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Abstract

Named Entity Recognition (NER) is the task of classifying or labelling atomic elements in the
text into categories such as Person, Location or Organisation. For Arabic language, recognizing
named entities is a challenging task because of the complexity and the unique characteristics
of this language. In addition, most of the previous work focuses on Modern Standard Arabic
(MSA), however, recognizing named entities in social media is becoming more interesting these
days. Dialectal Arabic (DA) and MSA are both used in social media, which is deemed as an-
other challenging task. Most state-of-the-art Arabic NER systems count heavily on hand-crafted
engineering features and lexicons which is time consuming. In this paper, we introduce a novel
neural network architecture which benefits both from character- and word-level representations
automatically, by using combination of bidirectional Long Short-Term Memory (LSTM) and
Conditional Random Field (CRF), eliminating the need for most feature engineering. Moreover,
our model relies on unsupervised word representations learned from unannotated corpora. Ex-
perimental results demonstrate that our model achieves state-of-the-art performance on publicly
available benchmark for Arabic NER for social media and surpassing the previous system by a
large margin.

1 Introduction

Named Entity Recognition (NER) is the task of tagging, labeling or identifying atomic items in the text
with predefined set of named entity categories such as Person, Location, Organization, etc. from large
corpora (Nadeau and Sekine, 2007) . Recently, named entity recognition has gained an important role
in Natural Language Processing (NLP) because it can have an impact on other NLP applications. In
Question Answering (QA), Ferrndez (2007) showed that using NER system in their QA model improves
its performance and questions contain 85% Named Entities. Toda (2005) showed that adding NER
system in their Text Clustering system enhanced its performance and allowed them to outperform the
existing state-of-the-art system. Babych (2003) clarified that using named entity recognition in Machine
Translation (MT) can help the system to improve the translation task. Thompson (1997) prompted that
using NER improve Information Retrieval (IR) performance. In addition, NER could be used in various
NLP systems to improve their performance such as semantic parsers, part of speech taggers, document
and news searching.

Current state-of-the-art systems perform very well on recognizing Arabic named entities such as Per-
son, Location, or Organization (Shaalan and Oudah, 2014) for MSA texts. However, there is relatively
less interest on recognizing named entities in social media like Twitter, movies, TV shows. In this pa-
per, we focus on recognizing Arabic named entities in Twitter. Lately, Arabic language was the fastest
growing language on Twitter, and in 2012, it was the 6th most used language on Twitter (Semiocast,
2012). This rapid increase in online social media has encouraged researchers in many fields to analyze
its content for many purposes such as opinion mining, event detection, and others. Since NER plays a
vital role in many NLP applications, any of these applications focused on dealing with Twitter content,
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needs to use NER system to improve its performance and deals with Twitter specific challenges. As
consequences, Arabic is very complex language compared to European languages. On the one hand, it
has both complex and rich morphology as well as ambiguity. On the other hand, there are no capital
letters and Arabic texts are written without diacritics. Therefore, building Arabic NLP applications and
especially NER is very intriguing.

Most of Arabic NER systems use three approaches: rule-based, machine learning and hybrid ap-
proaches. In this paper, we use Deep Neural Networks (DNN) because they are extremely powerful
machine learning models that have attained great success in vast applications such as image classifica-
tion (He et al., 2015) and speech recognition (Hinton et al., 2012). Furthermore, DNNs can achieve
state-of-the-art in many NLP applications for instance Machine Translation (Cho et al., 2014; Sutskever
et al., 2014) and sentiment analysis (Socher et al., 2013; dosSantos and Gatti, 2014). These powerful
models can use backpropagation algorithm for training (Rumelhart et al., 1986).

In order to process variable length input, recurrent neural networks (RNNs) are the best solution
(Goller and Kuchler, 1996). In recent years, RNNs are widely used and achieved state-of-the-art in
several NLP tasks such as language modeling (Mikolov et al., 2011), machine translation (Cho et al.,
2014) and speech recognition (Graves, 2013). We use Long Short-Term Memory (LSTM), which is one
kind of RNNs with complex cells (Hochreiter and Schmidhuber, 1997). With its forget gate, LSTM
allows highly non-trivial long-distance dependencies to be easily learned.

For sequential labeling tasks, it has been shown that using a bi-directional LSTM model is preferred to
LSTM model because it can capture infinite amount of context on both sides for a sentence by eliminating
the main problem of limited context in feed-forward neural networks (Graves et al., 2013). In fact, to
build a system for Arabic NER for social media, we propose a model based on bidirectional LSTM
networks with Conditional Random Field (CRF) layer on the top of the networks.

Most of the existing Arabic NER systems rely on handcrafted engineering features which is time
consuming and the use of large gazetteers to improve the accuracy. In this paper, we investigate the
impact of using character-level and word embedding features as inputs for bidirectional LSTM network
with CRF on the top of the networks as contextual feature on Arabic NER performance for social media.
Experimental results show that we are able to obtain state-of-the-art performance on Twitter dataset
without using any large gazetteers and lots of handcrafted engineering features.

The main contributions of this paper are the following:

• Study the impact of bidirectional LSTM on sequence tagging like NER on Arabic Twitter texts;

• The effectiveness of using character-level for morphologically rich languages (Arabic as an exam-
ple) and also show that using word representations improve the system performance;

• Investigate the use of CRF on the top of bidirectional LSTM to capture contextual features in Arabic
Twitter texts;

• We get state-of-the-art results and outperform the existing systems on publicly available dataset.

2 Models

In this section, we provide a brief description of the models used in this paper. We begin by presenting
the main neural network used: LSTMs and bidirectional LSTMs. Without further ado, CRF will be
presented. Finally, we investigate the combination of bidirectional LSTMs and CRF.

2.1 LSTM Networks
Recurrent neural networks (RNNs) are an extension of a conventional feed-forward neural network.
They are remarkably general models for sequence processing tasks. RNNs can handle the variable-
length sequence using a recurrent hidden unit state whose activation at each time step is dependent on
that of the previous one. However, standard RNNs suffer from the problem of vanishing gradients when
it comes to long sequences. More recently, (Hochreiter and Schmidhuber, 1997) propose "Long Short-
Term Memory" (LSTM) networks to solve this problem. LSTM can learn to bridge minimal time lags for
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Figure 1: Long Short-Term Memory unit

more than 1000 discrete time steps (Hochreiter and Schmidhuber, 1997). Since then, many researchers
in the field came with some minor changes to the original LSTM unit. In this paper, we follow the
implementation of LSTM as used in (Graves, 2013). LSTM unit is different from RNNs unit, which
simply computes a weighted sum of the input signal and applies a nonlinear activation function. Each
LSTM unit maintains a memory cell cjt at each time t. The output hj

t , or the activation, of the j-th LSTM
unit is then computed as follow:

hj
t = oj

t tanh(cjt ) (1)

where oj
t is an output gate that modulates the amount of memory content exposure. The output gate oj

t

is then computed using the following equation:

oj
t = σ(Woxt + Uoht−1 + Voct)j (2)

where σ is a logistic sigmoid function. Vo is a diagonal matrix. cjt is the memory cell updated by partially
forgetting the existing memory and adding a new memory content c̃jt :

cjt = f j
t c

j
t−1 + ijt c̃

j
t (3)

This new memory cell is computed using the following equation:

c̃jt = tanh(Wcxt + Ucht−1)j (4)

f j
t is called the forget gate, when its output value is close to zero, the network will effectively forget

whatever value it was remembering. ijt is called the input gate, when its output value is close to zero,
this value will be blocked from entering into the next layer. These two gates are computed using the
following equations:

f j
t = σ(Wfxt + Ufht−1 + Vfct−1)j (5)

ijt = σ(Wixt + Uiht−1 + Vict−1)j (6)

It should be noted that Vf and Vi are diagonal matrices. Figure 1 illustrates the graphical representation
of LSTM unit.

It would rather be noted that there is a remarkable difference between standard recurrent unit and
LSTM unit where the first unit overwrites its content at each time-step, while the second unit has the
ability to decide whether to keep the existing memory by using these gates. As a result, LSTM unit can
learn important features from input sequence by easily carrying this feature over long distance.

2.2 Bidirectional LSTM Networks
One shortcoming of standard LSTMs is that they are only able to make use of previous context. So, in
sequence tagging like NER task, for a given time step, we can have access to both past features (using
forward states) and future features (using backward states). To solve this problem, we use bidirectional
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Figure 2: Bidirectional LSTM neural network

LSTMs. These models can process data in both directions where the output layer receives results from
the two separate hidden layers. Figure 2 shows a graphical illustration of bidirectional LSTMs with
the Arabic sentence "¨�AbF¯� ©C¤d�� 	ql� Ewf§ d§Cd� �A§C" which means "Real Madrid won
the Spanish league title". For a given sentence (x1, x2,...,xn) in Twitter dataset containing n words, we
compute two representations: the left context of the sentence at every word t denoted by

−→
h t and the

right context of the sentence denoted by
←−
h t by using a second LSTM reading the same sentence in the

opposite direction (we note that Arabic texts are written from right to left on the contrary to European
languages). Every LSTM network has its own parameters. By using this model, we represent every word
in a sentence by concatenating its right and left context representations ht = [

−→
h t;
←−
h t]. These LSTMs

networks are trained using backpropagation through time (BPTT) (Boden, 2002).

2.3 Bidirectional LSTM with CRF
We describe our final model, which combines bidirectional LSTM and CRF model. A state transition
matrix is used for CRF layer as parameters. To predict the current tag, we use this transition matrix, which
represents the past and future tags. We denote this transition matrix by Mi,j representing the transition
score from the i-th tag to the j-th tag. Given a sentence X = (x1, x2,..., xn), we denote N([S]T1 )i,t to be
the matrix of scores output by the bidirectional LSTM network for the sentence [S]T1 and the i-th tag at
the t-th word. The score for a sentence [S]T1 along with a sequence of tags [i]T1 is given by the sum of the
transition scores and the scores from the bidirectional LSTM network:

s([S]T1 , [i]
T
1 ) =

T∑
t=1

(M[i]t−1,[i]t +N([S]T1 )[i]t,t) (7)

We use dynamic programming to compute Mi,j and optimal tag sequences for inference (Lafferty et
al., 2001). Finally, we use a softmax function over all possible tag sequences to get probabilities for the
sequence [i]T1 :

p(y|[S]T1 ) =
es([S]T1 ,[i]T1 ))∑
c̃∈Is

es([S]T1 ,c̃)
(8)

where Is represents all possible tag sequences for a given sentence [S]T1 . We note that in this paper,
we use the IOB format (Inside, Outside, Beginning), which was the standard representation in the Twit-
ter dataset (Darwish, 2013). During training, we maximize the log-probability log(p(y|[S]T1 ))) of the
correct tag sequence:

log(p(y|[S]T1 )) = log(
es([S]T1 ,[i]T1 ))∑
c̃∈Is

es([S]T1 ,c̃)
)

= s([S]T1 , [i]
T
1 )− log(

∑
c̃∈Is

es([S]T1 ,c̃)) (9)
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Figure 3: Word embeddings are fed to a bidirectional LSTM where fj , bj respectively represent the for-
ward and backward of the word j. Oj represents the concatenation of the previous two vectors resulting
in a representation of word j in its context.

3 Training Procedure

The architecture of our model is shown in Figure 3. For each sentence, we initialised our word vectors
with pretrained word embeddings (Zahran et al., 2015) (see section 4.2 for more details). The input
to the bidirectional LSTM network is the sequence of word embeddings for a given sentence S. Hence,
every word in a sentence gets its left and right representation from the bidirectional LSTM. Then, we
concatenate these two representations and linearly projected onto another layer whose size is equal to
the number of distinct NER tags. As explained before, CRF layer is used on the top of the bidirectional
LSTM in order to capture contextual features in the form of neighboring named entity recognition tags.
As a result, we get predictions for each word in a sentence.

From equation 7, the model parameters are the parameters of the bidirectional LSTM obtained from
the matrix N([S]T1 )i,t, the parameters obtained from the transition matrix of bigram scores Mi,j and
word embeddings. To train our models, we use Stochastic Gradient Descent (SGD). In each epoch, we
divide the training dataset into mini-batches and process one batch at a time. Each mini-batch contains
a number of sentences in the training data which is defined by the parameters of mini-batch size. More
details will be discussed in the experimental results section.

4 Inputs for the Model

In this section, we explain the inputs to our model. We begin by presenting the character-based model
of words used in this paper and how it could be useful especially for morphological rich languages like
Arabic. Thus, we present word embeddings used to initialise our word vectors.

4.1 Character-based models of words

It has been shown that using character-level can help to improve the performance of models in many NLP
applications. It is viewed as new paradigm in NLP applications using deep neural networks. It is widely
used in Neural Machine Translation (NMT) and recent work show that adding character-level features
improve the translation results for many languages (Luong and Manning, 2016; Ling et al., 2015; Chung
et al., 2016). Hence, character-based approaches have also been applied to other tasks in natural language
processing such as document classification (Xiao and Cho, 2016), language modeling (Kim et al., 2015;
Ling et al., 2015) and parsing (Ballesteros et al., 2015). For NER, character-level was not extremely used
to build models that deal with sequence tagging task. It was used in the context of text classification for
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Figure 4: The character embeddings of the Arabic word "�A§C" (real) using a bidirectional LSTMs. The
final vector Vr is the result of concatenating the vector embedding Vf which represents the forward pass
and the vector embedding Vb which represents the backward pass

learning representations of words from their characters (Zhang et al., 2015). As far as we know, we are
the first to use character-level representations to build a system for Arabic NER for social media.

Arabic language belongs to the category of languages that has rich morphology. It is also an agglutina-
tive language where some words could mean an entire sentence in English. Most of the Arabic words are
constructed using: prefix (es) + stem + suffix (es), thus, it exhibits large vocabulary sizes and relatively
high out-of-vocabulary (OOV) rates on the word level. Regardless, word-level embeddings generalize
poorly to rarely seen or unseen words and therefore, can significantly impair the performance for high
OOV rates. (Luong et al., 2013) proposed another approach based on morphemes as the sub-word unit to
improve generalization. Compared to morphemes, characters have the advantage of being directly avail-
able from the original text and do not need complex pre-processing steps which makes character-based
approach more robust to use in order to improve system performance.

Therefore, to add character-level features in our model, we modify the architecture of our system
presented in Figure 3. A graphical illustration of the new architecture is depicted in Figure 4. We
use bidirectional LSTMs to compute character-based vector embeddings of Arabic words. Hence, each
character is represented with an LSTM cell. We read words character by character from right to left to
compute the first vector embedding (Vf ). We employ the same process to compute the second vector
embeddings (Vb) where we start from the last character. Finally, we concatenate the first and second
vectors to get the final representation of the word based on its characters (Vr). This representation is
then concatenated with a word-level representation from a word lookup-table. This lookup-table was
initialized using word2vec (see the next section).

4.2 Pretrained Word Embeddings

Word representations derived from unlabeled text have proven useful for many NLP tasks, such as
part-of-speech (POS) tagging (Huang et al., 2014), named entity recognition (Collobert et al., 2011),
chunking (Turian et al., 2010) and parsing (Bansal et al., 2014). In large corpora, names appear in
regular contexts which will be fruitful for most of the sequence tagging tasks: like NER. So that, we
initialize our word vectors with pretrained word embeddings. (Soricut and Och, 2015) show that using
word embeddings can encode morphological information and may provide additional information to the
character-based word embeddings.

Purposefully, to test the performance of pretrained word embeddings, we performed two experiments
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Embedding Dimension F1 Score
Random Initialisation 100 75.22

Glove 100 83.25
Word2vec 100 85.71

Table 1: Results with different choice of word embeddings.

Tokens PER LOC ORG
Twitter-Train 55k 788 713 449
Twitter-Test 26k 464 587 316

Table 2: Twitter Evaluation data statistics.

with different sets of publicly available word embeddings and compare the results with a random sam-
pling method to initialize our model. Table 1 shows the results obtained using the two different word
embeddings as well as the randomly sample one. According to the results in Table 1, we got a significant
improvements using pretrained word embeddings contrasted to the one using random embeddings. This
is consistent with results reported by previous work (Collobert et al., 2011; Chiu and Nichols, 2015;
Huang et al., 2015). We state that Arabic pretrained word embeddings for both word2vec and Glove
models used in the experiments are publicly available and developed by (Zahran et al., 2015). From the
two different embeddings, Word2vec achieves the best results, about 2.46 points in F1 score better than
Glove embeddings and 10.49 points in F1 score better than random initialization. In the rest of the paper,
we initiliaze our word vectors with pretrained word embeddings using word2vec model.

5 Evaluation

Evaluation was performed on the Twitter dataset developed by (Darwish, 2013). Table 2 gives an
overview of this dataset. Before training starts, we split the dataset into sentences by replacing "." and
"," by spaces. Every digit in the dataset is replaced by zero.

5.1 Twitter Dataset
We use the training and test datasets developed by (Darwish, 2013) in order to test our model. This
dataset was tagged with three types of named entities: location, person and organisation. The training
dataset contains tweets randomly selected from the period of May 3-12, 2012. The testing data contains
tweets that were randomly selected between November 23, 2011 and November 27, 2011. We mention
that these two datasets were annotated using the Linguistics Data Consortium ACE tagging guidelines.
As we will see in the experimental results, this dataset was used in (Darwish and Gao, 2014) and (Zirikly
and Diab, 2015) for testing.

5.2 Hyperparameters Details
We train our model using backpropagation through time (BBTT) algorithm to update parameters. We use
mini-batch stochastic gradient descent (SGD) with a fixed learning rate. We explored more sophisticated
optimization algorithms such as momentum, RMSProp (Hinton et al., 2012), Adam (Kingma and Ba, 14)
and Adadelta (Zeiler, 2012). Even if some of these methods are considerably used in computer vision

Model Precision Recall F1
B-LSTM 80.95 57.63 67.33

B-LSTM + char 74.07 67.80 70.80
B-LSTM + char + word emb 89.58 72.88 80.37

B-LSTM + char + word emb + CRF 90.57 81.36 85.71

Table 3: Twitter dataset results with our models
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Model Precision Recall F1
Zirikly and Diab 81.7 46.9 59.59
Darwish and Gao 76.8 56.6 65.20

Our system 90.57 81.36 85.71

Table 4: Comparison of our system with two other models on Twitter dataset

and show better results, our experiments demonstrate that these methods converge very fast than SGD,
but none of them perform better than SGD. We use an embedding dimension of 100. For the hidden
dimension of our character bidirectional LSTMs, we use 25 for each one. The final dimension of our
character-based representation of words is 50.

6 Experimental Results and Discussions

We run many experiments representing the combination of different models and architectures to under-
stand their influence on Arabic NER system for social media. We explored the impact of using CRF
as contextual features, pretrained word embeddings and character-level embeddings. Table 3 shows the
different results. Experiments show that the marvelous improvement in the overall system performance
was observed with the use of pretrained word embeddings (indicated by "word emb" in Table 3) which
gives us an improvement by 9.57 points in F1 score. Adding CRF layer provides us an improvement of
5.34 points in F1 score. Using character-level embeddings (indicated by "char" in Table 3) improve our
system performance by 3.47 points in F1 score.

We compare our system with two other models. The best score reported on this task was obtained
by (Darwish and Gao, 2014). Their system uses large gazetteers, and a semi-supervised method. They
got 65.2 points in F1 score. The same Twitter dataset was used by (Zirikly and Diab, 2015) to test their
model, which used a lot of handcrafted engineering features and gazetteers. They obtained F1 score of
59.59. Our model outperforms these two models without using any large gazetteers, and with the use
of minimal features combined with bidirectional LSTMs. Table 4 shows our results on Arabic NER for
social media in comparison with these two systems.

On the one hand, as far as we know, we are the first to explore the impact of character-level embed-
dings, pretrained word embeddings and contextual features (CRF) to develop a system for Arabic NER
for social media. Using character-level embeddings allow our model to learn interesting morphological
and orthographic features instead of hand-engineering them. On the other hand, we are the first to use
Arabic pretrained word embeddings developed by (Zahran et al., 2015) to initialize our word vectors for
Arabic NER for social media and explore their impact on our system performance.

7 Conclusion

In this paper, we have shown that our neural networks model, which uses bidirectional LSTMs, character-
level embeddings, pretrained word embeddings, CRF on the top of the neural networks achieves state-
of-the-art results in building an Arabic named entity recognition system for social media and surpassing
the previous state-of-the-art system by a large margin without the use of any large gazetteer and lots of
hand-engineering features.

Given the inflectional and derivational aspect of Arabic language which leads to a language with
complex morphological rules, the intuition behind these results lies in incorporating both pretrained
word and character-level embeddings, which allow our system to learn interesting morphological features
without hand-engineering them. In addition, using CRF as contextual features was another key success
for our system.
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