains to the continuous spec-
trum. We propose representation learning-
based models that can adapt to continuous do-
mains and detail how these can be used to in-
vestigate variation in language. To this end,
we propose to use dialogue modeling as a test
bed due to its proximity to language modeling
and its social component.

1 Introduction

The notion of domain permeates natural language
and human interaction: Humans continuously vary
their language depending on the context, in writ-
ing, dialogue, and speech. However, the concept
of domain is ill-defined, with conflicting definitions
aiming to capture the essence of what constitutes
a domain. In semantics, a domain is considered a
“specific area of cultural emphasis” (Oppenheimer,
2006) that entails a particular terminology, e.g. a
specific sport. In sociolinguistics, a domain consists
of a group of related social situations, e.g. all human
activities that take place at home. In discourse a do-
main is a “cognitive construct (that is) created in re-
sponse to a number of factors” (Douglas, 2004) and

includes a variety of registers. Finally, in the context
of transfer learning, a domain is defined as consist-
ing of a feature space X and a marginal probability
distribution P (X) where X = {x1, ..., xn} and xi

is the ith feature vector (Pan and Yang, 2010).

These definitions, although pertaining to different
concepts, have a commonality: They separate the
world in stationary domains that have clear bound-
aries. However, the real world is more ambiguous.
Domains permeate each other and humans navigate
these changes in domain.

Consequently, it seems only natural to step away
from a discrete notion of domain and adopt a con-
tinuous notion. Utterances often cannot be natu-
rally separated into discrete domains, but often arise
from a continuous underlying process that is re-
flected in many facets of natural language: The web
contains an exponentially growing amount of data,
where each document “is potentially its own do-
main” (McClosky et al., 2010); a second-language
learner adapts their style as their command of the
language improves; language changes with time and
with locality; even the WSJ section of the Penn Tree-
bank – often treated as a single domain – contains
different types of documents, such as news, lists of
stock prices, etc. Continuity is also an element of
real-world applications: In spam detection, spam-
mers continuously change their tactics; in sentiment
analysis, sentiment is dependent on trends emerging
and falling out of favor.

Drawing on research in domain adaptation, we
first compare the notion of continuous natural lan-
guage domains against mixtures of discrete domains
and motivate the choice of using dialogue modeling
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as a test bed. We then present a way of representing
continuous domains and show how continuous do-
mains can be incorporated into existing models. We
finally propose a framework for evaluation.

2 Continuous domains vs. mixtures of
discrete domains

In domain adaptation, a novel target domain is tra-
ditionally assumed to be discrete and independent
of the source domain (Blitzer et al., 2006). Other
research uses mixtures to model the target domain
based on a single (Daumé III and Marcu, 2006) or
multiple discrete source domains (Mansour, 2009).
We argue that modeling a novel domain as a mix-
ture of existing domains falls short in light of three
factors.

Firstly, the diversity of human language makes it
unfeasible to restrict oneself to a limited number of
source domains, from which all target domains are
modeled. This is exemplified by the diversity of
the web, which contains billions of heterogeneous
websites; the Yahoo! Directory1 famously contained
thousands of hand-crafted categories in an attempt to
separate these. Notably, many sub-categories were
cross-linked as they could not be fully separated and
websites often resided in multiple categories.

Similarly, wherever humans come together, the
culmination of different profiles and interests gives
rise to cliques, interest groups and niche communi-
ties that all demonstrate their own unique behaviors,
unspoken rules, and memes. A mixture of existing
domains fails to capture these varieties.

Secondly, using discrete domains for soft assign-
ments relies on the assumption that the source do-
mains are clearly defined. However, discrete labels
only help to explain domains and make them in-
terpretable, when in reality, a domain is a hetero-
geneous amalgam of texts. Indeed, Plank and van
Noord (2011) show that selection based on human-
assigned labels fares worse than using automatic do-
main similarity measures for parsing.

Thirdly, not only a speaker’s style and command
of a language are changing, but a language itself
is continuously evolving. This is amplified in fast-
moving media such as social platforms. Therefore,

1https://en.wikipedia.org/wiki/Yahoo!
_Directory

applying a discrete label to a domain merely anchors
it in time. A probabilistic model of domains should
in turn not be restricted to treat domains as indepen-
dent points in a space. Rather, such a model should
be able to walk the domain manifold and adapt to
the underlying process that is producing the data.

3 Dialogue modeling as a test bed for
investigating domains

As a domain presupposes a social component and re-
lies on context, we propose to use dialogue modeling
as a test bed to gain a more nuanced understanding
of how language varies with domain.

Dialogue modeling can be seen as a prototypi-
cal task in natural language processing akin to lan-
guage modeling and should thus expose variations
in the underlying language. It allows one to observe
the impact of different strategies to model variation
in language across domains on a downstream task,
while being inherently unsupervised.

In addition, dialogue has been shown to exhibit
characteristics that expose how language changes
as conversation partners become more linguistically
similar to each other over the course of the conver-
sation (Niederhoffer and Pennebaker, 2002; Levitan
et al., 2011). Similarly, it has been shown that the
linguistic patterns of individual users in online com-
munities adapt to match those of the community they
participate in (Nguyen and Rosé, 2011; Danescu-
Niculescu-Mizil et al., 2013).

For this reason, we have selected reddit as a
medium and compiled a dataset from large amounts
of reddit data. Reddit comments live in a rich en-
vironment that is dependent on a large number of
contextual factors, such as community, user, conver-
sation, etc. Similar to Chen et al. (2016), we would
like to learn representations that allow us to disen-
tangle factors that are normally intertwined, such as
style and genre, and that will allow us to gain more
insight about the variation in language. To this end,
we are currently training models that condition on
different communities, users, and threads.

4 Representing continuous domains

In line with past research (Daumé III, 2007; Zhou
et al., 2016), we assume that every domain has an
inherent low-dimensional structure, which allows its
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Figure 1: Transforming a discrete source domain subspace S

into a target domain subspace T with a transformation W .

projection into a lower dimensional subspace.
In the discrete setting, we are given two do-

mains, a source domain XS and a target domain
XT . We represent examples in the source domain
XS as xS

1 , · · · , xS
nS
∈ Rd where xS

1 is the i-th
source example and nS is number of examples in
XS . Similarly, we have nT target domain examples
xT

1 , · · · , xT
nT
∈ Rd.

We now seek to learn a transformation W that al-
lows us to transform the examples in the XS so that
their distribution is more similar to the distribution
of XT . Equivalently, we can factorize the transfor-
mation W into two transformations A and B with
W = ABT that we can use to project the source and
target examples into a joint subspace.

We assume that XS and XT lie on lower-
dimensional orthonormal subspaces, S, T ∈ RD×d,
which can be represented as points on the Grassman
manifold, G(d, D) as in Figure 1, where d� D.

In computer vision, methods such as Subspace
Alignment (Fernando et al., 2013) or the Geodesic
Flow Kernel (Gong et al., 2012) have been used
to find such transformations A and B. Similarly,
in natural language processing, CCA (Faruqui and
Dyer, 2014) and Procrustes analysis (Mogadala and
Rettinger, 2016) have been used to align subspaces
pertaining to different languages.

Many recent approaches using autoencoders
(Bousmalis et al., 2016; Zhou et al., 2016) learn such
a transformation between discrete domains. Sim-
ilarly, in a sequence-to-sequence dialogue model
(Vinyals and V. Le, 2015), we can not only train

T3
G(d,D)

S

- “Hey, did you
hear about the

Beyonce
concert?”

- “Yeah, I’m so 
turned up to go 

with my
bae.”

- “Hey, did you
hear about the

Beyonce
concert?”

- “Yess, RT RT 
RT.  So excited
to go with my

boyfriend.”

2014 2015 2016

t

T2T1

- “Hey, did you
hear about the

Beyonce
concert?”

- “Yass, I’m ex-
cited AF to go 
with my boy-

friend.”

Wt3
Wt2Wt1

Figure 2: Transforming a source domain subspace S into con-

tinuous domain subspaces Tt with a temporally varying trans-

formation Wt.

the model to predict the source domain response, but
also – via a reconstruction loss – its transformations
to the target domain.

For continuous domains, we can assume that
source domain XS and target domain XT are not in-
dependent, but that XT has evolved from XS based
on a continuous process. This process can be in-
dexed by time, e.g. in order to reflect how a lan-
guage learner’s style changes or how language varies
as words rise and drop in popularity. We thus seek
to learn a time-varying transformation Wt between
S and T that allows us to transform between source
and target examples dependent on t as in Figure 2.

Hoffman et al. (2014) assume a stream of ob-
servations z1, · · · , znt ∈ Rd drawn from a contin-
uously changing domain and regularize Wt by en-
couraging the new subspace at t to be close to the
previous subspace at t − 1. Assuming a stream of
(chronologically) ordered input data, a straightfor-
ward application of this to a representation-learning
based dialogue model trains the parts of the model
that auto-encode and transform the original message
for each new example – possibly regularized with a
smoothness constraint – while keeping the rest of the
model fixed.

This can be seen as an unsupervised variant of
fine-tuning, a common neural network domain adap-
tation baseline. As our learned transformation con-
tinuously evolves, we run the risk associated with
fine-tuning of forgetting the knowledge acquired
from the source domain. For this reason, neural
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network architectures that are immune to forgetting,
such as the recently proposed Progressive Neural
Networks (Rusu et al., 2016) are appealing for con-
tinuous domain adaptation.

While time is the most obvious dimension along
which language evolves, other dimensions are possi-
ble: Geographical location influences dialectal vari-
ations as in Figure 3; socio-economic status, politi-
cal affiliation as well as a domain’s purpose or com-
plexity all influence language and can thus be con-
ceived as axes that span a manifold for embedding
domain subspaces.

5 Investigating language change

A continuous notion of domains naturally lends it-
self to a diachronic study of language. By look-
ing at the representations produced by the model
over different time steps, one gains insight into the
change of language in a community or another do-
main. Similarly, observing how a user adapts their
style to different users and communities reveals in-
sights about the language of those entities.

Domain mixture models use various domain sim-
ilarity measures to determine how similar the lan-
guages of two domains are, such as Renyi diver-
gence (Van Asch and Daelemans, 2010), Kullback-
Leibler (KL) divergence, Jensen-Shannon diver-
gence, and vector similarity metrics (Plank and van

Noord, 2011), as well as task-specific measures
(Zhou et al., 2016).

While word distributions have been used tradi-
tionally to compare domains, embedding domains
in a manifold offers the possibility to evaluate the
learned subspace representations. For this, cosine
similarity as used for comparing word embeddings
or KL divergence as used in the Variational Autoen-
coder (Kingma and Welling, 2013) are a natural fit.

6 Evaluation

Our evaluation consists of three parts for evaluating
the learned representations, the model, and the vari-
ation of language itself.

Firstly, as our models produce new representa-
tions for every subspace, we can compare a snapshot
of a domain’s representation after every n time steps
to chart a trajectory of its changes.

Secondly, as we are conducting experiments on
dialogue modeling, gold data for evaluation is read-
ily available in the form of the actual response. We
can thus train a model on reddit data of a certain pe-
riod, adapt it to a stream of future conversations and
evaluate its performance with BLEU or another met-
ric that might be more suitable to expose variation in
language. At the same time, human evaluations will
reveal whether the generated responses are faithful
to the target domain.

Finally, the learned representations will allow us
to investigate the variations in language. Ideally, we
would like to walk the manifold and observe how
language changes as we move from one domain to
the other, similarly to (Radford et al., 2016).

7 Conclusion

We have proposed a notion of continuous natural
language domains along with dialogue modeling as
a test bed. We have presented a representation
of continuous domains and detailed how this rep-
resentation can be incorporated into representation
learning-based models. Finally, we have outlined
how these models can be used to investigate change
and variation in language. While our models allow
us to shed light on how language changes, models
that can adapt to continuous changes are key for
personalization and the reality of grappling with an
ever-changing world.
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