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Abstract

In the Danish CLARIN-DK infrastructure, chaining language technology (LT) tools into a work-
flow is easy even for a non-expert user, because she only needs to specify the input and the
desired output of the workflow. With this information and the registered input and output profiles
of the available tools, the CLARIN-DK workflow management system (WMS) computes com-
binations of tools that will give the desired result. This advanced functionality was originally not
envisaged, but came within reach by writing the WMS partly in Java and partly in a programming
language for symbolic computation, Bracmat. Handling LT tool profiles, including the computa-
tion of workflows, is easier with Bracmat’s language constructs for tree pattern matching and tree
construction than with the language constructs offered by mainstream programming languages.

1 Introduction

The CLARIN-DK infrastructure1 has a workflow management system (WMS) that transforms, annotates
and analyses the user’s input. The WMS combines tools, deployed as web services, in just such a way
that output is produced of the type that the user asked for, or it tells the user that such output cannot be
made given the input and the available tools. The user is not required to be acquainted with the tools.
In principle, neither do providers of new tools need to know which tools are registered. The currently
registered tools are language technology (LT) tools (e.g., OCR, lemmatisation, syntactic analysis), but
the WMS welcomes any tool that can run without direct user interaction, and new file types can be added
if needed. For a description of the architecture and user interface of the WMS, see (Jongejan, 2013).

In this paper we lift the veil for the way the WMS is implemented, because we think that the symbolic
computation programming language that was used for most of the implementation, Bracmat, can be used
in other corners of digital humanities concerned with querying and transforming (semi-)structured data.

Symbolic computation software is primarily for solving mathematical equations, but has nevertheless
a wide field of application. The WMS is one of the examples illustrating this. Tool registration, compu-
tation of workflows, simplification of the presentation of workflows before being presented to the user:
each of these tasks calls for the operations that are the rationale for symbolic computation software.

Before designing the WMS, we discussed scenarios for how a user could interact with our WMS. In
one scenario a user would have to assemble a workflow manually. A ‘wizard’ would made that task
easier by for example not allowing a user to insert a tool that was not compatible with the output from
already selected tools earlier in the workflow. In a more advanced scenario, the ‘hairdresser’ scenario,
the WMS would combine the tools autonomously, while a user only had to specify the required result.

The hairdresser scenario was a logical next step, since there were already workflow systems that
assisted users with assembling workflows of LT tools, for example our institute’s simple but successful
web-based toolbox. From the implementation point of view the hairdresser scenario had the advantage
that the user interface would be simpler than in the wizard scenario. All that was needed was an input
form to get the specification of the user’s goal and a form where the user could choose one of the proposed

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

1https://clarin.dk/
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workflows, if the WMS found more than one solution. There would be relatively little need for feedback
to the user, since the user would not be able to make errors.

Both scenarios would require input and output profile information for each integrated tool, but in
the hairdresser scenario this information was required to be complete, so that no workflows could be
computed that, when executed, would fail to work because of an undocumented mismatch between tools.
In the wizard scenario the user’s expertise could supplement incomplete registered tool information.

We chose to implement the hairdresser scenario. Java was used for all interactions with other
CLARIN-DK modules and Bracmat for the computation and management of the workflows. Eight per-
son months were allotted to the implementation of the first version, which was ready in 2011.

This paper proceeds as follows. In section 2 we present Bracmat. In section 3 we discuss why sym-
bolic computation software and especially Bracmat makes it easy to implement an automatic WMS. In
section 4 we explain why an essential feature of symbolic computation, pattern matching (PM), is best
done in a programming language that has PM as a language construct. In section 5 we refer to related
work. In section 6 we tell how to obtain the WMS and Bracmat. In section 7 we present the conclusions.

2 Bracmat

Bracmat is a programming language for symbolic computation created2 by the author. Bracmat was used
to perform long chains of algebraic manipulations without human supervision or interaction with inter-
mediary results. Very soon, after minor additions, Bracmat was also used for analysis and manipulation
of a much wider class of complex data, such as (semi-)structured text, thereby maximally utilizing the
high level programming language constructs that already were in place to handle algebraic expressions.

PM in tree structures is an important operation in rule-based systems for symbolic computation, term
rewriting and theorem proving (Ramesh and Ramakrishnan, 1992). Bracmat is no exception and has an
expressive PM syntax that, in a few words, is characterised by these three PM capabilities:

• Tree PM for analysing tree structured data,
• Evaluation during PM of expressions that are embedded inside patterns, and
• Associative PM to capture zero or more subtrees with a single pattern variable.

We refer to section 6 for pointers to the full documentation of the Bracmat language and to code exam-
ples. Let it be said here that there are no restrictions on what types of expressions can be evaluated while
a pattern is matched against data. It is for example possible to formulate deeply nested, even recursive,
embedded PM operations, or to accumulate partial results of a PM operation, or to print messages during
PM to find errors in a pattern. Associative PM, a feature that we take for granted when applying regexp
patterns to strings, allows a pattern component to capture not just one, but a stretch of zero or more
elements from a list, for example a sublist of seven subtrees somewhere in a much longer list.

Bracmat has been used in several LT related projects. Here are a few examples.
Format transformation of data. Bracmat has built-in functions for reading and writing XML, HTML,

SGML and JSON data, making it easy to inspect and transform such data as native Bracmat expressions.
For some tools that are registered in the WMS, Bracmat transforms data from the CLARIN-DK TEI P5
format to tool specific formats (e.g., CONLL, Penn Treebank bracketed format) and back again.

Anonymisation of court orders. In software developed for a commercial publisher of juridical text,
Bracmat is used for named-entity normalisation and anonymisation of digital editions of court orders. In
contrast to LT tools that only accept pre-processed plain text, this software reads the source document,
which is in a proprietary XML format, and transfers all lay-out to the output (Povlsen et al., 2016).

Validation of the Dutch text corpora MWE, D-COI, DPC, Lassi, and SoNaR (van Noord et al., 2013).
Bracmat was used for sampling, for checking XML well-formedness, PoS-tag usage and agreement be-
tween documentation and annotation practice, and for preparation of the tables in the validation reports.

Multimodal communication in a virtual world. In the virtual world implemented in the Staging
project (Paggio and Jongejan, 2005) the functionality and data structures that let the farmer agent keep
track of the dialogue and that caused appropriate agent actions and speech acts were written in Bracmat.

2Bracmat (then: Bacmat) made its first public appearance during a colloquium at Vakgroep Informatica, (then) Rijksuniver-
siteit Utrecht, 12 December 1989.
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3 Workflow Computation is Symbolic Computation

From the outset, we had an intuition that symbolic computation software, and especially Bracmat, could
help us tremendously to implement a WMS according to the hairdresser model. Many techniques that
are required in the automatic WMS are ingrained in symbolic computation: building and destroying tree
structures, testing equality of tree structures, finding common factors, sorting, factorization, normaliza-
tion, and backtracking.

At the core of the WMS is the automatic computation of workflows. The algorithm we chose for com-
puting workflows is called ‘dynamic programming’ (Bellman, 1957). We start from the goal, finding
the tool or tools that can produce the output. The input specifications of those tools constitute sub-
goals that are solved recursively. We reduce the computation time by storing solutions to already solved
(sub)goals, so they can be re-used. This is called ‘memoizing’. Dynamic programming is also used in
LT, for example in the Earley algorithm (Earley, 1983) for parsing strings using a context free grammar.

The dynamic programming algorithm itself can be implemented in any programming language, but
there are many related processes where the WMS benefits of symbolic computation. We only mention
two: normalization of tool registration data and simplification of the presentation of candidate workflows.

3.1 Normalization of tool registration data

The registered information about a tool consists of boiler plate information and input/output specification.
The boiler plate information consists of the name of the tool, the service URL of the tool, and metadata
that are not needed for running a tool, such as the name of its creator. The input/output specifications are
in three levels of detail: incarnations, features and value subspecifications. We briefly explain these.

Registered I/O specification for the Brill-tagger
1 ... other tools ...
2 + ( Brill-tagger
3 . (facet,(segments*tokensˆPennTree.PoSˆPennTree))
4 (format,(flat.flat)+(TEIP5annotation.TEIP5annotation))
5 (language,(en.en))
6 )
7 + ( Brill-tagger
8 . (facet,(segments*tokens NER.PoSˆ(Moses+Parole)))
9 (format,(flat.flat)+(TEIP5annotation.TEIP5annotation))

10 (language,(da.da))
11 )
12 + ... other tools ...

Two incarnations of the Brill tagger. The first incarnation is for English and requires as
input segments and tokens. The tokens must obey the rules set for the Penn Treebank:
isn′t → is n′t, etc. It outputs Part of Speech tags from the Penn Treebank tag set. The
second incarnation is for Danish. It also requires segments and tokens, but optionally it can
also read named entity annotations (NER). The produced tags belong to the Moses tag set or
the Parole tag set. Both incarnations handle either flat or TEI P5 input and output files.

(1)

At the top level are incarnations, illustrated in code example (1) as the two sets of I/O specifications
for a Part of Speech tagger. The incarnations cannot be merged into one, because they differ in more
than one feature: facet and language. Mixing the incarnations would suggest that the tagger could output
Parole tags for English text, for example, which is not the case. For best performance and a compact
visual representation, the WMS organizes a tool’s I/O specifications in as few incarnations as possible.

At the second level are the already mentioned features. Features are (ideally) mutually independent:
the value of a feature has no influence on the value another feature can have. The most important features
are facet (or ‘type of content’), file format and language. Not all features need to be specified. If, for
example, a tool is not language sensitive, then the language feature does not need to be specified.

At the third level are optional subclasses of values at the second level. For example, an image-to-text
tool may produce output in the file format ‘RTF’, with the precaution ‘OCR’ as subclass. If another
tool’s input format is ‘RTF’, subclass ‘OCR’, or just plain ‘RTF’, then there is a format match.
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An incarnation is computed by an algorithm that is similar to partial factorization of a sum. Factoriza-
tion not only creates organization that pleases the eye, but also speeds up the calculation of workflows:
it takes only two comparisons to realize that the Brill tagger in example (1) does not support German,
whereas a completely unfolded representation would require checking ten different incarnations3.

How symbolic computation and PM can help to keep the tool metadata normalized is illustrated in
code examples (2) and (3). The tools variable is a sum, where each term is an incarnation. In a sum
all terms are automatically sorted and equal terms are automatically reduced to a single term.

Both examples are PM operations. A pattern is the right hand side operand of the match operator
‘:’. The pattern in (2) continues over several lines and exhibits all three PM capabilities mentioned
in Section 2: It operates on tree structured data (the tool incarnations), is associative (the variables
A, M and Z are bound to varying numbers of intervening tool incarnations), and contains an embedded
expression. The embedded expression, itself a match operation, is the right hand side of the ‘&’ operator.
The pattern is also non-linear, since the pattern variable ToolName occurs more than once.

Spot two incarnations that can be merged
1 !tools
2 : ?A
3 + (?ToolName.?Features1)
4 + ?M
5 + ( !ToolName
6 . ?AA
7 ( (?FeatureName,?Values2) ?ZZ
8 & !Features1
9 : !AA (!FeatureName,?Values1) !ZZ

10 )
11 )
12 + ?Z

“Find two incarnations of a tool that are equal except for one feature. Bind all other tool incar-
nations to A, M and Z, the values of the equal features to AA and ZZ, the name of the exception
to FeatureName, and the differing values to the variables Values1 and Values2.”

(2)

Code example (3) illustrates the ease with which a rewritten tools list is built from smaller chunks.

Merge two mergeable incarnations
1 !A
2 + !M
3 + ( !ToolName
4 . !AA
5 (!FeatureName,!Values1+!Values2)
6 !ZZ
7 )
8 + !Z
9 : ?tools

“Rewrite the list of tools by reducing the number of incarnations.”

(3)

3.2 Simplification of the presentation of candidate workflows
If there is more than one viable workflow, the user must choose. One of the applied strategies to make
this easier for the user is to minimise the amount of information that is shown to her. This is done by
not showing details that are not needed to see the differences between any two workflows in the list. A
maximally simplified list of workflows displays the names of the involved tools in each workflow and
those feature values and feature value subclassifications that are needed to see the differences. To bring
the differences to light, the similarities have to be found and eliminated in a process that dynamically
constructs and gradually improves a pattern that describes those similarities. The mathematical analogue
is finding and then eliminating the polynomial greatest common divisor in a number of polynomials.

3The first incarnation explodes to two incarnations, one for flat text and one for TEI P5 annotations. The second incarnation
doubles three times: (a) with or without NER, (b) Moses or Parole tags and (c) flat or TEI P5 format.
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4 Limitations to symbolic computation with general purpose programming languages

The data types that are needed for symbolic computation can be implemented in a general purpose
programming language, but the PM facilities for querying such data require specialized languages.

There are several formal query languages that are designed for querying tree structured data. These
query languages can be used in scripts and programs written in mainstream languages like Java.

At first sight, writing an application using both a programming language and a query language seems to
combine all the advantages of the query language with all the advantages of the programming language,
but there are some disadvantages that manifest themselves when queries need to be created dynamically
or when they become so complex that they no longer can be expressed in the query language.

In our understanding, a query expression, or more generally a pattern, is a declarative (as opposed to
procedural) depiction of constraints on data content and data structure. That depiction can, but need not,
have some similitude to data that the pattern matches. Patterns are expressed in some ‘pattern language’
P . If a programming language L is not a P at the same time, then the programmer must delegate PM to a
library that implements a P . While the use of libraries in many situations results in solutions with a good
separation of functionality over distinct modules, this is not the case with PM. Given only input data, a
PM library still lacks the instructions from the L program that tell the library what to do with the data,
and those instructions have to be expressed in the P language. A P expression can have a very complex
grammatical structure. That structure must somehow be constructed by the L program, but since L and
P are different languages, the L program is blind for the full structure of P expressions and not able to
understand their parts. The L program can only handle P expressions at a (much) lower level than the P
library, for example at the character string level as in code example (4).

The Java code in (4) creates an object that strings characters together to form the XPath expres-
sion /tei:TEI/tei:text/tei:spanGrp[@ana=’#tokens’]. The structure observed in Java,
consisting of three simple Java String objects that are concatenated, has no relation to the structure of
the query. The full structure and semantics of the query is not understood before the constructed string
is handed down to the XPath library and interpreted as a P expression.

Java code that dynamically creates and executes an XPath expression
1 Document xml = streamToXml(xmlFile);
2 String id = "tokens";
3 Node span = execXPath("/tei:TEI/tei:text/tei:spanGrp[@ana=’#"+id+"’]",xml);

(4)

The split between L and P creates a need for interpretation and consequently overhead that material-
izes as extra programming code and an extra load on the CPU, but there are more problems with separate
L and P languages. Often, as in example (4), P expressions appear as string values in a program that is
written in L, so L plays the role of host language for an embedded language P . While L expressions and
statements are analysed and evaluated for correct syntax during compilation of the program, syntactic
and other formal errors inP expressions are discovered at run time, if ever. This is very unfavourable, be-
cause in rule based applications the patterns are usually the real workhorses, the most difficult to get right
and most in need of debug facilities. Last but not least, a critical consequence of the asymmetry between
host and embedded language is that it is impossible to evaluate L expressions inside P expressions.

In section 3 we have given an example of the usefulness of expressions that are embedded in a pattern.
This embedding is only possible if P and L are one and the same language, which is the case in Bracmat.

5 Related work

5.1 workflow management systems
WMS’es are made for different purposes. For technical minded researchers, there are WMS’es that are
compared to the ‘make’ tool by their authors. Such systems are characterised by Spartan simplicity and
they make it easy to run tasks repeatedly. Examples are LuigiNLP4 and zymake (Breck, 2008). These
systems run from the command line and do not have web-based components. The information about the
involved tools is minimal, and can be as little as a file extension.

4https://github.com/LanguageMachines/LuigiNLP
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The systems GATE (Cunningham et al., 2002), UIMA (Ferrucci and Lally, 2004), TextGrid (Neuroth
et al., 2011), WebLicht (Hinrichs et al., 2010), Galaxy (Giardine et al., 2005), Taverna (Wolstencroft et
al., 2013), Kathaa (Mohanty et al., 2016) and Kepler (Goyal et al., 2016) all have advanced graphical
interfaces that make it easy for users to combine tools in viable workflows that do useful things, but they
do not tell the user whether it is possible to create a workflow that has an output that fulfils the user’s
requirements. It is therefore a clear advantage to have knowledge of the available tools and of how they
interconnect when constructing a workflow for a specific purpose with the help of these systems.

The ALPE (Pistol, 2011) model is a framework under implementation that has similarities with our
approach, the aim being to automatically construct tool chains that connect input and output. ALPE is
intended as an extension to systems like GATE and UIMA.

5.2 PM languages

One of the earliest attempts at devising a programming language addressing PM was COMIT (Yn-
gve, 1958). Descendants of COMIT were the members of the SNOBOL family (Farber et al., 1964).
SNOBOL had powerful string PM facilities, but a flow of control based on labels and conditional jumps
that did not mix with the pattern syntax (Griswold and Hanson, 1980).

While COMIT patterns operated on data with a simple structure (tokens and their annotations in a
vector representation), later implementations of PM against text either operated on character strings
using regexp patterns, or on tree structured data using query languages such as XPath, XQuery, XSLT,
Cypher and syntax description languages like TGrep2 (Rohde, 2005), Tregex (Levy and Andrew, 2006),
TIGER (König et al., 2003) and TPEMatcher (Choi, 2011).

Some mainstream programming languages have PM facilities ‘built in’. Perl, for example, has pow-
erful string PM functionality and newer versions of C# have LINQ for querying structured data in an
SQL-like way. Although LINQ is a great step forward, it does not deal with associative PM.

Many functional languages, such as Haskell, ML, and Scala, have a PM mechanism against tree struc-
tured data that inspects the root of the tree and adjacent tree nodes. The matching algorithm iterates over
a set of patterns until a matching pattern is found. Each pattern is part of a ‘case’ that defines the action
to take place after a match has occurred. Functional languages overcome the split between L and P , but
they do generally not support associative PM.

Term rewriting systems such as XQuery, XSLT, Trafola (Heckmann, 1988), Elan (Borovansky et al.,
1996), Stratego (Visser, 2001), and Tregex+Tsurgeon (Levy and Andrew, 2006) scan a tree structure,
searching for terms that match a given rule pattern. When a matching term is found, the transforma-
tion part of the rule is applied to that term. In most of these systems the PM mechanism itself is not
fundamentally different from that in functional languages and does not support associative PM.

Associative and associative commutative PM languages (Slagle, 1974) look for multiple matches of the
same pattern with the same subject by iterating over different partitions of the subject structure in sublists
and subsets, respectively. Examples are tools for computer program analysis such as Maude (Clavel et
al., 1998), Tom (Moreau et al., 2003), and Rascal (Klint et al., 2009). However, these languages do not
overcome the split between L and P .

There are not many associative PM languages for tree structured data that overcome the split between
L and P . The only such languages that the author is aware of are Bracmat and the functional language
Egison5. Egison appeared in 2011, when the first version of the WMS already was implemented.

6 Availability

Bracmat and the CLARIN-DK WMS are available under the GPL 2 license and can be downloaded from
GitHub6. Bracmat can be compiled and executed on any platform for which a standard C compiler is
available, and it can be linked to Java and Python programs. For inspirational input, hundreds of tasks
on the programming chrestomathy site rosettacode.org are solved with Bracmat. Included in the GitHub
distribution is documentation and a technical paper that introduces those interested in LT to Bracmat.

5https://www.egison.org
6https://github.com/BartJongejan/Bracmat and https://github.com/kuhumcst/DK-ClarinTools
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7 Conclusion

Construction of a workflow between an input and a goal specification is in many ways similar to solving
a set of equations with a computer algebra system performing symbolic computation. Both processes
consist of several steps, both processes can finally arrive at producing a tree or directed acyclic graph
structure, both processes can run into dead ends and be forced to backtrack, both processes have to
handle ambiguous or unspecified parts, both processes deal with PM and unification, both processes
can be implemented recursively, both processes can be sped up by simplification and normalization of
all expressions and by memoizing solutions for already reached subgoals, and both processes can give
a multitude of results, one result, or no result at all. It is therefore logical to implement a workflow
management system not directly in a low level programming language, but in a high level language that
is dedicated to building tree structures and performing PM operations on such structures.

We have spelled out three desirable capabilities of a programming language with PM as language
construct: PM against tree structured data, full programmatic control during PM, and associative PM. Of
the currently existing programming languages very few combine all three of these advanced features.

We presented Bracmat, a programming language for symbolic computation that does combine these
three capabilities. To demonstrate the usefulness of the pattern matching capabilities of Bracmat, we have
given examples of practical language technology solutions that can find application in digital humanities.
One of these examples is the easy to use CLARIN-DK workflow management system.
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