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Abstract

We investigate how both model-related factors and application-related factors affect the accu-
racy of distributional semantic models (DSMs) in the context of specialized lexicography, and
how these factors interact. This holistic approach to the evaluation of DSMs provides valuable
guidelines for the use of these models and insight into the kind of semantic information they
capture.

1 Introduction

Distributional semantic models (DSMs) can be very useful tools for specialized lexicography, as they
can help identify semantic or conceptual relations between terms based on corpus data, among other
uses. The quality of the results produced by these models depends on two types of factors: model-related
factors and application-related factors. First, they depend on the type of model and the settings used for
each of the model’s (hyper)parameters. Second, they depend on various aspects of the target application.
In the case of specialized lexicography, these factors include the kinds of terms that will be included in
the lexical resource and the kinds of relations that will be described therein. The target relations can
include typical paradigmatic relations such as (near-)synonymy (e.g. preserve→protect), but also others
such as syntactic derivation (e.g. preserve→preservation). There may also be interactions between the
various factors: for instance, the optimal parameter settings may depend on the target relations.

We investigated how these two types of factors affect the quality of the results produced by DSMs,
and how they interact, i.e. how various aspects of specialized lexicography must be accounted for when
choosing and tuning a model. The aspects considered in this paper are the the part-of-speech (POS) of
the terms included in the resource, the descriptive framework, and the target relations. To this end, we
carried out an experiment in which DSMs were built on domain-specific corpora and evaluated on gold
standard data we extracted from specialized dictionaries.

2 Related work

Numerous studies have addressed the evaluation and optimization of DSMs. These studies tend to
focus on model-related factors, by comparing different models or analyzing the influence of their
(hyper)parameters, although some studies use several different tasks or datasets for evaluation pur-
poses (Bullinaria and Levy, 2007; Bullinaria and Levy, 2012; Kiela and Clark, 2014; Baroni et al., 2014),
thereby taking the target application into account to some extent. Studies that systematically assess the
influence of both model-related and application-related factors are relatively rare. In the case of the DSM
which we refer to as the bag-of-words (BOW) model, research conducted as early as the 1960s showed
that its parameters, such as the size of the context window, affected the kinds of semantic relations that
were captured (Moskowich and Caplan, 1978). Systematic evaluations of DSMs have recently been car-
ried out, some of which take into account the target relations (Sahlgren, 2006; Lapesa et al., 2014) or
the POS (Hill et al., 2014; Tanguy et al., 2015). These studies tend to show that the accuracy of DSMs
depends on such application-related factors, as do their optimal (hyper)parameter settings. Our work is
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related to these studies, but takes into account a wider range application-related factors, including the
descriptive framework, and systematically evaluates how they affect accuracy and how they interact with
model-related factors. Furthermore, the target relations considered include not only typical paradigmatic
relations, but also syntactic derivation (see Section 3). This relation has not been studied in the context
of DSM evaluation as far as we know, and it is not represented in the datasets that are commonly used
to evaluate DSMs. The analogy dataset used by Mikolov et al. (2013a) does include adjective-adverb
morphological derivatives, but we do not know of any commonly used datasets that cover morphological
derivation more extensively, nor any that represent syntactic derivation specifically.

This study contains a comparative evaluation of two differents DSMs, namely the BOW model and
the neural word embeddings produced by word2vec (Mikolov et al., 2013a; Mikolov et al., 2013b).
Several such evaluations have been carried out recently. Baroni et al. (2014) compared the BOW model
and word2vec1 on several datasets and found that word2vec systematically provided better results.
However, the word representations they made available were evaluated by Ferret (2015) on a different
dataset, and the BOW model performed better. Levy et al. (2015) showed that when the models’ (hy-
per)parameters are tuned correctly, the BOW model and word2vec2 provide similar accuracy, and the
best model depends on the task used for evaluation purposes. To our knowledge, the ability of these two
types of DSM to detect various semantic relations has not been evaluated systematically. This is one of
the contributions of this study. Moreover, we investigate how various application-related factors come
into play when tuning word2vec’s hyperparameters. Another original aspect of this work is that we
compare the two DSMs on domain-specific data.

3 Data

The corpus used to build the models is a specialized corpus on the environment which is freely available
to researchers, called the PANACEA Environment English monolingual corpus3 (ELRA-W0063). The
corpus was compiled automatically using a focused web crawler (Prokopidis et al., 2012). Basic prepro-
cessing was applied, which included extracting the text from the XML files that comprise the corpus4,
replacing non-ASCII characters with ASCII equivalents5, lemmatizing6 and converting to lower case.

Models were evaluated using two types of evaluation data7 (or gold standards), that represent two
descriptive frameworks, namely a lexico-semantic approach to terminology (L’Homme, 2004) and frame
semantics (Fillmore, 1982). These datasets, which were extracted from specialized dictionaries on the
environment domain, are comprised of pairs of semantically related terms or sets of terms that evoke the
same semantic frame (e.g. the frame Change of temperature is evoked by terms such as cool, cooling,
warm, and warming.) respectively. We created 7 different datasets of semantic relations and one dataset
for frame-evoking terms. These datasets, which are described in Table 1, are comprised of query terms
mapped to a set of related terms. Models are evaluated by computing the nearest neighbours of each
query and looking up the query’s related terms in this sorted list of neighbours.

The semantic relations were extracted from DiCoEnviro8. We extracted four kinds of semantic re-
lations, namely (near-)synonyms, antonyms, hypernyms/hyponyms and syntactic derivatives. The first
three types of relations are typical paradigmatic relations that involve two terms of the same POS. Syn-
tactic derivatives (Mel’čuk et al., 1995, p. 133) are terms that have the same meaning, but belong to
different POS, and thus have different syntactic behaviours – they may be morphologically related, but
this need not be the case (e.g. city and urban). A dataset was created for each of these four relations. We
also created three datasets for the three POS we took into account, namely nouns, verbs, and adjectives.

1More specifically, the CBOW architecture.
2Here, the skip-gram architecture was used rather than the CBOW architecture.
3http://catalog.elra.info/product_info.php?products_id=1184
4Documents containing less than 50 words were excluded.
5We use the Unidecode Python library (https://pypi.python.org/pypi/Unidecode).
6TreeTagger (Schmid, 1994) was used for lemmatization.
7We have made these datasets available, as well as the code we developed for this study. See https://github.com/

gbcolborne/exp_phd.
8http://olst.ling.umontreal.ca/cgi-bin/dicoenviro/search-enviro.cgi?ui=en
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These contain all the relations between two terms of a given POS (so they do not contain any syntactic
derivatives). As for the sets of frame-evoking terms, these were extracted from the Framed DiCoEnviro9.

Name Queries Relations Description

QSYN 282 517 Synonyms, near-synonyms, co-hyponyms or term variations, e.g.
green: {alternative, clean, pure, smart}.

ANTI 77 109 Antonyms, e.g. absorb: {emit, radiate, reflect}.
HYP 61 87 Hyponyms and hypernyms, e.g. precipitation: {rain, snow, hail}.
DRV 174 175 Syntactic derivatives, e.g. adaptive: {adapt, adaptation}.
NN 190 404 Nouns are mapped to all related nouns (QSYN, ANTI or HYP).
VV 84 187 Verbs are mapped to all related verbs (QSYN or ANTI).
JJ 67 122 Adjectives are mapped to all related adjectives (QSYN or ANTI).

SETS 168 480 Frame-evoking terms are mapped to terms that evoke the same frame,
e.g. warming: {warm, cool, cooling}.

Table 1: Datasets used for evaluation.

It is important to note that only single-word terms were included in these datsets. For various rea-
sons, we decided not to include any multi-word terms in the target words that were evaluated (see
Section 4), and only terms that were among these target words were included in the gold standard
datasets. Multi-word terms could be included among the target words if required by the target appli-
cation. Compositionality-based methods (Mitchell and Lapata, 2008; Baroni and Zamparelli, 2010;
Mikolov et al., 2013b; Weeds et al., 2014) could also be used to account for multi-word terms.

4 Methodology

The experiment we carried out involves a comparative evaluation of two DSMs and a systematic explo-
ration of their (hyper)parameters. Both of these models produce vector representations of words based on
the contexts in which they appear in a corpus, the underlying hypothesis being that words that appear in
similar contexts have similar meanings (Harris, 1954; Firth, 1957). Words that appear in similar contexts
will thus have similar vector representations, and the semantic similarity of any two words can then be
estimated by computing the similarity of their vectors.

The contexts of a word can be defined in various ways. In both of the DSMs we evaluated, the contexts
of a word are the words that co-occur with it. Since the contexts are also words, we will sometimes call
them context words. In this work, we use a sliding context window to determine which words co-occur.
The context window spans a certain number of words on either side of a given word token.

The first DSM we evaluated is a simple vector space model which has been studied extensively in
the past few decades (Schütze, 1992; Lund et al., 1995; Sahlgren, 2006; Lapesa et al., 2014, inter alia),
but whose origins can be traced back to the 1960s (Harper, 1965; Moskowich and Caplan, 1978). We
will call this the bag-of-words (BOW) model. To build a BOW model, we compute a matrix M in which
value Mij is the weighted cooccurrence frequency of word wi and context cj . Various weighting schemes
can be used, one popular choice being positive pointwise mutual information (PPMI). Each word wi is
represented by a vector Mi: in which each value represents the association strength of wi and a specific
context word. The matrix M can be transformed in other ways once the cooccurrence frequencies have
been counted and weighted, e.g. by applying some form of dimensionality reduction, but in this work,
we use the basic BOW model, in which words are represented by sparse, high-dimensional vectors.

The second DSM we evaluated is built using the neural probabilistic language model known as
word2vec. This model learns distributed word representations (often called embeddings) which can be
used in the same way as BOW vectors to estimate the semantic similarity of words. These representa-
tions are learned by training a neural network that aims to predict each word token based on its contexts

9http://olst.ling.umontreal.ca/dicoenviro/framed/index.php
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(co-occurring words). An alternative approach aims to predict the contexts of each word token. These
two architectures are known as continuous bag-of-words (CBOW) and skip-gram respectively.

As with all DSMs, the BOW model and word2vec have several (hyper)parameters that must be set
in order to build or train a model. We have already mentioned three such parameters: the size of the
context window, the weighting scheme (for the BOW model), and the architecture (for word2vec).
These parameters have an effect on the word representations that are produced, and on the accuracy of
the word similarity scores we obtain by comparing the word representations.

In order to assess the influence of the (hyper)parameters of both DSMs, we tried several settings for
each parameter and evaluated every possible combination of these parameter settings.

For the BOW model, we examined three parameters related to the context window. The context
window has not only a size, but a shape, which is a function that determines the increment that is added
to the cooccurrence frequency of a given (word, context) pair, based on the distance between word and
context. In a rectangular window, this increment is always 1, regardless of distance. In a triangular
window, the increment is inversely proportional to the distance between the word and the context: 1 if
the distance is 1 word, 1

2 if the distance is 2, and so forth. The window also has a direction: we can
look left, right, or in both directions. In the latter case, we can sum the frequencies observed left and
right of a given word, or encode these frequencies separately, in which case the matrix M contains two
dimensions for each context word, one for each direction. These two types of windows are sometimes
called left+right (L+R) and left&right (L&R).

We also assessed the influence of the weighting scheme. This is usually an association measure such
as mutual information. We tested the 6 simple association measures defined in Evert’s (2007, ch. 4)
work on collocations. These measures compare the observed cooccurrence frequency (O) of two words
to their expected cooccurrence frequency (E). For instance, (pointwise) mutual information is defined as
MI = log2

(
O
E

)
. If O is much greater than E, this suggests a strong association between the two words.

We use Evert’s definitions for all these measures, but calculate E somewhat differently:

E(wi, cj) =
∑

j′ Mij′
∑

i′ Mi′j∑
i′
∑

j′ Mi′j′

where M is the unweighted cooccurrence frequency matrix. Negative association scores were always
set to 0 (so MI becomes PPMI). A transformation (log or sqrt, where log(x) = ln(x + 1) and sqrt(x) =√

x) was applied to some of the association measures, following Lapesa et al. (2014), and based on our
own preliminary experiments. We also tried applying a simple log transformation to the cooccurrence
frequencies, without applying an association measure beforehand.

The settings we tested for each of the four parameters are:

• Type of context window: L+R or L&R.

• Size of context window: 1-10 words.

• Shape of context window: rectangular or triangular.

• Weighting scheme: log, MI, MI2, MI3, log(local-MI), log(simple-LL), sqrt(t-score), sqrt(z-score).

In the case of word2vec, we examined the five hyperparameters that have an important effect on
performance according to the documentation of word2vec10. The architecture used to learn the word
embeddings is one of these hyperparameters. We must also select a training algorithm: whatever the
architecture, the model can be trained using a hierarchical softmax function, or by sampling negative
examples (or classes), in which case we also have to choose the number of negative samples. word2vec
also provides a function that subsamples frequent words, i.e. words whose relative frequency in the
corpus is greater than some threshold. This function randomly deletes occurrences of these frequent
words before the model is trained, each occurrence having a certain probability of being deleted, which
depends on the word’s frequency. The last two hyperparameters are the dimensionality of the word
embeddings and the size of the context window. The settings we tested for each hyperparameter are:

10https://code.google.com/p/word2vec/
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• Architecture: CBOW or skip-gram.

• Negative samples: 5, 10 or none (hierarchical softmax is used instead).

• Subsampling threshold: low (10−5), high (10−3) or none (no subsampling).

• Size of context window: 1-10 words.

• Dimensionality of word embeddings: 100 or 300.

A few more details regarding the training and evaluation of the two DSMs may be worth mentioning.
In the case of the BOW model, the set of context words contained all the target words that were used
for evaluation purposes. These target words (for both models) were the 10K most frequent words in the
(lemmatized) corpus, excluding stop words and words that contained any character other than a letter,
a digit or a hyphen. In the case of the BOW model, out-of-vocabulary words were not deleted, simply
ignored, and the context window was allowed to span sentence boundaries. For word2vec, we used
the word2vec software as is, using the default settings for all hyperparameters except those whose
influence we investigated. It is also worth noting that the context window implemented in word2vec
has a shape that gives more weight to contexts that are closer to a given word (similar to a triangular
window) – this is implemented by drawing the effective window size for a given token uniformly between
1 and the size specified by the user (Levy et al., 2015).

The measure we used to evaluate the models is mean average precision11 (MAP). This measure tells
us how accurate the sorted list of neighbours we get for a given query is, based on the rank of its related
terms according to the gold standard. The nearer the related terms are to the top of this list on average
for each of the queries, the higher the MAP. The sorted list of neighbours is obtained by computing the
similarity (or distance) between the query’s vector and the vectors of all other target words. We use the
cosine similarity (Salton and Lesk, 1968), which is the most commonly used measure for distributional
similarity (Turney and Pantel, 2010). The sorted list of neighbours is then evaluated on the various
datasets.

5 Results

Dataset BOW W2V

QSYN 0.418 (0.321 ± 0.056) 0.396 (0.298 ± 0.042)
ANTI 0.383 (0.247 ± 0.056) 0.321 (0.228 ± 0.039)
HYP 0.252 (0.211 ± 0.017) 0.199 (0.153 ± 0.019)
DRV 0.458 (0.328 ± 0.080) 0.544 (0.347 ± 0.118)

NN 0.398 (0.329 ± 0.045) 0.373 (0.299 ± 0.034)
VV 0.326 (0.255 ± 0.048) 0.329 (0.239 ± 0.046)
JJ 0.501 (0.317 ± 0.086) 0.454 (0.274 ± 0.050)

SETS 0.326 (0.282 ± 0.026) 0.348 (0.275 ± 0.031)

Table 2: Maximum MAP (with average and std. dev. in brack-
ets) of BOW and W2V models on each dataset.

First, we compare the BOW model
and word2vec (W2V), by observ-
ing the MAP of each model on each
of the datasets. The maximum MAP
achieved by each model is shown in
Table 2. These results show that the
BOW model achieves a higher MAP
than W2V on the three paradigmatic
relations (QSYN, ANTI, and HYP) if
its parameters are tuned correctly, but
W2V achieves a much higher MAP
on DRVs. In other words, the BOW
model is better at estimating the se-
mantic similarity of terms that have
similar syntactic behaviours, whereas W2V is better at estimating the similarity of terms that have dif-
ferent syntactic behaviours, but the same meaning12. Furthermore, the BOW model produces a higher
MAP than W2V on all three parts-of-speech (when only paradigmatic relations are considered) on aver-
age, though the best W2V model on verbs has a slightly higher MAP than the best BOW model. As for
the sets of frame-evoking terms (SETS), W2V achieves a higher accuracy, but the BOW model performs
slightly better on average.

11See http://goo.gl/qdlQ7n.
12This may be due to the dimensionality reduction that occurs in the word2vec model.
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If we compare the maximum MAP obtained on each of the datasets (by either BOW or W2V), we
see that DSMs capture syntactic derivatives even more accurately than near-synonyms if the models are
tuned for this relation. Antonyms are captured almost as accurately as synonyms, but the MAP obtained
on hypernyms/hyponyms is quite a bit lower. As for the POS, DSMs model adjectives most accurately,
followed by nouns, then verbs. The MAP achieved on the SETS is lower than on all the semantic
relations except for hypernyms/hyponyms. This is due to at least two factors. First, the SETS contain a
relatively high number of verbs, and as we have seen, verbs are the most challenging POS for these two
DSMs. Second, the sets of frame-evoking terms represent a mixture of syntactic derivation and typical
paradigmatic relations, especially synonymy, and although we achieve a high MAP on both of these
relations, the (hyper)parameter settings that work best for each are very different, as we will show below.

Now that we have assessed the quality of the results with respect to various aspects of the target
application (the descriptive framework, the target relations, the POS) and compared the two DSMs, we
turn our attention to the influence of their (hyper)parameters. For each such parameter, we will observe
the average MAP for each setting of that parameter. We use the average MAP instead of the maximum
in order to determine which settings produce consistently good results, regardless of the settings used for
the other parameters. Interactions between the parameters are not accounted for in the analysis presented
in this paper.
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Figure 1: Average MAP of (a) BOW and (b) W2V models wrt window size.

The influence of the window size on the accuracy of both DSMs is illustrated in Figure 1. This figure
shows that for the three paradigmatic relations (QSYN, ANTI, and HYP), the optimal window size is
small, i.e. 1-3 words. Though the figure does not show the results for each POS separately, this is
true for every POS. The optimal size is 1 for adjectives, and accuracy quickly drops off as window size
increases. The optimal size is 1 for verbs also, and 1 or 3 for nouns (BOW and W2V respectively). On
the other hand, the optimal window size for DRVs is quite large. The average MAP does not seem to
have peaked even with a window size of 10, however the maximum MAP we observed was achieved
with a window of 9 words (with both models). Thus, narrow windows capture paradigmatic relations
most accurately, but wider windows are better for syntactic derivatives. This may be due to a tendency
of syntactic derivatives to co-occur, as wider windows lead to co-occurring words having more similar
distributional representations. For instance, if we observe the sequence of words a x y b, then a is a
context of both x and y (if the window size is at least 2), and so is b. Every time x and y appear next to
each other (or close enough, depending on the size of the window), they share contexts, which increases
the similarity of their representations.

As for sets of frame-evoking terms, the window size should be at least 3, but the average MAP does
not vary much with respect to window size beyond this point. As the window size increases, accuracy
improves on DRVs, but worsens on paradigmatic relations, such that accuracy on the SETS, which
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represent a mixture of these relations, remains relatively stable.
The figure also shows that the influence of the window size is very similar in the BOW and W2V

models. We could investigate whether this is the case for other (hyper)parameters that are applicable
to both models (e.g. the window shape) or can be adapted from one model to the other (e.g. context
distribution smoothing for the negative sampling function (Levy et al., 2015)). Instead of comparing
the influence of the same parameters in both models, we chose to investigate the influence of a set of
parameters that are typical of each model. Our observations on the influence of the window size suggest
that the influence of parameters that are common to both DSMs would be very similar.

Parameter Setting QSYN ANTI HYP DRV NN VV JJ SETS

Window
type

L&R 0.332 0.257 0.213 0.288 0.336 0.266 0.334 0.274
L+R 0.311 0.237 0.209 0.368 0.323 0.244 0.301 0.291

Window
shape

Rectangular 0.297 0.223 0.209 0.337 0.310 0.233 0.282 0.273
Triangular 0.346 0.270 0.213 0.320 0.348 0.276 0.352 0.292

Weighting
scheme

None 0.172 0.196 0.070 0.205 0.168 0.160 0.180 0.182
log 0.266 0.211 0.201 0.304 0.272 0.206 0.277 0.258
MI 0.321 0.239 0.212 0.353 0.338 0.254 0.303 0.283
MI2 0.308 0.238 0.224 0.292 0.315 0.243 0.309 0.264
MI3 0.300 0.232 0.215 0.302 0.304 0.235 0.306 0.271
log(local-MI) 0.348 0.258 0.210 0.343 0.353 0.277 0.337 0.294
log(simple-LL) 0.349 0.261 0.209 0.347 0.354 0.281 0.339 0.301
sqrt(t-score) 0.341 0.261 0.220 0.338 0.352 0.272 0.327 0.288
sqrt(z-score) 0.338 0.273 0.198 0.345 0.345 0.270 0.342 0.300

Table 3: Average MAP of BOW models wrt to window type, window shape, and weighting scheme.
.

Table 3 shows the influence of the three other parameters of the BOW model: the type of window,
its shape, and the weighting scheme. In the latter case, we added the results we would obtain without
weighting the cooccurrence frequencies, in order to show the importance of using some kind of weighting
scheme, but it is important to note that the unweighted models were not included in the rest of the
analysis presented in this paper. Indeed, using some kind of weighting scheme always improves accuracy,
even a simple log transformation, though the association measures almost always provide better results.
Interestingly, MI (aka PPMI), which is likely the most common weighting scheme in this kind of DSM,
is not among the best-performing schemes, except on one dataset: DRVs. MI is known to have a low-
frequency bias (Evert, 2007, p. 19), which appears to be beneficial in the case of syntactic derivatives,
whereas near-synonyms and antonyms are detected more accurately using measures which do not have
this bias, such as simple-LL.

The shape of the window is another parameter whose optimal setting is different for syntactic deriva-
tives than for other semantic relations. Whereas the triangular window works best for QSYNs and AN-
TIs, on average, DRVs are detected more accurately using a rectangular window. Since DRVs prefer a
wider window, as we have already shown, it intuitively makes sense that they would prefer a rectangular
window, as it gives more weight to long-distance contexts than a triangular window.

As for the window type, we again observe a difference between DRVs and other semantic relations.
Indeed, the L+R works much better than the L&R window for DRVs, whereas the L&R provides better
results for QSYNs and ANTIs, on average. We propose the following explanation. A pair of DRVs are
likely to have some collocates in common, but these may appear on opposite sides of the two words
(e.g. compare to emit GHGs and GHG emissions). If the cooccurrence frequencies for the left and right
contexts are encoded separately, i.e. if we use a L&R window, the model may not adequately represent
the fact that these words have similar collocates. This would explain why the L+R window works better
for DRVs.
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Hyperparameter Setting QSYN ANTI HYP DRV NN VV JJ SETS

Architecture
skip-gram 0.287 0.226 0.154 0.390 0.293 0.225 0.266 0.283
CBOW 0.308 0.229 0.152 0.304 0.304 0.253 0.283 0.266

Negative
samples

None 0.284 0.227 0.150 0.333 0.284 0.226 0.274 0.266
5 0.302 0.227 0.154 0.349 0.305 0.244 0.271 0.276
10 0.307 0.229 0.155 0.359 0.308 0.246 0.279 0.282

Subsampling
threshold

None 0.323 0.258 0.152 0.251 0.316 0.267 0.307 0.258
Low 0.254 0.184 0.149 0.457 0.267 0.188 0.225 0.285
High 0.316 0.242 0.157 0.334 0.313 0.261 0.291 0.282

Dimensionality
100 0.284 0.228 0.145 0.316 0.285 0.229 0.264 0.255
300 0.311 0.228 0.160 0.379 0.312 0.248 0.285 0.294

Table 4: Average MAP of W2V models wrt the architecture, the number of negative samples for training,
the threshold for subsampling and the dimensionality of word embeddings.

Thus, the influence of all four parameters that we have examined in the case of the BOW model is
different for DRVs than for near-synonyms and other paradigmatic relations. In the case of W2V, three
of the five hyperparameters considered in this study also exhibit such a difference. We have already
shown that DRVs prefer wide context windows whereas narrow windows capture paradigmatic relations
more accurately. Table 4 shows the influence of the four other hyperparameters. Regarding the neural
network’s architecture, CBOW works best, on average, for QSYNs, but skip-gram works best for DRVs.
As for the subsampling function, it provides little or no gains on the three paradigmatic relations13, but
dramatically increases accuracy on DRVs, especially if the frequency threshold is low, which leads to a
more “aggressive” subsampling. Inversely, aggressive subsampling results in quite a large drop in accu-
racy for QSYNs and ANTIs. Finally, the optimal settings for the dimensionality of the word embeddings
and for the training algorithm are the same on all datasets: 300-dimensional embeddings perform better
than 100-dimensional ones, and negative sampling works better than a hierarchical softmax, the MAP
improving slightly if we use 10 samples rather than 5.

6 Concluding remarks

In this paper, we presented the results of a holistic approach to the evaluation of DSMs in the context of
specialized lexicography. We investigated how both model-related and application-related factors affect
the quality of the results produced by DSMs, and how they interact. By evaluating models on datasets
representing different semantic relations, we showed that DSMs capture syntactic derivatives even better
than typical paradigmatic relations such as synonymy, but that the model and (hyper)parameter settings
that perform best for these two types of relations are very different. Our results also indicate that verbs
are more challenging for DSMs than nouns and adjectives. Furthermore, we showed that the quality of
the results depends on the descriptive framework used for the lexical resource being developed. Accuracy
was lower on sets of frame-evoking terms than on every semantic relation we considered except hyper-
nymy/hyponymy. This is due to at least two reasons. Sets of frame-evoking terms represent a mixture of
syntactic derivation and typical paradigmatic relations such as synonymy, and since the best models for
these two types of relations are very different, the ability of a single model to capture terms that evoke
the same frame is limited. Furthermore, a high percentage of frame-evoking terms are verbs, which are
challenging for DSMs.

Although we only presented the results obtained on English data in this paper, we also conducted
this experiment on French data, and the results, a part of which we reported in another paper (Bernier-
Colborne and Drouin, 2016b), are very similar.

13It is worth remembering that we only tested two values for the frequency threshold, these being the limits of the range of
recommended values. Other settings might provide better results.
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This work provides valuable guidelines for the use of DSMs for lexicographical purposes. It also pro-
vides new insights into the kind of semantic information that is captured by these models. Extensions of
this work could include testing other DSMs, other (hyper)parameters, or other settings; and evaluating on
different tasks or data from different domains. Based on the work presented in this paper, we investigated
whether different DSMs could be combined in order to improve accuracy, and showed that combining the
best BOW and W2V models increased the MAP on the sets of frame-evoking terms (Bernier-Colborne
and Drouin, 2016a).
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