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Abstract
A probabilistic or weighted grammar implies
a posterior probability distribution over possi-
ble parses of a given input sentence. One often
needs to extract information from this distri-
bution, by computing the expected counts (in
the unknown parse) of various grammar rules,
constituents, transitions, or states. This re-
quires an algorithm such as inside-outside or
forward-backward that is tailored to the gram-
mar formalism. Conveniently, each such al-
gorithm can be obtained by automatically dif-
ferentiating an “inside” algorithm that merely
computes the log-probability of the evidence
(the sentence). This mechanical procedure
produces correct and efficient code. As for
any other instance of back-propagation, it can
be carried out manually or by software. This
pedagogical paper carefully spells out the con-
struction and relates it to traditional and non-
traditional views of these algorithms.

1 Introduction

The inside-outside algorithm (Baker, 1979) is a
core method in natural language processing. Given
a sentence, it computes the expected count of each
possible grammatical substructure at each position
in the sentence. Such expected counts are commonly
used (1) to train grammar weights from data, (2) to
select low-risk parses, and (3) as soft features that
characterize sentence positions for other NLP tasks.

The algorithm can be derived directly but is gen-
erally perceived as tricky. This paper explains how it
can be obtained simply and automatically by back-
propagation—more precisely, by differentiating the
inside algorithm. In the same way, the forward-
backward algorithm (Baum, 1972) can be gotten by
differentiating the backward algorithm.

Back-propagation is now widely known in the
natural language processing and machine learning
communities, thanks to the recent surge of interest

in neural networks. Thus, it now seems useful to
call attention to its role in some of NLP’s core algo-
rithms for structured prediction.

1.1 Why the connection matters
The connection is fundamental. However, in the
present author’s experience, it is not as widely
known as it should be, even among experienced re-
searchers in this area. Other pedagogical presenta-
tions treat the inside-outside algorithm as if it were
sui generis within NLP, deriving it “directly” as
a challenging dynamic programming method that
sums over exponentially many parses. That treat-
ment follows the original papers (Baker, 1979; Je-
linek, 1985; see Lari and Young, 1991 for history).
While certainly valuable, it ignores the point that the
algorithm is working with a log-linear (exponential-
family) distribution. All such distributions share the
property that a certain gradient is a vector of ex-
pected feature counts. The inside-outside algorithm
can be viewed as following a standard recipe—
back-propagation—for computing this gradient.

That insight is practically useful when deriv-
ing new algorithms. The original inside algorithm
applies to probabilistic context-free grammars in
Chomsky Normal Form. However, other inside al-
gorithms are frequently constructed for other pars-
ing strategies or other grammar formalisms (see sec-
tion 8 for examples). It is very handy that these
can be algorithmically differentiated to obtain the
corresponding inside-outside algorithms. The core
of this paper (section 5) demonstrates by example
how to do this manually, by working through the
derivation of standard inside-outside. Alternatively,
one can implement one’s new inside algorithm using
a software framework that supports automatic dif-
ferentiation in a general-purpose programming lan-
guage (see www.autodiff.org) or a neural net-
work (e.g., Bergstra et al., 2010)—hopefully without
too much overhead. Then the rest comes for free.
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Note that we use the name “inside-outside” (or
“forward-backward”) to denote just an algorithm
that computes certain expected counts. Such an
algorithm runs an inside pass and then an outside
pass, and then combines their results. The resulting
counts are broadly useful, as we noted at the start
of the paper (see section 4 for details). Thus, we
use “inside-outside” narrowly to mean computing
these counts. We do not use it to refer to the larger
method that computes the counts repeatedly in order
to iteratively reestimate grammar parameters: we
call that method by its generic name, Expectation-
Maximization (section 4).

1.2 Contents of the paper
After concisely stating the formal setting (section 2)
and the inside algorithm (section 3), we discuss the
expected counts, their uses, and their relation to the
gradient (section 4). Finally, we show how to differ-
entiate the inside algorithm to obtain the new algo-
rithm that computes this gradient (section 5).

For readers who are using this paper to learn the
algorithms, section 6 gives interpretations of the β
and α quantities that arise and relates them to the
traditional dynamic programming presentation.

As a bonus, section 7 then offers a supplementary
perspective. Here the inside algorithm is presented
as normalizing any weighted parse forest and, fur-
ther, converting it into a PCFG that can be sampled
from. The inside-outside algorithm is then explained
as computing this sampler’s probabilities of hitting
various anchored constituents and rules. Similarly,
the backward algorithm can be regarded as normal-
izing a weighted “trellis” graph and, further, con-
verting it into a non-stationary Markov model; the
forward-backward algorithm computes hitting prob-
abilities in this model.

Section 8 discusses other settings where the same
approach can be applied, starting with the forward-
backward algorithm for Hidden Markov Models.
Two appendices work through some additional vari-
ants of the algorithms.

1.3 Related work
Other papers have also provided significant insight
into this subject. In particular, Goodman (1998,
1999) unifies most parsing algorithms as semiring-
weighted theorem proving, with discussion of both

inside and outside computations. Klein and Man-
ning (2001) regard the resulting proof forests—
traditionally called parse forests—as weighted hy-
pergraphs. Li and Eisner (2009) show how to com-
pute various expectations and gradients over such
hypergraphs, by techniques including the inside-
outside algorithm, and clarify the “wonderful” con-
nection between expected counts and gradients. Eis-
ner et al. (2005, section 5) observe without de-
tails that for real-weighted proof systems, the ex-
pected counts of the axioms (in our setting, gram-
mar rules) can be obtained by applying back-
propagation. They detail two ways to apply back-
propagation, noting inside-outside as an example.

Graphical models are like context-free grammars
in that they also specify log-linear distributions over
structures.1 Darwiche (2003) shows how to com-
pute marginal posteriors (i.e., expected counts) in a
graphical model by the same technique given here.

2 Definitions and Notation

Assume a given alphabet Σ of terminal symbols
and a disjoint finite alphabet N of nonterminal
symbols that includes the special symbol ROOT.

A derivation T is a rooted, ordered tree whose
leaves are labeled with elements of Σ and whose in-
ternal nodes are labeled with elements of N . We
say that the internal node t uses the production rule
A→ σ if A ∈ N is the label of t and σ ∈ (Σ∪N )∗

is the sequence of labels of its children (in order).
We denote this rule by Tt.

In this paper, we focus mainly on derivations in
Chomsky Normal Form (CNF)—those for which
each rule Tt has the form A → B C or A → w for
some A,B,C ∈ N and w ∈ Σ. We write R for
the set of all possible rules of these forms, andR[A]
for the subset with A to the left of the arrow. How-
ever, the following definitions generalize naturally
to other choices ofR.

A weighted context-free grammar (WCFG) in
Chomsky Normal Form is a function G : R → R≥0.
Thus, G assigns a weight to each CNF rule. We ex-
tend it to assign a weight to each CNF derivation, by

1Indeed, the two formalisms can be unified under a broader
formalism such as case-factor diagrams (McAllester et al.,
2004) or probabilistic programming (Sato, 1995; Sato and
Kameya, 2008).
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defining G(T ) =
∏
t∈T G(Tt), where t ranges over

the internal nodes of T .
A probabilistic context-free grammar (PCFG)

is a WCFG G in which (∀A ∈ N )
∑

R∈R[A] G(R) =
1. In this case, G(T ) is a probability measure over
all derivations.2

The CNF derivation T is called a parse of w ∈
Σ∗ if ROOT is the label of its root and w is its fringe,
i.e., the sequence of labels of its leaves. We refer to
w as a sentence and denote its length by n; T (w)
denotes the set of all parses of w.

The triple 〈A, i, k〉 is mnemonically written asAki
and pronounced as “A from i to k.” We say that a
parse of w uses the anchored nonterminal Aki or
the anchored rule Aki → Bj

i C
k
j or Akk−1 → wk if

it contains the respective configurations

A

wi+1 . . . wk

A

C

wj+1 . . . wk

B

wi+1 . . . wj

A

wk

3 The Inside Algorithm

The inside algorithm (Algorithm 1) returns the to-
tal weight Z of all parses of sentence w accord-
ing to a WCFG G. It is the natural extension to
weighted CFGs of the CKY algorithm, a recognition
algorithm for unweighted CFGs in Chomsky Nor-
mal Form (Kasami, 1965; Younger, 1967).

The importance of Z is that a probability distribu-
tion over the parses T ∈ T (w) is given by

p(T | w) def= G(T )/Z (1)

When G is a PCFG representing a prior distribution
on parses T , (1) is its posterior after observing the
fringe w. When G is a WCFG, (1) directly defines a
conditional distribution on parses.
Z is a sum of exponentially many products, since
|T (w)| is exponential in n = |w|. Fortunately,
many of the sub-products are shared across multiple
summands, and can be factored out using the dis-
tributive property. This strategy leads to the above

2For this statement to hold even for “non-tight” PCFGs (Chi,
1999), we must consider the uncountable space of all finite and
infinite derivations. That requires equipping this space with an
appropriate σ-algebra and defining the measure G more pre-
cisely.

Algorithm 1 The inside algorithm
1: function INSIDE(G, w)
2: initialize all β[· · · ] to 0
3: for k := 1 to n : . width-1 constituents
4: for A ∈ N :
5: β[Akk−1] += G(A→ wk)

6: for width := 2 to n : . wider constituents
7: for i := 0 to n− width : . start point
8: k := i+ width . end point
9: for j := i+ 1 to k − 1 : . midpoint

10: for A,B,C ∈ N :
11: β[Aki ] += G(A→BC)β[Bj

i ]β[Ckj ]

12: return Z := β[ROOTn0 ]

polynomial-time dynamic programming algorithm,
which interleaves sums and products.

Along the way, the inside algorithm computes
useful intermediate quantities. Each inner weight
β[Aki ] is the total weight of all derivations with root
A and fringe wi+1wi+2 . . . wk. This implies the cor-
rectness of the return value, and is rather easy to es-
tablish by induction on the width k − i.

Note that if a parse contains any 0-weight rules,
then that parse also has weight 0 and so does not
contribute to Z. In effect, such rules and parses are
excluded by G. Such rules can in fact be skipped
at lines 5 and 11, where they clearly have no ef-
fect. This further reduces runtime from O(n3|N |3)
to O(n3|G|), where |G| denotes the number of rules
of nonzero weight.

4 Expected Counts and Derivatives

4.1 The goal of inside-outside

The inside-outside algorithm aims to extract useful
information from the distribution (1). Given a sen-
tence w, it computes the expected count of each
rule R ∈ R in a random parse T drawn from that
distribution:

c(R) def=
∑
T

(
p(T | w)

∑
t∈T

δ(Tt = R)
)

(2)

For example, when G is a PCFG, c(A→ B C) is
the posterior expectation of the number of times that
A expanded as B C while generating the sentence
w. Why are these expected counts useful? As Baker

3



(1979) saw, summing them over all observed sen-
tences constitutes the E step within the Expectation-
Maximization (EM) method (Dempster et al., 1977).
EM adjusts the rule probabilities G to locally maxi-
mize likelihood (i.e., the probability of the observed
sentences under G).

4.2 The log-linear view

Of course, another way to locally maximize likeli-
hood is to follow the gradient of log-likelihood. It
has often been pointed out that EM is related to gra-
dient ascent (e.g., Salakhutdinov et al., 2003; Berg-
Kirkpatrick et al., 2010).

We now observe that (1) is an exponential-family
model, implying a close relationship between ex-
pected counts and this gradient.

When we re-express the distribution (1) in the
standard log-linear form, we see that its natural pa-
rameters are given by θR

def= log G(R) for R ∈ R:

p(T | w) = G(T )/Z

=
1
Z

∏
t∈T
G(Tt) =

1
Z

exp
∑
t∈T

θTt

=
1
Z

exp
∑
R∈R

θR · fR(T ) (3)

Here each fR is a feature function: fR(T ) ∈ N
counts the occurrences of rule R in parse T .

By standard properties of log-linear models,
∂(logZ)/∂θR equals the expectation of fR(T ) un-
der distribution (3). But the latter is precisely the
expected count c(R) that we desire. Thus, expected
counts can be obtained as the gradient of logZ. We
will show in section 5 that this is precisely how the
inside-outside algorithm operates.

4.3 Anchored probabilities

Along the way, the classical inside-outside algo-
rithm finds the expected counts of the anchored
rules. It finds c(A → B C) as

∑
i,j,k c(A

k
i →

Bj
i Ckj ), where c(Aki → Bj

i Ckj ) denotes the ex-
pected count of that anchored rule, or equivalently,
the expected number of times that A → B C is
used at the particular position described by i, j, k. A
simple extension (section 6.3) will find c(Aki ), the
expected count of an anchored constituent.3

3A slower method is c(Ak
i ) =

∑
B,C,j c(A

k
i → Bj

i C
k
j ).

A CNF parse never uses a rule or constituent more
than once at a given position, so an anchored ex-
pected count is always in [0, 1]. In fact, it is the
probability that a random parse uses this anchored
rule or anchored constituent.

These anchored probabilities are independently
useful. They can be used in subsequent NLP tasks
as soft features that characterize each portion of
the sentence by its likely syntactic behavior. If
c(Aki ) = 0.9, then (according to G) the substring
wi+1 . . . wk is probably a constituent of type A. If
also

∑
j c(A

k
i → Bj

i C
k
j ) = 0.75, this A probably

splits into subconstituents B and C.
Even for the parsing task itself, the anchored

probabilities are useful for decoding—that is, se-
lecting a single “best” parse tree T̂ . If the system
will be rewarded for finding correct constituents,
the expected reward of T̂ is the sum of the an-
chored probabilities of the anchored constituents in-
cluded in T̂ . The T̂ that maximizes this sum4 can
be selected by a Viterbi-style algorithm, once all the
anchored probabilities have been computed (Good-
man, 1996; Matsuzaki et al., 2005).

5 Deriving the Inside-Outside Algorithm

5.1 Back-propagation

Section 4.2 showed that the expected counts can be
obtained as the partial derivatives of logZ. How-
ever, we will start by obtaining the partial derivatives
of Z. This will lead to a more standard presentation
of the inside-outside algorithm, exposing quantities
such as the outer weights α that are both intuitive
and useful.

The inside algorithm can be regarded as evalu-
ating an arithmetic circuit that has many inputs
{G(R) : R ∈ R} and one output Z. Each non-input
node of the circuit is a β value, which is defined as a
sum of products of certain other β values and G val-
ues. The circuit’s size and structure are determined
by w. The nested loops in Algorithm 1 simply it-
erate through the nodes of this circuit in a topologi-
cally sorted order, computing the value at each node.

Given any arithmetic circuit that represents a dif-
ferentiable function Z, automatic differentiation
extends it with a new adjoint circuit that computes

4An example of minimum Bayes risk decoding.
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the gradient of Z—that is, the partial derivatives of
the output Z with respect to the inputs.

In the common case of reverse-mode automatic
differentiation (Griewank and Corliss, 1991), the ad-
joint circuit employs a back-propagation strategy
(Werbos, 1974).5 For each node x in the original cir-
cuit (not just the input nodes), the adjoint circuit in-
cludes an adjoint node ðxwhose value is the partial
derivative ∂Z/∂x. Beginning with the obvious fact
that ðZ = 1, the adjoint circuit next computes the
partials of Z with respect to the nodes that directly
influence Z, and then with respect to the nodes that
influence those, gradually working back toward the
inputs. Thus, the earlier x is computed, the later ðx
is computed.

5.2 Differentiating the inside algorithm

Back-propagation is popular for optimizing the pa-
rameters of neural networks, which involve nonlin-
ear functions (LeCun, 1985; Rumelhart et al., 1986).
We do not need to give a full presentation here, be-
cause the inside algorithm’s circuit consists entirely
of multiply-adds. In this simple case, automatic dif-
ferentiation just augments each operation

x += y1 · y2 (4)

with the pair of adjoint operations

ðy1 += ðx · y2 (5)

ðy2 += y1 · ðx (6)

Intuitively, (5) recognizes that increasing y1 by a
small increment ε will increase x by ε · y2, which
in turn increases Z by ðx · ε · y2. This suggests that
ðy1 = ðx · y2. However, increasing y1 may affect
Z through more than just x, since y1 may also feed
into other equations like (4). Differentiability im-
plies that the combined effect of these influences of
y1 on Z is additive as ε→ 0, accounting for the +=
in (5) (which is unrelated to the += in (4)).

This pattern in (4)–(6) extends to three-way prod-
ucts as well. Thus, the key step at line 11 of the
inside algorithm,

β[Aki ] += G(A→ B C)β[Bj
i ]β[Ckj ] (7)

5In cases like ours, where the original circuit has variable
size, it is sometimes referred to as “backprop through structure”
(Williams and Zipser, 1989; Goller and Küchler, 2005).

yields three adjoint summands

ðG(A→ B C) += ðβ[Aki ]β[Bj
i ]β[Ckj ] (8)

ðβ[Bj
i ] += G(A→ B C)ðβ[Aki ]β[Ckj ] (9)

ðβ[Ckj ] += G(A→ B C)β[Bj
i ]ðβ[Aki ] (10)

Similarly, the initialization step in line 5,

β[Akk−1] += G(A→ wk) (11)

yields the single (obvious) adjoint summand

ðG(A→ wk) += ðβ[Akk−1] (12)

Importantly, computing the adjoints increases the
runtime by only a constant factor.

The adjoint of an inner weight, ðβ[· · · ], corre-
sponds to the traditional outer weight, written as
α[· · · ]. We will adopt this notation below. Fur-
thermore, for consistency, we will write ðG(R) as
α[R]—the “outer weight” of rule R.

5.3 The inside-outside algorithm
We need only one more move to derive the inside-
outside algorithm. So far, we have obtained α[R] def=
ðG(R), the partial of Z with respect to G(R) =
exp θR. We log-transform both Z and G(R) to ar-
rive finally at the expected count:

c(R) =
∂ logZ
∂θR

. from section 4.2

=
∂ logZ
∂Z

· ∂Z

∂G(R)
· ∂G(R)
∂θR

. chain rule

= (1/Z) · α[R] · G(R) (13)

The final algorithm appears as Algorithm 2. This
visits all of the inside nodes in a topologically sorted
order by calling Algorithm 1, then visits all of their
adjoints in a topologically sorted order (roughly the
reverse), and finally applies (13).

6 Detailed Discussion

6.1 Relationship to the traditional version
An “off-the-shelf” application of automatic dif-
ferentiation produces efficient code. Indeed, we
would have gotten slightly more efficient code if
we had applied the technique directly to the prob-
lem of section 4.2—finding the gradient of log-
likelihood. This version is shown as Algorithm 3
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Algorithm 2 The inside-outside algorithm
1: procedure INSIDE-OUTSIDE(G, w)
2: Z := INSIDE(G,w) . side effect: sets β[· · · ]
3: initialize all α[· · · ] to 0
4: α[ROOTn0 ] += 1 . sets ðZ = 1
5: for width := n downto 2 : . wide to narrow
6: for i := 0 to n− width : . start point
7: k := i+ width . end point
8: for j := i+ 1 to k − 1 : . midpoint
9: for A,B,C ∈ N :

10: α[A→BC] += α[Aki ]β[Bj
i ]β[Ckj ]

11: α[Bj
i ] += G(A→BC)α[Aki ]β[Ckj ]

12: α[Ckj ] += G(A→BC)β[Bj
i ]α[Aki ]

13: for k := 1 to n : . width-1 constituents
14: for A ∈ N :
15: α[A→ wk] += α[Akk−1]

16: for R ∈ R : . expected rule counts
17: c(R) := α[R] · G(R)/Z

in Appendix A. It computes adjoint quantities of
the form α

Z [x] = ∂(logZ)/∂x rather than α[x] =
∂Z/∂x. As a result, it divides once by Z at line 4,
whereas Algorithm 2 must do so many times at
line 17 (to implement the correction in (13)).

Even Algorithm 2 is slightly more efficient than
the traditional version (Lari and Young, 1990),
thanks to the new quantity α[R]. The traditional ver-
sion (Algorithm 4) leaves out line 17, instead replac-
ing lines 10 and 15 respectively with

c(A→ B C) +=
α[Ak

i ]G(A→B C)β[Bj
i ]β[Ck

j ]

Z (14)

c(A→ wk) +=
α[Ak

k−1]G(A→wk)

Z (15)

Our automatically derived Algorithm 2 efficiently
omits the common factor G(R)/Z from each sum-
mand above. It uses α[R] to accumulate the result-
ing intermediate sum (over positions of R), and fi-
nally multiplies the sum by G(R)/Z at line 17.6

6.2 Obtaining the anchored probabilities
If one wants the anchored rule probabilities dis-
cussed in section 4.3, they are precisely the sum-

6In practice, to avoid allocating separate memory for α[R],
it can be stored in c(R) and then multiplied in place by G(R)/Z
at line 17 to obtain the true c(R). Current automatic differenti-
ation packages do not discover optimizations of this sort, as far
as this author knows.

mands in (14) and (15). To derive this fact via gra-
dients, just revise our previous construction to use
anchored rules R′ ∈ R. Extending the notation of
section 4.2, let fR′(T ) ∈ {0, 1} denote the count of
R′ in parse T . We wish to find its expectation c(R′).
Intuitively, this should equal ∂(logZ)/∂θR′ , which
intuitively should work out to the summand in ques-
tion via anchored versions of (8) and (13). This in-
deed holds if we revise (3) to use anchored features
fR′ of the tree T :

p(T | w) =
1
Z

exp
∑
R′∈R′

θR′ · fR′(T ) (16)

and then set θR′
def= log G(R) whenever R′ is an

anchoring of R. Notice that (16) is a more ex-
pressive model than a WCFG, since it permits the
same rule R to have different weights at different
positions—an idea we will revisit in section 8.4.
However, here we take the gradient of its Z only
at the point in parameter space that corresponds to
the actual WCFG G—obtained by setting θR′ to the
same value, logG(R), for all anchorings R′ of R.

6.3 Interpreting the outer weights

Section 5.3 exposes some interesting quantities.
The outer weight of a constituent is α[Aki ] =
ðβ[Aki ]. The outer weight of a rule—novel to our
presentation—is α[R] = ðG(R). We now connect
these partial derivatives to a traditional view of the
outer weights.

As we will see, β[Aki ] ·ðβ[Aki ] (inner times outer)
is the total weight of all parses that contain Aki .
Then (1) implies that the total probability of these
parses is β[Aki ] · ðβ[Aki ]/Z. This gives the marginal
probability of the anchored nonterminal, i.e., c(Aki ).

Analogously, G(R) · ðG(R) is the total weight of
all parses that contain R, where a parse is counted
multiple times in this total if it contains R multiple
times. Dividing by Z as before gives the expected
count c(R), which is indeed what line 17 does.

What does an outer weight signify on its own, and
how does it help compute the total weight? Con-
sider a parse T that contains the anchored nontermi-
nal Aki , so that T has the form
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ROOT

w1 . . . wi A

wi+1 . . . wk

wk+1 . . . wn

Its weight G(T ) is the product of weights of all rules
in the parse. This can be factored into an inside
product that considers the rules dominated by Aki ,
times an outside product that considers all the other
rules in T . That is, T is obtained by combining
an “inside derivation” with an incomplete “outside
derivation,” of the respective forms

A

wi+1 . . . wk

ROOT

w1 . . . wi A wk+1wn

and the weight of T is the product of their weights.
The many parses T that contain Aki can be ob-

tained by pairwise combinations of inside and out-
side derivations of the forms shown. Thus—thanks
to the distributive property—the total weight of
these parses is β[Aki ] ·α[Aki ], where the inner weight
β[Aki ] sums the inside product over all such inside
derivations, and the outer weight α[Aki ] sums the
outside product over all such outside derivations.
Both sums are accomplished in practice by dynamic
programming recurrences that build from smaller to
larger derivations. Namely, Algorithm 1 line 11 ex-
tends from smaller inside derivations to β[Aki ], while
Algorithm 2 lines 11–12 extend from α[Aki ] to larger
outside derivations.

The previous paragraph is part of the traditional
(“difficult”) explanation of the inside-outside algo-
rithm. However, it gives an alternative route to the
gradient interpretation. It implies that Z can be
found as β[Aki ] · α[Aki ] plus the weights of some
other parses that do not involve β[Aki ]. It follows
that ∂Z/∂β[Aki ] is indeed α[Aki ].

Similarly, how about the outer weight and total
weight of a rule? Consider a parse T that contains
rule R at a particular position i, j, k. G(T ) can be
factored into the rule probability G(R)—which can
be regarded as an “inside product” with only one
factor—times an “outside product” that considers all
the other rule tokens in T . This decomposition helps
us find the total weight as before. Each of the many
instances of a parse T with a token of R marked

within it can be obtained by combining R with the
incomplete “outside derivation” that lacks the token
of R at that position, which has the form

ROOT

w1 . . . wi A

C

wj+1 . . . wk

B

wi+1 . . . wj

wk+1 . . . wn

Summing the weights of these instances (a tree with
c copies ofR is added c times), the distributive prop-
erty implies the total is G(R) ·α[R], where the outer
weight α[R] sums over the “outside derivations.”
Algorithm 2 accumulates that sum at line 10 (for a
binary rule as drawn above) or line 15 (unary rule).

We can verify from this fact that ∂Z/∂G(R) is in-
deed α[R], by checking the effect on Z of increasing
G(R) slightly. Let us express Z =

∑∞
c=0 Zc, where

Zc is the total weight of parses that contain exactly
c copies of R. Increasing G(R) by a multiplicative
factor of 1 + ε will increase Z to

∑
c(1 + ε)cZc,

which ≈ ∑
c(1 + cε)Zc for ε ≈ 0. Put an-

other way, increasing G(R) by adding εG(R) results
in increasing Z by about

∑
c cεZc. Therefore (at

least when G(R) 6= 0), we conclude ∂Z/∂G(R) =(∑
c cZc

)
/G(R) = (G(R) · α[R])/G(R) = α[R],

since
∑

c cZc is the total weight computed in the
previous paragraph.

7 The Forest PCFG

For additional understanding, this section presents a
different motivation for the inside algorithm—which
then leads to an attractive independent derivation of
the inside-outside algorithm.

7.1 Constructing the parse forest as a PCFG

The inner weights serve to enable the construc-
tion of a convenient representation—as a PCFG—
of the distribution (1). Using a grammar to repre-
sent the packed forest of all parses of w was origi-
nally discussed by Bar-Hillel et al. (1961) and Billot
and Lang (1989). The construction below Neder-
hof and Satta (2003) takes the weighted version of
such a grammar and “renormalizes” it into a PCFG
(Thompson, 1974; Abney et al., 1999; Chi, 1999).
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This PCFG G′ generates only parses of w: that
is, it assigns weight 0 to any derivation with fringe
6= w. G′ uses the original terminals Σ, but a different
nonterminal set—namely the anchored nonterminals
N ′ = {Aki : A ∈ N , 0 ≤ i < k ≤ n}, with root
symbol ROOT′ = ROOTn0 . The CNF rules over these
nonterminals are the anchored rules R′. The func-
tion G′ : R′ → R≥0 can now be defined in terms of
the inner weights:

G′(Aki → Bj
i C

k
j )

def=
G(A→ B C) · β[Bj

i ] · β[Ckj ]

β[Aki ]
(17)

G′(Akk−1 → wk)
def=

G(A→ wk)
β[Akk−1]

= 1 (18)

for A,B,C ∈ N and 0 ≤ i < j < k ≤ n, and
G′(· · · ) = 0 otherwise. All trees T with G′(T ) > 0
have fringe w. Note that |G′| = O(n3|G|).

Thus, G′ defines the weights of the rules inR′[Aki ]
to be the relative contributions made to β[Aki ] in Al-
gorithm 1 by its summands.7 This ensures that they
sum to 1, making G′ a PCFG.

7.2 Sampling from the forest PCFG

One use of G′ is to enable easy sampling from (1),
since PCFGs are designed to allow sampling (by a
straightforward top-down recursive procedure). In
effect, the top-down sampler recursively subdivides
the total probability mass Z. For example, suppose
that 60% of the total Z = β[ROOTn0 ] was contributed
by the various derivations in which the two child
subtrees of ROOT have root labels B,C and fringes
w1 . . . wj , wj+1 . . . wn. Then the first step of sam-
pling from G′ has a 60% chance of expanding ROOT′

intoBj
0 andCnj . If that happens, the sampler then re-

cursively chooses how to expand those nonterminals
according to their inner weights.

By thus sampling a tree T ′ from G′, and then sim-
plifying each internal node label Aki to A, we obtain
a parse T of w, distributed according to p(T | w) as
desired. This method is equivalent to traditional pre-
sentations of sampling from p(T | w) (Bod, 1995,

7When β[Ak
i ] = 0, these relative contributions are indeter-

minate (quotients are 0/0). Then G′ can specify any probability
distribution over the rules R′[Ak

i ]. That distribution will never
be used: the PCFG G′ has probability 0 of reaching the an-
chored nonterminal Ak

i and needing to expand it.

p. 56; Goodman, 1998, section 4.4.1; Finkel et al.,
2006). Our presentation merely exposes the con-
struction of G′ as an intermediate step.8

7.3 Expected counts from the forest PCFG
The above reparameterization of p(T | w) as a
PCFG G′ makes it easier to find c(Aki ). The proba-
bility of findingAki in a parse must be the probability
of encountering it when sampling a parse top-down
from G′ (the hitting probability).

Observe that the top-down sampling procedure
starts at ROOT′. If it reaches Aki , it has probability
G′(Aki → Bj

i C
k
j ) of reaching Bj

i as well as Ckj on
the next step.

Thus, the hitting probability c(Aki ) of an anchored
nonterminal is the total probability of all “paths”
from ROOT′ to Aki . To find all such totals, we ini-
tialize all c(· · · ) = 0 and then set c(ROOT′) = 1.
Once we know c(Aki ), we can extend those paths to
its successor vertices, much as in the forward algo-
rithm for HMMs.

Clearly, the probability that c(Aki ) expands using
a particular anchored rule R′ ∈ R′[Aki ] during top-
down sampling is

c(R′) = c(Aki ) · G′(R′) (19)

which we add into the expected count of the unan-
chored version R:

c(R) += c(R′) (20)

This anchored rule hits the successors of Aki . E.g.:

c(Bj
i ) += c(Aki → Bj

i C
k
j ) (21)

c(Ckj ) += c(Aki → Bj
i C

k
j ) (22)

This view leads to a correct algorithm that directly
computes c values without using α values at all. This
Algorithm 5 looks exactly like Algorithm 2 or 3, ex-
cept it uses the above lines that modify c(· · · ) in
place of the lines that modify α[· · · ] or α

Z [· · · ]. We
can in fact regard Algorithm 3 as simply the result of
rearranging Algorithm 5 to avoid some of the multi-
plications and divisions needed to construct G′, ex-
ploiting the fact that they cancel out as paths are ex-
tended.

8Exposing G′ can be computationally advantageous, in fact.
After preprocessing a PCFG, samples can be drawn in time
O(n) per tree independent of the size of the grammar, by us-
ing alias sampling (Vose, 1991) to draw each rule in O(1) time.
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For example, in Algorithm 5, update (22) above
expands via (19) and (17) into

c(Ckj ) += c(Aki ) ·
G(A→B C)·β[Bj

i ]·β[Ck
j ]

β[Ak
i ]

(23)

Algorithm 3 rearranges this into

c(Ck
j )

β[Ck
j ]

+= c(Ak
i )

β[Ak
i ]
· G(A→BC) · β[Bj

i ] (24)

and then systematically uses α
Z [x] to store c(x)

β[x] . It
similarly transforms all other c updates into α

Z up-
dates as well. Algorithm 3 then recovers c(x) :=
α
Z [x] · β[x] at the end of the algorithm, for all x∈R,
and could do the same for all x ∈ R′ or x ∈ N ′.
8 Other Settings

Many types of weighted grammar are used in com-
putational linguistics. Hence one often needs to
construct new inside and inside-outside algorithms
(Goodman, 1998, 1999). As examples, the weighted
version of Earley’s (1970) algorithm (Stolcke, 1995)
handles arbitrary WCFGs (not restricted to CNF).
Vijay-Shanker and Weir (1993) treat tree-adjoining
grammar. Eisner (1996) handles projective depen-
dency grammars. Smith and Smith (2007) and
Koo et al. (2007) handle non-projective dependency
grammars, using an inside algorithm with a different
structure (not a dynamic programming algorithm).

In typical settings, each T is a derivation
tree (Vijay-Shankar et al., 1987)—a tree-structured
recipe for assembling some syntactic description of
the input sentence. The parse probability p(T | w)
takes the form 1

Z

∏
t∈T exp θt, where t ranges over

certain configurations in T . Z is the total weight
of all T . Then the core insight of section 4.2 holds
up: given an “inside” algorithm to compute logZ,
we can differentiate to obtain an “inside-outside” al-
gorithm that computes ∇ logZ, which yields up the
expected counts of the configurations.

In this section we review several such settings.
Parsing with a WCFG in CNF (Algorithms 1–2) is
merely the simplest case that fully illustrates the “ins
and outs,” as it were.

In all these cases, the EM algorithm is not the only
use of the expected counts: Sections 1 and 4.3 men-
tioned more important uses. EM itself is only useful
for training a generative grammar, at best.9

9EM locally maximizes logZ, which equals the likelihood

8.1 The forward-backward algorithm

A Hidden Markov Model (HMM) is essentially a
simple PCFG. Its nonterminal symbols N are often
called states or tags. The rule set R now consists
not of CNF rules as in section 2, but all rules of the
form ROOT → A or A → w B or A → w (for
A,B ∈ N and w ∈ Σ). As a result, a parse of a
length-4 sentence w must have the form

RO
O

T A B C D

w
4

w
3

w
2

w
1

which is said to tag each word wj with its par-
ent state. All parses share this right-branching tree
structure, so they differ only in their choice of tags.

(Traditionally, the weight G(A → w B) or
G(A → w) is defined as the product of an emission
probability, p(w | A), and a transition probabil-
ity, p(B | A) or p(HALT | A). However, the fol-
lowing algorithms do not require this. Indeed, the
algorithms do not require that G is a PCFG—any
right-branching WCFG will do.)

In this setting, the inside algorithm (which com-
putes β bottom-up) is known as the backward al-
gorithm, because it proceeds from right to left. The
subsequent outside pass (which computes α top-
down) is known as the forward algorithm.

Thanks to the fixed tree structure, this special-
ized version of inside-outside can run in total time
of only O(n|N |2). Of course, once we work out the
fast backward algorithm (directly or from the inside
algorithm), the forward-backward algorithm comes
for free by algorithmic differentiation, with α[x] de-
noting ðx = ∂Z/∂x. Pseudocode appears as Algo-
rithms 6–7 in Appendix B.

The forest of all taggings of w may be compactly
represented as a directed acyclic graph—the trel-
lis. The forward-backward algorithms can be nicely
understood with reference to this trellis, shown as
Figure 1 in Appendix B. Each maximal path in the
trellis corresponds to a tagging; α and β quantities
sum the weights of prefix and suffix paths. G de-
fines a probability distribution over these taggings

log p(w) in the case of a generative grammar. Even in this case,
EM may not be the best choice: once we are already comput-
ing ∇ logZ, any continuous optimization algorithm (batch or
online) can exploit that gradient to improve logZ.
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via (1). Following section 7, one can determine tran-
sition probabilities to the edges of the trellis so that
a random walk on the trellis samples a tagging, from
left to right, according to (1). The backward algo-
rithm serves to compute β values from which these
transition probabilities are found (cf. section 7.1).
Under these probabilities, the trellis becomes a non-
stationary Markov model over the taggings. The for-
ward pass now finds the hitting probabilities in this
Markov model (cf. section 7.3), which describe how
often the random walk will reach specific anchored
nonterminals or traverse edges between them. These
are the expected counts of tags and tag bigrams at
specific positions.

8.2 Other grammar formalisms
Many grammar formalisms have weighted versions

that produce exponential-family distributions over
tree-structured derivations:

• PCFGs or WCFGs whose nonterminals are lex-
icalized or extended with other attributes, in-
cluding unification-based grammars (Johnson
et al., 1999)
• Categorial grammars, which use an unbounded

set of nonterminals N (bounded for any given
input sentence)
• Tree substitution grammars and tree adjoin-

ing grammars (Schabes, 1992), in which the
derivation tree is distinct from the derived tree
• History-based stochasticizations such as the

structured language model (Jelinek, 2004)
• Projective and non-projective dependency

grammars as mentioned earlier
• Semi-Markov models for chunking (Sarawagi

and Cohen, 2004), with runtime O(n2)

Each formalism has one or more inside algo-
rithms10 that efficiently computeZ, typically in time
O(n2) to O(n6) via dynamic programming. These
inside algorithms can all be differentiated using the
same recipe.

The trick continues to work when one of these in-
side algorithms is extended to the case of prefix pars-
ing or lattice parsing (Nederhof and Satta, 2003),
where the input sentence is not fully observed, or

10Even basic WCFGs admit multiple algorithms—Earley’s
algorithm, unary cycle elimination, the “hook trick,” and more
(see Goodman, 1998; Eisner and Blatz, 2007).

to partially supervised parsing (Pereira and Schabes,
1992; Matsuzaki et al., 2005), where the output tree
is not fully unobserved.

8.3 Synchronous grammars

In a synchronous grammar (Shieber and Schabes,
1990), a parse T is a derivation tree that produces
aligned syntactic representations of a pair of sen-
tences. These cases are handled as before. The in-
put to the inside algorithm is a pair of aligned or
unaligned sentences, or a single sentence.

The simplest synchronous grammar is a finite-
state transducer. Here T is an alignment of the two
sentences, tagged with states. Eisner (2002) general-
ized the forward-backward algorithm to this setting
and drew a connection to gradients.

8.4 Conditional grammars

In the conditional random field (CRF) approach,
p(T | w) is defined as Gw(T )/Z, where Gw is a
specialized grammar constructed given the input w.
Generally Gw defines weights for the anchored rules
R′, allowing the weight of a rule to be position-
specific. (This slightly affects lines 5 and 11 of
Algorithm 1.) Any weighted grammar formalism
may be used: e.g., the formalisms in section 2 and
section 8.1 respectively yield the CRF-CFG (Finkel
et al., 2008) and the popular linear-chain CRF (Sut-
ton and McCallum, 2011).

Nothing in our approach changes. In fact, super-
vised training of a CRF usually follows the gradi-
ent ∇ log p(T ∗ | w). This equals the vector of rule
counts observed in the supervised tree T ∗, minus the
expected rule counts∇ logZ—as equivalently com-
puted by backprop or inside-outside.

8.5 Pruned, prioritized, and beam parsing

For speed, it is common in practice to perform only
a subset of the updates at line 11 of Algorithm 1.
This approximate algorithm computes an underesti-
mate Ẑ of Z (via underestimates β̂[Aki ]), because
only a subset of the inside circuit is used. By
storing this dynamically determined smaller circuit
and performing back-propagation through it (Eisner
et al., 2005), we can compute the partial deriva-
tives ∂Ẑ/∂β̂[Aki ] and ∂Ẑ/∂G(R). These approxi-
mations may be used in all formulas in order to com-
pute the expected counts of constituents and rules
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in the pruned parse forest, which consists of the
parse trees—with total weight Ẑ—explored by the
approximate algorithm.

Many clever single-pass or multi-pass strategies
exist for including the most important updates.
Strategies are usually based either on direct prun-
ing of constituents or prioritized updates with early
stopping. A key insight is that β[Aki ] · ðβ[Aki ] is the
total contribution of β[Aki ] to Z, so one should be
sure to include the update β[Aki ] += ∆ if ∆ ·α[Aki ]
is predicted to be large.

Weighted automata are popular for parsing, par-
ticularly dependency parsing (Nivre, 2003). In this
case, T is similar to a derivation tree: it is a sequence
of operations (e.g., shift and reduce) that constructs
a syntactic representation. Here an approximate Ẑ
is usually computed by beam search, and can be dif-
ferentiated as above.

8.6 Inside-outside should be as fast as inside

In all cases, it is good practice to derive one’s
inside-outside algorithm by differentiation—manual
or automatic—to ensure correctness and efficiency.

It should be a red flag if a proposed inside-outside
algorithm is asymptotically slower than its inside al-
gorithm.11 Why? Because automatic differentiation
produces an adjoint circuit that is at most twice the
size of the original circuit (assuming binary opera-
tors). That means ∇ logZ always can be evaluated
with the same asymptotic runtime as logZ.

Good researchers do sometimes slip up and pub-
lish less efficient algorithms. Koo et al. (2007)
present the O(n3) algorithms for non-projective de-
pendency parsing: they point out that a contempo-
raneous IWPT paper with the same O(n3) inside
algorithm had somehow raised inside-outside’s run-
time from O(n3) to O(n5). Similarly, Vieira et al.
(2016) provide efficient algorithms for variable-
order linear-chain CRFs, but note that a JMLR pa-
per with the same forward algorithm had raised the
grammar constant in forward-backward’s runtime.

11Unless inside-outside has been deliberately slowed down to
reduce its space requirements, as in the discard-and-recompute
scheme of Zweig and Padmanabhan (2000). Absent such a
scheme, inside-outside may need asymptotically more space
than inside: though the adjoint circuit is not much bigger than
the original, evaluating it may require keeping more of the orig-
inal in memory at once (unless time is traded for space).

9 Conclusions and Further Reading

Computational linguists have been back-
propagating through their arithmetic circuits
for a long time without realizing it—indeed, since
before Rumelhart et al. (1986) popularized the
use of this technique to train neural networks.
Recognizing this connection can help us to under-
stand, teach, develop, and implement many core
algorithms of the field.

Good follow-up reading includes

• how to use the inside algorithm within a larger
neural network that can be differentiated end-
to-end (Gormley et al., 2015; Gormley, 2015);
• how to efficiently obtain the partial derivatives

of the expected counts by differentiating the al-
gorithm a second time (Li and Eisner, 2009);
• how to navigate through the space of possible

inside algorithms (Eisner and Blatz, 2007);
• how to convert an inside algorithm into variant

algorithms such as Viterbi parsing, k-best pars-
ing, and recognition (Goodman, 1999);
• how to apply the same ideas to graphical mod-

els (Aji and McEliece, 2000; Darwiche, 2003).
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A Pseudocode for Inside-Outside Variants

The core of this paper is Algorithms 1 and 2 in the
main text. For easy reference, this appendix pro-
vides concrete pseudocode for some close variants
of Algorithm 2 that are discussed in the main text,
highlighting the differences from Algorithm 2. All
of these variants compute the same expected counts
c, with only small constant-factor differences in ef-
ficiency.

Algorithm 3 is the clean, efficient version of
inside-outside that obtains the expected counts
∇ logZ by direct implementation of backprop. We
may regard this as the fundamental form of the algo-
rithm. The differences from Algorithm 2 are high-
lighted in red and discussed in section 6.1.

Since logZ is replacing Z as the output being dif-
ferentiated, the adjoint quantity ðx is redefined as
∂(logZ)/∂x and stored in α

Z [x]. The name α
Z is

chosen because it is 1
Z times the traditional α. The

computations in the loops are not affected by this
rescaling: they perform the same operations as in
Algorithm 2. Only the start and end of the algorithm
are different (lines 4 and 17).

To emphasize the pattern of reverse-mode auto-
matic differentiation, Algorithm 3 takes care to com-
pute the adjoint quantities in exactly the reverse of
the order in which Algorithm 1 computed the orig-
inal quantities. The resulting iteration order in the
i, j, and k loops is highlighted in blue. Comput-
ing adjoints in reverse order always works and can
be regarded as the default strategy. However, this
is merely a cosmetic change: the version in Algo-
rithm 2 is just as valid, because it too visits the nodes
of the adjoint circuit in a topologically sorted order.
Indeed, since each of these blue loops is paralleliz-
able, it is clear that the order cannot matter. What
is crucial is that the overall narrow-to-wide order of
Algorithm 1, which is not parallelizable, is reversed
by both Algorithm 2 and Algorithm 3.

Algorithm 4 is a more traditional version of Al-
gorithm 2. The differences from Algorithm 2 are
highlighted in red and discussed in section 6.1.

Finally, Algorithm 5 is a version that is derived
on independent principles (section 7.3). It directly

Algorithm 3 A cleaner variant of the inside-outside
algorithm

1: procedure INSIDE-OUTSIDE(G, w)
2: Z := INSIDE(G,w) . side effect: sets β[· · · ]
3: initialize all α[· · · ] to 0
4: α

Z [ROOTn0 ] += 1
Z . sets ðZ = 1/Z

5: for width := n downto 2 : . wide to narrow
6: for i := n− width downto 0 : . start point
7: k := i+ width . end point
8: for j := k − 1 downto i+ 1 : . midpoint
9: for A,B,C ∈ N :

10: α
Z [A→BC] += α

Z [Aki ]β[Bj
i ]β[Ckj ]

11: α
Z [Bj

i ] += G(A→BC)αZ [Aki ]β[Ckj ]
12: α

Z [Ckj ] += G(A→BC)β[Bj
i ]
α
Z [Aki ]

13: for k := n downto 1 : . width-1 constituents
14: for A ∈ N : p
15: α

Z [A→ wk] += α
Z [Akk−1]

16: for R ∈ R : . expected rule counts
17: c(R) := α

Z [R] · G(R) . no division by Z

Algorithm 4 A more traditional variant of the
inside-outside algorithm

1: procedure INSIDE-OUTSIDE(G, w)
2: Z := INSIDE(G,w) . side effect: sets β[· · · ]
3: initialize all α[· · · ] to 0
4: α[ROOTn0 ] += 1 . sets ðZ = 1
5: for width := n downto 2 : . wide to narrow
6: for i := 0 to n− width : . start point
7: k := i+ width . end point
8: for j := i+ 1 to k − 1 : . midpoint
9: for A,B,C ∈ N :

10: c(A→B C)

+=
α[Ak

i ]G(A→B C)β[Bj
i ]β[Ck

j ]

Z

11: α[Bj
i ] += G(A→BC)α[Aki ]β[Ckj ]

12: α[Ckj ] += G(A→BC)β[Bj
i ]α[Aki ]

13: for k := 1 to n : . width-1 constituents
14: for A ∈ N :
15: c(A→ wk) +=

α[Ak
k−1]G(A→wk)

Z

16: for R ∈ R :
17: do nothing . c(R) has already been computed
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computes the hitting probabilities of anchored con-
stituents and rules in a PCFG representation of the
parse forest. This may be regarded as the most natu-
ral way to obtain the algorithm without using gradi-
ents. However, as section 7.3 notes, it can be fairly
easily rearranged into Algorithm 3, which is slightly
more efficient. The differences from Algorithms 2
and 3 are highlighted in red.

To rearrange Algorithm 5 into Algorithm 3, the
key is to compute not the count c(x), but the ratio
c(x)
β[x] (or c(x)

G(x) when x is a rule), storing this ratio in
the variable α

Z [x]. This ratio α
Z [x] can be interpreted

as ∂(logZ)/∂x as previously discussed.

Algorithm 5 An inside-outside variant motivated as
finding hitting probabilities

1: procedure INSIDE-OUTSIDE(G, w)
2: Z := INSIDE(G,w) . side effect: sets β[· · · ]
3: initialize all c[· · · ] to 0
4: c(ROOTn0 ) += 1
5: for width := n downto 2 : . wide to narrow
6: for i := 0 to n− width : . start point
7: k := i+ width . end point
8: for j := i+ 1 to k − 1 : . midpoint
9: for A,B,C ∈ N :

10: c(Aki →Bj
i C

k
j ) := . eqs. (19), (17)

c(Aki ) ·
G(A→B C)·β[Bj

i ]·β[Ck
j ]

β[Ak
i ]

11: c(A→BC) += c(Aki →Bj
i C

k
j )

12: c(Bj
i ) += c(Aki →Bj

i C
k
j )

13: c(Ckj ) += c(Aki →Bj
i C

k
j )

14: for k := 1 to n : . width-1 constituents
15: for A ∈ N :
16: c(Akk−1→wk) :=c(Akk−1) . eqs. (19),(18)
17: c(A →wk) += c(Akk−1→wk)

18: for R ∈ R : . expected rule counts
19: do nothing . c(R) has already been computed

B Pseudocode for Forward-Backward

Algorithm 6 is the backward algorithm, as intro-
duced in section 8.1. It is an efficient specializa-
tion of the inside algorithm (Algorithm 1) to right-
branching trees.

Notation: We use ROOT0 to denote the root an-
chored nonterminal, and Aj (for A ∈ N and 1 ≤

j ≤ n) to denote an anchored nonterminal A that
serves as the tag of wj . That is, Aj is anchored so
that its left child is wj . (Since this Aj actually dom-
inates all of wj . . . wn in the right-branching tree, it
would be called Anj−1 if we were running the full
inside algorithm.)

Line 7 builds up the right-branching tree by com-
bining a word from j − 1 to j (namely wj) with
a phrase from j to n (namely Bj+1). This line is
a specialization of line 11 in Algorithm 1, which
combines a phrase from i to j with another phrase
from j to k. Thanks to the right-branching con-
straint, the backward algorithm only has to loop over
O(n) triples of the form (j−1, j, n) (with fixed n)—
whereas the inside algorithm must loop over O(n3)
triples of the form (i, j, k).

Algorithm 6 The backward algorithm
1: function BACKWARD(G, w)
2: initialize all β[· · · ] to 0
3: for A ∈ N : . stopping rules
4: β[An] += G(A→ wn)
5: for j := n− 1 downto 1 :
6: for A,B ∈ N : . transition rules
7: β[Aj ] += G(A→ wj B) β[Bj+1]

8: for A ∈ N : . starting rules
9: β[ROOT0] += G(ROOT → A) β[A1]

10: return Z := β[ROOT0]

The forward-backward algorithm, Algorithm 7,
is derived mechanically by differentiating Algo-
rithm 6, by exactly the same procedure as in sec-
tion 5. As a result, it is a specialization of Algo-
rithm 2.

This presentation of the forward-backward algo-
rithm finds the expected counts of rules R ∈ R.
However, section 8.1 mentions that each rule R can
be regarded as consisting of an emission action Re
followed by a transition action Rt. We may want
to find the expected counts of the various actions.
These can of course be found by summing the ex-
pected counts of all rules containing a given action.
However, this step can also be handled naturally by
backprop, in the common case where each G(R) is
defined as a product pRe ·pRt of the conditional prob-
abilities of the emission and transition. In this case,
θR = log G(R) from section 4.2 can be re-expressed

13



Algorithm 7 The forward-backward algorithm
1: procedure FORWARD-BACKWARD(G, w)
2: Z := BACKWARD(G,w) . also sets β[· · · ]
3: initialize all α[· · · ] to 0
4: α[ROOT0] += 1 . sets ðZ = 1
5: for A ∈ N : . starting rules
6: α[ROOT → A] += α[ROOT0] β[A1]
7: α[A1] += α[ROOT0] G(ROOT → A)
8: for j := 1 to n− 1 :
9: for A,B ∈ N : . transition rules

10: α[A→ wj B] += α[Aj ] β[Bj+1]
11: α[Bj+1] += α[Aj ] G(A→ wj B)

12: for A ∈ N : . stopping rules
13: G(A→ wn) += α[An]
14: for R ∈ R : . expected rule counts
15: c(R) := α[R] · G(R)/Z

ROOT0 ROOT1 ROOT2 ROOT3 HALT

NOUN1 NOUN2 NOUN3

VERB1 VERB2 VERB3

Figure 1: The trellis of taggings of a length-3 sentence, under

an HMM where N = {ROOT, NOUN, VERB}. (Although the

trellis shows that ROOT may be used as an ordinary tag, often

in practice it is allowed only at the root. This can be arranged

by giving weight 0 to rules involving ROOTj for j > 0, corre-

sponding to the gray edges.)

as the sum of two parameters, θRe + θRt , which
represent the logs of these conditional probabilities.
Then the expected emission and transition counts are
given by ∂(logZ)/∂θRe and ∂(logZ)/∂θRt .

It is traditional to view the forward-backward al-
gorithm as running over a “trellis” of taggings (Fig-
ure 1), which represents the forest of parses. Since
a nonterminal Aj that is anchored at position j nec-
essarily emits wj , the trellis representation does not
bother to show the emissions. It is simply a directed
graph showing the transitions. Every parse (tagging)
of w corresponds to a path in Figure 1. Specifically,
edge Aj → Bj+1 in the trellis represents the an-
chored rule Aj → wj B

j+1, without showing wj .
Similarly, An → HALT represents the anchored rule
An → wn, without showing wn, and ROOT → A1

represents the anchored rule ROOT → A1. The
weight of a trellis edge corresponding to an anchor-
ing of rule R is given by G(R). The weight G(T )
of a tagging T is then the product weight of the path
that corresponds to that tagging.

On this view, the inner weight β[Aj ] can be re-
garded as a suffix weight: it sums up the weight
of all paths from Aj to HALT. Algorithm 6 can be
transparently viewed as computing all suffix weights
from right to left by dynamic programming. Z =
ROOT0 sums the weight of all paths from ROOT0 to
HALT. Similarly, the outer weight α[Aj ] can be re-
garded as a prefix weight, computed symmetrically
within Algorithm 7.

The constructions of section 7 are easier to un-
derstand in this setting. Here is the interpretation.
It is possible to replace the non-negative weights on
the trellis edges with probabilities, in such a way
that the product weight of each path is not changed.
Indeed, the method is essentially identical to the
“weight pushing” algorithm for weighted finite-state
automata (Mohri, 2000).

The probabilistic version of the trellis is a repre-
sentation of a new weighted grammar G′—an HMM
(hence a type of PCFG) that generates only taggings
of w, with the probabilities given by (1).

In the probabilistic version of the trellis, the edges
from a node have total probability of 1. Thus it is
the graph of a Markov chain, whose states are the
anchored nonterminals N ′. Sampling a tagging of
w is now as simple as taking a random walk from
ROOT0 until HALT is reached. The forward pass can
be interpreted as a straightforward use of dynamic
programming to compute the hitting probabilities of
the nodes in the trellis, as well as the probabilities of
traversing a node’s out-edges once the node is hit.

But how were the trellis probabilities found in the
first place? The edge Aj → Bj+1 originally had
weight G(A → wj B). In the probabilistic version

of the trellis, it has probability G(A→wj B)·β[Bj+1]
β[Aj ]

.
This represents the total weight of paths from Aj

that start with this edge, as a fraction of the total
weight β[Aj ] of all paths from Aj . (The edges in-
volving ROOT0 and HALT edges are handled simi-
larly.) Computing the necessary β weights to deter-
mine these probabilities is the essential function of
the backward algorithm.
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