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Abstract

The paper outlines a supervised approach to
language identification in code-switched data,
framing this as a sequence labeling task where
the label of each token is identified using a
classifier based on Conditional Random Fields
and trained on a range of different features,
extracted both from the training data and by
using information from Babelnet and Babelfy.

The method was tested on the develop-
ment dataset provided by organizers of the
shared task on language identification in code-
switched data, obtaining tweet level monolin-
gual, code-switched and weighted F1-scores
of 94%, 85% and 91%, respectively, with a
token level accuracy of 95.8%. When eval-
uated on the unseen test data, the system
achieved 90%, 85% and 87.4% monolingual,
code-switched and weighted tweet level F1-
scores, and a token level accuracy of 95.7%.

1 Introduction

Today many short messages contain words from dif-
ferent languages and it is a challenging task to iden-
tify which languages the different words are written
in. Often the messages contain text snippets from
several languages, that is, showing code-switching.
Sometimes the messages even contain code-mixing,
where there is a mix of the languages inside a single
utterance or even inside a token itself.

The first code-switching data challenge was orga-
nized at EMNLP 2014 (Solorio et al., 2014). The
task was to identify the language for each word in
a text, classifying the words according to six la-
bels: ‘Lang1’, ‘Lang2’, ‘Mixed’, ‘NE’, ‘Other’, and

‘Ambiguous’. The first two labels identify tokens
from the main languages that are mixed in the text,
while the third is for tokens with word-internal mix-
ing between these languages; ‘NE’ for named enti-
ties; ‘Other’ for language independent tokens (punc-
tuation, numbers, etc.) and tokens from other lan-
guages, and ‘Ambiguous’ denotes tokens that cannot
safely be assigned any (or only one) of the other la-
bels. This shared task was organized again this year
(Molina et al., 2016), with new datasets and slightly
different labels, adding ‘Unk’ for unknown tokens.1

Work on developing tools for automatic lan-
guage identification was initiated already in the
1960s (Gold, 1967), and although analysing code-
switched text is a research area which has started
to achieve wide-spread attention only in recent
years, the first work in the field was carried out
over thirty years ago by Joshi (1982), while Ben-
tahila and Davies (1983) examined the syntax of
the intra-sentential code-switching between Arabic
and French. They claimed that Arabic-French code-
switching was possible at all syntactic boundaries
above the word level.

Das and Gambäck (2013) give a comprehen-
sive overview of the work on code-switching un-
til 2015. Notably, Solorio and Liu (2008) trained
classifiers to predict code-switching points in Span-
ish and English, using different learning algorithms
and transcriptions of code-switched discourse, while
Nguyen and Doğruöz (2013) focused on word-
level language identification (in Dutch-Turkish news
commentary). Nguyen and Cornips (2016) describe

1An eighth label ‘FW’ was included for foreign words, but
no words in the English-Spanish corpora were tagged with it.
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work on analyzing and detecting intra-word code-
mixing by first segmenting words into smaller units
and later identifying words composed of sequences
of subunits associated with different languages in
tweets (posts on the Twitter social-media site).

The paper is organized as follows: Section 2 pro-
vides a description of the language identification
method, whereby a supervised model was built using
Conditional Random Fields to classify each token in
a tweet into one of the seven categories based on
different features, most of which are extracted from
the training data, as described in Section 3. Results
are then presented and discussed in Section 4, while
Section 5 addresses future work and concludes.

2 Language Identification Method

The language identification system was built around
a Conditional Random Field (CRF) classifier. We
used the C++-based CRF++ package (Kudo, 2013),
a simple, customizable, and open source implemen-
tation of Conditional Random Fields for segment-
ing or labelling sequential data. Conditional Ran-
dom Fields (Lafferty et al., 2001) are conditional,
undirected graphical models that can easily incor-
porate a large number of arbitrary, non-independent
features while still having efficient procedures for
non-greedy finite-state inference and training.

Conditional Random Fields calculate the condi-
tional probability of values on designated output
nodes given the values of (other) designated input
nodes. The conditional probability of a state se-
quence s =< s1, s2, . . . , sT > given an observation
sequence o =< o1, o2, . . . , oT > is calculated as in
Equation 1 (McCallum, 2003):

P∧(s|o) =
1
Zo

exp(
T∑

t=1

K∑
k=1

λk × fk(st−1, st, o, t))

(1)
where fk(st−1, st, o, t) is a feature function whose
weight λk, is to be learned via training. The feature
function values may range from −∞ to +∞.

To make all the conditional probabilities sum up
to 1, the normalization factor Zo is calculated in the
same fashion as in HMMs (Hidden Markov Mod-
els), that is, as given by Equation 2.

Zo =
∑

s

exp(
T∑

t=1

K∑
k=1

λk × fk(st−1, st, o, t)) (2)

To train a CRF, the objective function to be maxi-
mized is the penalized log-likelihood of the state se-
quences given the observation sequences:

L∧ =
N∑

i=1

log(P∧(s(i)|o(i)))−
K∑

k=1

λ2
k

2σ2
(3)

where {< o(i), s(i) >} is the labelled training data.
The second sum corresponds to a zero-mean, σ2-
variance Gaussian prior over parameters, which fa-
cilitates optimization by making the likelihood sur-
face strictly convex. Here, we set the parameter
λ to maximize the penalized log-likelihood using
Limited-memory BFGS (Sha and Pereira, 2003), a
quasi-Newton method that is highly efficient, and
which results in only minor changes in accuracy due
to changes in λ.

2.1 Features based on training data
Two sets of features were developed to train the
model: one extracted from the training data and the
other based on information from Babelnet (Navigli
and Ponzetto, 2012) and Babelfy (Moro et al., 2014),
with most of the features and their settings being
based on the training data. The complete set of fea-
tures induced from training data was as follows:

Local context. Local contexts play an important
role for identifying the languages. Here the two
preceding and two succeeding words were used
as local context.

Word suffix and prefix. Fixed length characters
stripped from the beginning and ending of the
current word. Up to 4 characters were removed.

Word length. Analysis of the training data showed
that the Spanish words on average were shorter
than the English words. Words with 1–4 char-
acters were flagged with a binary feature.

Word previously occurred. A binary feature
which checks if a word already occurred in the
training data or not.

Initial capital. In general, proper nouns tend to
start with capital letters, so this feature checks
whether the current word has an initial capital.
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All capitals. A binary feature which is set if the cur-
rent word contains only capital letters. The fea-
ture is very helpful for identifying named en-
tities (since, e.g., abbreviations often refer to
named entities).

Single capital letter: checks if the word contains a
single capital letter or not.

All digits: set to 1 if the word contains only numer-
ical characters. This is helpful for identifying
tokens belonging to the ‘Other’ category.

Alphanumeric: a binary feature which flags if
the word contains only digits and alphabetical
characters together.

All English alphabet: checks if all a word’s char-
acters belong to the English alphabet.

Special Spanish character: a flag which is set if
the current word contains any Spanish-specific
letters (á, é, etc.).

Hash symbol: set to 1 if a word contains the sym-
bol ‘#’, otherwise 0.

Rate symbol: set to 1 if the current word contains
the symbol ‘@’.

Word with single letter. Many single letter words
were observed to belong to Spanish, so this flag
is set if the word length is exactly 1.

Two consecutive letters. Some words repeat two
character sequences several times (e.g., ha-
haha, jaja). Each token is split into two char-
acter sequences and this binary feature is set if
each two letter character sequences matches.

Same letter occurred multiple times. Many
words in tweets contain sequences of the same
character repeated many times (e.g., ewww,
yaaaas). The feature is set if a letter occurred
in a word more than two times consecutively.

Gazetteer NE list. A list of named entities (NE)
was collected from the training data. This flag
is set if a token matches an item on the NE list.

Special character list. A list of special characters
(e.g., emojis) was collected from the training
data. If a tokens contains any character which
is on the list, the binary feature is set.

2.2 Babelnet and Babelfy features

Three further features were developed from external
resource, Babelnet (Navigli and Ponzetto, 2012) and
Babelfy (Moro et al., 2014):

Dataset Number of
tweets tokens

Training 11,400 140,745
Development 3,014 33,743
Test 18,237 218,138

Table 1: Statistics of the tweet datasets

WordNet feature: Every token is passed to the
Babelnet database for checking whether the to-
ken exists in the English WordNet or not. If the
token appears in the database, the feature is set
to 1, otherwise to 0.

Multilingual WordNet: The Babelnet Multilingual
WordNet is checked for Spanish, by passing
each token to the Babelnet database and check-
ing whether the token is present in the database
or not.

Babelfy Named Entity: Named entities are ex-
tracted from Babelfy and used as a feature,
which is utilized for identification of the ‘NE’
category tokens.

3 Datasets

We used the datasets provided by the organizers of
the EMNLP 2016 code-switching workshop shared
task on language identification in code-switched
data (Molina et al., 2016).2

Three types of data were provided: training, de-
velopment and test. In the training and development
datasets, the total number of tweets are 11,400 and
3,014, respectively, with language identification off-
sets given for each category. In the test data, the total
number of tweets is 18,237 without annotations.

The number of tweets and the number of tokens
in each of the three datasets are given in Table 1.

4 Results

We developed a supervised model for language iden-
tification using the CRF++ classifier, implemented
the different features described above, and trained
the CRF++ classifier using these features. Initially,
the classifier was trained using the training data and
tested on the development data for Spanish-English.

2care4lang1.seas.gwu.edu/cs2/call.html
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System setup Mono-lingual Code-switched Weighted Token-level
P R F1 P R F1 F1 Accuracy

Without external resources 0.94 0.92 0.93 0.82 0.85 0.83 0.904 0.943
With external resources 0.95 0.93 0.94 0.82 0.87 0.85 0.911 0.952

Table 2: System performance on the development data, with and without the external resources (Babelnet and Babelfy)

Team Accuracy

IIIT Hyderabad 0.961
NepSwitch 0.958
NTNU 0.957
HHU-UH-G 0.953
Howard U 0.951
McGill U 0.941
UW group 0.926
GWU* 0.918
Arunavha Chana 0.527

Team Mono- Code- Weightedlingual switched

Howard U 0.90 0.87 0.890
IIIT Hyderabad 0.90 0.86 0.886
HHU-UH-G 0.90 0.85 0.878
NTNU 0.90 0.85 0.874
NepSwitch 0.89 0.85 0.870
McGill U 0.86 0.78 0.820
UW group 0.78 0.78 0.780
Arunavha Chana 0.80 0.71 0.760
GWU* 0.93 0.54 0.740

Table 3: Token level accuracy (left) and tweet level F1 scores (right) on the test data for all participating systems

There were two types of evaluation, at tweet level
and at token level. The tweet level precision (P), re-
call (R) and F1-scores obtained on the monolingual
part of the development data were 95%, 93% and
94%, respectively. On the code-switched part of that
data, the precision, recall and F1-scores were 82%,
87% and 85%, giving a weighted, total F1-score of
91.1%. For token level evaluation, the development
data accuracy was 95.2%, as shown in Table 2.

Table 2 also gives the development data scores for
a system trained without the second feature set, i.e.,
without the Babelnet and Babelfy features. As can
be seen in the table, the contribution from those fea-
tures is small but useful, adding 0.9% to the token-
level accuracy and 0.7% to the tweet-level weighted
F1 score, with the main contribution (2%) being on
recall for the tweets containing code-switching.

Applying our system (NTNU) to the test data,
the tweet level monolingual, code-switched and
weighted F1-scores were 90%, 85% and 87.4%, with
a token level accuracy performance of 95.7%.

A comparison of the results of the different sys-
tems participating in the shared task is given in Ta-
ble 3, for both token level and tweet level evaluation,
with the performance of our system marked in bold
face. For token level evaluation, the NTNU system

achieved third place in the shared task, with an ac-
curacy difference between our system and the best
performing system (IIIT Hyderabad) of only 0.4%.

At the tweet level, the NTNU system performed
on par with the best systems on the monolingual
tweets, while it scored 2% lower on the tweets
that contained some code-switching, giving it fourth
place on weighted F1-score. However, as can be
seen from the tables, the top-5 teams actually ob-
tained very similar performance on all measures,
and both at token and tweet level.

5 Conclusion

For this shared task, we have outlined an approach
using a CRF based system for language identifica-
tion in code-switched data, implementing a range
of different features and achieving state-of-the-art
results. Most of the features are extracted directly
from training data, while some are induced by using
Babelnet and Babelfy as external resources.

In future, we will aim to optimize these features
using grid search and evolutionary algorithms, as
well as generate different models using several clas-
sification algorithms and utilize the predictions of
ensembles of such machine learners in order to en-
hance the overall system performance.

130



References
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