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Abstract

In this paper we present a clean, yet effective, model for word sense disambiguation. Our ap-
proach leverage a bidirectional long short-term memory network which is shared between all
words. This enables the model to share statistical strength and to scale well with vocabulary
size. The model is trained end-to-end, directly from the raw text to sense labels, and makes ef-
fective use of word order. We evaluate our approach on two standard datasets, using identical
hyperparameter settings, which are in turn tuned on a third set of held out data. We employ no ex-
ternal resources (e.g. knowledge graphs, part-of-speech tagging, etc), language specific features,
or hand crafted rules, but still achieve statistically equivalent results to the best state-of-the-art
systems, that employ no such limitations.

1 Introduction

Words are in general ambiguous and can have several related or unrelated meanings depending on con-
text. For instance, the word rock can refer to both a stone and a music genre, but in the sentence ”Without
the guitar, there would be no rock music” the sense of rock is no longer ambiguous. The task of assigning
a word token in a text, e.g. rock, to a well defined word sense in a lexicon is called word sense disam-
biguation (WSD). From the rock example above it is easy to see that the context surrounding the word
is what disambiguates the sense. However, it may not be so obvious that this is a difficult task. To see
this, consider instead the phrase ”Solid rock” where changing the order of words completely changes the
meaning, or ”Hard rock crushes heavy metal” where individual words seem to indicate stone but together
they actually define the word token as music. With this in mind, our thesis is that to do WSD well we
need to go beyond bag of words and into the territory of sequence modeling.

Improved WSD would be beneficial to many natural language processing (NLP) problems, e.g. ma-
chine translation (Vickrey et al., 2005), information Retrieval, information Extraction (Navigli, 2009),
and sense aware word representations (Neelakantan et al., 2015; Kågebäck et al., 2015; Nieto Piña and
Johansson, 2015; Bovi et al., 2015). However, though much progress has been made in the area, many
current WSD systems suffer from one or two of the following deficits. (1) Disregarding the order of
words in the context which can lead to problems as described above. (2) Relying on complicated and
potentially language specific hand crafted features and resources, which is a big problem particularly for
resource poor languages. We aim to mitigate these problems by (1) modeling the sequence of words
surrounding the target word, and (2) refrain from using any hand crafted features or external resources
and instead represent the words using real valued vector representation, i.e. word embeddings. Using
word embeddings has previously been shown to improve WSD (Taghipour and Ng, 2015; Johansson and
Nieto Piña, 2015). However, these works did not consider the order of words or their operational effect
on each other.
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1.1 The main contributions of this work include:

• A purely learned approach to WSD that achieves results on par with state-of-the-art resource heavy
systems, employing e.g. knowledge graphs, parsers, part-of-speech tagging, etc.

• Parameter sharing between different word types to make more efficient use of labeled data and make
full vocabulary scaling plausible without the number of parameters exploding.

• Empirical evidence that highlights the importance of word order for WSD.

• A WSD system that, by using no explicit window, is allowed to combine local and global informa-
tion when deducing the sense.

2 Background

In this section we introduce the most important underlying techniques for our proposed model.

2.1 Bidirectional LSTM

Long short-term memory (LSTM) is a gated type of recurrent neural network (RNN). LSTMs were intro-
duced by Hochreiter and Schmidhuber (1997) to enable RNNs to better capture long term dependencies
when used to model sequences. This is achieved by letting the model copy the state between timesteps
without forcing the state through a non-linearity. The flow of information is instead regulated using
multiplicative gates which preserves the gradient better than e.g. the logistic function. The bidirectional
variant of LSTM, (BLSTM) (Graves and Schmidhuber, 2005) is an adaptation of the LSTM where the
state at each time step consist of the state of two LSTMs, one going left and one going right. For WSD
this means that the state has information about both preceding words and succeeding words, which in
many cases are absolutely necessary to correctly classify the sense.

2.2 Word embeddings by GloVe

Word embeddings is a way to represent words as real valued vectors in a semantically meaningful space.
Global Vectors for Word Representation (GloVe), introduced by Pennington et al. (2014) is a hybrid ap-
proach to embedding words that combine a log-linear model, made popular by Mikolov et al. (2013),
with counting based co-occurrence statistics to more efficiently capture global statistics. Word embed-
dings are trained in an unsupervised fashion, typically on large amounts of data, and is able to capture
fine grained semantic and syntactic information about words. These vectors can subsequently be used to
initialize the input layer of a neural network or some other NLP model.

3 The Model

Given a document and the position of the target word, i.e. the word to disambiguate, the model computes
a probability distribution over the possible senses corresponding to that word. The architecture of the
model, depicted in Figure 1, consist of a softmax layer, a hidden layer, and a BLSTM. See Section 2.1
for more details regarding the BLSTM. The BLSTM and the hidden layer share parameters over all
word types and senses, while the softmax is parameterized by word type and selects the corresponding
weight matrix and bias vector for each word type respectively. This structure enables the model to share
statistical strength across different word types while remaining computationally efficient even for a large
total number of senses and realistic vocabulary sizes.

3.1 Model definition

The input to the BLSTM at position n in document D is computed as

xn = W xv(wn), n ∈ {1, . . . , |D|}.

Here, v(wn) is the one-hot representation of the word type corresponding to wn ∈ D. A one-hot
representation is a vector with dimension V consisting of |V | − 1 zeros and a single one which index
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Figure 1: A BLSTM centered around a word at position n. Its output is fed to a neural network sense
classifier consisting of one hidden layer with linear units and a softmax. The softmax selects the corre-
sponding weight matrix and bias vector for the word at position n.

.

indicate the word type. This will have the effect of picking the column from W x corresponding to that
word type. The resulting vector is referred to as a word embedding. Further, W x can be initialized using
pre-trained word embeddings, to leverage large unannotated datasets. In this work GloVe vectors are
used for this purpose, see Section 4.1 for details.

The model output,

y(n) = softmax(W ay
wn

a + bay
wn

),

is the predicted distribution over senses for the word at position n, where W ay
wn and bay

wn are the weights
and biases for the softmax layer corresponding to the word type at position n. Hence, each word type will
have its own softmax parameters, with dimensions depending on the number of senses of that particular
word. Further, the hidden layer a is computed as

a = W ha[hL
n−1; hR

n+1] + bha

where [hL
n−1; hR

n+1] is the concatenated outputs of the right and left traversing LSTMs of the BLSTM at
word n. W ha and bha are the weights and biases for the hidden layer.

Loss function The parameters of the model, Ω = {W x,ΘBLSTM , W
ha,bha, {W ay

w ,bay
w }∀w∈V , },

are fitted by minimizing the cross entropy error

L(Ω) = −
∑
i∈I

∑
j∈S(wi)

ti,j log yj(i)

over a set of sense labeled tokens with indices I ⊂ {1, . . . , |C|} within a training corpus C, each labeled
with a target sense ti,∀i ∈ I.

3.2 Dropword

Dropword is a regularization technique very similar to word dropout introduced by Iyyer et al. (2015).
Both methods are word level generalizations of dropout (Srivastava et al., 2014) but in word dropout the
word is set to zero while in dropword it is replaced with a<dropped> tag. The tag is subsequently treated
just like any other word in the vocabulary and has a corresponding word embedding that is trained. This
process is repeated over time, so that the words dropped change over time. The motivation for doing
dropword is to decrease the dependency on individual words in the training context. This technique can
be generalized to other kinds of sequential inputs, not only words.
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4 Experiments

To evaluate our proposed model we perform the lexical sample task of SensEval 2 (SE2) (Kilgarriff,
2001) and SensEval 3 (SE3) (Mihalcea et al., 2004), part of the SensEval (Kilgarriff and Palmer, 2000)
workshops organized by Special Interest Group on the Lexicon at ACL. For both instances of the task
training and test data are supplied, and the task consist of disambiguating one indicated word in a context.
The words to disambiguate are sampled from the vocabulary to give a range of low, medium and high
frequency words, and a gold standard sense label is supplied for training and evaluation.

4.1 Experimental settings

The hyperparameter settings used during the experiments, presented in Table 1, were tuned on a sep-
arate validation set with data picked from the SE2 training set. The source code, implemented using
TensorFlow (Abadi et al., 2015), has been released as open source1.

Hyperparameter Range searched Value used

Embedding size {100, 200} 100
BLSTM hidden layer size [50, 100] 2 ∗ 74
Dropout on word embeddings xn [0, 50%] 50%
Dropout on the LSTM output [hL

n−1; hR
n+1] [0, 70%] 50%

Dropout on the hidden layer a [0, 70%] 50%
Dropword [0, 20%] 10%
Gaussian noise added to input [0, 0.4] ∼ N (0, 0.2σi)

Optimization algorithm - Stochastic gradient descent
Momentum - 0.1
Initial learning rate - 2.0
Learning rate decay - 0.96
Embedding initialization - GloVe
Remaining parameters initialized - ∈ U(−0.1, 0.1)

Table 1: Hyperparameter settings used for both experiments and the ranges that were searched during
tuning. ”-” indicates that no tuning were performed on that parameter.

Embeddings The embeddings are initialized using a set of freely available2 GloVe vectors trained
on Wikipedia and Gigaword. Words not included in this set are initialized from N (0, 0.1). To keep the
input noise proportional to the embeddings it is scaled by σi which is the standard deviation in embedding
dimension i for all words in the embeddings matrix, W x. σi is updated after each weight update.

Data preprocessing The only preprocessing of the data that is conducted is replacing numbers with a
< number > tag. This result in a vocabulary size of |V | = 50817 for SE2 and |V | = 37998 for SE3.
Words not present in the training set are considered unknown during test. Further, we limit the size of
the context to max 140 words centered around the target word to facilitate faster training.

4.2 Results

The results of our experiments and the state-of-the-art are shown in Table 2. 100JHU(R) was developed
by Yarowsky et al. (2001) and achieved the best score on the English lexical sample task of SE2 with a
F1 score of 64.2. Their system utilized a rich feature space based on raw words, lemmas, POS tags, bag-
of-words, bi-gram, and tri-gram collocations, etc. as inputs to an ensemble classifier. htsa3 by Grozea
(2004) was the winner of the SE3 lexical sample task with a F1 score of 72.9. This system was based
mainly on raw words, lemmas, and POS tags. These were used as inputs to a regularized least square

1Source for all experiments is available at: https://bitbucket.org/salomons/wsd
2The employed GloVe vectors are available for download at: http://nlp.stanford.edu/projects/glove/
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classifier. IMS+adapted CW is a more recent system, by Taghipour and Ng (2015), that uses separately
trained word embeddings as input. However, it also relies on a rich set of other features including POS
tags, collocations and surrounding words to achieve their reported result.

Our proposed model achieves the top score on SE2 and are tied with IMS+adapted CW on SE3. More-
over, we see that dropword consistently improves the results on both SE2 and SE3. Randomizing the
order of the input words yields a substantially worse result, which provides evidence for our hypothesis
that the order of the words are significant. We also see that the system effectively makes use of the infor-
mation in the pre-trained word embeddings and that they are essential to the performance of our system
on these datasets.

F1 score
Method SE2 SE3

BLSTM (our proposed model) 66.9 73.4

100JHU(R) 64.2 -
htsa3 - 72.9
IMS+adapted CW 66.2 73.4

BLSTM without dropword 66.5 72.9
BLSTM without GloVe 54.6 59.0
BLSTM, randomized word order 58.8 64.7

Table 2: Results for Senseval 2 and 3 on the English lexical sample task.

5 Conclusions & future work

We presented a BLSTM based model for WSD that was able to effectively exploit word order and achieve
results on state-of-the-art level, using no external resources or handcrafted features. As a consequence,
the model is largely language independent and applicable to resource poor languages. Further, the system
was designed to generalize to full vocabulary WSD by sharing most of the parameters between words.

For future work we would like to provide more empirical evidence for language independence by
evaluating on several different languages, and do experiments on large vocabulary all words WSD, where
every word in a sentence is disambiguated. Further, we plan to experiment with unsupervised pre-
training of the BLSTM, encouraged by the substantial improvement achieved by incorporating word
embeddings.
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