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Abstract

This paper presents an improved lexicalized reordering model for phrase-based statistical ma-
chine translation using a deep neural network. Lexicalized reordering suffers from reordering
ambiguity, data sparseness and noises in a phrase table. Previous neural reordering model is suc-
cessful to solve the first and second problems but fails to address the third one. Therefore, we
propose new features using phrase translation and word alignment to construct phrase vectors to
handle inherently noisy phrase translation pairs. The experimental results show that our proposed
method improves the accuracy of phrase reordering. We confirm that the proposed method works
well with phrase pairs including NULL alignments.

1 Introduction

Phrase-based statistical machine translation (PBSMT) (Koehn et al., 2003) has been widely used in the
last decade. One major problem with PBSMT is word reordering. Since PBSMT models the translation
process using a phrase table, it is not easy to incorporate global information during translation. There
are many methods to address this problem, such as lexicalized reordering (Tillmann, 2004; Koehn et al.,
2007; Galley and Manning, 2008), distance-based reordering (Koehn et al., 2003), pre-ordering (Wu et
al., 2011; Hoshino et al., 2015; Nakagawa, 2015), and post-ordering (Sudoh et al., 2011). However, word
reordering still faces serious errors, especially when the word order greatly differs in two languages, such
as the case between English and Japanese.

In this paper, we focus on the lexicalized reordering model (LRM), which directly constrains reorder-
ing of phrases in PBSMT. LRM addresses the problem of a simple distance-based reordering approach in
distant language pairs. However, there are some disadvantages: (1) reordering ambiguity, (2) data spar-
sity and (3) noisy phrases pairs. Li et al. (2014) addressed the problem of reordering ambiguity and data
sparsity using a neural reordering model (NRM) that assigns reordering probabilities on the words of
both the current and the previous phrase pairs. Also, Cui et al. (2016) tackled the problem of reordering
ambiguity by including much longer context information on the source side than other LRMs including
NRMs to determine phrase orientations using Long Short-Term Memory (LSTM).

However, there are a large number of noisy phrase pairs in the phrase table. One of the deficiencies
of their NRMs is that they generated a phrase vector by simply embedding word vectors of the source
and target language phrases and did not consider the adequacy of the translation between the phrase pair
and the alignment of words in the phrases. It may be problematic especially when a phrase contains the
NULL alignment, such as “,” in “日本で ||| in Japan ,”. In addition, it is difficult to integrate the model
of Cui et al. (2016) into stack decoding because their model is now conditioned not only on the words of
each phrase pair but also on the history of decoded phrases. Furthermore, because they did not compare
their model with the original NRM of Li et al. (2014), it is possible that their model is inferior to the
previous approach.

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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Therefore, we propose to use phrase translation probability and word alignment features for NRM to
address the problem of noisy phrase pairs. Both intrinsic and extrinsic experiments show that our features
indeed improve the original NRM. The main contributions of this paper are as follows:

• We propose a new NRM incorporating phrase translation probabilities and word alignment in a
phrase pair as features to handle inherently noisy phrase pairs more correctly.

• The experimental results show that our proposed method improves the accuracy of phrase reorder-
ing. In particular, the proposed method works well with phrase pairs including NULL alignments.

• We evaluate the proposed method on Japanese-to-English and English-to-Japanese translation using
automatic and human evaluation.

2 Lexicalized Reordering Models

Lexicalized reordering models (LRM) maintain a reordering probability distribution for each phrase pair.
Given a sequence of source phrases f = fa1

, . . . , fai
, . . . , faI

, we translate and reorder the phrases to
generate a sequence of target phrases e = e1, . . . , ei, . . . , eI . Here a = a1, . . . , aI expresses the align-
ment between the source phrase fai

and the target phrase ei. The alignment a can be used to represent
the phrase orientation o. Three orientations with respect to previous phrase (Monotone, Swap, Discontin-
uous) are typically used in lexicalized reordering models (Galley and Manning, 2008). However, because
global phrase reordering appears frequently in Japanese-to-English translation, Nagata et al. (2006) pro-
posed four orientations instead of three by dividing the Discontinous label. In Figure 1, we show four ori-
entations, called Monotone (Mono), Swap, Discontinuous-right (Dright) and Discontinuous-left (Dleft).
Using alignments ai and ai−1, orientation oi respected to the target phrases ei, ei−1 follows:

oi =


Mono (ai − ai−1 = 1)
Swap (ai − ai−1 = −1)
Dright (ai − ai−1 > 1)
Dleft (ai − ai−1 < −1)

(1)

If the reordering probability of every phrase is expressed as P (oi|fai
, ei), that of the sentence can be

approximated as

P (aI
1|e) =

I∏
i=1

P (oi|fai
, ei). (2)

LRM is a simple method to calculate the reordering probability for each phrase pair statistically.
However, the traditional lexicalized reordering model has the following disadvantages:

• High ambiguity: The phrase reordering orientation cannot be determined using only a phrase pair
fai

, ei, because the phrase reordering orientation may not be unique in a limited context.

• Data sparsity: The reordering probability is calculated for each phrase pair fai
, ei. The phrase pair,

which appears only once in training, amounts to 95%1 of the entire phrase table. The reordering
probability of these phrase pairs cannot be easily established.

• Noisy phrases: The reordering model does not consider the adequacy of the translation and the word
alignments in phrases. For example, almost identical phrase pairs such as “日本で ||| in Japan” and
“日本で ||| in Japan ,” are often found in a phrase table. The difference between them is whether the
phrase include “,” which corresponds to the NULL alignment. Phrase tables in a distant language
pairs like Japanese and English often contain the NULL alignment and mis-aligned words. On the
contrary, there are also many phrase pairs that have crossing alignments such as “日本で ||| in Japan”
and “日本で ||| Japan is.” These locally reversed alignments deteriorate reordering accuracy.

1We experimented in the Kyoto Free Translation Task.
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Figure 1: Four orientations, namely Monotone, Swap, Discontinuous-right and Discontinuous-left, are
shown. Monotone means that the source phrases fai

, fai−1
are adjoining and monotonic with respect

to the target phrases ei, ei−1. Swap means fai
, fai−1

are adjoining and swapping. Discontinuous-right
means fai

, fai−1
are separated and monotonic, and Discontinuous-left means fai

, fai−1
are separated

and swapping.

Li et al. (2013) proposed an NRM, which uses a deep neural network to address the problems of high
ambiguity and data sparsity. We describe the NRM in the next section and propose our model to improve
the NRM to address the problem of noisy phrases in Section 4.

3 Neural Reordering Model

Li et al. (2013) tackled the ambiguity and sparseness problem by distributed representation of phrases.
The distributed representation maps sparse phrases into a dense vector space where elements with similar
roles are expected to be located close to each other.

3.1 Distributed Representation of Phrases

Socher et al. (2011) proposed the recursive autoencoder, which recursively compresses a word vector
and generates a phrase vector with the same dimension as the word vector. We define a word vector of u
dimension x ∈ Ru, an encoding weight matrix We ∈ Ru×2u, and a bias term be. A phrase vector p1:2 is
constructed as follows:

p1:2 = f(We[x1;x2] + be) (3)

f is an activation function such as tanh, which is used in our experiments.
When a phrase consists of more than two words, we compute a phrase vector p1:n recursively from the

phrase vector p1:n−1 and the word vector xn.

p1:n = f(We[p1:n−1; xn] + be) (4)

We learn parameters to minimize the mean squared error between an input vector and the reconstructed
vector using the autoencoder.

3.2 Deep Neural Network for Reordering

The NRM consists of an input layer built upon recursive autoencoders and outputs orientation score using
a softmax layer (Li et al., 2013). An input is a concatenation of the current and previous phrase vectors
in each language p(fai

), p(ei), p(fai−1
), p(ei−1) and an output is the reordering score P (oi) from the
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Figure 2: An NRM considering phrase translation and word alignment. PT represents phrase translation
shown in Section 4.1 and WA (gray cells) represent the word alignment shown in Section 4.2.

softmax layer. All the phrases in the same language use the same recursive autoencoder.

P (oi) =
exp g(oi)

Σo′∈{M,S,Dr,Dl} exp g(o′)
(5)

g(oi) = f(Wr[PHi; PHi−1] + br) (6)

PHi = [p(fai
); p(ei)] (7)

Here, o ∈ {Mono, Swap, Dright, Dleft} expresses the classes of orientation described in Section 2.
Wr ∈ R1×4n is a weight matrix; PHi is a phrase pair vector, which concatenates the phrase vectors
p(fai

) and p(ei); and br is a bias term.
We calculate the error of the NRM Enrm(θ) in each phrase pair using cross entropy.

Enrm(θ) = −
∑

o

di(o) log P (o) (8)

where di is a correct reordering represented with a four-dimensional probability distribution. Each di-
mension corresponds to Mono, Swap, Dright, and Dleft.

Finally, we compute the total of error J(θ), which is the sum of four errors of the recursive autoencoder
Erae(θ) and the error of the NRM Enrm(θ). α is a hyper parameter controlling the trade-off between the
models, and λ is an L2 regularization coefficient.

J(θ) = αErae(θ) + (1− α)Enrm(θ) + λ||θ||2 (9)

4 NRM with Phrase Translation and Word Alignment

The reordering of the phrase pair depends on each fai
and ei. However, the NRM generates a phrase

vector merely by embedding a word vector, so that it does not take into account the adequacy of the
translation between the phrase pair nor the word alignments. Therefore, in this paper, we embed the
phrase translation probability and word alignments as features when we constitute a phrase pair. An
overview of the model is illustrated in Figure 2.

4.1 Phrase Translation
We represent the translation probabilities between the phrase pair fai

and ei in a four-dimensional vector
PT (fai

, ei) to consider the adequacy of the translation between the phrase pair.

PT (fai
, ei) = (P (ei|fai

), P (fai
|ei), lex(ei|fai

), lex(fai
|ei)) (10)
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Dimension Description
1 Word translation probability P (e|f)
2 Word translation probability P (f |e)
3 Whether the word to the left of the phrase
4 aligns to a word to the center of the phrase
5 where its position is to the right of the phrase
6 Whether the word aligns to the NULL word

Table 1: Word alignment information WA.

P (ei|fai
) and P (fai

|ei) represent the translation probability of the phrase of both directions; lex(ei|fai
)

and lex(fai
|ei) compute the average of the translation probability of the words in the phrase of both

directions.
We then concatenate the phrase pair vector PHi and the phrase translation vector PT (fai

, ei) to obtain
a new phrase pair vector PH ′

i by using a weight matrix Wt. Again, bt is a bias term.

PH ′
i = f(Wt[PHi; PT (fai

, ei)] + bt) (11)

4.2 Word Alignment
We define a new word vector x′, which incorporates word alignment information “WA” comprising six
dimensions to the word vector x to propagate alignment information to the phrase vector.

x′ = [x; WA] ∈ Ru+6 (12)

Word translation probabilities are represented in the first two dimensions, and the location of the word
alignment is represented in the following three dimensions. In addition, since some words are not aligned,
i.e., “NULL Alignment,” we create a special dimension corresponding to the NULL word.

Table 1 explains each dimension of WA. For example, the fourth dimension of WA of the word
“日本 (Japan)” in Figure 2 is 1 because the aligned word “Japan” is located at the center of the phrase.

5 Experiment

We conduct two kinds of experiments: intrinsic evaluation of reordering accuracy and extrinsic evalua-
tion of MT quality.

5.1 Setting
We use the Kyoto Free Translation Task2 (KFTT) for our experiment. It is a task for Japanese-to-English
translation that focuses on Wikipedia articles. We use KyTea3 (ver.0.4.7) for Japanese word segmentation
and GIZA++ (Och and Ney, 2003) with grow-diag-final-and for word alignment. We extract 70M phrase
bigram pairs and automatically annotate the correct reordering orientation using Moses (Koehn et al.,
2007). We filter out phrases that appear only once. We randomly divide the parallel corpus into training,
development, and test. We retain 10K instances for development and test and use 1M instances for
training.

We experimented 15, 25, 50, and 100-dimensional word vectors; 25-dimensional word vectors are
used in all experiments involving our model. Thus, we set the vector size of the recursive auto-encoder
to 31, to include the 25-dimensional word embeddings and the 6-dimensional WA. In a preliminary
experiment, we compare the performance of randomly initialized word vectors with that of word vectors
trained by the word2vec model4. Based on the result, we use word vectors trained by the word2vec
model because of the performance. The word2vec model is pre-trained on English and Japanese versions
of Wikipedia.

2http://www.phontron.com/kftt/
3http://www.phontron.com/kytea/
4https://code.google.com/archive/p/word2vec/
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Mono Swap Dright Dleft Acc.
The ratio of labels [%] 30.39 16.06 31.86 21.69
Baseline Lexicalized Reordering Model (LRM) 71.54 36.92 95.76 39.33 66.71

Neural Reordering Model (NRM) 77.06 57.60 70.31 60.63 68.22
Proposed Phrase Translation (NRM+PT) 76.70 59.78 71.34 60.07 68.53

Word Alignment (NRM+WA) 76.90 59.84 71.03 62.38 69.04
NRM+PT+WA 77.53 60.83 72.69 61.78 69.89

Table 2: Recall and accuracy of reordering phrases.

Data time Vocab size Unknown words Unknown phrases Acc.
size /epoch ja en ja en ja en

10K 2 min 4,906 4,820 44% 45% 61% 63% 63.50
50K 9 min 10,833 10,880 25% 36% 48% 51% 66.88

200K 35 min 18,239 18,375 13% 22% 36% 39% 68.45
1M 170 min 26,978 27,152 7.3% 13% 24% 28% 69.89

Table 3: Data size and the accuracy of reordering. Vocab size reflects the vocabulary in the training data.
The numbers of UNK words and UNK phrases are calculated in the test data. A pre-trained word2vec
vector was given as the initial value for UNK words. Vocab sizes of test data are en:3,583 and ja:3,470.
Phrase sizes of test data are en:8,187 and ja:7,945.

The pre-trained word2vec vector is also used to represent unknown words in the test data. If an
unknown word is not included in the word2vec vocabulary, an unknown word vector is used to represent
the word. In order to learn the unknown word vector, we randomly choose 1% of the words which
appeared only once in the training data. Table 3 shows the size of the vocabulary.

We tune the hyperparameters with the development data up to a maximum of 30 epochs. We use the
Adam optimizer with learning rate 0.0001. Our mini-batch size is 25. We drew the hyper parameter α
uniformly from 0.05 to 0.3 with the development data and used α = 0.12 in our experiments. We also
tried dropout but it did not show the improvements in our experiments.

We implemented the basic NRM and our proposed model using Chainer (Tokui et al., 2015) as a deep
learning toolkit. When running on a single CPU (Intel Xeon E5-2697 v3@2.6GHz), it took five days to
completely train a model.

5.2 Reordering Evaluation

Table 2 shows the accuracy of reordering. The performance of LRM is calculated from the reordering
table created during training5. The recall of Mono and Dright are high because LRM uses only a phrase
pair fai

, ei and tends to output major labels. On the other hand, NRMs succeed at estimating minor
labels because the score is calculated from the phrase bigram pairs. As a result, only the NRM recall of
Dright is inferior to LRM, and thus, the overall accuracy improves.

Furthermore, in NRMs, the use of phrase translation and the word alignment improves the accuracy
by 0.31 and 0.82 points, respectively. Considering both these features, the accuracy of NRM is improved
by 1.67 points.

5.2.1 Data Size
Table 3 shows accuracies according to the size of the training data. The larger the data size, the higher the
accuracy, because there are less unknown words and phrases. Note that LRM by Moses cannot calculate
phrase orientation score for unknown phrases. Unlike conventional LRM, NRMs can construct a phrase

5We mix training data in the test data when we calculate the accuracy of LRM because the score can be calculated only for
known phrases. Since the NRM can assign a score to unknown phrases, we use only the training data for NRMs.
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Figure 3: The accuracy of reordering at each epoch.

Mono Swap Dright Dleft Acc.
The rate of phrases including NULL Alignment [%] 25.8 45.9 40.8 44.5
NRM 66.84 57.67 66.79 58.18 62.83
NRM+PT+WA 66.71 62.14 70.56 62.42 66.05

Table 4: Recall and accuracy of reordering phrases that contain NULL alignment.

vector even if the phrase in the test data is not included in the training data. As a result, the accuracy of
the trained NRM is superior to that of LRM, only seeing 50K instances.

When we increase the size of the training data, the number of unknown words and unknown phrases
decreases and the accuracy is improved further. However, most of the unknown words in the training
corpus are named entities such as, “清水寺 (Kiyomizu-dera Temple),” which is a Japanese famous tem-
ple, because there are many traditional named entities in the KFTT corpus. Furthermore, it is possible
that a new unknown word not in the phrase table appears in decoding. Therefore we expect NRMs to
exhibit higher accuracy than LRM owing to their ability to recognize the unknown word.

5.2.2 Number of Epochs
Figure 3 shows the reordering accuracy at each epoch. Our proposed NRM+PT+WA method always
achieves better accuracy than the baseline method of NRM. The accuracy is maximized around the 10th
epoch in the test data. After that, the accuracy gradually decreases. The test loss shows the same tendency
(negatively correlated with accuracy).

5.2.3 Phrase Translation Probabilities
To investigate the relation between the phrase translation feature and accuracy of our proposed method,
we bin the test data into each phrase translation probability and evaluate the reordering accuracy.

As a result, the reordering accuracy does not improve in the cases where the translation probability
is either too high or too small (e.g., the probability is more than 0.1 or less than 0.001), but overall
performance improves a little. In a future study, we investigate as to why the translation probability is
helpful for a reordering model.

5.2.4 NULL Alignment
To investigate the relationship between the NULL alignment and the accuracy of our proposed method,
we evaluate only the instances when the target side phrases ei, ei−1 contain the words that have at least
one NULL alignment. There are 3,788 such instances in the test data.

Table 4 shows the rate of instances including the NULL alignment for each reordering orientation
and the accuracy of the corresponding reordering phrases. Considering each reordering orientation, the
proposed method improves the recall over the plain NRM by approximately 4 points in each orientation
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Method ja-en en-ja
BLEU RIBES WER BLEU RIBES WER

LRM 18.45 65.64 79.87 21.37 67.01 84.73
NRM 19.16∗ 66.30 79.15∗ 22.69∗ 68.64∗ 81.68∗

NRM+PT+WA 19.31∗ 66.39 78.90∗ 22.61∗ 68.65∗ 81.57∗

Table 5: Evaluation of translation quality. The symbols of * means statistically significant difference for
LRM in bootstrap resampling (p < 0.01).

of Swap, Dright, and Dleft, whereas that of Mono is not improved. This result suggests that the instances
of Mono are not affected much by the NULL alignment, because they contain less NULL alignment
(See the top row in Table 4). Overall, as compared with the NRM, our proposed method using phrase
translation and word alignment improves the accuracy by 3.17 points (1.5 points higher than that of all
the test data) for instances including the NULL alignment.

5.3 MT Evaluation

We investigate whether our reordering system improves translation accuracy. We use our reordering
model for N-best re-ranking and optimize BLEU (Papineni et al., 2002) using minimum error rate
training (MERT) (Och, 2003). We output a 1,000-best candidate list of translations that Moses gen-
erated for development data and replace the lexical reordering score of Moses with the score of the
proposed method. Then, we re-tune the weights of the Moses features using MERT again. BLEU-4,
RIBES (Isozaki et al., 2010a) and WER are used as measures for evaluation.

Table 5 shows the BLEU, RIBES and WER scores of the basic system and our proposed system. Bold
scores represent the highest accuracies. When we compare the plain NRM and the proposed method
with LRM, we confirm significant differences in BLEU, RIBES and WER scores on Japanese-to-English
and English-to-Japanese translations using bootstrap resampling. Unfortunately, the proposed method is
not able to identify significant differences in comparison with NRM. The reordering accuracy does not
necessarily relate to the translation accuracy because we make the training and test data without checking
the decoding step. We consider this to be partly of the reason why the BLEU score did not improve.

We conduct ablation tests to investigate which reordering orientation contributes most to BLEU score.
The results show that Swap, which contains mostly NULL alignment, accounts for 0.17 points of im-
provement of the BLEU score in the proposed method. Other labels contribute only 0.01 - 0.05 points.
Consequently, we consider that there is little influence on the translation results, because the change in
each label of reordering is small, although the reordering accuracy rate of the NRM and the proposed
method differ by 1.67 points.

In addition, we conducted human evaluation on Japanese-English translation by randomly choosing
100 sentences from test data. Two evaluators compared the proposed method with NRM fluency and
adequacy. As a result, the proposed method improved fluency (NRM:NRM+PT+WA = 17.5:20) but
not adequacy (NRM:NRM+PT+WA = 19:14.5). Although the outputs of two methods are similar, the
proposed method favored fluent translation and resulted in slight improvements in BLEU and RIBES.

6 Related Work

There are several studies on phrase reordering of statistical machine translation. They are divided into
three groups: in-ordering such as distance-based reordering (Koehn et al., 2003) and lexicalized reorder-
ing (Tillmann, 2004; Koehn et al., 2007; Galley and Manning, 2008), pre-ordering (Collins et al., 2005;
Isozaki et al., 2010b; Wu et al., 2011; Hoshino et al., 2015; Nakagawa, 2015), and post-ordering (Sudoh
et al., 2011). In-ordering is performed during decoding, pre-ordering is performed as pre-processing
before decoding and post-ordering is executed as post-processing after decoding. In this section, we
explain other reordering methods other than lexicalized reordering.

In early studies on PBSMT, a simple distance-based reordering penalty was used (Koehn et al., 2003).
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It worked fairly well for some language pairs with similar word order such as English-French but is
not appropriate for distant language pairs including Japanese-English. Lexicalized reordering model
(LRM) (Tillmann, 2004; Koehn et al., 2007; Galley and Manning, 2008) introduced lexical constraints
of the phrase reordering and not just penalizing long-distance reordering.

Pre-ordering methods can be divided into two types: (1) Rule-based preprocessing methods (Collins
et al., 2005; Isozaki et al., 2010b) parse source sentences and reorder the words using hand-crafted rules.
(2) Discriminative pre-ordering models (Tromble and Eisner, 2009; Wu et al., 2011; Hoshino et al., 2015;
Nakagawa, 2015) learn whether children of each node should be reordered using (automatically) aligned
parallel corpus. However, pre-ordering models cannot use the target language information in decoding.
Therefore, optimizing phrase ordering using target-side features like phrase translation probability and
word alignment is not possible, as done in our proposed method.

Post-ordering methods (Sudoh et al., 2011; Goto et al., 2012) are sometimes used in Japanese-to-
English translation. They first translate Japanese input into head final English texts, then reorder head
final English texts into English word orders. Post-ordering methods have the advantage of being able to
use syntactic features at low computational cost, but need an accurate parser on the target side.

7 Conclusion

In this study, we improved a neural reordering model in PBSMT using phrase translation and word
alignment. We proposed phrase translation and word alignment features to construct phrase vectors. The
experimental results demonstrate that our proposed method improves the accuracy of phrase reordering.
In addition, we showed that the proposed method was effective when phrase pairs included the NULL
alignment. Evaluation on Japanese-to-English and English-to-Japanese translations indicated that the
proposed method does not exhibits significant improvements in BLEU compared with those of the neural
reordering model (Li et al., 2014). In the future, we plan to integrate our reordering model into attentional
neural machine translations.
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