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Abstract

Postmarketing surveillance (PMS) has the
vital aim to monitor effects of drugs af-
ter release for use by the general pop-
ulation, but suffers from under-reporting
and limited coverage. Automatic meth-
ods for detecting drug effect reports, es-
pecially for social media, could vastly in-
crease the scope of PMS. Very few auto-
matic PMS methods are currently avail-
able, in particular for the messy text types
encountered on Twitter. In this paper we
describe first results for developing PMS
methods specifically for tweets. We de-
scribe the corpus of 125,669 tweets we
have created and annotated to train and test
the tools. We find that generic tools per-
form well for tweet-level language iden-
tification and tweet-level sentiment anal-
ysis (both 0.94 F1-Score). For detection
of effect mentions we are able to achieve
0.87 F1-Score, while effect-level adverse-
vs.-beneficial analysis proves harder with
an F1-Score of 0.64. Among other things,
our results indicate that MetaMap seman-
tic types provide a very promising ba-
sis for identifying drug effect mentions in
tweets.

1 Introduction

Postmarketing surveillance (PMS) is a vital part of
pharmacovigilance, taking place during the final,
post-licensing phase of drug development when
the effects on larger numbers of users, who may
have other conditions and take other medicines
than those included in pre-approval tests, can be

assessed. PMS is implemented in passive na-
tional reporting schemes such as the Yellow Card
Scheme in the UK and MedWatch in the US; it is
also implemented as active surveillance, e.g. or-
ganisations such as the MHRA in the UK and the
FDA in the US conduct post-approval studies and
postmarketing surveys.

Existing PMS methods either rely on health
practitioners and patients to report adverse effects
to which only a small (self-selected) proportion
of patients in particular will contribute (report-
ing schemes), or they involve single products and
small numbers of participants (surveys). More
generally, such methods are more likely to iden-
tify (i) very serious problems, and (ii) problems
relating to newly released drugs and drugs already
under continuous surveillance.

The ultimate goal of our work is to develop text
analysis techniques to facilitate automatic, contin-
uous and large-scale monitoring of adverse drug
reactions (ADRs), and more generally of effects,
beneficial or otherwise, reported for given drugs.
There is currently huge interest in such methods
in the pharmaceutical industry, in particular where
they can be used to monitor what is being said on
social media about specific drugs. Automatic PMS
methods are also of interest to national regulatory
bodies.

The potential benefits of high-precision auto-
matic ADR detection methods for social media are
great: such methods would ameliorate the recog-
nised problem of under-reporting of ADRs via ex-
isting channels (Lardon et al., 2015), and could in-
form the design of post-approval studies. Studies
have already demonstrated that analysis of social
media contents (manual analysis so far) can lead
to the discovery of serious side effects, e.g. Abou
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Taam et al. (2014) retrospectively identified a se-
vere side effect on the basis of user content posted
months before the drug in question was withdrawn
because of the same side effect. The challenge is
to automate this process so that suitably large por-
tions of social media can be scanned.

2 Related Research

The main interest has so far been in discovering
ADRs, defined by the World Health Organisation
as a “a response to a medicinal product which is
noxious and unintended and which occurs at doses
normally used in [humans] for the prophylaxis, di-
agnosis or therapy of disease or for the restoration,
correction or modification of physiological func-
tion” (WHO, No date).

While studies involving manual analysis have
confirmed the usefulness of social media content
in ADR identification (see previous section), man-
ual analysis is necessarily limited to minute frac-
tions of available online content. Automatic anal-
ysis of online content for ADR detection remains a
huge challenge, in particular when applied to Twit-
ter, due to the messy and ‘un-language-like’ nature
of tweets, and it remains a small field.

Last year, Lardon et al. (2015) reported the re-
sults of a very thorough scoping review of (i) man-
ual and computer-aided identification of ADRs,
and (ii) semi-automatic and automatic identifica-
tion of ADRs, from social media. The authors
found just 13 papers on the latter, of which just
one paper focused on Twitter data (the remainder
used content from online health forums).

That one paper (Bian et al., 2012), among the
very earliest on this precise topic, reported the cre-
ation and annotation of a corpus of drug-related
tweets, and results for training SVM classifiers
to detect (a) whether the tweeter was reporting
their own experience, and (b) whether a given
own-experience tweet contained a mention of an
ADR. The study targeted five drugs that were
the subject of a pre-approval clinical study during
a known time window, and analysed tweets that
were posted during the same time window, on the
assumption that study participants were likely to
tweet about their experience. 489 tweets by 424
users were identified in this way, reduced to 239
users after removal of re-tweets and non-English
tweets. Tweets by the same user were concate-
nated and annotated manually. An SVM classifier
was trained to classify texts into (i) users report-

ing their own experience of taking the drug, and
(ii) user reporting someone else’s experience; the
classifier used 171 features, some based on key-
words and word types, hashtags and user names;
others based on a MetaMap (Aronson, 2001) anal-
ysis of the texts yielding UMLS meta codes. Clas-
sification into first-hand vs. second-hand reporting
achieved an average accuracy of 0.74, and classi-
fication of first-hand-reporting tweets into ADR-
mentioning and not ADR-mentioning was also re-
ported as achieving 0.74 accuracy.

Ginn et al. (2014) created a corpus of annotated
tweets and results for training classifiers to de-
tect ADR mentions. Two members of the project
team with “medical or biological science back-
ground” annotated 10,822 tweets related to 74
drugs for mentions of an ADR, indication or ben-
eficial effect, and each ADR/indication/beneficial
effect with corresponding UMLS concepts. The
74 drugs included some for which ADRs are
well established and some for which they are
not. Product names, common names and mis-
spellings were used for each drug; tweets with
URLs were removed (deemed to be mostly ad-
verts). Inter-annotator agreement (IAA) was
kappa = 0.69. Ginn et al. trained Naive Bayes
(NB) and SVM classifiers on the binary annota-
tions (presence/absence of effect mentions), using
bag-of-words feature vectors, text normalisation
and lemmatisation. Three versions of the corpus
were created with different levels of imbalance be-
tween positive and negative examples. Best Preci-
sion for detecting effects was 0.89 (Recall = 0.695;
F-Score=0.78; Accuracy = 0.746) for NB and the
exactly balanced version of the corpus; Accuracy
was around 0.75 for NB across the three differ-
ently balanced corpus versions.

Two members of the Ginn et al. team subse-
quently reported a larger set of results (Sarker and
Gonzalez, 2015), using the Twitter data above, but
also data from an online health forum, and an ex-
isting corpus of clinical reports. They describe the
earlier results as having been obtained by “classi-
fication via under-sampling, which yields higher
ADR F-scores at the expense of overall accuracy”
(Footnote 22). Sarker & Gonzalez decided not to
use under-sampling or balancing, and report ADR
F-Scores of 0.538 and Accuracy 86.2 for the Twit-
ter data with a different type of SVM than in the
earlier work, going up to 0.597 and 90.1, respec-
tively, when the Twitter data is supplemented by
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the data from the online health forum.
In summary, the tasks for which tools have so

far been built under the heading of automatic ADR
detection in tweets are all binary (note that the an-
notations in the data sets include a wider variety
of information):

• for a given tweet, decide whether it is in En-
glish or not (Bian et al., 2012);

• for a given set of tweets by the same Twitter
user and a given drug, decide whether or not
the user themself is taking (or has taken) the
drug (Bian et al., 2012);

• for a given tweet, decide whether or not it
contains a mention of an ADR (Bian et al.,
2012; Ginn et al., 2014; Sarker and Gonza-
lez, 2015).

In this paper, we address (i) the first task above
(Section 5), (ii) a more general case of the last task
above (mentions of all drug reactions, adverse or
not, Section 7), as well as two new, non-binary
tasks (for this domain): (iii) for a given tweet,
decide what its sentiment is (Section 6); and (iv)
for a tweet that has been identified as containing a
mention of a drug reaction (as in ii above), decide
whether the drug reaction is beneficial, adverse or
neither (Section 8).

3 Automatic Drug Effect Detection:
Task, Annotation, Tools

Automatic drug effect detection for Twitter is
something of a worst case scenario for NLP: not
only are tweets one of the messiest, most abbrevi-
ated forms of short text, for which standard NLP
tools do not tend to work well; but automatic ADR
detection is also extremely hard, even for very well
behaved types of text, due among other factors to
the large variety of ways in which the same drug
effects can be referred to, and to the complex rela-
tionships between drugs and effects.

The research reviewed in the previous section
focused on detecting adverse drug effects (the an-
notations in some cases also include other kinds
of effects, but the tools were for ADR detec-
tion). There are three reasons why we address
a wider set of effects: (a) the related research
area of automatic drug discovery/development, in-
cluding our industrial advisory partner, is inter-
ested in identifying all effects claimed for a given
drug/compound; (b) post-marketing drug monitor-
ing, especially by pharmaceutical companies, is

also interested in a wider set of effects; and (c) it
may make the detection task harder if one specific
subtype of drug effects is targeted only.

To elaborate on that last point, ADRs can be
seen as a special case of a more general binary
drug-effect relation has effect(drug, effect). Our
corpus (Section 4) contains diverse examples, in-
cluding the following:1

has effect(“glucosamine”, “got me feeling
some typa way”)
has effect(“azathioprine”, “think I’ve got
#shingles”)
has effect(“daunorubicin”,“made his wee
red”)

Reports of effects, whether positive, negative, or
neither, are likely to have similar patterns and cue
phrases (e.g. ‘I’ve got’, ‘got me feeling’). It may
be the case that it is easier to identify all reports of
effects, not just negative ones, and then classify
those into adverse, beneficial, mild, severe, and
other dimensions.

We construe drug-effect detection as a knowl-
edge extraction task, where the objective is to
identify mentions of drug effects and to fill relation
templates such as has effect(drug, effect). In this
general form such mentions can be incorporated
into knowledge graphs and combined with other
kinds of relations about drugs and health. Such
knowledge graphs can be easily visualised, and
are used for example in automatic drug discovery
research where mentions of drug effects from so-
cial media could provide a useful complementary
source of information.

In this paper, we report first results towards the
above knowledge extraction task. We use the term
‘drug effect’ to refer to both cases where the ef-
fect is specified and cases that might more intu-
itively be described as ‘properties’ where there
is no specified effect (see also Section 8 below).
Section 4 describes how we collected our set of
tweets, and the text cleaning and normalisation we
perform. Sections 5, 6, and 7 report results from
our experiments on language identification, senti-
ment analysis and drug effect detection in tweets,
respectively, while Section 8 reports results from
classifying drug effects into beneficial, adverse
and other.

1The text would be mapped to e.g. UMLS codes before
being incorporated into knowledge bases, as below.
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4 Data Collection

We compiled a list of drug names by extracting
all names of approved drugs from DrugBank,2

1,999 in total. Next, for each drug name we col-
lected the HTML files of all tweets returned for
the search “Drug Name” OR #DrugName (e.g.
“Acetic Acid” OR #AceticAcid), up to a maximum
of 100 tweets per drug name, and used Beautiful
Soup3 to extract the information we needed (tweet
text, tweet id, timestamp, etc.) from the HTML
files containing the search results (tweets).

The results was a corpus4 of 125,669 tweets,
with an average of 62.87 tweets collected for each
drug. Figure 1 gives a more detailed picture of
number of tweets per drug: most drugs have 70-
95 tweets, 19 have none, and 15 have 100 or
more. Note that we did not expand the set of drug
names with misspelt variants, generic or common
names as done in some related research (Ginn et
al., 2014).

We used three versions of the tweet texts: (i) in
their raw form; (ii) cleaned, with URLs and user
names replaced by tags, and hash tags with the ‘#’
removed; and (iii) with hashtags additionally con-
verted to likely strings of words, using a tool made
available on StackOverflow.5

5 Language Identification

In order to be able to analyse tweets in a meaning-
ful way, moreover using text analysis tools trained
for English, it is important that we can reliably fil-
ter out non-English tweets. Twitter tags tweets for
language, so part of our first set of experiments
was to test the reliability of the Twitter language
tags, as well as to see how it compared against
existing language identification tools. For the lat-
ter we chose the three tools that were, combined
as an ensemble method, identified by Lui & Bald-
win (2014) as the best language identification tools
for tweets: langid.py (Lui and Baldwin, 2012),
LangDetect,6 and CLD2.7

We randomly selected a subset of 300 tweets
(test set A) and manually annotated each for En-
glish vs. other. Table 5 shows results for each
of the methods tested, as well as for combining

2http://www.drugbank.ca/drugs
3https://www.crummy.com/software/BeautifulSoup
4We will publish the corpus along with this paper.
5By anonymous user Generic Human.
6Y. Nakatani: http://www.slideshare.net/shuyo/language-

detection-library-for-java
7Language identification in Google Chrome.

Tw
itt

er

la
ng

id
.p

y

C
L

D
2

L
an

gD
et

ec
t

M
aj

or
ity

vo
te

P 0.995 0.991 0.986 0.973 0.995
R 0.861 0.889 0.877 0.898 0.861
F1 0.923 0.937 0.928 0.933 0.923

Table 1: Language identification results for Twit-
ter tags and three language identification tools on
test set A of 300 manually annotated tweets (Re-
call, Precision, F1-Score, for the English class).

langid.py, CLD2 and LangDetect in majority vot-
ing. langid.py outperforms the others, including
Twitter, slightly on the raw tweets (see end of Sec-
tion 4). First cleaning/normalising tweets led to a
slight improvement for CLD2, and a slight deteri-
oration for languid.py; additionally parsing hash-
tags led to slight improvement for languid.py, and
slight deteriorations for CLD2 and LangDetect.
The final best result is an F1-Score of 0.94 for
langid.py. This confirms (for this domain) previ-
ous results that good language identification tools
outperform Twitter language tags (Lui and Bald-
win, 2014).

6 Sentiment Analysis

Following the language identification experi-
ments, we filtered out the non-English tweets us-
ing langid.py, which left us with 93,697 tweets and
an average of 46.87 tweets per drug name. In the
experiments in this section, we aim to predict the
overall sentiment of an (English) tweet, indepen-
dently of whether a drug effect is being reported.

For this purpose we selected a different test set
of 300 random tweets (test set B) from our corpus
and annotated each tweet for positive, negative, or
neutral. We tested the 18 sentiment analysis (SA)
tools made available in the ifeel package:8 Afinn,
Emolex, Emoticons, EmoticonDS, HappinessIn-
dex, MPQAAdapter, NRCHashtagSentimentLex-
icon, OpinionLexicon, Panas-t, Sann, SASA,
SenticNet, Sentiment140Lexicon, SentiStrength-
Adapter, SentiWordNet, SoCal, UmigonAdapter,
Vader, and a majority vote by all methods. The
ifeel team have reported comparative results for
many of these tools (Nunes Ribeiro et al., 2010;
Ribeiro et al., 2016). For our task, the methods

8http://blackbird.dcc.ufmg.br:1210/ (accessed: 06/2016)
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Number of tweets

Figure 1: Number of drugs (y) that have a given number of tweets (x). E.g. there are 19 drugs with 0
tweets, and 51 drugs with 88 tweets.

achieved an average F-Score of 0.792, and Ac-
curacy of 0.753. The best three were, by a con-
siderable margin: Emoticons, Panas-t and SANN
SA, across all three variants of our corpus. Very
briefly, these use the following approaches.

Emoticons: Given lists of positive and neutral
emotions, if a text contains an emoticon it is as-
signed the polarity of the first one, else a text is
deemed neutral (Gonçalves et al., 2013a).

Panas-t: Provides association strengths between
words and eleven moods including surprise, fear,
guilt, joviality, attentiveness, fear, etc. (Gonçalves
et al., 2013b).

SANN SA: A dictionary-based rule-based senti-
ment classifier using the MPQA polarity lexicon
(Pappas et al., 2013).

Results for these three classifiers and the majority
vote by all 18 systems in ifeel are shown in Ta-
ble 2; we are only showing results for the raw ver-
sion of the corpus (see end of Section 4), because
results were identical over the three corpus ver-
sions, i.e. cleaning, normalising and parsing hash-
tags did not help with sentiment analysis.
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F1-measure 0.941 0.929 0.920 0.665
Accuracy 0.936 0.932 0.932 0.576

Table 2: Tweet-level sentiment analysis results for
3 best sentiment analysis tools on test set B of 300
manually annotated tweets (weighted-average F1-
score over POS, NEG and NEU labels; Accuracy).

Out of the 300 tweets in test set B, 259 were
annotated as neutral, 22 as positive, and 19 as neg-
ative. This gives a very high most-frequent-label
baseline of 0.863 Accuracy which the three best
classifiers, however, outperform comfortably.

7 Detection of Drug Effect Mentions

We additionally annotated test set B for drug ef-
fects with three mention labels: mention of an ef-
fect, mention of a property (without specified ef-
fect), and none. 81 of the 300 tweets contained
an effect mention (sometimes more than one), 10
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tweets a property mention, 4 tweets both an ef-
fect and a property mention, and 213 contained no
mentions.

The experiments in this section were aimed at
distinguishing tweets that mention drug effects
and properties from tweets that do not. As a
starting point we process each of our tweets with
MetaMap (Aronson, 2001), a tool for recognis-
ing UMLS9 concepts in text. For a given input
text (tweet in our case) MetaMap produces a set
of concept vectors as the output, each scored for
relevance.

One of the elements in concept vectors indi-
cates ‘semantic type’ (semtype); semtypes are a
set of broad subject categories over all concepts
represented in the UMLS metathesaurus. There
are 133 different semtypes which fall into six
major groupings corresponding to concepts re-
lated to organism, anatomical structure, biologi-
cal function, chemical object, physical object, and
idea/concept. For example, a semtype much more
commonly seen with tweets that do contain an ef-
fect mention is ‘Pathologic Function’ (83%); ex-
amples of semtypes much more commonly seen
with tweets that do not contain an effect men-
tion include ‘Plant’ (96%), ‘Receptor’ (95%), and
‘Laboratory Procedure’ (93%).

In this first experiment aimed at detecting effect
mentions, we use all 133 semtypes, resulting in bi-
nary feature vectors of length 133. We used these
paired with the corresponding effect/property la-
bels (+ME = mention of an effect/property, and
-ME = none) as training data to train classifiers
for this task, using 10-fold cross-validation in test-
ing. The most-frequent-label (-ME) baseline for
this task is 0.71 Accuracy.

Table 3 shows results for the three classifiers we
tested (Multinomial Naive Bayes, SVM, and Lo-
gistic Regression) in terms of overall as well as
per-class Recall, Precision and F1-Score. For all
classes, SVM performed best with a weighted av-
erage F1-Score of 0.873. For the +ME class, the
logistic regression classifier did best, with an F1-
Score of 0.914. On the -ME class, SVM was best
with F1=0.823. Results in Table 3 are for the raw
version of the corpus (see end of Section 4); results
were identical for the raw and cleaned versions,
while additionally parsing hashtags worsened re-

9The Unified Medical Language System (UMLS)
“integrates and distributes key terminology, classifica-
tion and coding standards, and associated resources”
(https://www.nlm.nih.gov/research/umls/).

sults very slightly for the NB classifier only.
Looking at the Precision scores for +ME, which

is arguably the most important measure from
the perspective of incorporating information into
knowledge graphs, all three classifiers performed
extremely well. Especially considering we had a
tiny training set, this indicates that the MetaMap
semtypes form a highly reliable basis for identify-
ing tweets that mention drug effects/properties.

8 Adverse vs. Beneficial Effects

In test set B, we also annotated those tweets with
mentions of an effect or property with a further la-
bel encoding whether the effect/property was ad-
verse, beneficial or neutral. 23 tweets were la-
beled as having an effect/property that is adverse,
57 tweets having a beneficial one, and 11 a neutral
one, with 5 tweets having more than one of these.

In the experiments in this section, for the sub-
set of tweets which were identified as contain-
ing a drug effect/property mention, we wanted to
see whether any of the sentiment analysers would
be able to predict whether the effect/property
mentioned was an adverse, beneficial or neutral
one. We tested the same 18 sentiment analy-
sers against the effect sentiment labels (setting ad-
verse=negative, beneficial=positive, and neutral).
Some of the sentiment analysers, despite not be-
ing designed for this task, did reasonably well at
it; the four best ones were the following:

EmoticonsDS: Uses a large sentiment-scored
word list based on the co-occurrence of each to-
ken with emoticons in a corpus of over 1.5 billion
messages (Hannak et al., 2012).

SenticNet: A semantic and affective resource
for concept-level sentiment analysis, modelling
the polarities of common-sense concepts and re-
lations between them (Cambria et al., 2014).

SentiWordNet: Lexical SA tool based on Word-
Net using polarity scores associated with WordNet
synsets (Baccianella et al., 2010).

AFINN: Twitter based sentiment lexicon pro-
viding emotion ratings for words (Nielsen, 2011).

Table 4 shows the results for these four tools. In-
terestingly, there is no overlap with the three tools
that did best at the standard SA task (Table 2), in
fact those three methods were the three worst ones
at this task.
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Both classes +ME class -ME class
Classifier R P F1 R P F1 R P F1
Multinomial NB 0.847 0.852 0.849 0.848 0.981 0.909 0.961 0.688 0.794
Logistic Regression 0.85 0.851 0.850 0.855 0.984 0.914 0.969 0.689 0.799
SVM 0.855 0.892 0.873 0.8 1.0 0.887 1.0 0.71 0.823

Table 3: Results for detection of effect mentions (ME) on test set B of 300 manually annotated tweets
with 10-fold cross-validation (Recall, Precision, F1-scores for all classes, ME class, and not ME class).
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F1 0.638 0.621 0.616 0.615 0.627
Acc 0.592 0.595 0.592 0.597 0.604

Table 4: Effect-level sentiment analysis results for
4 best sentiment analysis tools on test set B of 300
manually annotated tweets (weighted-average F1-
score over ADV, BEN and NEU labels; Accuracy).

9 Conclusions and Further Work

In this paper we described our new corpus of
125,669 tweets for 1,999 drug names. The cor-
pus includes one randomly selected subset (A) of
300 tweets which is annotated for language, and
another set (B) of 300 random tweets which is
annotated for overall sentiment and drug effect
mentions. The corpus represents many more drug
names than in comparable existing corpora, but so
far has only a small number of annotated tweets.

We reported results for language identification
and sentiment analysis. One of the language iden-
tification tools tested (langid.py) outperforms the
Twitter language tags in this domain. Tweet-level
sentiment analysis achieved a best result of 0.94
weighted average F1-Score (Emoticons method).

Perhaps the most surprising result we report is
that a straightforward approach to training a clas-
sifier to distinguish tweets that mention drug ef-
fects from those that do not, achieves an overall
F1-Score of 0.873 and perfect precision for the
positive class (+ME). This indicates that MetaMap
semtypes are a strong basis for predicting drug ef-
fect mentions. However, using sentiment analy-
sis tools for the new task of predicting the polar-
ity of an effect (adverse vs. beneficial vs. neutral)
achieved best results of just 0.64 weighted average
F1-Score (EmoticonsDS).

In future work, we are planning to expand our

annotations to allow more effective training of
classifiers in particular to address the latter task,
as well as generally to expand our corpus to in-
clude tweets containing common, colloquial and
generic names and common misspellings of our
drug names. In terms of methodology, we are cur-
rently working on drug effect extraction, i.e. iden-
tifying the span of words in a tweet that describes
the effect.
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