
Proceedings of the 12th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+12), pages 77–84,
Düsseldorf, Germany, June 29 - July 1, 2016.

Node-Based Induction of Tree-Substitution Grammars

Rose Sloan

Yale University
rose.sloan@yale.edu

Abstract

Because PCFGs are, as their name sug-
gests, context-free, they cannot encode
many dependencies that occur in natural
language, such as the dependencies be-
tween determiners and nouns, allowing
them to overgenerate phrases like those

cat. One formalism that is able to cap-
ture many dependencies that PCFGs can-
not is that of probabilistic tree-substitution
grammars (PTSGs). Because PTSGs al-
low larger subtrees to be used as gram-
mar rules, they can better model natural
language but are also more difficult to in-
duce from a corpus. In this paper, I will
show how PTSGs can be used to rep-
resent dependencies between determiners
and nouns and present a novel method for
inducing a PTSG from a parsed corpus.

1 Introduction

PCFGs are ill equipped to handle the case of sim-
ple noun phrases consisting of a determiner fol-
lowed by a noun, as the grammaticality of these
phrases is dependent on what types of nouns the
determiner in question can precede. For exam-
ple, while the can precede any noun, determiners
like a and another can only occur with singular
count nouns, while those can only precede plural
nouns, and determiners like more can precede ei-
ther plural nouns or mass nouns but not singular
count nouns. Thus, the noun phrases a book, more

coffee, and those cards are grammatical, whereas
a cards, more book, and those coffee are not.

Representing these sorts of noun phrases with
a PCFG is difficult. Consider the following toy
corpus:

(1) a. NP

DT

a

N

NN

cat

b. NP

DT

those

N

NNS

dogs

A CFG representing this corpus would need to
contain the rules NP → DT N, DT → those, N
→ NN, and NN→ cat. While these are all reason-
able rules, combining them gives us the following
tree:

(2) NP

DT

those

N

NN

cat

Thus, such a grammar would generate the bla-
tantly ungrammatical noun phrase those cat. Fur-
thermore, even to assign it a low probability, we
would need a low probability for at least one of
the rules that generated it, which would reduce the
probability of at least one of the trees in (1). While
we could perhaps mitigate this problem by remov-
ing the nodes labeled N and splitting the DT label
into a set of labels corresponding to specific types
of DTs, such a solution would overlook some gen-
eralizations (including, say, that the could precede
any noun). Instead, we look for a formalism that
represents these dependencies more naturally.

One such formalism is tree-substitution gram-
mars (TSGs). Whereas CFG rules can be seen as
one-level subtrees of the parse trees they generate,
TSG rules can be any subtrees of these parse trees.
A leaf node of a TSG rule whose label is not a
lexical item is known as a substitution node, and
parse trees can be built by replacing a substitution

77



node with a rule whose root has the same label as
the substitution node.

Because TSGs allow for larger rules than CFGs,
they can handle dependencies that CFGs do not.
Consider, once again, the toy corpus presented in
(1). While it is impossible to represent it using
a CFG that does not overgenerate ungrammatical
noun phrases, we could represent it with a TSG
containing the following rules:

(3) a. NP

DT

a

N

NN

b. NN

cat

c. NP

DT

those

N

NNS

d. NNS

dogs

(3a) and (3b) can be combined to get (1a), and
(3c) and (3d) can be combined to get (1b). It is no
longer possible to generate (2), as the rule that pro-
duces those has a substitution node labeled NNS
and thus can only accept plural nouns. (Similarly,
the rule that produces a requires a singular count
noun). Thus, TSGs allow us to accurately capture
the dependencies between noun types and deter-
miners.

While PTSGs present a more accurate model of
natural language than PCFGs, they are also harder
to induce from a corpus. Given a parse tree for a
sentence, one can determine what CFG rules must
have generated it simply by looking at each non-
terminal node and its children. Then, given an
entire treebank of parse trees, one can simply ex-
tract all the necessary CFG rules to produce that
treebank and then get a PCFG by estimating the
probability of each rule using one of a variety of
techniques, the simplest of which involve simply
counting the number of times each rule is used in
producing the context. However, given a parse tree
generated from a PTSG, it is less clear which rules
formed it, as it is unknown which of the tree’s in-
ternal nodes were substitution nodes in its deriva-
tion and which ones were already internal nodes in
elementary trees. Furthermore, while some of the
subtrees of the completed parse trees, such as the
rules presented in (3), contain linguistically rele-
vant information, others, such as many CFG rules
or rules that simply memorize each full tree in the
corpus, are not specific enough or overly specific
and, as such, should have low probability or not be
present in a PTSG at all.

In this paper, I will present a novel approach
for inducing a PTSG from a parsed corpus, focus-
ing specifically on PTSGs that model noun phrases

such as the one in (3). This approach focuses
on determining which nodes in the training set
are substitution nodes. It does so by repeatedly
sampling grammars from the training set. It then
parses the data set with these grammars and uses
the results of the parses to update the probability
of trees’ internal nodes being substitution nodes.
This approach is simpler to understand and imple-
ment than other node-based approaches and does
not require complex prior distributions.

2 Previous Approaches

Many previous approaches to TSG induction are
data-oriented parsing (DOP) approaches that at-
tempt to create grammars that include every pos-
sible rule that could have generated a corpus (Bod
and Scha, 1996). In the most straightforward case,
this means that the rules that comprise the tree-
substitution grammar are simply all subtrees of all
the trees in the training set. Unsurprisingly, these
approaches lead to very large grammars, and in
many cases, it is even necessary to transform each
tree into some implicit representation (such as rep-
resenting larger rules in terms of smaller rules in-
stead of fully storing the trees) in order to store the
grammar or at least to use it for parsing. Other ap-
proaches to data-oriented parsing try to limit the
size of the grammar to some extent. For exam-
ple, one approach, known as double-DOP, creates
a grammar by taking every pair of parse trees from
the training set and adding the largest subtree in-
cluded in both trees (Sangati and Zuidema, 2011).
This grammar is then interpolated with a CFG to
create a grammar that can fully represent the train-
ing set and that includes all larger “productive”
rules.

A number of more recent approaches, includ-
ing the one presented in this paper, attempt not to
find all TSG rules that could represent a corpus
but to represent the corpus using the optimal dis-
tribution of TSG rules. One such approach called
fragment grammars looks at TSGs from a gener-
ative perspective as a Bayesian model of the rel-
ative probability of productivity (forming novel
phrases) and reuse (reusing previously constructed
fragments) (O’Donnell et al., 2009). The math-
ematical model used to generate the grammar is
a generalization of a Pitman-Yor Adaptor Gram-
mar, a PCFG-based model that weakens the inde-
pendence assumptions by introducing a vector of
adaptor functions that map one probability distri-

78



bution over trees to another (Johnson et al., 2006).
In Pitman-Yor Adaptor Grammars specifically (as
opposed to adaptor grammars in general), these
adaptor functions are based loosely on a Chinese
restaurant process so that the distribution gener-
ated by the grammar reflects the outputs of a “rich
get richer”-based process. Fragment grammars
use these mathematical underpinnings within the
PTSG framework, incorporating a “grow-child-or-
not” term into the generative model, allowing it
to assign and optimize the weights of elementary
trees.

Similarly, approaches presented by Cohn et al.
and by Post and Gildea use priors based on a
Dirichlet process to obtain a grammar (Cohn et
al., 2009; Post and Gildea, 2009). These ap-
proaches use Gibbs sampling to induce the gram-
mar, and, like my approach, they focus on de-
termining which nodes are substitution nodes, al-
though the sampling methods I present are differ-
ent.

3 Algorithm

3.1 Concept

Like the fragment grammars approach, my al-
gorithm of node-based induction for inducing a
PTSG attempts to find an optimal subset of sub-
trees. However, instead of explicitly representing
probability distributions over grammars, I instead
assign a probability to each internal node of each
parse tree in the corpus, corresponding to the prob-
ability that the node is a substitution node. (For
simplicity of notation, throughout this section, I
will refer to this probability for node n as p(n) or
simply as node n’s probability.) It is these proba-
bilities that are optimized over the course of many
iterations of training. Specifically, during each it-
eration, an intermediate PTSG is used to parse the
training set, and the probability of each node is
recalculated based on the probabilities of the dif-
ferent parses it generates.

Initially, the probability is set to the same value
for every node in the training set. After trying
values in the range [0.35, 0.9], I experimentally
determined an initial probability of 0.55 for each
node is most likely to result in a grammar that per-
forms well on the test set. This is likely because
this value imposes a slight prior against simply
memorizing the training set. However, because the
weighting of the different parses later in the algo-
rithm tends to mitigate most of the bias introduced

from the initial node probabilities, small changes
in this initialization parameter have little effect on
the final result.

3.2 Sampling and Parsing

To complete one iteration of training, we start by
inducing a PTSG by randomly sampling from the
parsed training set. Specifically, we decompose
each tree, randomly choosing whether or not each
internal node is a substitution node based on its
probability at the start of the iteration (so that node
n has probability p(n) of being a substitution node
in the decomposed tree). The set of trees result-
ing from this decomposition become our set of el-
ementary trees, and we set the probability of each
elementary tree using a relative frequency estimate
(that is, simply letting the probability be the num-
ber of times that tree appears in the set of decom-
posed trees divided by the total number of trees
with the same root node).

Once we have induced this PTSG, we then use
it to parse each tree in the training set. In order
to make parsing more efficient, any rules contain-
ing lexical items that do not appear in the phrase
being parsed are removed before parsing with a
standard CKY algorithm (Schabes et al., 1988).
Doing so, we get all possible parses for the tree
with our grammar, and we can then get an inter-
mediate probability (pint) for each node by exam-
ining the probabilities of the parses in which node
n is a substitution node. This intermediate proba-
bility corresponds to the probability that the node
is a substitution node when using this particular
intermediate grammar. Furthermore, we assign a
weight to each parse to prioritize parses in which
some but not all of the nodes are substitution nodes
(to discourage the model from doing something
similar to simply inducing a PCFG or from memo-
rizing entire trees). Specifically, in order to weight
a parse more favorably the closer it is to having
about half the internal nodes be substitution nodes,
the weight of a parse is

(
t
s

)
(t choose s) where s is

the number of substitution nodes in a parse and t is
the total number of internal nodes (i.e. the number
of potential substitution nodes). Then, if p(x) is
the probability of a parse, w(x) is the weight of a
parse, S is the set of all parses in which n is a sub-
stitution node, and T is the set of all parses for the
tree that n appears in, we can compute pint using
the following formula:

79



pint(n) =

∑

x∈S w(x)p(x)
∑

x∈T w(x)p(x)

3.3 An Example

Consider the following tree from a hypothetical
training set:

(4) NP

DT

a

N

NN

cat

Let us assume that our intermediate grammar pro-
duced parses with the following three sets of el-
ementary trees with probabilities p1, p2, and p3
respectively:

(5) a. NP

DT N

NN

DT

a

NN

cat

b. NP

DT

a

N

NN

NN

cat

c. NP

DT

a

N

NN

cat

The parses in (2a) and (2b) both have weights of
(
3
1

)
=

(
3
2

)
= 3, as (5a) has 2 substitution nodes

and (5b) has 1. However, the parse in (5c) only has
weight

(
3
0

)
= 1, as it has no substitution nodes.

Then, we can compute pint for the node labeled
DT, which is only a substitution node in (5a), as:

pint =
3p1

3p1 + 3p2 + p3

3.4 Updating Probabilities

Once we have calculated pint(n), we adjust the
probability of node n by taking a weighted average
of this intermediate probability and the probabil-
ity from the start of the round, using the following
formula:

pnew(n) = 0.6pold(n) + 0.4pint(n)

The higher pint is weighted, the faster the node
probabilities converge, but when pint is weighted
higher, each randomly selected grammar has a
larger impact on the final grammar and thus could
result in a final grammar that performs poorly on
the test set. The precise weighting above was de-
termined experimentally by running the algorithm
a number of times with different weights to pro-
vide an optimal balance between allowing each
round to significantly affect the node probabilities
while still weighting pint little enough so that a
round in which the intermediate PTSG is chosen
suboptimally will not derail the training process.

3.5 Getting the Final Grammar

We compute a convergence metric by examining
how close our intermediate probabilities are to the
node probabilities at the start of a round. We
can say that node n has “converged” if the dif-
ference between pold(n) and pint(n) is less than
0.05. The convergence metric then is the number
of “converged” nodes divided by the total num-
ber of internal nodes in all trees in the training set.
If this number is over 0.95, training comes to an
end and the node probabilities set at the end of the
last round of training are used to sample the final
grammar.

Once the node probabilities have been finalized,
we decompose the training set 100 times using the
same method we used in training. Then, the set of
decomposed trees becomes the set of rules of our
final PTSG, and, as before, probabilities are set
using relative frequency estimates. Then, once we
have determined the rules and probabilities for the
final PTSG, we parse each rule in this PTSG using
the other rules of the PTSG. If there is a parse for
the rule made up of smaller rules and if the prob-
ability of this parse is greater than the probability
of the larger rule, the rule is determined to be su-
perfluous. Superfluous rules are removed from the
grammar, and the probabilities are renormalized.

Finally, in order to account for unknown words,
for each part of speech appearing in the training
set, a tree with height 1 with a root labeled with the
part of speech tag and with one leaf node labeled
“unk” (short for “unknown”) is added to the gram-
mar. The probability of these rules is set according
to the number of types and tokens for the part of

80



speech so that a part of speech with many distinct
lexical items, such as count nouns, has a relatively
high probability of unknown words compared to a
part of speech with relatively few distinct lexical
items, such as determiners. Specifically, the prob-
ability of the rule POS → unk was set to:

types(POS)

types(POS) + tokens(POS)

After adding these rules, the probabilities of all
other rules whose roots are part of speech tags are
renormalized.

4 Methods

4.1 Data Selection

The trees used for training and test sets are taken
from the Adam portion of the Pearl-Sprouse cor-
pus, a parsed version of the child-directed portions
of the Brown subcorpus from CHILDES (Pearl
and Sprouse, 2012; Brown, 1973; MacWhinney,
2000). Only noun phrases are examined, as they
can be parsed quickly and are a structure for which
a PTSG should be able provide an accurate model.
Additionally, in order to allow the algorithm to
distinguish between mass and count nouns, the
NN label (the POS tag for singular nouns) corre-
sponding to any mass noun is manually replaced
by an NNM label. Similarly, to allow the algo-
rithm to have rules applicable to all nouns, a node
labeled simply N is inserted immediately above
any node labeled NN, NNM, or NNS (the POS tag
for plural nouns).

Furthermore, as the algorithm makes use of
a CKY parser, any tree in the corpus which is
not binary branching is modified to become right-
branching. If an inserted node’s children are both
labeled N, it is labeled with N, so that the algo-
rithm would treat compound nouns the same way
as other nouns, and similarly, if the first child is
labeled JJ (the POS tag for adjectives) and the sec-
ond is labeled N, the inserted node is labeled N, as
adjective-noun pairs distribute similarly to nouns
in this dataset. All other inserted nodes are labeled
by concatenating the labels of their children.

4000 noun phrases are then extracted from this
modified corpus. None of these noun phrases in-
clude smaller internal noun phrases, so as to allow
the algorithm to focus on dependencies between
determiners and nouns, and all of them include at
least one node labeled N (so as to eliminate single
pronouns from the data set). They are also selected

so that at least 30% of them contain mass nouns.
3200 of these nouns are randomly chosen to be
the training set. The remaining 800 become the
test set. Furthermore, every lexical item in the test
set that does not appear in the training set was re-
placed with the word “unk” so that it can be prop-
erly parsed by the induced grammar.

4.2 Tests Run

The first baseline the induced grammar is tested
against was a PCFG. The rules of the grammar
are taken from all the PCFG productions in the
training, and the probabilities are set using rela-
tive frequency estimates. Furthermore, rules going
from each part of speech to “unk” are added with
probabilities set the same way as they were in the
PTSG so that trees with unseen lexical items can
be parsed.

The second baseline is a PTSG whose rules are
simply the full trees in the training set. The proba-
bility of each rule is set using a relative frequency
estimate, so the probability of a given tree is sim-
ply the number of times the tree appears in the
training set divided by the total number of trees
in the training set.

The third baseline is a PTSG obtained by ran-
domly sampling from the training set, specifi-
cally by decomposing each tree 100 times and set-
ting the probabilities using relative frequency es-
timates, just as at the end of the induction algo-
rithm. However, instead of using the trained prob-
abilities, while sampling, the probability of each
node being a substitution node is simply set to its
initial probability of 0.55. To make this more com-
parable to the induced grammar, rules going from
each POS tag to “unk” are added with their prob-
abilities equal to their probabilities in the induced
PTSG, and all other rules’ probabilities are renor-
malized.

Lastly, Sangati and Zuidema’s code for double-
DOP is run on the training set to obtain their set
of fragments and CFG rules with counts. Using
these counts, probabilities for each rule are ob-
tained using relative frequency estimates. Then
the same rules for unknown lexical items with
the same probabilities as in the induced grammar
were added, and the probabilities are renormal-
ized. Other previous approaches were not tested
because of the difficulty of finding a working im-
plementation of them.

Finally, to avoid zero probabilities, especially

81



Method Training Test Grammar Size
Node-Based -25263 -6770 1359
PCFG -30905 -7091 990
Full Trees -22280 -6814 1572
Sampling -30135 -7266 1721
Double-DOP -28882 -7032 2404

Table 1: Log probabilities of training and test sets
on different grammars

for the full trees baseline, when computing the
probability of a tree in the test set with the PTSGs
obtained through node-based induction, sampling,
and taking full trees, we also parse it with the
PCFG induced for the first baseline. (This is
not necessary for double-DOP, as the algorithm
for double-DOP already incorporates all possible
CFG rules.) The probability of the tree is then cal-
culated to be a weighted average of the two proba-
bilities, with the PCFG weighted at 0.05, while the
PTSG is weighted at 0.95. Any trees in the test set
that cannot be parsed with the PCFG are removed
from the test set and ignored.

5 Results

Table 1 shows the results for how node-based in-
duction compares to the baselines with a training
set of size 3200 and a test set of size 793. (Initially,
the test set was of size 800, but 9 noun phrases
were removed because they contained structures
unseen in the training set and thus could not be
parsed by any of the grammars.) The numbers pro-
vided here are obtained by summing the log prob-
abilities of the best parses for each tree in the data
set. (In every case except for the PCFG baseline,
these probabilities are also computed by taking
a weighted average of the probability of the best
parse with the chosen model and the best parse
with a PCFG, as explained in the methods section).
Thus, larger (i.e. less negative) numbers corre-
spond to higher probabilities and therefore better
results.

These results demonstrate that, apart from sim-
ply memorizing the training set (and grossly over-
fitting), the PTSG induced by node-based induc-
tion assigns the highest probability to the train-
ing set. Additionally, when tested on an unseen
test set, node-based induction outperforms each of
the baselines. It is also worth noting that when
sampling randomly without first training the sub-
stitution node probabilities, the resulting grammar

performs nearly as badly as a PCFG on the train-
ing set and worse than all other grammars on the
test, thus demonstrating that the optimization of
the substitution node probabilities is in fact what
allows node-based induction to produce a well-
performing grammar. It is also worth noting that
node-based induction produces the smallest gram-
mar except for the PCFG, making it faster to parse
with.

In order to determine how well the induce PTSG
models the distribution of nouns and determin-
ers, all 1442 noun phrases of the format “deter-
miner noun” were extracted from the training set
and, for each determiner that appeared more than
5 times, the probability distribution over different
types of nouns occurring with that determiner was
computed. These distributions are shown in table
2. Then, 1442 noun phrases of the form “deter-
miner noun” were generated using the PTSG in-
duced with node-based induction, and the same
distributions were computed, shown in table 3.
The same was done for the PCFG. Then, the
Kullback-Leibler divergence was computed be-
tween the distributions generated from each of the
PTSG induced through node-based induction and
the PCFG and the true distribution from the train-
ing corpus, using add-one smoothing to avoid zero
probabilities. These values are shown in table 4.

Determiner Count Noun Mass Noun Plural Noun
a 0.983 0.015 0.002
an 0.952 0.048 0.000
another 0.714 0.286 0.000
any 0.048 0.714 0.238
no 0.571 0.286 0.143
some 0.000 0.913 0.087
that 0.857 0.143 0.000
the 0.712 0.230 0.058
this 0.960 0.040 0.000

Table 2: Probability distributions of noun types
cooccurring with common determiners in the
training set

These results show that, while the distribu-
tions produced by the node-based PTSG are not
as strongly skewed as the empirical distributions,
where many of the probabilities are over 0.9, they
do reflect dependencies between determiners and
noun types. (This may also reflect that, even in the
empirical distributions, none of the probabilities
are 1, reflecting the presence of noun phrases like

82



Determiner Count Mass Plural
a 0.82 0.15 0.03
an 0.71 0.18 0.11
any 0.32 0.53 0.16
some 0.18 0.79 0.03
that 0.85 0.10 0.05
the 0.74 0.21 0.05
this 0.86 0.03 0.10

Table 3: Probability distributions of noun types
cooccurring with common determiners in noun
phrases generated by the PTSG

Determiner Node-Based PCFG
a 0.13 0.40
an 0.11 0.80
any 0.16 0.52
some 0.18 1.03
that 0.03 0.09
the 0.00 0.03
this 0.05 0.33

Table 4: K-L divergences of noun phrases gener-
ated by the node-based PTSG and the PCFG com-
pared to the empirical distribution

another coffee where a noun that would normally
be a mass noun serves as a coffee.) Furthermore,
the K-L divergences are much smaller than those
generated by the PCFG, a formalism that cannot
encode these dependencies.

Furthermore, qualitatively speaking, many of
the elementary trees that appear in the grammar
induced by node-based induction make linguistic
sense, such as those below:

(6) a. NP

DT

a

N

NN

b. NP

CD

two

N

NNS

c. NP

DT

some

N

NNM

(6a) represents that a only appears before count
nouns. (6b) represents that two appears before plu-
ral nouns. (6c) represents that some generally ap-
pears before mass nouns. Furthermore, to account
for the fact that some can also appear before plural
nouns (which are rarer in the data set than mass
nouns) and even count nouns in limited grammati-
cal contexts (as in sentences like some person will

like this), there is another elementary tree in the
grammar identical to (6c) but without the NNM

node (so that N is a substitution node). However,
this tree’s probability is an order of magnitude
lower than the tree in (6c), indicating that some

appears primarily but not exclusively before mass
nouns. Other rules indicate that the induced gram-
mar learns several common compound nouns, in-
cluding cookie dough, rubber band, and trash can,
as single rules (instead of requiring each of the
nouns to individually be substituted into a N →
N N rule, as would be the case in a CFG).

6 Conclusion

In this paper, I have presented a novel approach for
induction of probabilistic tree substitution gram-
mars, which represents the probability distribu-
tion over possible tree-substitution grammars by
assigning probabilities to potential substitution
nodes and determines the optimal probabilities
through repeated sampling and parsing. This ap-
proach is able to produce grammars that accurately
represent dependencies between determiners and
nouns, including, for example, elementary trees
that require a to appear before a count noun. Fur-
thermore, these grammars produce higher proba-
bility parses than standard PCFGs when tested on
an unseen test set and also outperform a purely
sampling-based approach where the probabilities
assigned to the substitution nodes are not opti-
mized.

Here, I have shown that tree-substitution gram-
mars induced through node-based induction can
more accurately represent the probabilities of po-
tential parses for non-recursive noun phrases than
traditional PCFG-based approaches or grammars
induced from DOP-based approaches. We have
not yet run experiments testing this algorithm on
structures beyond noun phrases, but future work
could adapt this algorithm to work with larger
grammatical structures, including full sentences,
and it could then be used to induce grammars
that more accurately model language and generate
more accurate parses.

References

Rens Bod and Remko Scha. 1996. Data-oriented lan-
guage processing: An overview. Computing Re-
search Repository.

Roger Brown. 1973. A first language: The early
stages. Harvard U. Press.

83



Trevor Cohn, Sharon Goldwater, and Phil Blun-
som. 2009. Inducing compact but accurate tree-
substitution grammars. In Proceedings of Human
Language Technologies: The 2009 Annual Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics, pages 548–556.
Association for Computational Linguistics.

Mark Johnson, Thomas L. Griffiths, and Sharon Gold-
water. 2006. Adaptor grammars: A framework for
specifying compositional nonparametric bayesian
models. In Advances in neural information process-
ing systems, pages 641–648.

Brian MacWhinney. 2000. The CHILDES project: The
database, volume 2. Psychology Press.

Timothy J. O’Donnell, Noah D. Goodman, and
Joshua B. Tenenbaum. 2009. Fragment gram-
mars: Exploring computation and reuse in language.
Technical Report MIT-CSAIL-TR-2009-013, Mas-
sachusetts Institute of Technology.

Lisa Pearl and Jon Sprouse. 2012. Computational
models of acquisition for islands. Experimental syn-
tax and island effects, pages 109–131.

Matt Post and Daniel Gildea. 2009. Bayesian learning
of a tree substitution grammar. In Proceedings of the
ACL-IJCNLP 2009 Conference Short Papers, pages
45–48.

Federico Sangati and Willem Zuidema. 2011. Ac-
curate parsing with compact tree-substitution gram-
mars: Double-DOP. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, pages 84–95. Association for Computa-
tional Linguistics.

Yves Schabes, Anne Abeille, and Aravind K. Joshi.
1988. Parsing strategies with ‘lexicalized’ gram-
mars: Application to tree adjoining grammars. In
Proceedings of the 12th Conference on Computa-
tional Linguistics - Volume 2, pages 578–583.

84


