
Proceedings of WLSI/OIAF4HLT,
pages 1–10, Osaka, Japan, December 12 2016.

Kathaa : NLP Systems as Edge-Labeled Directed Acyclic MultiGraphs

Sharada Prasanna Mohanty1,2,3, Nehal J Wani1,
Manish Srivastava1, Dipti Misra Sharma1

1 LTRC, International Institute of Information Technology, Hyderabad
2 School of Computer and Communication Sciences , EPFL, Switzerland

3 School of Life Sciences, EPFL, Switzerland
sharada.mohanty@epfl.ch, nehal.wani@research.iiit.ac.in

{m.shrivastava, dipti}@iiit.ac.in

Abstract

We present Kathaa, an Open Source web-based Visual Programming Framework for Natural
Language Processing (NLP) Systems. Kathaa supports the design, execution and analysis of
complex NLP systems by visually connecting NLP components from an easily extensible Module
Library. It models NLP systems an edge-labeled Directed Acyclic MultiGraph, and lets the user
use publicly co-created modules in their own NLP applications irrespective of their technical
proficiency in Natural Language Processing. Kathaa exposes an intuitive web based Interface for
the users to interact with and modify complex NLP Systems; and a precise Module definition API
to allow easy integration of new state of the art NLP components. Kathaa enables researchers to
publish their services in a standardized format to enable the masses to use their services out of
the box. The vision of this work is to pave the way for a system like Kathaa, to be the Lego blocks
of NLP Research and Applications. As a practical use case we use Kathaa to visually implement
the Sampark Hindi-Panjabi Machine Translation Pipeline and the Sampark Hindi-Urdu Machine
Translation Pipeline, to demonstrate the fact that Kathaa can handle really complex NLP systems
while still being intuitive for the end user.

1 Introduction

Natural Language Processing systems are inherently very complex, and their design is heavily tied up
with their implementation. There is a huge diversity in the way the individual components of the com-
plex system consume, process and spit out information. Many of the components also have associated
services which mostly are really hard to replicate and/or setup. Hence, most researchers end up writ-
ing their own in-house methods for gluing the components together, and in many cases, own in-house
re-implementations of the individual components, often inefficient re-implementations.

On top of that, most of the popular NLP components make many assumptions about the technical
proficiency of the user who will be using those components. All of these factors clubbed together shut
many potential users out of the whole ecosystem of NLP systems, and hence many potentially creative
applications of these components. With Kathaa, we aim to separate the design and implementation
layers of Natural Language Processing systems, and efficiently pack every component into consistent
and reusable black-boxes which can be made to interface with each other through an intuitive visual
interface, irrespective of the software environment in which the components reside, and irrespective of
the technical proficiency of the user using the system. Kathaa builds on top of numerous ideas explored
in the academia around Visual Programming Languages in general (Green and Petre, 1996) (Shu, 1988)
(Myers, 1990), and also on Visual Programming Languages in the context of NLP (Cunningham et al.,
1997). In a previous demonstration (Mohanty et al., 2016) at NAACL-HLT-2016, we showcased many
of the features of Kathaa, and because of the general interest in Kathaa, we are now making an attempt
to more formally model Kathaa in this paper.

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

1

Figure 1: Example of a Hindi-Panjabi Machine Translation System, visually implemented using Kathaa.

2 Kathaa Modules

Kathaa Modules are the basic units of computation in the proposed Visual Programming Framework.
They consume the input(s) across multiple input ports, process them, and finally pass on their output(s)
across the many output ports they might have. The user has access to a whole array of such modules
with different utilities via the Kathaa Module Library. The user can connect together these modules in
any combination as he pleases (as long as the connections between the said modules are compatible with
each other). The user also has the ability to tinker with the functionality of a particular module in real
time by using an embedded code editor in the Kathaa Visual Interface during or before the execution
of the Kathaa Graph. The inspiration behind Kathaa Modules comes from the Black Box approach in
Integrated Digital Circuits, where rather complex combinations of Logic Gates are arranged in complex
arrangements to get a desired behavior from the circuit, and then finally the overall arrangement is treated
as a black box. The ’users’ of this particular Integrated Circuit or ’chip’, just need to refer to the Data
Sheet of the chip for the input and output specifications to be able to use the said chip for designing more
complex and high-level circuits.

Kathaa Modules aim to be the Integrated Circuits for NLP, which can be mixed and matched together
to create interesting NLP Applications while hiding the complex implementation details in a black box.

2.1 Kathaa Data Blobs and Kathaa Data Sub Blobs

The input received at a particular input port, or the output generated at a particular output port of a mod-
ule is always a collection of kathaa-data-sub-blobs. Each input port receives exactly the same number
(as the rest of the input ports) of kathaa-data-sub-blobs, and similarly each output port holds exactly the
same number (as the rest of the output ports) of kathaa-data-sub-blobs. A kathaa-data-blob is also a
collection of kathaa-data-sub-blobs, but every kathaa-data-blob contains just one kathaa-data-sub-blob
from each of the input ports (or the output ports, depending on if its a kathaa-data-blob at the Input Layer
of the module or at the Output Layer of the module). The n-th kathaa-data-sub-blob of all the input ports,
contributes to the n-th Input kathaa-data-blob of the Module Instance; similarly, the m-th kathaa-data-
sub-blob of all the output ports, contributes to them-th Output kathaa-data-blob of the Module Instance.
A Kathaa Module has the capability to process multiple kathaa-data-blobs in parallel by spawning mul-
tiple instances of the same module during execution. The concept of numerous data blobs spread across
multiple input ports (or output ports) enables us to efficiently empower module writers to leverage from

2

the inherent parallelizability in tasks performed by numerous NLP components. For example, some
modules are parallelizable at the level of sentences, so if we have multiple sentences as inputs to this
module, all those sentences are passed as different kathaa-data-blobs so that the framework can paral-
lelize their processing depending on the availability of resources. Similarly, other modules could expect
parallelizability at the level of words, or phrases or even a whole discourse. The kathaa-data-blobs were
very much inspired by the data-blobs used in Caffe (Jia et al., 2014).

2.2 Formal definition of Kathaa Modules

A Kathaa Module can very simply be modeled as :

F (IP) = OP (1)

where, F () refers to the overall function the Module represents; IP refers to the overall Input object that
the Module receives; and OP refers to the overall Output object that the Module produces.

The inputs and outputs for Kathaa Modules are spread across multiple input ports and output ports, so
IP and OP can basically be represented as a collection of input and output values across all the input
and output ports

IP = [IP0, IP1,, IPN−1, IPN] OP = [OP0, OP1,, OPM−1, OPM] (2)

where IPn refers to the input received on input port n, where n ∈ [0, N); andN is the maximum number
of Input Ports supported by Kathaa for Kathaa Modules; OPm refers to the output generated on output
port m, where m ∈ [0,M); and M is the maximum number of Output Ports supported by Kathaa for
Kathaa Modules.

Every input received on any of the input ports IPn or every output generated on any of the output
ports OPm is but a collection of kathaa-data-sub-blobs, which are the basic primitives of data handling
in Kathaa. So, IPn and OPm can be further represented as :

IPn = [IPn,0, IPn,1,, IPn,X−1, IPn,X] OPm = [OPm,0, OPm,1,, OPm,Y−1, OPm,Y]
(3)

WhereX and Y refer to the number of kathaa-data-sub-blobs in each of the ports in the Input and Output
layers respectively.

Now by substituting Equation 3 in Equation 2, we can represent IP and OP as a combined input and
output matrices as follows :

IP =

IP0,0 IP0,1 . . P0,X−1 IP0,X

IP1,0 IP1,1 . . P1,X−1 IP1,X

.

.
IPN−1,0 IPN−1,1 . . IPN−1,X−1 IPN−1,X

IPN,0 IPN,1 . . IPN,X−1 IPN,X

OP =

OP0,0 OP0,1 . . OP0,Y−1 OP0,Y

OP1,0 OP1,1 . . OP1,Y−1 OP1,Y

.

.
OPM−1,0OPM−1,1 . .OPM−1,Y−1OPM−1,Y

OPM,0 OPM,1 . . OPM,Y−1 OPM,Y

(4)

where IPn,x refers to the x-th kathaa-data-sub-blob on the n-th Input Port of the kathaa module; and
OPm,y refers to the y-th kathaa-data-sub-blob on the m-th Output Port of the kathaa module.

Now lets define IP∗,k as the collection of the k-th corresponding kathaa-data-sub-blobs across all the
Input ports; and OP∗,p as the collection of the p-th corresponding kathaa-data-sub-blobs across all the
Output ports. So,

IP∗,k = [IP0,k, IP1,k,, IPN−1,k, IPN,k] OP∗,k = [OP0,k, OP1,k,, OPM−1,k, OPM,k]
(5)

IP∗,k and OP∗,k represent a single kathaa-data-blob in the Input and the Output layers respectively.
Figure 2 shows the organization of kathaa-data-blobs, kathaa-data-sub-blobs and Input and Output Port
values in the Combined Input and Output Matrices as defined in Equation 4.

3

Figure 2: Organization of kathaa-data-blobs, kathaa-data-sub-blobs and Input and Output Port values
in the Combined Input and Output Matrices as defined in Equation 4.

By using Equation 5, we can represent IP and OP as a collection of kathaa-data-blobs in the Input
and Output layers as follows :

IP = [(IP∗,0)T , (IP∗,1)T ,, (IP∗,X−1)T , (IP∗,X)T]
OP = [(OP∗,0)T , (OP∗,1)T ,, (OP∗,Y−1)T , (OP∗,Y)T]

(6)

Finally, substituting Equation 6 in Equation 1, we obtain :

F ([(IP∗,0)T , (IP∗,1)T ,, (IP∗,X−1)T , (IP∗,X)T]) =

[(OP∗,0)T , (OP∗,1)T ,, (OP∗,Y−1)T , (OP∗,Y)T]
(7)

For easy readability, we can define the substitutions IBi = (IP∗,i)T and OBi = (OP∗,i)T , which
represent an Input kathaa-data-blob and an Output kathaa-data-blob respectively. We can now rewrite
Equation 7 as :

F ([IB0, IB1,, IBX−1, IBX]) = [OB0, OB1, OB2,, OBY−1, OBY] (8)

which captures the crux of how Kathaa Modules manipulate data, by consuming a collection of kathaa-
data-blobs, and finally spitting out a bunch of kathaa-data-blobs as Output.

2.3 Types of Kathaa Modules
2.3.1 Kathaa General Modules
Kathaa General Modules are the class of Kathaa Modules which output the exact same number of kathaa-
data-blobs as the number of kathaa-data-blobs in their Input Layer. Or more formally, in case of Kathaa
General Modules, we will have X = Y in Equation 8. As every Input kathaa-data-blobs independently
maps to a single Output kathaa-data-blobs, we can imagine a function f() which processes a single Input
kathaa-data-blobs, to produce the corresponding Output kathaa-data-blobs.

F ([IB0, IB1,, IBX−1, IBX]) = [f(IB0), f(IB1),, f(IBX−1), f(IBX)]
= [OB0, OB1,, OBX−1, OBX]

(9)

Kathaa General Modules are the most common type of Kathaa Modules, and they are defined simply
by defining the single function f() which takes a single kathaa-data-blob as input, and finally returns
a single kathaa-data-blob as output. The kathaa-orchestrator internally deals with the spawning of
multiple instances of the said function f() and processing all the Input kathaa-data-blobs in parallel,
and then aggregating and writing their output as a collection of Output kathaa-data-blobs. The idea is
that module developers just have to focus on the basic functionality of their module, and the efficient

4

parallelized execution of the same is automatically dealt by the framework, making it much easier for
developers to get started with writing really powerful modules for Kathaa. To help developers get started,
we also have a very flexible implementation of a Custom Module (Mohanty, 2016d) which can act as
a quick starting point when defining Kathaa General Modules.

2.3.2 Kathaa Blob Adapters
Kathaa Blob Adapters, on the other hand, are a class of Kathaa Modules, which are provided with
all the blobs from the Input Layer at the same time, and they have the ability to modify the number
of blobs and pass it over to their output layer. They give the user a more fine grained control over the
parallelizability of different parts of their Kathaa Graphs by varying the number of kathaa-data-blobs
flowing through a particular point in the graph. More formally, Kathaa Blob Adapters are all the classes
of Kathaa Modules whereX 6= Y in Equation 8. As a use case for Kathaa Blob Adapters, we can imagine
a Kathaa Graph which receives a whole discourse as a single kathaa-data-blob, and it might benefit from
processing the sentences parallely, and it could use a Line Splitter (Mohanty, 2016f) to split the
whole discourse which was passed on as a single kathaa-data-blob into multiple kathaa-data-blobs each
representing a single sentence, and when finally the user desired processing of the individual sentences
are complete, a Line Aggregator (Mohanty, 2016e) could aggregate the processed sentences again
into a single kathaa-data-blob. Similar kathaa-blob-adapters could be implemented to deal with splitting
and aggregation of kathaa-data-blobs at the level of words, phrases,etc. For example, in contrast to
the example cited above, if we are dealing certain language processing tasks which are inherently not
parallalizable after a certain level of granularity, like, for e.g. Anaphora Resolution, Multi Document
Summarisation, etc, the user will have to use an appropriate kathaa-blob-adapter, to make sure that all
the information that is required for the particular task is available as a single kathaa-data-blob. In the case
of Anaphora Resolution, a single kathaa-data-blob will contain a string of N sentences, and in the case
of Multi Document Summarisation, a single kathaa-data-blobs will contain a string of M Documents.

2.3.3 Kathaa User Intervention Module
During the execution of a Kathaa Graph, the Kathaa Orchestrator ensures that the execution of a particular
Kathaa Module Instance starts only after all its dependencies complete their execution and write their
output. But in some NLP systems, the overall execution of the system might have to halt for some kind
of user feedback. Like in the case of resource creation, where for example, you might want to start
with a bunch of sentences, parse them using an available parser module, and then you would want to
add Anaphora annotations by a human annotator (Sangal and Sharma, 2001). In that case, a Kathaa
User Intervention Module can be used, where the overall execution at the particular Kathaa Module in
the Kathaa Graph pauses till the user modifies the kathaa-data-blobs as she pleases and then resumes
the execution at the said node. Internally, in case of Kathaa User Intervention Module, the Kathaa
Orchestrator simply copies all the kathaa-data-blobs from the Input Layer to the Output Layer, and lets
the user edit the Output Layer of the module through the Kathaa Visual Interface; and finally adds a
User Feedback from the Kathaa Visual Interface as one of the dependencies of the Module. Kathaa Core
Module group implements a User Intervention (Mohanty, 2016g) module, which can be used for
the described use case in Kathaa Graphs.

2.3.4 Kathaa Resource Module
Kathaa Resource Modules are the class of Kathaa Modules which do not do any processing of the data,
but instead they store and provide a corpus of text which can be used by any of the modules in the whole
graph during execution. They do not have any Inputs, and they start executing right at the beginning
of execution of the parent Kathaa Graph. More formally, they are the class of Kathaa Modules where
X = 0 and Y > 0 in Equation 8.

2.3.5 Kathaa Evaluation Module
The aim of Kathaa is to provide an intuitive environment not only for prototyping and deployment but
also debugging and analysis of NLP systems. Hence, we include a class of modules called as Kathaa
Evaluation Modules which very much like kathaa-blob-adapters receive all the blobs across all the input

5

ports, do some analysis and spit out the results into the output ports. While in principle, this a subset
of kathaa-blob-adapters, these modules enjoy a separate category among Kathaa Modules because of
their utility in debugging and analyzing NLP systems. We implement a sample Classification Evaluator
(Mohanty, 2016c) to help researchers quickly come up with easy to visualize confusion matrices to aid
them in evaluating the performance of any of their subsystems. This could act as a starting point for
easily implementing any other Evaluation Modules.

2.4 Kathaa Module Services
Most popular NLP Components work in completely different software environments, and hence stan-
dardizing the interaction between all of them is a highly challenging task. Kathaa can allow every
module to define an optional service by referencing a publicly available docker container in the module
definition. Kathaa can deal with the life-cycle management of the referenced containers on a configurable
set of Host Machines. The corresponding kathaa-modules function definition then acts as a light weight
wrapper around this service. This finally enables different research groups to publish their service in a
consistent and reusable way, such that it fits nicely in the Kathaa Module ecosystem.

2.5 Kathaa Module Packaging and Distribution
By design, the definition of Kathaa Modules is completely decoupled from the actual code base of the
Kathaa Framework. The idea was to facilitate the possibility of a large community of independent and
unsupervised contributors and a swarm of community contributed modules which would ultimately be
available by a simple to use Kathaa-Package-Manager. While the Kathaa-Package-Manager is not yet
implemented, we believe it would be pretty trivial to implement the same because of the way Kathaa
Modules are designed. A set of related Kathaa Modules reside as a Kathaa Module Group in a publicly
accessible gitRepository, and the Kathaa Framework downloads and loads these Modules on the fly just
by referencing their publicly accessible URI in the overall configuration file. Detailed documentation on
the definition, packaging and distribution of Kathaa Modules along with a list and description of all the
available Kathaa Modules can be found online at : Kathaa Module Packaging and Distribution (Mohanty,
2016b).

3 Kathaa Graph

A Kathaa Graph is an edge-labeled Directed Acyclic MultiGraph of ’instances’ of Kathaa Modules, with
Edges connecting one or more Output Ports of one instance of a Kathaa Module to one or more Input
Ports of an instance of the same or different Kathaa Module. A Kathaa Graph can have multiple instances
of the same Kathaa Module at different positions in the graph, and also with different configurations of
the said instances. Each Module Instance maintains its own state, and there can be multiple directed
edges between any two Module Instances. We start by defining a few key variables:

• Mk represents a Kathaa Module Instance, where k ∈ [0,K) and K is the total number of Kathaa
Module Instances in a Kathaa Graph G.
• ψ(Mk) represents the state of a Kathaa Module Instance, where state being all configurable param-

eters of the Module, a copy of the data present at all the Input and the Output ports and the definition
of the associated computational function.
• τ(Mk)I represents the set of all input ports of the Kathaa Module Instance Mk

• |τ(Mk)I | represents the cardinality of the set τ(Mk)I and hence represents the total number of Input
Ports in the Module Instance Mk

• τ(Mk)I
i represents the i-th input port of the Kathaa Module Instance Mk

• η(τ(Mk)I
i) represents the total number of incoming edges into the i-th input port of the Kathaa

Module Instance Mk

• τ(Mk)O represents the set of all output ports of the Kathaa Module Instance Mk

• |τ(Mk)O| represents the cardinality of the set τ(Mk)O and hence represents the total number of
Output Ports in the Module Instance Mk

6

• τ(Mk)O
j represents the j-th output port of the Kathaa Module Instance Mk

• η(τ(Mk)O
j) represents the total number of outgoing edges from the j-th output port of the Kathaa

Module Instance Mk

(10)

We define a Kathaa Graph G as an ordered pair of its vertices V and edges E:

G = (V,E) (11)

The Vertices of a Kathaa Graph are composed of Kathaa Module Instances, so we can write

V = {Mk|k ∈ [0,K)} (12)

There can be multiple edges between two Nodes in a Kathaa Graph, for example when you add a
directed edge between the output-port-1 of a Kathaa Module instance M1 to the input-port-1 of another
Kathaa Module instance M2. Then you add another directed edge between the output-port-2 of the
Kathaa Module Instance M1 to the input-port-2 of the Kathaa Module instance M2. Or more formally,
Kathaa Graphs can have parallel edges.

So we define an Edge e in a Kathaa Graph G as an ordered 3-tuple :

e = (s, t, L) (13)

Where, s (s ∈ V) is the Source Node of the edge; t (t ∈ V) is the Target Node of the edge, and L is the
edge-label of the edge e which is represented as an ordered tuple

L = (sOP , tIP) (14)

• sOP refers to the output port of the Source Node of the edge e. And sOP ∈ τ(s)O

• tIP refers to the input port of the Target Node of the edge e. And tIP ∈ τ(t)I

Substituting Equation 14 in Equation 13 we obtain :

e = (s, t, (sOP , tIP)) (15)

Now the set of edges E of the Kathaa Graph G can defined as :

E = {(s, t, (sOP , tIP)) | s, t ∈ V ∧ s 6= t ∧ SOP ∈ τ(s)O ∧ tIP ∈ τ(t)I ∧ κ(sOP , tIP) ∧ η(tIP) = 1}
(16)

Where, s, t are defined in Equation 13; sOP , tIP are defined in Equation 14; τ()O and τ()I and η() are
defined in Equation 10; and κ(sOP , tIP) refers to a boolean function which determines the compatibility
of a particular Input port and Output port pair based on meta structure definition of the corresponding
modules.

The conditions in Equation 16 represent some of the key properties of a Kathaa Graph. s, t ∈ V
asserts that both the Source Node and the Target Node have to be from the set of Nodes or the Module
Instances in the Kathaa Graph. s 6= t asserts that self loops are not allowed in a Kathaa Graph, so the
Source Node and the Target Node in a Kathaa Graph cannot be the same. SOP ∈ τ(s)O asserts that the
Output Port from the Source Node that is associated with an edge has to be a valid Output Port from the
set of Output Ports of the Source Node. tIP ∈ τ(t)I asserts that the Input Port from the Target Node that
is associated with an edge has to be a valid Input Port from the set of Output Ports of the Target Node.
κ(sOP , tIP) asserts that the Output Port from the Source Node and the Input Port at the Target Node
have to be compatible with each other based on the meta structure definition of the Source and Target
Nodes. η(tIP) = 1 asserts that there can be only a single edge that can be associated with an Input Port
of any Module Instance in the Kathaa Graph. Now, Equation 16 defines E and Equation 12 defines V ,
hence we can use them in Equation 11 to finally be able to formally define a Kathaa Graph G.

7

4 Kathaa Orchestrator

Kathaa Orchestrator obtains the structure of the Kathaa Graph and the initial state of the execution
initiator modules from the Kathaa Visual Interface, and then it efficiently orchestrates the execution
of the graph depending on the nature and state of the modules, while dealing with process parallelisms,
module dependencies, etc under the hood. The execution of a Kathaa Graph starts by collecting all the
Nodes in the Kathaa Graph from which it should start the execution. In the case that the Visual Interface
provides a Module Instance to begin execution from, the Kathaa Graph starts execution from just that
Node, else it collects all the sentence input nodes and the resource nodes. The collected nodes
are simply queued in a global Job Queue. A background process, in the meantime, listens on the Job
Queue, and whenever a Job is added to the queue, it tries to execute the Job on any of the available
resources. The execution of the Job starts by trying to execute the actual function associated with the
particular Node, and if its successful, it passes the data along all its outgoing edges to the designated input
ports of module instances further along the graph, and then finally returns the obtained result object. A
Job Complete event handler is called with the final result (or the exception in case of errors), and the Job
Complete event handler passes along the data to the Visual Interface to update the state of the graph in the
Visual Interface and provide the user with the result associated with the Module or the actual exception
and the error message to help the user debug the particular Kathaa Graph. Detailed documentation on
Kathaa Orchestrator can be found at : Kathaa Orchestrator (Mohanty, 2016a).

5 Kathaa Visual Interface

Kathaa Interface lets the user design any complex NLP system as an edge-labeled Directed Acyclic
MultiGraph with the Kathaa Module Instances as nodes, and edges representing the flow of kathaa-data-
blobs between them. Users have the option to not only execute any such graph, but also interact with it in
real time by changing both the state and functionality of any of the module right from within the interface.
It can be a really useful aid in debugging complex systems, as it lets the User easily visualize and modify
the flow of kathaa-data-blobs across the whole Kathaa Graph. Apart from that, it also encourages code-
reuse by lettings users ’Fork’ a graph, or ’Remix’ the designs of NLP systems to come up with better
and adapted versions of the same systems. Figure 1 shows the visual implementation of a Hindi Panjabi
Machine Translation system in the Kathaa Visual Interface.

6 Use Cases

Kathaa, as a Visual Programming Framework was developed with Sampark Machine Translation System
as a use case. We ported all the modules of the Hindi-Panjabi (Mohanty, 2016h) and Hindi-Urdu (Mo-
hanty, 2016i) Translation Pipelines of Sampark Machine Translation System(SAM, 2016) into Kathaa.
We then demonstrated the use of Kathaa in creation of NLP Resources by the use of Kathaa User Inter-
vention modules, and also moved on to demonstrate visual analysis of different classification approaches
by using the Kathaa-Classification-Evaluation module. We are currently also exploring the use of Kathaa
in classrooms to help students interact with and design complex NLP systems with a much lower bar-
rier to entry. All these example Kathaa Graphs are the seed Graphs that are included in the repository,
and can be used out of the box. It is important to note that these use cases that we managed to explore
are only the tip of the iceberg when it comes to what is possible using a framework like Kathaa. One
of the key features in Kathaa which enables for it to be used in a whole range of use cases is the easy
extensibility. The Kathaa Module Definition API, enables the user of the system to theoretically define
any function as a Kathaa Module. Also, Kathaa internally works using event triggers, hence making it a
practical possibility to define modules which may run for days or weeks, quite helpful when exploring
Kathaa for use cases where the user might want to define a Kathaa Module which trains a model based
on some pre-processed data. The NPM (Tilkov and Vinoski, 2010) inspired packaging system, is again
something which we believe can help with large scale adoption of a system like Kathaa. It paves the
way for a public contributed repository of NLP components, all of which can be mashed together in
any desired combination. The ability to optionally package individual services using Docker Containers

8

also helps make a strong case when pitching for the possibility of a large public contributed repository
of NLP components. These are a few things which set Kathaa apart from already existing systems like
LAPPS Grid (Ide et al., 2014), ALVEO (Cassidy et al., 2014) where the easy extensibility of the system
is a major bottleneck in its large scale adoption. The inter-operability between existing systems is also
of key importance, and the design of Kathaa accommodates for its easy adaptation to be used along with
other similar system. The assumption, of course, is that a wrapper Kathaa Module has to be designed for
each target system using the Kathaa Module Definition API. The wrapper modules would be completely
decoupled from the Kathaa Core codebase, and hence can be designed and implemented by anyone just
like any other Kathaa Module.

A demonstration video of many features and use cases of Kathaa is also available to view at :
https://youtu.be/woK5x0NmrUA

7 Conclusion

We demonstrate an open source web based Visual Programming Framework for NLP Systems, and make
it available for everyone to use under a MIT License. We hope our efforts can, in some way, catalyze
more new and creative applications of NLP components, and enables an increased number of researchers
to more comfortably tinker with and modify complex NLP Systems.

Acknowledgements

The first real world implementation of a Kathaa Graph was achieved by porting numerous modules from
Sampark MT system developed during the ”Indian Language to Indian Language Machine translation”
(ILMT) consortium project funded by the TDIL program of Department of Electronics and Information
Technology (DeitY), Govt. of India. Kathaa is built with numerous open source tools and libraries, an
(almost) exhaustive list of which is available in the Github Repository of the project, and we would like
to thank each and every contributor to all those projects.

References
Steve Cassidy, Dominique Estival, Tim Jones, Peter Sefton, Denis Burnham, Jared Burghold, et al. 2014. The

alveo virtual laboratory: A web based repository api.

Hamish Cunningham, Kevin Humphreys, Robert Gaizauskas, and Yorick Wilks. 1997. Gate - a general archi-
tecture for text engineering. In Proceedings of the Fifth Conference on Applied Natural Language Processing:
Descriptions of System Demonstrations and Videos, pages 29–30, Washington, DC, USA, March. Association
for Computational Linguistics.

Thomas R. G. Green and Marian Petre. 1996. Usability analysis of visual programming environments: A ’cogni-
tive dimensions’ framework. J. Vis. Lang. Comput., 7(2):131–174.

Nancy Ide, James Pustejovsky, Christopher Cieri, Eric Nyberg, Di Wang, Keith Suderman, Marc Verhagen, and
Jonathan Wright. 2014. The language application grid. In LREC, pages 22–30.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama,
and Trevor Darrell. 2014. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the
22Nd ACM International Conference on Multimedia, MM ’14, pages 675–678, New York, NY, USA. ACM.

Sharada Prasanna Mohanty, Nehal J. Wani, Manish Shrivastava, and Dipti Misra Sharma. 2016. Kathaa: A visual
programming framework for NLP applications. In Proceedings of the Demonstrations Session, NAACL HLT
2016, The 2016 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, San Diego California, USA, June 12-17, 2016, pages 92–96.

Sharada Prasanna Mohanty. 2016a. Kathaa Documentation : Kathaa Orchestrator. https://github.
com/kathaa/kathaa/blob/master/docs/kathaa-orchestrator.pdf. [Online; accessed 16-
October-2016].

Sharada Prasanna Mohanty. 2016b. Kathaa Documentation : Module Packaging and Distribution. https://
github.com/kathaa/kathaa/blob/master/docs/ModulePackagingAndDistribution.
pdf. [Online; accessed 16-October-2016].

9

Sharada Prasanna Mohanty. 2016c. Kathaa Module : Classification Evaluator. https://git.io/vV40f.
[Online; accessed 16-October-2016].

Sharada Prasanna Mohanty. 2016d. Kathaa Module : Custom Module. https://git.io/vV4Rp. [Online;
accessed 16-October-2016].

Sharada Prasanna Mohanty. 2016e. Kathaa Module : Line Aggregator. https://git.io/vV40v. [Online;
accessed 16-October-2016].

Sharada Prasanna Mohanty. 2016f. Kathaa Module : Line Splitter. https://git.io/vV4Rj. [Online;
accessed 16-October-2016].

Sharada Prasanna Mohanty. 2016g. Kathaa Module : User Intervention. https://git.io/vV40U. [Online;
accessed 16-October-2016].

Sharada Prasanna Mohanty. 2016h. Kathaa Module Group : Sampark Hindi Panjabi Translation Pipeline Modules.
https://github.com/kathaa/hindi-panjabi-modules. [Online; accessed 16-October-2016].

Sharada Prasanna Mohanty. 2016i. Kathaa Module Group : Sampark Hindi Urdu Translation Pipeline Modules.
https://github.com/kathaa/hindi-urdu-modules. [Online; accessed 16-October-2016].

Brad A. Myers. 1990. Taxonomies of visual programming and program visualization. J. Vis. Lang. Comput.,
1(1):97–123.

2016. Sampark: Machine translation among indian languages. http://sampark.iiit.ac.in/sampark/
web/index.php/content. Accessed: 2016-02-10.

Rajeev Sangal and Dipti Misra Sharma. 2001. Creating language resources for nlp in indian languages 1. back-
ground.

Nan C Shu. 1988. Visual programming. Van Nostrand Reinhold.

Stefan Tilkov and Steve Vinoski. 2010. Node. js: Using javascript to build high-performance network programs.
IEEE Internet Computing, 14(6):80.

10

