
The 12th International

Workshop

on Tree Adjoining

Grammars

and Related Formalisms

(TAG+12)

June 29 - July 1, 2016
Heinrich Heine University

Düsseldorf, Germany

Sponsored by

SFB 991

ii

Preface

Welcome to TAG+12, the 12th International Workshop on TAG and related formalisms!

The TAG+ workshop series was inaugurated in 1990 at Dagstuhl, and this year, the 12th workshop
returns to Germany for the third time, to the Heinrich Heine University Düsseldorf. We received 18
submissions and accepted 12, forming what we believe is an outstanding program spanning the areas of
formal language theory, theoretical syntax and semantics, discourse, and statistical grammar induction
and grammar development.

ChungHye Han (Simon Fraser University) and Daniel Bauer and Owen Rambow (Columbia University)
will provide tutorials on synchronous TAG semantics and graph grammars, respectively. Marco
Kuhlmann and Stephen Clark will deliver keynote talks, both combining ideas from the TAG and CCG
literature – Kuhlmann on the formal relationship between CCGs and TAGs, Clark on neural models for
CCG supertagging and parsing.

This year seemed to us to be a time of transition, both in natural language processing as well as in
the tree adjoining grammars community. As such, we have selected tutorials and invited talks that
emphasize the related formalisms, while maintaining the connection to TAG. We also thought that it
would be productive to set aside blocks of time for discussion using the Open Space format. We look
forward to these discussions and hope that they will help set a course for future research directions.

We would like to express our heartfelt gratitude to everyone who helped make TAG+12 happen. We
were supported by a wonderful program committee, who helped put together an excellent program. We
are also deeply grateful to the local organizers, chaired by Laura Kallmeyer, who were a joy to work
with, and who were sure have put together a flawlessly organized conference. This TAG+ workshop
is supported by the German Science Foundation (DFG) funded CRC 991 and DFG-funded project
“BeyondCFG”.

Finally we are happy to announce that primarily through the efforts of the TAG+12 publications chair,
Wolfgang Maier, nearly all of the proceedings of past TAG/TAG+ workshops are being made freely
available online in the ACL Anthology (aclweb.org/anthology).

We wish you an enjoyable conference!

David Chiang and Alexander Koller
TAG+12 Program Chairs

iii

Program chairs:

David Chiang, University of Notre Dame (USA)
Alexander Koller, University of Potsdam (Germany)

Invited Speakers:

Stephen Clark, University of Cambridge (UK)
Marco Kuhlmann, Linköping University (Sweden)

Tutorial Speakers:

Chung-Hye Han, Simon Fraser University (Canada)
Daniel Bauer, Columbia University (USA)

Program committee:

Anne Abeillé, University Paris VII (France)
Srinivas Bangalore, Interactions Labs (USA)
Daniel Bauer, Columbia University (USA)
Tilman Becker, DFKI (Germany)
Rajesh Bhatt, University of Massachusetts (USA)
David Chiang, University of Notre Dame (USA)
Stephen Clark, University of Cambridge (UK)
Vera Demberg, Saarland University (UK)
Frank Drewes, Ume University (Sweden)
Robert Frank, Yale University (USA)
Claire Gardent, CNRS/LORIA, Nancy (France)
Daniel Gildea, University of Rochester (USA)
Chung-Hye Han, Simon Fraser University (Canada)
Liang Huang, Oregon State University (USA)
Aravind Joshi, University of Pennsylvania (USA)
Laura Kallmeyer, University of Düsseldorf (Germany)
Makoto Kanazawa, National Institute of Informatics (Japan)
Alexander Koller, Universität Potsdam (Germany)
Marco Kuhlmann, Linköping University (Sweden)
Adam Lopez, University of Edinburgh (UK)
Andreas Maletti, University of Stuttgart (Germany)
Yusuke Miyao, National Institute of Informatics (Japan)
Mark-Jan Nederhof, University of St. Andrews (UK)
Owen Rambow, Columbia University (USA)

v

Maribel Romero, University of Konstanz (Germany)
Sylvain Salvati, INRIA Bordeaux Sud-Ouest (France)
Anoop Sarkar, Simon Fraser University (Canada)
Tatjana Scheffler, University of Potsdam (Germany)
William Schuler, Ohio State University (USA)
Mark Steedman, University of Edinburgh (UK)
Matthew Stone, Rutgers University (UK)
Heiko Vogler, TU Dresden (Germany)
Bonnie Webber, University of Edinburgh (UK)
Luke Zettlemoyer, University of Washington (USA)

Local committee:

Laura Kallmeyer (chair)
Kata Balogh
Alexander Diez
Timm Lichte
Wolfgang Maier
Rainer Osswald
Simon Petitjean
Younes Samih
Christian Wurm

vi

Table of Contents

Coordination in Minimalist Grammars: Excorporation and Across the Board (Head) Movement

John Torr and Edward P. Stabler . 1

ArabTAG: from a Handcrafted to a Semi-automatically Generated TAG

Chérifa Ben Khelil, Denys Duchier, Yannick Parmentier, Chiraz Zribi and
Fériel Ben Fraj . 18

Interfacing Sentential and Discourse TAG-based Grammars

Laurence Danlos, Aleksandre Maskharashvili and Sylvain Pogodalla 27

Modelling Discourse in STAG: Subordinate Conjunctions and Attributing Phrases

Timothée Bernard and Laurence Danlos . 38

Argument linking in LTAG: A constraint-based implementation with XMG

Laura Kallmeyer, Timm Lichte, Rainer Oswald and Simon Petitjean 48

Verbal fields in Hungarian simple sentences and infinitival clausal complements

Kata Balogh . 58

Modelling the ziji Blocking Effect and Constraining Bound Variable Derivations in MC-TAG with

Delayed Locality

Dennis Ryan Storoshenko . 67

Node-based Induction of Tree-Substitution Grammars

Rose Sloan . 77

Revisiting Supertagging and Parsing: How to Use Supertags in Transition-Based Parsing

Wonchang Chung, Suhas Siddhesh Mhatre, Alexis Nasr, Owen Rambow and
Srinivas Bangalore . 85

An Alternate View on Strong Lexicalization in TAG

Aniello De Santo, Alëna Aksënova and Thomas Graf . 93

Hyperedge Replacement and Nonprojective Dependency Structures

Daniel Bauer and Owen Rambow . 103

Parasitic Gaps and the Heterogeneity of Dependency Formation in STAG

Dennis Ryan Storoshenko and Robert Frank . 112

vii

Conference Program

Wednesday, June 29, 2016

9:00–9:10 Opening (ULB Düsseldorf 24.41)

9:10–10:35 Tutorial (ULB Düsseldorf 24.41)
Synchronizing Structure and Meaning in Tree Adjoining Grammars

Chung-Hye Han

10:35–11:05 Break

11:05–12:30 Tutorial (ULB Düsseldorf 24.41)
Beyond Strings and Trees Hyperedge Replacement Grammars for Syntax and Semantics

Daniel Bauer

12:30–14:00 Lunch

14:00–15:00 Open Space setup (ULB Düsseldorf 24.41)

15:00–16:00 Open Space session 1 (26.21.01.32, 26.21.01.33, 26.21.01.34)

16:00–17:00 Open Space session 2 (26.21.01.32, 26.21.01.33, 26.21.01.34)

ix

Thursday, June 30, 2016

9:00–10:30 Invited Talk (ULB Düsseldorf 24.41)
Distant Cousins. The equivalence of TAG and CCG revisited

Marco Kuhlmann

10:30–11:00 Break

11:00–12:30 Session: Syntax/Semantics (ULB Düsseldorf 24.41)

11:00–11:30 Modelling the ziji Blocking Effect and Constraining Bound Variable Derivations in

MCTAG with Delayed Locality

Dennis Ryan Storoshenko

11:30–12:00 Parasitic Gaps and the Heterogeneity of Dependency Formation in STAG

Dennis Ryan Storoshenko and Robert Frank

12:00–12:30 Hyperedge Replacement and Nonprojective Dependency Structures

Daniel Bauer and Owen Rambow

12:30–14:00 Lunch

14:00–15:00 Session: Discourse (ULB Düsseldorf 24.41)

14:00–14:30 Interfacing Sentential and Discourse TAG-based Grammars

Laurence Danlos, Aleksandre Maskharashvili and Sylvain Pogodalla

14:30–15:00 Modelling Discourse in STAG: Subordinate Conjunctions and Attributing Phrases

Timothée Bernard and Laurence Danlos

15:00–15:30 Break

15:30–17:00 Open Space regrouping (ULB Düsseldorf 24.41)

15:30–17:00 Open Space session 3 (23.21.U1.91, 23.21.U1.93)

17:00–18:00 Break

18:00–20:00 Sightseeing tour

20:00 Dinner

x

Friday, July 1, 2016

9:00–10:30 Invited Talk (ULB Düsseldorf 24.41)
Neural Models for CCG Parsing and Supertagging

Stephen Clark

10:30–11:00 Break

11:00–12:30 Session: Grammar Induction and Parsing (ULB Düsseldorf 24.41)

11:00–11:30 Node-Based Induction of Tree-Substitution Grammars

Rose Sloan

11:30–12:00 Revisiting Supertagging and Parsing: How to Use Supertags in Transition-Based Parsing

Wonchang Chung, Siddhesh Suhas Mhatre, Alexis Nasr, Owen Rambow and Srinivas Ban-
galore

12:00–12:30 An Alternate View on Strong Lexicalization in TAG

Aniello De Santo, Alëna Aksënova and Thomas Graf

12:30–14:00 Lunch

14:00–15:00 Session: Grammar Development (ULB Düsseldorf 24.41)

14:00–14:30 ArabTAG: from a Handcrafted to a Semiautomatically Generated TAG

Chérifa Ben Khelil, Denys Duchier, Yannick Parmentier, Chiraz Ben Othmane Zribi and
Fériel Ben Fraj

14:30–15:00 Argument linking in LTAG: A constraint based implementation with XMG

Laura Kallmeyer, Timm Lichte, Rainer Osswald and Simon Petitjean

15:00–15:30 Break

15:30–16:30 Session: Syntax (ULB Düsseldorf 24.41)

15:30–16:00 Coordination in Minimalist Grammars: Excorporation and Across the Board (Head)

Movement

John Torr and Edward Stabler

16:00–16:30 Verbal fields in Hungarian simple sentences and infinitival clausal complements

Kata Balogh

16:30 Closing

xi

Proceedings of the 12th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+12), pages 1–17,
Düsseldorf, Germany, June 29 - July 1, 2016.

Coordination in Minimalist Grammars: Excorporation and Across the
Board (Head) Movement

John Torr

School of Informatics
University of Edinburgh

11 Crichton Street, Edinburgh, UK
john.torr@cantab.net

Edward P. Stabler

Nuance Communications
1198 E Arques Ave

Sunnyvale, CA 94085
stabler@ucla.edu

Abstract

This paper describes how coordination
has been integrated into a broad coverage
statistical Minimalist Grammar parser cur-
rently under development, and presents
a unified analysis for a number of coor-
dinate (and related) constructions some-
times considered problematic for transfor-
mational syntax; these include across-the-
board (ATB) head and phrasal movements,
argument cluster coordination, right node
raising and parasitic gaps. To accom-
modate all these structures, a number of
novel extensions are introduced into the
formalism, including a mechanism for
excorporation which enables ATB head
movement; this supplements a variant
of Kobele’s (2008) mechanism for ATB
phrasal movement. The weak expressive
power of the formalism is shown to be un-
affected by these extensions.

1 Introduction and Background

This paper documents the core mechanisms
that have been implemented within MGParse, a
broad coverage (Extended Directional) Minimalist
Grammar (MG) parser currently being developed
at the University of Edinburgh1. Minimalist
Grammars (Stabler, 1997) are formally a kind of
highly succinct and lexicalized Multiple Context
Free Grammar (Seki et al. 1991), and consti-
tute a mildly context sensitive interpretation of
many aspects of Chomsky’s (1995) Minimalist
Program. The mechanisms presented below en-
able MGParse to generate structures for a range
of coordination (and related) phenomena some-
times considered problematic for movement-based
approaches to syntax. For example, Gazdar et

1MGParse extends Harkema’s (2001) CKY variant.

al. (1985) state that “transformational grammar
has never been able to capture a unitary notion
of coordination, for reasons that were endemic to
the framework.” Considered particularly trouble-
some are constructions which involve movement
to a single position of two or more constituents
which do not stand in a c-command2 relation with
one another, as shown in schematic form in fig 1.

YP

...t2i ...

XP

...t1i ...

αi

Figure 1: Across-the-board Movement Schema

Examples of constructions arguably involving
this configuration are given below3:

1. I know whoi [TP Jack likes ti] and [TP Mary
hates ti]. (ATB Phrasal Movement)

2. Whoi doesj [TP Jack tj like ti] and [TP Mary
tj hate ti]? (ATB Head and Phrasal Movement)

3. [TP [TP Jack likes ti] and [TP Mary hates ti],
[Pete’s sister]i]. (Right Node Raising)

4. He [vP gavei [V P Pete ti a book] and [V P Mary
ti a flower]]. (Argument Cluster Coordination)

One approach to ATB phenomena has been
to introduce a mechanism of sideward movement

(Nunes (1995), (2001), (2004)) into the grammar.
2A node c-commands its sister and its sister’s descen-

dants.
3We adopt the Verb Phrase Internal Subject Hypothe-

sis (Koopman and Sportiche, 1991), according to which
AGENTs are generated in the verb phrase before moving to
their surface subject position. We also adopt the Movement
Theory of Control (Hornstein (2001)), which avoids the need
for additional meaning postulates to derive indices on PRO,
which is now simply treated as a trace of A-movement.

1

This operation moves elements cyclically between
trees before those trees are merged together into a
single structure. For example, in fig 1, α could first
move sidewards from t2 to t1 prior to the merger of
XP with YP, before undergoing standard (upward)
movement to its final surface position.

Two further constructions that have been argued
to involve sideward movements, and hence the
configuration in fig 1, are adjunct control and par-
asitic gap structures, as in 5 and 6.

5. [TP Hei [vP [vP ti filed the paper] [PP without
[vP ti reading it]]]]. (Adjunct Control)

6. [Which paper]i did [TP hej [vP [vP tj file ti]
[PP without [vP tj reading ti]]]]? (Parasitic Gap)

Under certain assumptions, both 5 and 6 feature
movement out of an adjunct in apparent violation
of Huang’s (1982) Condition on Extraction Do-

mains (CED). However, if these movements oc-
cur prior to adjunction4 taking place, i.e. before
the adjunct PP actually becomes an adjunct, then
arguably CED is never violated. Stabler (2006)
shows how sideward movement can be incorpo-
rated into MGs to accommodate just such an anal-
ysis of adjunct control. Unfortunately, this formu-
lation of sideward movement is severely restricted
to moving just a single element as an integral part
of adjunction. As a result, it cannot accommodate
example 6 which involves two elements moving
out of the adjunct.

Kobele (2008) introduces an approach to left-
ward ATB phrasal movement for MGs which can
accommodate these cases by ‘unifying’ any iden-
tical movers inside the dependent and main clause
structures. However, Kobele does not extend his
analysis to examples arguably involving ATB head
movement (2 and 4) or Right Node Raising (RNR)
(3). Moreover, as things stand, this system also
appears to overgenerate 7 below, which features
illicit ATB leftward phrasal movement from two
different structural case positions.

7. *I know whoi [TP Jack likes ti] and [TP ti
hates Mary].

To accommodate such examples, we will aug-
ment Kobele’s system with mechanisms for right-
ward movement, case valuation and excorpora-

4Here and throughout, adjunction refers to the merger of
an adjunct dependent with a main structure and should not
be confused with the operation by that name used in Tree
Adjoining Grammar.

tion5. Excorporation is argued to exist for example
in Roberts (2010) in the context of a discussion of
Romance clitics such as the French object pronoun
‘l’ in je l’ai vu (I have seen him/her). Clitics are
interesting because they behave like heads in be-
ing affixal and adjoining to other heads, but they
are also capable of moving over much greater dis-
tances than typical heads and in this sense behave
more like phrases. Here, for instance, the clitic has
moved from the object position, past its governing
verb, and adjoined to the auxiliary. This, Roberts
argues, is achieved via excorporation, which here
we will extend to cases of ATB head movement.

The rest of the paper is arranged as follows: sec-
tion 2 introduces the MG formalism together with
some extensions; next, section 3 provides a gen-
eral framework for coordination; section 4 then
presents the analysis of ATB phenomena; finally,
section 5 concludes the paper.

2 Minimalist Grammars

2.1 Introduction to MGs

Minimalist Grammars (Stabler, 1997) are a deriva-
tional, lexicalized and feature-driven formalism.
Structures are built bottom up using the two op-
erations of binary merge and unary move, which
each check and delete features on lexical items and
derived constituents, while reordering and con-
catenating strings. Each partially built structure
is represented in the collapsed tree format of Sta-
bler (2001a) and Harkema (2001), in which the ac-
tual geometry of derived phrase structure is largely
discarded6 and only the strings/spans and features
of the head and any moving elements are retained.
For instance, consider the collapsed tree represen-
tation for the vP Jack helped who in which who

and Jack will later move to check -wh and -case
respectively:

[[cause] help : +case v, who : -wh, Jack : -case]

Each collapsed tree, or expression, is composed of
between 1 and k + 1 chains, where k is the size

5Two further important differences between Kobele’s
framework and ours are: 1. We do not adopt a GPSG-style
slash-feature mechanism; and 2. We do not handle control
into complements via ATB movement (this is reserved for
control into adjuncts); instead, we allow selectee x features
(see section 2.2) to persist as licensees after initial selection
and to check further selector =x/x= features (now also con-
trol licensors) via standard movement; for complement con-
trol, the base position of the controller therefore always c-
commands the base position of the controllee in our system.

6The full derived phrase structure tree, with indices, is
deterministically recoverable from the derivation tree.

2

of the set of licensee features7. The first chain
of the expression (here, [cause] help : +case v) is
the head of the expression, while any other chains
are movers (their ordering being irrelevant). Each
chain is in turn composed of a string and a fea-
ture sequence. Moving chains are kept separate
only until their syntactic features have all been
checked and deleted, at which time their strings
are concatenated with the head chain’s string and
they cease to exist. Importantly, the collapsed tree
representation entails that MGs as defined above
are type-driven as opposed to structure-driven: all
of the information that is input to the rules is con-
tained within the category labels themselves. As
well as affording MGs some important computa-
tional advantages (the set of MG derivation trees
is a regular set), this fact will be crucial in the ac-
count of coordination that follows.

2.2 A simple Directional MG

A Directional Minimalist Grammar (DMG)8 is de-
fined as a quadruple (V,Cat, Lex, F) s.t.9:

1. V = P [I is a finite set of non-syntactic
features (P = phonetic features, I = semantic fea-
tures).
2. Cat = selectees [selectors [licensees [
licensors is a finite set of syntactic features, s.t.
for each feature x 2 selectees there are features
(=x, x=) 2 selectors, and for each feature -y 2
licensees there is a feature +y 2 licensors.
3. Lex is a finite set of axioms (lexical items) over
V [Cat, with the Cat features on each simplex
tree strictly ordered from left to right.
4. F is a set consisting of the structure build-
ing functions MERGE and MOV E (the de-
ductive rules of inference), defined as the union
of their respective sub-functions, given in figures

7Licensee features are located on moving elements. In
LCFRS terminology, k + 1 = the fan-out of the grammar.

8Directional MGs are MGs in which the directionality of
selection is determined by a feature on the selecting head,
rather than by the complement vs. adjunct/specifier sta-
tus of the dependent. Following Ernst (2002), and contra
Kayne’s (1994) LCA, we therefore allow both leftward and
rightward complements and adjuncts, as well as rightward
movement to adjoined positions. There is good evidence for
the non-existence of rightward specifiers, however (perhaps
for processing reasons), such as the lack of reverse V2 lan-
guages and the extreme marginality of OS languages; these
are therefore currently disallowed by MGParse. Note that
Directional MGs are similar to Categorial Grammars up to
movement.

9In order to unify the notation for merge and move, we
adopt the convention that all diacritics appear on the side of
the Part of Speech (PoS) symbol on which selection occurs;
hence x= indicates rightward selection, =x leftward selection.

2 and 3, where expressions are contained within
square brackets, chains are separated by commas,
α1, ..., αk is a (possibly empty) set of moving
chains, δ and γ are feature sequence suffix vari-
ables, with |δ| ≥ 1 and |γ| ≥ 0, s and t are
string variables, and string/feature separators indi-
cate whether a chain represents an unmerged lex-
ical head (::) or a derived element (:), or can be
either (;).

[s ::x= γ] [t ;x, α1, ..., αk]

[st :γ, α1, ..., αk]
(merge1(comp))

[t ;x, α1, ..., αk] [s :: =x γ]

[ts :γ, α1, ..., αk]
(merge2(comp))

[t ;x] [s : =x γ, α1,..., αk]

[ts :γ, α1, ..., αk]
(merge3(spec))

[s ::x= γ] [t ;x δ, α1, ..., αk]

[s :γ, t :δ, α1, ..., αk]
(merge4(comp))

[t ;x δ, α1, ..., αk] [s :: =x γ]

[s :γ, t :δ, α1, ..., αk]
(merge5(comp))

[t ;x δ] [s : =x γ, α1,..., αk]

[s :γ, t :δ, α1, ..., αk]
(merge6(spec))

Figure 2: Sub-functions of MERGE

[s :+f γ, α1, ..., αi−1, t :−f, αi+1, ..., αk]

[ts :γ, α1, ..., αi−1, αi+1, ..., αk]
(move1)

[s :+f γ, α1, ..., αi−1, t :−f δ, αi+1, ..., αk]

[s :γ, α1, ..., αi−1, t :δ, αi+1, ..., αk]
(move2)

Figure 3: Sub-functions of MOVE

For a given Minimalist Grammar G = Lex , the
language L(G) is the closure of Lex under the
structure building functions {MERGE , MOVE}
in accordance with the Shortest Move Constraint:

The Shortest Move Constraint (SMC): no ex-
pression may contain two chains with precisely the
same initial feature.

Notice that only where a selector is a head
word/morpheme (and so consequently contains no
movers) can its selectee contain movers. This
encodes the specifier part of CED, according to
which only complements (≈objects) allow extrac-
tion of their contents, not specifiers (≈subjects)
(or adjuncts10). A complement is formally de-
fined as the first argument dependent to be merged

10Adjuncts are discussed in section 2.3.1.

3

[who :: d -wh] [[pres] :: v= +case t]
[Jack :: d -case] [[int] :: t= +wh c]
[likes :: d= =d v]

Table 1: A DMG lexicon

with a head; all subsequently merged arguments
are specifiers. With the simple lexicon in table 1,
this grammar will generate the derivation tree in
fig 4 for the embedded clause who Jack likes11.

[who [int] Jack [pres] likes : c]

[[int] Jack [pres] likes : +wh c, who : -wh]

[Jack [pres] likes : t, who : -wh]

[[pres] likes : +case t, who : -wh, Jack : -case]

[likes : v, who : -wh, Jack : -case]

[likes : =d v, who : -wh]

[who :: d -wh][likes :: d= =d v]

[Jack :: d -case]

[[pres] :: v= +case t]

[[int] :: t= +wh c]

Figure 4: DMG Derivation tree for who Jack likes

2.3 Extending a Directional MG

MGParse incorporates a number of extensions to
the simple DMG presented above which are dis-
cussed briefly below. We will refer to a DMG
which includes these and the mechanisms to be
introduced in sections 3 and 4 as an Extended
Directional Minimalist Grammar (EDMG).

2.3.1 Adjunction

Linguists have proposed that in addition to com-
plements and specifiers, a third type of adjunct

dependent can be distinguished. Adjuncts are usu-
ally (though not exclusively) semantically adver-
bial, and include adverbs themselves as well as
modificational PPs and (at least some) relative
clauses. They also display the following prop-
erties: they are usually optional, iterative, type-
preserving and opaque to extraction (CED). MG-
Parse incorporates the approach to leftward ad-
junction of Frey and Gärtner (F&G) (2002) and
extends it with rightward adjunction. F&G intro-
duce a new category into the lexicon, which we
will refer to here as an adjunctizer. Adjunctiz-
ers select other categories which are then effec-
tively transformed into adjuncts; they can be null
or overt. Below are the categories for two adjunc-

11Head strings enclosed in square brackets indicate silent
morphemes; t = tense; c = complementizer.

tizers which map clauses (CPs) and PPs respec-
tively into rightward adjuncts that adjoin to VPs.

[because :: c= ≈v] [[adjunctizer] :: p= ≈v]

We must also add the ADJOIN rules in fig 5 to
the grammar to accommodate the new ≈x/x≈ ad-
junction selector features. Notice that these rules
involve asymmetric checking in contrast to the ear-
lier MERGE rules: only the selector feature, not
the selectee feature, is deleted; this captures the
optional, iterative and type-preserving properties
of adjunction. Note also that this time the head
features of the mother derive from the selectee not
the selector, making the selectee the head. Con-
sequently, only the selectee may contain movers,
thereby observing CED.

[t ; x≈] [s ;x γ, α1, ..., αk]

[ts : x γ, α1, ..., αk]
(adjoin1)

[s ;x γ, α1, ..., αk] [t ;≈x]

[st : x γ, α1, ..., αk]
(adjoin2)

[t ;x≈ δ] [s ;x γ, α1, ..., αk]

[s : x γ, t :δ, α1, ..., αk]
(adjoin3)

[s ;x γ, α1, ..., αk] [t ;≈x δ]

[s : x γ, t :δ, α1, ..., αk]
(adjoin4)

Figure 5: Sub-functions of ADJOIN

2.3.2 Rightward Movement

Rightward movement was at one time the stan-
dard tool in analyses of constructions such as
heavy NP shift and extraposition, but the rise in
popularity of Kayne’s (1994) Linear Correspon-
dence Axiom resulted in its almost total aban-
donment in Minimalism12. However, abandoning
rightward movement often necessitates using ad-
ditional silent heads and elaborate sequences of
multiple (remnant) leftward movements for what
is intuitively a single weight-theoretic require-
ment: that a heavy constituent appear sentence-
finally. We therefore retain rightward movement
(of phonetic features only) to adjoined positions.
To do this we adapt F&G’s (2002) approach to
German leftward scrambling, which makes use of
a ∼x scrambling licensee, and introduce the right-
ward movement licensee x∼. Selectee x features
will now serve a second purpose as licensors for
rightward movement. The R_MOVE rule is given
in fig 6.

12Ernst 2002 is a notable exception.

4

[s :x γ, α1, ..., αi−1, t :x∼, αi+1, ..., αk]

[st :x γ, α1, ..., αi−1, αi+1, ..., αk]

Figure 6: R_MOVE

x∼ features enter the derivation on null ex-

traposer heads which map items into rightward-
moving versions of themselves. For example, the
category for an extraposer causing a DP to move
rightward and adjoin to the closest dominating TP
is: [[extraposer] :: d= +case d -case t∼]13.

Note that we can obtain a Right Roof Con-

straint14 (RRC) (Ross, 1967) preventing right-
ward movement from crossing (non-small, non-
defective15) clause boundaries by assuming that
x∼ features cannot persist, i.e. they always delete
immediately upon being checked.

2.3.3 Head Movement

MGParse incorporates Stabler’s (2001b) head
movement rules. Head movement is a highly lo-
cal operation that causes the head of a selector’s
complement to adjoin to the head of the selector as
an integral part of MERGE, the vanilla case being
subject-auxiliary inversion in English main clause
questions. Stabler’s key insight is that the lexical
head string of an expression must be kept sepa-
rate from its left and right dependent strings until
that expression has itself been merged/adjoined as
a dependent, in case the head has to move. We
therefore introduce new feature diacritics > and <

to indicate head movement with adjunction onto
either the left or the right of a governing head.
Fig 7 gives the MERGE rules for rightward selec-
tion with leftward adjoining head movement.

[(e,sh,e) ::>x= γ] [(tl,th,tr) ;x, α1, ..., αk]

[(e,thsh,tltr) :γ, α1, ..., αk]
(merge_hm1)

[(e,sh,e) ::>x= γ] [(tl,th,tr) ;x δ, α1, ..., αk]

[(e,thsh, e) :γ, (tltr) :δ, α1, ..., αk]
(merge_hm2)

Figure 7: MERGE_HM functions for rightward
selection with leftward adjoining head movement

13Note the simulation of feature percolation without actual
percolation here. This is desirable since Kobele (2005) shows
that genuine feature percolation results in Type 0 MGs. This
mechanism is also used by MGParse to achieve pied-piping,
e.g., of to by whom in to whom did you complain?

14Whether the RRC actually exists has been contested (see
e.g. Gazdar (1981)). However, for the purposes of practical
parsing, this constraint significantly improves efficiency and
hence is currently adopted by MGParse.

15Defective clauses are bare TPs lacking a CP layer (stan-
dardly assumed to exist in ECM and raising structures).

2.3.4 Covert Movement

MGParse includes covert movement rules to ac-
commodate a range of phenomena including ap-
parent long-distance agreement16, case checking
of prepositional objects and Quantifier Raising in
a strictly monotonic/type-driven system. We fol-
low Stabler (1997) in treating covert movement as
moving just syntactic (and semantic) features, not
phonetic features (cf. Chomsky’s (1995) Move-F).
The applicability of overt vs. covert movement
is determined by the licensor feature: +f licenses
covert movement and +F overt movement. Merge
rules are added to the grammar splitting an expres-
sion into its syntactic and phonetic parts. For ex-
ample, merge4 and merge5 have the correspond-
ing phonetic merge rules in fig 8 which fuse the
selectee’s string to the selector’s head chain but
keep the selectee’s syntactic features separate.

[s ::x= γ] [t ;x δ, α1, ..., αk]

[st : γ, e : δ, α1, ..., αk]
(p_merge1(comp))

[t ;x δ, α1, ..., αk] [s :: =x γ]

[ts : γ, e : δ, α1, ..., αk]
(p_merge2(comp))

Figure 8: Two sub-functions of P_MERGE

The moving chains now contain no phonetic
material, and so their movements will not be vis-
ible in the string, but may have an impact on the
semantics. Note that since it is licensors, not li-
censees, which determine whether movement is
overt or covert, both MERGE and P_MERGE op-
tions initially have to be pursued by the system.

3 Coordination

MGParse’s EDMG adopts the binary Xbar the-
oretic view of coordinate structures17 proposed
most recently by Zhang (2010), in which the coor-
dinator (Coord) is the head, its complement is the
rightmost conjunct and all leftward conjuncts are
in (multiple) specifier positions. Zhang also as-
sumes that Coord heads inherit the PoS category18

of their (leftmost) conjuncts, which here we will
simply precompile into the lexicon.

We take coordination to be a ‘recursive transi-
tive closure over same types’ (Partee and Rooth,

16Note that Chomsky’s (2000) long-distance Agree opera-
tion is non-monotonic and structure-driven rather than type-
driven, hence incompatible here.

17See Appendix C for a discussion of the problem posed
by lexical X0 head coordination for Xbar theoretic accounts.

18Selectee x features indicate PoS category in MGs.

5

1983), where ‘type’ here refers to the cluster of
syntactic features on the entire expression (though
see Appendix B), not just the PoS/selectee feature
of its head chain. The abstract feature sequence
schema for all coordinators is: x= =x x19. This
is similar to the Combinatory Categorial Gram-
mar (CCG) (Steedman, 2000) approach to coor-
dination, except that here it is not formally treated
as involving adjunction, and full type uniformity
is not enforced by the selector features alone, but
instead falls out from the interaction of two con-
straints on rules: CED, and the Coordinate Struc-
ture Constraint (CSC) (Ross, 1967) (see Appendix
B on the like-types constraint)20.

One problem for the analysis so far if we as-
sume that all D elements carry -case is that this
needs to be checked for all DP conjuncts. We
cannot achieve this by adding covert +case fea-
tures to the Coord head because this would require
the use of potentially infinite sequences of the
form (=d +case)+ to ensure that all specifier con-
juncts can check case without triggering SMC. To
solve this problem, we exploit a null prepositional
dative head, independently used by MGParse to
avoid SMC violations in promise-type subject con-
trol structures21. This head has the category
[[dat] :: d= +case p], which covertly22 checks the
-case feature of its DP complement; the resulting
PP is then selected by a P-selecting Coord with
PoS category D (i.e. with a d selectee feature).

Notice that this implies that coordinators are
able to inherit the PoS category of their comple-
ment’s complement (D), rather than that of the

19The overline is a diacritic enabling =x selector features to
optionally persist after checking to generate structures such
as Jack, Pete and Mary. Note that examples with multiple
conjuncts such as Jack and Pete and Mary are also generated:
CoordP with D conjuncts is in reality just DP, hence it can
be selected as the complement of a higher D-selecting Coord
head.

20Unlike in CCG, selector features in MGs are never
complex, i.e. we cannot define an abstract coordinator
category equivalent to (X\X)/X and then reify it as, e.g.,
((S/NP)\(S/NP))/(S/NP) where both conjuncts are specified
as being clauses containing object holes/traces; all we can
specify is that both conjuncts are clauses (i.e. that they have a
c selectee as their first feature), using the sequence: c= =c c.
We can, however, ensure that a pair of MG expressions en-
tering into a binary merge rule have identical sets of moving
chains (see section 4.1 on ATB); this, together with CED and
CSC as constraints on the form of MERGE rules, derives the
like-types constraint on conjuncts (see Appendix B).

21This implements an analysis in Boeckx et al. (2010).
22All prepositions are assumed here to trigger covert

movement of their objects to spec-P to check case, since overt
movement would yield postpositions (this only really matters
for overt prepositions of course).

complement (P) itself. Again, we simply pre-
compile this into the lexicon, permitting coordi-
nate schemas of the form [xT= =xT y] where the
PoS category of the coordinator differs from that
of its conjuncts. Since we do not formally treat
coordination as adjunction, sacrificing this aspect
of type-preservation becomes possible23. Interest-
ingly, this move may not be entirely ad hoc: ar-
guably, Jack and me went home is more natural
than the prescriptively ‘correct’ Jack and I went

home, as evidenced by the fact that I and Jack went

home seems awkward, whereas me and Jack went

home is informal but perfectly fine. This is ex-
plained if nominal conjuncts in English are in fact
PPs with null dative case-checking P heads.

A further problem for the analysis of coordina-
tion so far is that there exist structures which do
not appear to adhere to the like-types restriction
on conjuncts, such as 8 below.

8. Jack is [V P working] and [PP in the garden].

9. *Jack [V P works] and [PP in the garden].

As 9 indicates, coordination of a VP with a PP is
generally not permitted, and yet in 8 it is allowed.
It is in fact a general feature of the verb be that
its complement can be a coordinate phrase with
apparently unlike conjuncts. However, somewhat
tellingly, only predicative categories can be coor-
dinated following be. For instance, while Jack is

happy and in the garden is fine, *Jack is happily

and in the garden is ungrammatical because hap-

pily is adverbial rather than predicative. In fact,
only VPs, PPs, AdjPs and DPs can be coordinated
in this way. One approach pursued in the litera-
ture (e.g. Jacobson (1987)) is therefore to assume
that the expressions entering into such coordinate
structures are in fact of the same super Prd cate-
gory. We implement this here by adding the null
predicatizers in table 2 to our lexicon24.

[[prd] :: d= +case =d prd] [[prd] :: >v= =d prd]
[[prd] :: p= =d prd] [[prd] :: adj= =d prd]

Table 2: Predicatizers

These are essentially unary functions which
map expressions of a given PoS category into ex-
pressions with the Prd PoS category25. We can

23We must, however, impose heavy restrictions in the lexi-
con to rule out many unwanted cases here.

24Observe that each [prd] element base generates the DP
subject as its specifier.

25A similar approach incorporating null adverbializing

6

then simply coordinate the resulting PrdPs in the
usual manner26.

4 ATB Head and Phrasal Movement

4.1 ATB Phrasal Movement

Consider deriving just the embedded clause from
example 1, given as 10 below.

10. whoi [TP Jack likes ti] and [TP Mary hates
ti].

In terms of the schema in fig 1, who corresponds
to αi and the two TP conjuncts to XP and YP. Re-
call that our problem here is to derive the fact that
the two traces have only one overt antecedent and
yet neither c-commands the other. Adapting an ap-
proach in Kobele (2008), we can accomplish this
as follows: first we construct each TP conjunct (cf.
fig 4 up to the first unary branching node). This
yields the following two expressions:

[Jack, [pres], likes : t, who : -wh]
[Mary, [pres], hates : t, who : -wh]

Next, we merge the right conjunct Mary

hates who as the complement of the conjunction
[and :: t= =t t], which after feature deletion yields:

[and, Mary [pres] hates : =t t, who : -wh]

This is where things become interesting. No-
tice that when the conjunction head merged with
its complement, the mover inside the complement
was transferred into the resulting expression. If
this were to also happen when we merged the
specifier, the result would be an SMC violation
as we would now have two elements in the same
tree whose first feature was -wh. Moreover, trans-
ferring a mover out of a specifier is in any case
impossible with the rules as currently formulated
in accordance with CED. To solve this, we will
bleed both SMC and CED by allowing the sys-
tem to simply drop27 any mover inside any depen-
dent if that mover’s features exactly match those
of a mover already inside the governing structure.
Dropping the occurrence of who from the left con-
junct and merging the latter into the main structure

[adv] heads, e.g. with category [p= adv], accommodates co-
ordination of unlike modifiers in MGParse: Jack works hap-
pily and with great speed.

26A reviewer notes that an alternative analysis treats unlike
coordination as ATB head movement, e.g. of be out of mul-
tiple remnant coordinated verb phrases which it heads. This
is straightforwardly implementable using the mechanism for
ATB head movement introduced in section 4.2.

27Alternatively, we can see this as the unification of two
sets of feature sequences, with sets only admitting single in-
stances of their members.

will then yield the following TP coordinate phrase,
containing only one occurrence of who28:

[Jack [pres] likes, and, Mary [pres] hates : t, who

: -wh]

We can now merge this expression with a null
interrogative [[int] :: t= +WH c]] head and move
who to spec-CP in the usual manner. The up-
dated MERGE rules for specifiers are shown in
fig 929 (along with the updated version of adjoin2,
adj_atb1, which derives 5 and 6 - the derivation
for 6 is given in Appendix A) where the string (αs)
and syntactic (αf) parts of the α chains have been
separated and identity is enforced only on syntac-
tic features. This is because the same language
is generated whether or not we stipulate string
identity30, but not doing so results in a standard
MCFG rule and therefore the proof of MCFG-
equivalence31. Note that by combining mrg_atb1
with the rightward movement mechanism intro-
duced in section 2.3.2, we are also able to generate
the RNR in 3 as rightward ATB movement (though
see section 4.3 for an alternative analysis).

[t :x, αf
1 , ..., α

f
l (α

s
1
0, ..., αs

l
0)] [s : =x γ, α

f
1 ,..., α

f
k(α

s
1,..., α

s
k)]

[ts :γ, αf
1 , ..., α

f
k(α

s
1, ..., α

s
k)] (mrg_atb1)

[t :x δ, αf
1 , ..., α

f
l (α

s
1
0, ..., αs

l
0)] [s : =x γ, α

f
1 ,..., α

f
k(α

s
1,..., α

s
k)]

[s :γ, t : δ, αf
1 , ..., α

f
k(α

s
1, ..., α

s
k)] (mrg_atb2)

[s :x γ, αf
1 , ..., α

f
k(α

s
1, ..., α

s
k)] [t :≈x, α

f
1 ,..., α

f
l (α

s
1
0,..., αs

l
0)]

[st : x γ, α
f
1 , ..., α

f
k(α

s
1, ..., α

s
k)] (adj_atb1)

[s :x γ, αf
1 , ..., α

f
k(α

s
1, ..., α

s
k)] [t :≈x δ, α

f
1 ,..., α

f
l (α

s
1
0,..., αs

l
0)]

[s : x γ, t :δ, αf
1 , ..., α

f
k(α

s
1, ..., α

s
k)] (adj_atb2)

Figure 9: Left merge and right adjoin ATB rules

Note that for coordination, we enforce l = k

whereas for all other cases l ≤ k. This ensures
28Note that although we drop an occurrence of who in the

syntax, the fact that in the semantics its trace must be co-
indexed with the other trace (and the antecedent) is determin-
istically recoverable from the derivation tree.

29A variant of mrg_atb1 allows =x to persist and generate,
e.g., who does Jack like, Mary hate and Pete despise?

30For practical purposes, however, we allow MGParse to
also enforce string identity, since otherwise many partial
parses are generated in which a moving substring in the de-
pendent is dropped which does not phonetically match some
moving substring in the main structure, and such a strategy
can clearly never result in the recognition of a sentence.

31If we view the syntactic part of the head chain plus the
αf s as a single atomic category symbol, then all we are say-
ing in effect here is that combining a category of type A with
a category of type B results in a category of type C, which is
no different from any other MCFG rule. Seki et al.’s (1991)
lemma 2.2 shows that banning variables that become erased
during a derivation has no effect on expressive power.

7

that the like-types constraint (see Appendix B) ap-
plies only to coordination and not, for instance, to
parasitic gaps such as which celebrity did pictures

of disgrace? or 6 above, where we only require
the αfs in the specifier or adjunct to be a (possi-
bly empty) subset of those in the main structure.
That parasitic gaps are not subject to precisely the
same constraints as coordination structures is evi-
dent from the fact that it is possible to fill a para-
sitic gap, leaving just the trace in the main clause,
as in which paper did Jack file without reading

its title, whereas we cannot extract from one con-
junct but not the others (*who does Jack like and

Mary hate Pete) (part 2 of CSC)32; we assume that
both parasitic gaps and ATB-coordinate structures
involve the ATB-dropping mechanism, but differ
in that only coordination is subject to a like-types
constraint owing to its semantics.

Finally, recall that example 7 featured illicit co-
ordination of two conjuncts containing traces in
different structural case positions. To disallow
these structures, we adopt Kobele’s (2008) Earley-
style dotted feature mechanism so that features re-
main visible after they are ‘deleted’. Addition-
ally, we assume that -case features are valued as
acc., nom., gen. etc., when checked. This will
then distinguish the two movers in 7 and prevent
ATB-drop from applying33. To implement this,
licensee and licensor features will be split into
attribute/value pairs: e.g., -f represents an unval-
ued licensee feature, while -fv is the valued equiv-

32We must also ensure that for conjunct (but not other)
specifiers, only mrg_atb1 can apply, i.e. |δ| = 0, and simi-
larly for the comp merge rules in fig 2 if the complement is a
conjunct. These restrictions capture the fact that while ATB
extraction of the identical contents of conjuncts is possible,
extraction of conjuncts themselves is not (*whoi does mary
like ti and ti, *whoi does Mary like Pete and ti) (part 1 of
CSC). We achieve these restrictions via the use of a diacritic
on coordinator projections. For example, instead of :: and
: coordinator projections are marked by :: and : separators.
We can then formulate coordination-specific MERGE rules
to ban moving complement and specifier conjuncts.

33Gazdar (1981) notes that if either gap is in an embed-
ded clause, it no longer matters if the traces have different
structural cases (I know a man who Mary likes and hopes will
win). MGParse also correctly generates these constructions
by assuming that the valuations of case are only temporary,
and that as soon as an item moves to a higher landing site it
reverts to (checked but unvalued) -case. This, combined with
the standard assumption of successive cyclic wh-movement
via intermediate spec-CPs (implemented with ‘suicidal’ li-
censors (+F?) on intermediate C heads which attract but do
not check licensees and which self-delete if they themselves
are unchecked), yields the correct result, assuming that -f
matches -fv for ATB-drop. Evidence that case valuation is
indeed temporary is provided by the following contrast: *the
man whom likes Mary vs. the man whom Pete said likes Mary.

alent (e.g. -casenom). We then reformulate our
rules using this new notation. Fig 10 gives the re-
formulated version of move-2, showing both the
valuation and dotted feature mechanisms, where
β and ζ are feature sequence prefix variables. To
avoid clutter, for the rest of the discussion we will
omit this valuation notation from any rules.

[s : β ·+fv γ, α1, ..., αi−1, t : ζ · −f δ, αi+1, ..., αk]

[s : β +fv · γ, α1, ..., αi−1, t : ζ −fv · δ, αi+1, ..., αk]
(move20)

Figure 10: Move-2 with valuation and dotted fea-
ture mechanisms

4.2 ATB Head Movement

We still need to derive 2 and 4, both of which by
hypothesis involve ATB head movement: T-to-C
in 2 and V-to-v in 4. Note that the head move-
ment rules presented in section 2.3.3 are insuffi-
cient here because there the moving head fused
immediately with the head it adjoined to, making
head movement a highly local operation. In gen-
eral, this appears descriptively correct since heads
cannot usually skip other heads (*Have you would

helped?) (cf. Travis’ (1984) Head Movement

Constraint). There are, however, certain arguable
exceptions to this constraint, such as clitic climb-
ing in Romance and the ATB head movement in 2
and 4. Consider again example 2, repeated below
with the CoordP (in reality a TP) now shown.

2. Whoj doesi [CoordP [TP Jack ti like tj]
[Coord and] [TP Mary ti hate tj]]?

The derivation for this sentence initially pro-
ceeds precisely as in section 4.1 (except that T
is now overt). However, when the conjunction
head merges with its right TP conjunct, the T head
(does) of that conjunct will become fused either
with its dependents as before or with the Coord
head, rendering it inaccessible to C. The situation
for the left conjunct is even worse as our rules
do not allow for head movement out of specifiers
(which would violate CED). Our solution is to ex-
tend the grammar with a mechanism for excorpo-
ration which allows the head of a complement to
move successive cyclically through the governing
head rather than incorporating with it (see fig 11).

To implement excorporation, we add a new di-
acritic ˆ to the selector which once again causes
the complement’s head to move (we also add con-
junctions with the feature sequence: ˆx= ˆ=x x).
This time, however, the raising head will become

8

YP

CoordP

Coord’

XP1

...tX1

i ...

Coord

CoordtX1

i

XP2

...tX2

i ...

Y

YX1
i

Figure 11: Excorporating ATB Head Movement

the new head of the selecting phrase, with the old
head being fused onto the remnant complement
string. This sets the stage for the new head to
subsequently raise further, leading to successive
cyclic head movement. The heads of any spec-
ifier conjuncts will simply be dropped34, just as
their α chains are dropped for ATB phrasal move-
ment. The two rules are given in fig 1335. The first
involves the complement case, hence the selec-
tor cannot yet contain any α movers. The second
rule shows the specifier case, and is rather like the
specifier rule for ATB phrasal movement in that
it involves dropping any α chains in the selectee
under feature identity with those in the selector.
This time, however, the excorporation diacritic on
the selector causes the head string of the selectee
also to be dropped. Again only feature identity is
required, hence the rule is MCFG-equivalent. The
derivation for example 2 is given in fig 12 (only the
leftmost conjunct’s derivation is given in full)36.

[who does [int] Jack like and Mary hate : c]

[who, does [int], Jack like and Mary hate : c]

[does [int], Jack like and Mary hate : +WH c, who : -wh]

[Jack like, does, and Mary hate : t, who : -wh]

[does, and Mary hate : ˆ=t t, who : -wh]

[Mary, does, hate : t, who : -wh][and :: t=ˆ ˆ=t t]

[Jack, does, like : t, who : -wh]

[does, like : +CASE t, who : -wh, Jack : -case]

[like : v, who : -wh, Jack : -case]

[like : =d v, who : -wh]

[who :: d -wh][like :: d= =d v]

[Jack :: d -case]

[does :: v= +CASE t]

[[int] :: >t= +WH c]

Figure 12: who does Jack like and Mary hate

4.3 Right Node Raising

In section 4.1, we stated that the ATB mechanism
combined with the rightward movement rules pre-

34Again, co-indices on all head traces are deterministically
recoverable from the derivation tree.

35Again, an additional rule is need to allow =x to persist.
36Note that the final step in this derivation is a unary rule

fusing together the three string parts of a head chain iff it is
the only chain in the expression and it has just one feature
and that feature is a c (equivalent to reaching the S node).

[(e,sh,e) :: x̂= ˆ=x γ] [(tl,th,tr) :x, α1, ..., αk]

[(e, th, shtltr) : ˆ=x γ, α1, ..., αk]
(mrg_excorp)

[(tl,th,tr) :x, α
f
1 , ..., α

f
k(α

s
1
0, ..., αs

k
0)] [(sl,sh,sr) : ˆ=x γ, α

f
1 ,..., α

f
k(α

s
1,..., α

s
k)]

[(tltrsl, sh, sr) : γ, αf
1 , ..., α

f
k(α

s
1, ..., α

s
k)] (mrg_hm_atb)

Figure 13: Excorp/ATB Head Movement Rules

sented in section 2.3.2 could generate RNR struc-
tures. However, rightward movement analyses of
RNR are not without theoretical problems (see,
e.g., Abels (2004) and Gazdar (1981)). For ex-
ample, it is well known that RNR is always order-
preserving, that it does not exhibit many island ef-
fects, and that the shared material (which has a
focused interpretation) cannot survive VP ellipsis
in the rightmost conjunct with which it appears to
associate despite also scoping over all traces.

Fortunately, an alternative ATB strategy is avail-
able, under which the mover inside the right-
most conjunct undergoes covert leftward focus
movement (to spec-CP where it c-commands and
scopes over all the traces), while the movers in-
side the other conjuncts begin to undergo overt

focus movement. Then, when ATB-drop of these
overt movers occurs, once again only the string of
the mover belonging to the rightmost conjunct re-
mains, though this time in its base position (see
Appendix A for derivations and full discussion).

This analysis is closer to the external remerge

or ellipsis proposals in the linguistic Minimalist
literature (e.g. de Vries (2009), Abels (2004)) and
can better account for all of the aforementioned
properties of RNR37. All that is needed is to re-
lax the parser’s constraint on string identity (fn.30)
slightly, so that the empty string of a covert mover
does not trigger a mismatch with the strings of
overt movers for the purposes of ATB-drop.

5 Conclusion

We have presented the core mechanisms of
MGParse and shown how coordination can be in-
corporated into an EDMG that uses relatively few
(currently around 45) MCFG-equivalent rules to
assign expressive structural descriptions to a wide
range of construction types. While many open
questions remain (gapping was not addressed, for
instance), this is an important step towards our
goal of constructing of a practical MG parser with
both broad and deep coverage.

37Covert movement has been observed to escape certain
island effects (see, e.g., Richards (2000)).

9

Acknowledgments

A very big thank you to Mark Steedman for many
hours of inspiring and insightful discussions on
the topics contained in this paper. We would also
like to thank the three anonymous reviewers for
their comments and suggestions, several of which
have been incorporated into the final paper. This
work was funded by the Engineering and Physical
Sciences Research Council (EPSRC).

References

Anne Abeille. 2006. In defense of lexical coordina-
tion. Empirical Issues in Syntax and Semantics 6,
pages 7–36.

Klaus Abels. 2004. Right node raising: Ellipsis or
across the board movement. Proceedings of NELS,
34.

Cedric Boeckx, Norbert Hornstein, and Jairo Nunes.
2010. Control as Movement. Cambridge University
Press, Cambridge, UK.

Robert Borsley. 2005. Against conjp. Lingua,
115:461–482.

Noam Chomsky. 1995. The Minimalist Program. MIT
Press, Cambridge, Massachusetts.

Noam Chomsky. 2000. Minimalist inquiries: The
framework. In Roger Martin, David Michaels,
and Juan Uriagereka, editors, Step by Step: Essays
in Minimalist Syntax in Honor of Howard Lasnik,
pages 89–155. MIT Press, Cambridge, MA.

Mark de Vries. 2009. On Multidominance and Lin-
earization. Biolinguistics, 3.4:344–403.

Lisa deMena Travis. 1984. Parameters and Effects
of Word Order Variation. Ph.D. thesis, MIT, Cam-
bridge, Massachusetts.

Thomas Ernst. 2002. The Syntax of Adjuncts. Cam-
bridge University Press, Cambridge, UK.

Werner Frey and Hans-Martin Gärtner. 2002. On the
treatment of scrambling and adjunction in minimal-
ist grammars. In Gerhard Jäger, Paola Monachesi,
Gerald Penn, and Shuly Wintner, editors, Proceed-
ings of Formal Grammar, pages 41–52.

Gerald Gazdar, Ewan H. Klein, Geoffrey K. Pullum,
and Ivan A. Sag. 1985. Generalized Phrase Struc-
ture Grammar. Harvard University Press, Cam-
bridge, Massachusetts.

Gerald Gazdar. 1981. Unbounded dependencies and
coordinate structure. Linguistic Inquiry, 12:155–
184.

Hendrik Harkema. 2001. Parsing Minimalist Lan-
guages. Ph.D. thesis, UCLA, Los Angeles, Califor-
nia.

Norbert Hornstein. 2001. Move! A Minimalist Theory
of Construal. Blackwell Publishing.

C.-T. James Huang. 1982. Logical relations in Chi-
nese and the theory of grammar. Ph.D. thesis, MIT,
Cambridge, Massachusetts.

Pauline Jacobson. 1987. Review of gerald gazdar,
ewan klein, geoffrey k. pullum, and ivan a. sag. gen-
eralized phrase structure grammar. Linguistics and
Philosophy, 10:389–426.

Richard S. Kayne. 1994. The Antisymmetry of Syntax,
Linguistic Inquiry Monograph Twenty-Five. MIT
Press, Cambridge, Massachusetts.

Gregory M. Kobele. 2005. Features moving madly: A
formal perspective on feature percolation in the min-
imalist program. Research on Language and Com-
putation, 3(4):391–410.

Gregory M. Kobele. 2008. Across-the-board extrac-
tion in minimalist grammars. In Proceedings of
the Ninth International Workshop on Tree Adjoining
Grammar and Related Formalisms (TAG+9), pages
113–128.

Hilda Koopman and Dominique Sportiche. 1991. The
position of subjects. Lingua, 85(2-3):211–258.

Jairo Nunes. 1995. The Copy Theory of Movement and
Linearisation of Chains in the Minimalist Program.
Ph.D. thesis, University of Maryland, College Park.

Jairo Nunes. 2001. Sideward movement. Linguistic
Inquiry, 32:303–344.

Jairo Nunes. 2004. Linearization of Chains and
Sideward Movement. MIT Press, Cambridge, Mas-
sachusetts.

Barbara Partee and Mats Rooth. 1983. Generalized
conjunction and type ambiguity. In Meaning, Use,
and Interpretation of Language. Berlin: de Gruyter.

Norvin Richards. 2000. An island effect in japanese.
Journal of East Asian Linguistics, 9:187285.

Ian Roberts. 2010. Agreement and Head Movement:
Clitics, Incorporation and Defective Goals, Linguis-
tic Inquiry Monograph 59. MIT Press, Cambridge,
Massachusetts.

John Robert Ross. 1967. Constraints on variables
in syntax. Ph.D. thesis, MIT, Cambridge, Mas-
sachusetts.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and
Tadao Kasami. 1991. On multiple context free
grammars. Theoretical Computer Science, 88:191–
229.

10

Edward Stabler. 1997. Derivational minimalism. In
Christian Retoré, editor, Logical Aspects of Com-
putational Linguistics (LACL’96), volume 1328 of
Lecture Notes in Computer Science, pages 68–95,
New York. Springer.

Edward P. Stabler. 2001a. Minimalist grammars
and recognition. In Christian Rohrer, Antje Ross-
deutscher, and Hans Kamp, editors, Linguistic Form
and its Computation. CSLI Publications, Stanford,
California.

Edward P. Stabler. 2001b. Recognizing head move-
ment. In P. De Groote, G. Morrill, and C. Retoré,
editors, Logical Aspects of Computational Linguis-
tics: 4th International Conference, LACL 2001, Le
Croisic, France, June 27-29, 2001, Proceedings.,
volume 4, pages 245–260.

Edward P Stabler. 2006. Sidewards without copying.
In Proceedings of the 11th Conference on Formal
Grammar, pages 133–146.

Mark Steedman. 2000. The Syntactic Process. MIT
Press, Cambridge, Massachusetts.

Niina Ning Zhang. 2010. Coordination in Syntax,
Cambridge Studies in Linguistics Series 123. Cam-
bridge University Press, Cambridge, UK.

Appendix

A Right Node Raising and Parasitic Gap

Derivations

Figures 14-16 give the derivations for the RNR ex-
ample 3 and parasitic gap example 6 from the text.
Here, as in the text, we have made certain sim-
plifications, for example by removing -case fea-
tures from objects (checked by big V in MGParse)
and ignoring the little v causative head. Example
3 has two alternative derivations, corresponding to
the rightward movement and leftward focus move-
ment approaches discussed in sections 4.1 and 4.3.
The rightward movement analysis works in pre-
cisely the same way as the leftward phrasal ATB
mechanism discussed in section 4.1, except that
now all the movers involved are undergoing right-
ward instead of leftward movement.

In the alternative focus movement analysis,
the mover from the rightmost conjunct undergoes
covert leftward focus movement to spec-CP, leav-
ing behind its phonetic material inside the right-
most conjunct. Simultaneously, the movers in-
side the leftmost conjuncts begin to undergo overt
leftward focus movement, but (both their syntac-
tic and phonetic components) are dropped under

identity with the covert mover when those con-
juncts are merged with the main structure - re-
call that for ATB, MGParse enforces string iden-
tity, in addition to syntactic identity, as doing so
improves efficiency (see fn.30) without affecting
weak generative capacity; however, we must relax
the string identity requirement here slightly so that
the empty string in the main structure (which orig-
inated in the complement conjunct) will not cause
a mismatch for ATB-drop when compared with the
overt strings in the specifier conjuncts.

Thus in the final structure, the silent syntac-
tic/semantic component of the mover from the
rightmost conjunct c-commands and therefore
scopes over all the traces, while its phonetic com-
ponent (and semantic trace) remains inside the
rightmost conjunct and would therefore be deleted
were VP ellipsis to occur. Instead of the rightward
movement-based bracketing given in 3, then, the
focus-based RNR analysis assigns this sentence
the following structure (outline font indicates a
silent, covertly moved constituent):

[CP [Pete’s sisterPete’s sister]i [TP [TP Jack likes ti] and [TP

Mary hates [Pete’s sister]i]]].

Notice that if we reversed the situation here so
that it was the movers inside the specifier con-
juncts which underwent covert movement while
the mover from the complement underwent overt
movement, then simply dropping the covert mov-
ing chains via ATB would overgenerate sentences
like *Pete’s sister, Jack likes Pete’s sister and

Mary hates. We must therefore constrain the ap-
plication of ATB-drop so that it cannot apply to
covertly moving elements.

One way to do this is to allow the ATB rules to
make reference to the empty vs. non-empty sta-
tus of the string itself, and indeed this is precisely
how MGParse operates. Grammatical rules do not
usually make reference to string information, how-
ever, and in order to prove the MCFG-equivalence
of our EDMG it is useful to show that we could en-
code this information in the category system itself.
This can straightforwardly be done by marking the
chain type of the covert mover in the output of the
phonetic merge rules with a diacritic indicating its
covert status. The ATB rules could then be refor-
mulated so as to only apply to movers without this
diacritic. This would clearly lead to a doubling of
certain rules, but since the increase is finite, ex-
pressive power would be unaffected.

11

At present, MGParse uses the rightward move-
ment approach to RNR because allowing covert
focus movement into the system introduces lots of
ambiguity which severely impacts on the parser’s
efficiency. We are, however, currently investigat-
ing ways to restrict the application of covert focus
movement, perhaps using statistics. Note that both
of the approaches to RNR described here are capa-
ble of deriving sentences which feature both RNR
and overt leftward ATB, such as The policeman to

whom I offered, and may give, a flower (Steedman,
2000).

Finally, note that the adjunct control example 5
from the text is derived in a very similar way to
the parasitic gap construction in fig 17, except that
now it is only the subject which moves and hence
undergoes ATB. The argument cluster coordina-
tion in example 4 from the text is derived along the
lines of example 2 and is left as an exercise (hint:
little v is required); precisely the same mechanism
can accommodate cases of argument-adjunct clus-
ter coordination, as in I saw Harry yesterday and

Peter today.

B Enforcing the like-types constraint on

conjuncts

In section 3 (paragraph 2 and fn.20) we stated that
full type uniformity between conjuncts could not
be enforced by the selector features in an MG, un-
like in a CCG where such features can be complex
and specify, for instance, that all conjuncts must
be clauses/verb phrases with object holes. We also
noted that in our EDMG, the like-types constraint
falls out instead from the interaction of the two
main constraints on rule formation that we have
adopted (CED and CSC), together with the ATB
mechanisms presented in section 4. In this sec-
tion, we would like to elaborate on these remarks.

First, we will define more precisely what we
mean by ‘type’ here. Recall that MG expressions
are composed of a head chain and up to k moving
chains. Each chain is in turn composed of a string
element and a feature sequence. Consider again
the example from section 2.1, repeated below:

[[cause] help : +CASE v, who : -wh, Jack : -case]

There are two senses of ‘type’ to be defined here.
First, we will define an ‘expression type’ as all and
only the syntactic components of the entire expres-
sion, with all non-initial features replaced by fea-
ture suffix (and, if we were to include the dotted

feature mechanism, prefix) variables. The expres-
sion type of our example is thus as follows, where
the ordering of the non-head chains is irrelevant:

[+CASE γ, -wh, -case]

In addition to the type of the entire expression,
each chain can be viewed as having its own indi-
vidual ‘chain type’, which is its (fully reified) fea-
ture sequence. For instance, the type of the head
chain in our example is: +CASE v. The ques-
tion to be addressed is how we can ensure that in
our EDMG, coordination applies to two or more
conjuncts with the same expression types and the
same chain types (i.e. the features in the suffix and
prefix variables matter).

Leaving aside the question of how to enforce
identity between the head chains of the conjuncts
for a moment, consider how we ensure that all con-
juncts have identical sets of moving chain types.
Recall that CED prohibits rules enabling extrac-
tion from within specifiers and that in section 4.1
we proposed a way to bleed this constraint by
allowing movers inside a dependent structure to
be dropped under identity with movers inside the
governing structure. Recall further that for coor-
dination, we stated that the rules must be formu-
lated in such a way as to ensure that the number
of movers inside the dependent is the same as the
number of movers inside the main structure (co-
ordinator projections being identified by :: and :).
This enforces part 2 of CSC, which states that it is
not possible to extract the contents of any conjunct
(even the complement conjunct), with one excep-
tion to this being cases of ATB movement.

Now, when the complement conjunct is merged
with the Coord head, any movers which that con-
junct contains will be transferred into the resulting
expression. Subsequently, as additional (specifier)
conjuncts are merged into the main structure, their
sets of moving chains will be compared with the
set of moving chains which originated inside the
complement conjunct and either be dropped if they
exactly match this set or lead to a doomed deriva-
tion if they do not (because no rule will ever allow
them to escape the specifier conjunct). This en-
sures that all conjuncts must have identical sets of
moving chain types.

The situation with the head chains is different:
because the head chain of the complement con-
junct cannot contain any licensee features (no con-
juncts may move - part 1 of CSC), as soon as it is
merged with the coordinator it will cease to exist

12

(though its string will be fused with the coordina-
tor’s string). Therefore, it will be unavailable for
comparison with the head chain of any incoming
specifier conjuncts. How can we overcome this
problem?

First, observe that the syntactic feature se-
quences in MGs have a tripartite structure com-
posed of requirements (=selectors+licensors), the
selectee (PoS category) feature, and the licensee
features. These three parts are strictly ordered
from left to right; that is, an element must have
all its argument positions fully saturated before it
can be selected as the argument of a higher head
in accordance with Xbar theory (unlike in CCG,
where unsaturated elements can be selected), and
only after it is selected can it undergo movement.

Now consider how we enforce the like-types
constraint between the head chains of conjuncts.
The selectee/PoS category feature is straightfor-
wardly matched by the constraint on the lexi-
con that all coordinators must follow the general
schema: x= =x x (or in certain special cases per-
haps x= =x y), where both rightward and leftward
selector features must have the same PoS cate-
gory. As noted in Steedman (2000), this (and the
like-types constraint more generally) derives from
the semantics of coordination, which is a ‘recur-
sive transitive closure over same types’ (Partee and
Rooth, 1983). The licensee features, meanwhile,
are trivially matched by the fact that they are dis-
allowed on all conjunct heads owing to part 1 of
CSC: no conjuncts may move.

What of the requirement features? Interestingly,
there is no way in our current rule system to en-
sure that the selector and licensor features of each
of the conjuncts’ head chains match. Thus we pre-
dict that the like-types constraint on conjuncts is
not absolute: conjuncts may have different types,
but only with respect to the selector and licensor
features on their head chains.

There is some evidence that this may be cor-
rect. For instance, it is possible to coordinate a
yes-no interrogative with an interrogative featur-
ing wh-movement, as in Pete asked [who had been

at the party] and [whether Jack had seen Mary].
Assuming whether to be an interrogative comple-
mentizer, only the (silent) complementizer head in
the first embedded clause will contain a +WH fea-
ture triggering movement. Thus the requirements
of the two C heads would seem to differ here, sug-
gesting that we have a genuine case of coordina-

tion of (partially) unlike-types. Another example
would be the coordination of a ditransitive with an
intransitive VP (Jack remained and gave Mary his

ticket).
Of course, there are other ways to derive such

sentences, for instance by assuming for our first
example that an additional projection layer (per-
haps ForceP) exists above the phrase hosting the
wh-element (perhaps FocusP) and that it is actu-
ally ForcePs which are coordinated here. Never-
theless, the data at the very least does not appear
to conflict with the approach to the like-types con-
straint on conjuncts described here.

C On the coordination of lexical X0

heads

Xbar theory requires all complements and spec-
ifiers to be fully saturated, maximal XP projec-
tions. As pointed out in Borsley (2005), this poses
a serious challenge to the Xbar theoretic view of
coordinate structures, given that the coordination
of unsaturated X0 lexical heads is apparently also
possible, as in Hobbs [criticized and insulted] his

boss. In an attempt to rescue Xbar theory here,
Kayne (1994) proposes that lexical coordination
is only apparent, arguing that such examples fea-
ture ellipsis within the left XP conjunct. However,
as Borsley notes, there are other cases which do
not appear amenable to this analysis. For example,
Hobbs whistled and hummed similar tunes clearly
does not mean the same thing as Hobbs whistled

similar tunes and hummed similar tunes.
Another strategy sometimes pursued here is to

assume that apparent lexical head coordination is
actually an instance of RNR (this is in fact how
the Penn Treebank analyses such constructions).
However, as discussed in Abeille (2006), RNR
and lexical head coordination have rather different
prosodic and semantic properties, meaning that
this analysis too faces problems. We will there-
fore take X0 coordination at face value, and in this
section propose a solution within the EDMG for-
malism that makes crucial use of the dotted feature
mechanism introduced in section 4.1 (and adopted
from Kobele (2008)).

Within MGs, the Xbar theoretic requirement
that all arguments be maximal XP projections is
encoded by the fact that all requirement features
(=selectors+licensors) must precede all selectee
(and licensee) features. That is, a given head must
have all its requirements checked and deleted be-

13

fore itself being selected as a dependent. In other
words, taking β to be requirements, and γ to be
licensees, the only abstract head chain type which
can be selected is the following, where the dot im-
mediately precedes the selectee feature:

[β · x γ]

Assuming β to be non-empty, on standard as-
sumptions the above category could only have
been derived via the application of MERGE and
perhaps also MOVE operations. However, for-
mally, nothing prevents us from allowing this cat-
egory type to appear directly on X0 heads, or from
defining a unary function which ‘type-saturates’
unsaturated X0 heads. Such items would not truly
be saturated semantically, of course, but this is fine
provided they can only be selected for by a coor-
dinator with a matching set of requirement (and
licensee) features; the matching requirement fea-
tures on the coordinator projection can then sub-
sequently satisfy the semantic requirements of all
its X0 conjuncts in one fell swoop.

The rules for type-saturation and coordination
of complement and (multiple) specifier X0 con-
juncts are given in fig 14, where the asterisk is
equivalent to the dot, except that it uniquely iden-
tifies the type-saturated heads so that they are only
ever selected for by coordinators. As noted in
fn.32, an overline on the feature separators (:: :)
indicates a coordinator projection.

[s :: · β x γ]

[s :: β ∗ x γ]
(type-saturation)

[s :: · x= =x β x γ] [t :: β ∗ x γ]

[st : x= · =x β x γ]
(h_coord1(comp))

[t :: β ∗ x γ] [s : x= · =x β x γ]

[ts : x= =x · β x γ]
(h_coord2(spec))

[t :: β ∗ x γ] [s : x= · =x β x γ]

[ts : x= · =x β x γ]
(h_coord3(spec))

Figure 14: Lexical head type-saturation and coor-
dination rules

Clearly this approach is very close to the CCG
analysis of lexical head coordination, except that
in CCG coordinated heads are formally as well
as (at the point of coordination) semantically un-
saturated. Notice too that without the dotted fea-
ture mechanism, the subcategorization frame of a

head would be lost following the type-saturation
operation, as the β requirements would simply be
deleted. However, we would then have no way to
ensure that we were only coordinating heads of the
same valency.

14

[[decl] Jack [pres] likes and Mary [pres] hates Petes sister [extraposer] : c]

[[decl], Jack [pres] likes and Mary [pres] hates Petes sister [extraposer] : c]

[Jack [pres] likes, and, Mary [pres] hates Petes sister [extraposer] : t]

[Jack [pres] likes, and, Mary [pres] hates : t, Petes sister [extraposer] : t∼]

[and, Mary [pres] hates : =t t, Petes sister [extraposer] : t∼]

[Mary, [pres], hates : t, Petes sister [extraposer] : t∼]

[[pres], hates : +CASE t, Petes sister [extraposer] : t∼, Mary : -case]

[hates : v, Petes sister [extraposer] : t∼, Mary : -case]

[hates : =d v, Petes sister [extraposer] : t∼]

[Petes sister, [extraposer] : d t∼]

[[extraposer] : +CASE d t∼, Petes sister : -case]

[Pete, s, sister : d -case]

[s, sister : +CASE d -case, Pete : -case]

[s, sister : =d +CASE d -case]

[sister :: n][s :: n= =d +CASE d -case]

[Pete :: d -case]

[[extraposer] :: d= +CASE d t∼]

[hates :: d= =d v]

[Mary :: d -case]

[[pres] :: v= +CASE t]

[and :: t= =t t]

[Jack, [pres], likes : t, Petes sister [extraposer] : t∼]

[[pres], likes : +CASE t, Petes sister [extraposer] : t∼, Jack : -case]

[likes : v, Petes sister [extraposer] : t∼, Jack : -case]

[likes : =d v, Petes sister [extraposer] : t∼]

[Petes sister, [extraposer] : d t∼]

[[extraposer] : +CASE d t∼, Petes sister : -case]

[Pete, s, sister : d -case]

[s, sister : +CASE d -case, Pete : -case]

[s, sister : =d +CASE d -case]

[sister :: n][s :: n= =d +CASE d -case]

[Pete :: d -case]

[[extraposer] :: d= +CASE d t∼]

[likes :: d= =d v]

[Jack :: d -case]

[[pres] :: v= +CASE t]

[[decl] :: t= c]

F
igure

15:
R

ightw
ard

m
ovem

entanalysis:
Ja

ck
likes

a
n
d

M
a
ry

h
a
tes

P
ete’s

sister

15

[[decl] Jack [pres] likes and Mary [pres] hates Petes sister [focalizer]: c]

[[decl], Jack [pres] likes and Mary [pres] hates Petes sister [focalizer] : c]

[[decl], Jack [pres] likes and Mary [pres] hates Petes sister [focalizer] : +focus c, e : -focus]

[Jack [pres] likes, and, Mary [pres] hates Petes sister [focalizer] : t, e : -focus]

[and, Mary [pres] hates Petes sister [focalizer] : =t t, e : -focus]

[Mary, [pres], hates Petes sister [focalizer] : t, e : -focus]

[[pres], hates Petes sister [focalizer] : +CASE t, e : -focus, Mary : -case]

[hates, Petes sister [focalizer] : v, e : -focus, Mary : -case]

[hates, Petes sister [focalizer] : =d v, e : -focus]

[Petes sister, [focalizer] : d -focus]

[[focalizer] : +CASE d -focus, Petes sister : -case]

[Pete, s, sister : d -case]

[s, sister : +CASE d -case, Pete : -case]

[s, sister : =d +CASE d -case]

[sister :: n][s :: n= =d +CASE d -case]

[Pete :: d -case]

[[focalizer] :: d= +CASE d -focus]

[hates :: d= =d v]

[Mary :: d -case]

[[pres] :: v= +CASE t]

[and :: t= =t t]

[Jack, [pres], likes : t, Petes sister [focalizer] : -focus]

[[pres], likes : +CASE t, Petes sister [focalizer] : -focus, Jack : -case]

[likes : v, Petes sister [focalizer] : -focus, Jack : -case]

[likes : =d v, Petes sister [focalizer] : -focus]

[Petes sister, [focalizer] : d -focus]

[[focalizer] : +CASE d -focus, Petes sister : -case]

[Pete, s, sister : d -case]

[s, sister : +CASE d -case, Pete : -case]

[s, sister : =d +CASE d -case]

[sister :: n][s :: n= =d +CASE d -case]

[Pete :: d -case]

[[focalizer] :: d= +CASE d -focus]

[likes :: d= =d v]

[Jack :: d -case]

[[pres] :: v= +CASE t]

[[decl] :: t= +focus c]

F
igure

16:
Focus

m
ovem

entanalysis:
Ja

ck
likes

a
n
d

M
a
ry

h
a
tes

P
ete’s

sister

16

[which paper did [int] he file [adjunctizer] without reading : c]

[which paper, did [int], he file [adjunctizer] without reading : c]

[did [int], he file [adjunctizer] without reading : +WH c, which paper : -wh]

[he, did, file [adjunctizer] without reading : t, which paper : -wh]

[did, file [adjunctizer] without reading : +CASE t, which paper : -wh, he : -case]

[file, [adjunctizer] without reading : v, which paper : -wh, he : -case]

[[adjunctizer], without reading : ≈v, which paper : -wh, he : -case]

[without, reading : p, which paper : -wh, he : -case]

[reading : v, which paper : -wh, he : -case]

[reading : =d v, which paper : -wh]

[which, paper : d -wh]

[paper :: n][which :: n= d -wh]

[reading :: d= =d v]

[he :: d -case]

[without :: v= p]

[[adjunctizer :: p= ≈v]]

[file : v, which paper : -wh, he : -case]

[file : =d v, which paper : -wh]

[which, paper : d -wh]

[paper :: n][which :: n= d -wh]

[file :: d= =d v]

[he :: d -case]

[did :: v= +CASE t]

[[int] :: >t= +WH c]

F
igure

17:
W

h
ich

p
a
p
er

d
id

h
e

fi
le

w
ith

o
u
t

rea
d
in

g

17

Proceedings of the 12th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+12), pages 18–26,
Düsseldorf, Germany, June 29 - July 1, 2016.

ArabTAG: from a Handcrafted to a Semi-automatically Generated TAG

Chérifa Ben Khelil1,2 Denys Duchier1 Yannick Parmentier1 Chiraz Zribi2 Fériel Ben Fraj2

(1) LIFO - Université d’Orléans, France
firstname.lastname@univ-orleans.fr

(2) RIADI - ENSI, Université La Manouba, Tunisia

Abstract

In this paper, we present the redesign of an
existing TAG for Arabic using a descrip-
tion language (so-called metagrammatical
language). The use of such a language
makes it easier for the linguist to share in-
formation among grammatical structures
while ensuring a high degree of modular-
ity within the target grammar. Addition-
ally, this redesign benefits from a gram-
mar testing environment which is used to
check both grammar coverage and over-
generation.

1 Introduction

Precision grammars provide fine-grained descrip-
tions of languages, which are beneficial for
many NLP applications such as Dialog systems,
Question-Answering systems, Automatic Summa-
rization systems, etc. Still the development of
such language resources is limited for it comes
at a high cost. For instance, the development of
the first large-coverage TAG for French took more
than 10 person-years (Abeillé et al., 1999). In
this context, many efforts have been put into semi-
automatic grammar production, either in a data-
oriented fashion (that is, by acquiring grammar
rules from annotated corpora), or in a knowledge-
based fashion (that is, by using description lan-
guages to capture generalizations among grammar
rules).

A particularly interesting feature of the latter is
that it offers a relatively good control on the gram-
mar being produced. This allows among others
to extend the produced grammar with various lev-
els of description such as morphology or seman-
tics (see e.g. (Duchier et al., 2012) or (Gardent,
2008)).

In this paper, we are interested in applying such
grammar production techniques to the description
of Arabic. Arabic is a challenging language when
it comes to grammar production for it exhibits spe-
cific features such as (i) a relatively free word or-
der, combined with (ii) a rich morphology, and
(iii) the omission of diacritics (vowels) in written
texts. These features motivates the use of highly-
expressive description languages. In this work, we
use the XMG description language (Crabbé et al.,
2013) to describe in an expressive and yet con-
cise way the syntax of Arabic. This description is
based on an existing handcrafted Tree-Adjoining
Grammar for Arabic named ArabTAG (Ben Fraj,
2011), which serves as a model for the current de-
velopment.

The paper is organized as follows. In Section 2,
we present the grammatical resource, namely
ArabTAG, this work is based on. We particu-
larly comment on the ArabTAG grammar cover-
age, its design choices and limitations. In Sec-
tion 3, we present the XMG description language,
together with recent advances in its implemen-
tation. These advances include a new level of
modularity brought by the possibility to dynam-
ically define the description language needed by
the linguist in a given context and to compile the

compiler for this description language.1 In Sec-
tion 4, we present a concise description of the
syntax of Arabic using XMG. In particular, we
show how to deal with the free word order of this
language. We also present a testing environment
which was designed to facilitate grammar devel-
opment. In Section 5, we compare our approach
with related work. Finally in Section 6, we con-

1As such, XMG2 can be seen as a meta interpreter which
takes as an input a compiler specification and produces as an
output a compiler for a description language. The latter is
used by linguists to describe grammatical resources, as ex-
plained later in this paper.

18

clude and present some short-term perspectives of
development of the grammar (including morpho-
logical and semantic information).

2 ArabTAG: a Tree-Adjoining Grammar

for Arabic

As mentioned above, Arabic language combines
complex linguistic phenomena that make its pro-
cessing particularly ambiguous. Let us recall
briefly what these are:

• The diversity of lexical and grammatical in-
terpretation of an Arabic word. This ambi-
guity is due to the absence of vocalic signs,
which is frequent in modern Arabic.

• The order of the sentence’s constituents in
Arabic language is free. For a verbal sen-
tence composed of Verb, Subject and Object,
we can have three combinations (VSO, VOS,
SVO) that are all syntactically correct.

• The phenomenon of agglutination: in order
to have more complex forms, clitics can tie
up with words. Thus, a sentence can cor-
respond to just one agglutinative form as in

the example èñÒ» A 	JJ

�®�

A 	̄ (which is the longest

word in Quran) :

(1) è
it

ð
to

Õ»
you

A 	K
we

ù

�®�

@

gave-to-drink

	¬
and

‘and we gave it to you to drink’

It is composed of a conjunction, verb, subject
and two objects which are all enclosed in the
same textual form.

• The recursive structures whose length is not
limited:2

(2) ÉJ

�
ÊË @

the-night

È@ñ£
during

©¢�®	JK

stop

ÕË
not

ø

	YË@

that

AêkAJ.
	�K.

with-their-barking

é�J 	¢�®K

@

aroused-that-him

ú

�æ
�
Ë @

those

ù
 ë
are

H. C¾Ë@
the-dogs

‘the dogs are those that aroused him
with their barking that does not stop
during the night’

2This example is taken from (Ben Fraj, 2010).

Digital resources (grammars and treebanks) which
can be used for parsing Arabic texts are scarce.
In this context, let us describe a semi-lexicalized
Arabic Tree-Adjoining Grammar called ArabTAG
(Ben Fraj, 2010).

ArabTAG has been developed at RIADI Lab-
oratory, National School of Computer Sciences,
University of La Manouba, Tunisia. It includes
a set of elementary trees representing the basic
syntactic structures of Arabic. The construction
of these structures was based on school gram-
mar books and books of Arabic grammar such as
(Kouloughli, 1992). To enhance interoperability
between tools and resources, all these structures
were encoded in XML.

ArabTAG has been used to build a treebank for
Arabic. More precisely, ArabTAG’s elementary
trees served as representative structures to anno-
tate syntactically a corpus. The resulting treebank
consists of 950 sentences (5000 words) annotated
with their corresponding TAG derivation trees.

2.1 ArabTAG and lexicalization

ArabTAG is semi-lexicalized since it contains
trees where all nodes are labelled with non-
terminal symbols (that is, syntactic categories).
More precisely, ArabTAG contains two sets of el-
ementary trees: lexicalized trees (that is, having
at least one lexical item as a leaf node) and pat-
terns trees. The choice of the semi-lexicalized
TAG variant was made in order to reduce the im-
portant number of possible syntactic structures.
The lexicalized trees are reserved to prepositions,
modifiers, conjunctions, demonstratives, etc. On
the other hand, the patterns trees represent verbs,
nouns, adjectives or any kind of phrases.3 These
elementary trees are enriched by different infor-
mation organized in feature structures.

2.2 ArabTAG coverage

To represent Arabic basic structures, ArabTAG
contains 24 lexicalized elementary trees and 241
pattern-based elementary trees. Lexicalized trees
correspond to the particles as the prepositions,
conjunctions, interrogatives, etc.

These trees correspond to the simple syn-
tactic structures of the Arabic sentences (nom-
inal and verbal), all classes of phrasal struc-
tures (NP (Nominal Phrase), PP (Prepositional

3Concretely, this means that ArabTAG is largely made of
tree schemata (unanchored lexicalized TAG trees) like XTAG
(XTAG Research Group, 2001).

19

Phrase)) as well as the different sub-classes of
the phrasal structures (Adjectival NP, Comple-
ment NP, Propositional NP). Moreover, ArabTAG
presents different kinds of sentences: active, pas-
sive, interrogative, complex sentences. In addi-
tion, it covers elliptical, anaphoric and subordinate
structures. It takes into account the change of the
order of the sentence’s components and the agglu-
tinative forms. The current version of this gram-
mar has some limitations that can be summarized
as follows:

• The syntactic structures enriched with sup-
plements (circumstantial complements of
time, place, etc.) are not described.

• The representation of forms of agglutina-
tion is not well reflected in ArabTAG. These
forms should be extended to improve the cov-
erage of the grammar.

• ArabTAG emphasizes syntactic relations
without regard to semantic information.
However, syntactic interpretation cannot be
complete if it does not involve semantic in-
formation.

• ArabTAG consists of a flat set of elementary
trees (that is, without any structure sharing).
In particular, it is not organized in a hierar-
chical way.

Therefore we propose a new version ArabTAG
V2 that takes into account the aspects mentioned
above. This new version is being enhanced with a
new organization (using a description language to
specify elementary trees) and new unification cri-
teria (both at the syntactic and semantic-syntactic
levels). Coverage is also being extended by adding
elementary trees for the representation of addi-
tional complements. Finally, as will be shown in
Section 4, we are currently in the process of struc-
turing the grammar into a hierarchical organiza-
tion.

3 XMG2: a new Generation of

Description Languages

As mentioned above, a common strategy to semi-
automatically produce precision grammars is to
use a description language. Such a language per-
mits the linguist to formally specify the structures
of a target grammar. When this language comes
with an implementation (that is, a compiler), the

grammar specification (so-called metagrammar)
can be compiled into an actual electronic gram-
mar.

Designing and implementing description lan-
guages for grammar specification is a field which
has been quite active over the past decades, sem-
inal work includes languages such as PATRII
(Shieber et al., 1983), DATR (Evans and Gaz-
dar, 1996), LexOrg (Xia, 2001), DyALog (Ville-
monte De La Clergerie, 2010), or more recently
XMG (Crabbé et al., 2013). These languages dif-
fer among others, in the way variables are han-
dled (local versus global scopes) and how structure
sharing is represented (inheritance versus transfor-
mations). Here, we propose to use XMG to de-
scribe Arabic for it exhibits particularly pertinent
features :

• it is highly expressive, which makes it possi-
ble to define highly factorized grammar de-
scriptions (in our case, this will be used to
deal with semi-free word order) ;

• it is particularly adapted to the description
of tree grammars (it has been used to de-
velop several electronic TAG grammars for
e.g. French, English, German, Vietnamese,
Korean) ;

• it is highly extensible (as will be described in
this Section, it can be configured to describe
various levels of language, such as semantics
or morphology) ;

• it is open-source and actively developed.

The first version of XMG was based on the fol-
lowing two main concepts:4

1. elementary trees are made of common
reusable tree fragments, which can be com-
bined conjunctively or disjunctively ;

2. each of these fragments can be (i) specified
using a tree description logic such as the one
defined by Rogers and Vijay-Shanker (1994)
and (ii) encapsulated within classes.

On top of these, XMG includes a facility to define
other types of reusable information (so-called di-

mensions), which can be used to extend tree frag-
ments with e.g. semantic formulas.

4A detailed introduction to XMG can be found in (Crabbé
et al., 2013).

20

An important limitation of XMG was the
limited number of dimensions it can handle,
namely syntax (tree fragments), semantics (predi-
cate logic formulas) and syntax-semantic interface
(attribute-value matrices). In order to make it pos-
sible for the linguist to describe several levels of
language (whatever their number is), and to com-
bine various data structures (not only tree frag-
ments or predicate logic formulas), XMG was ex-
tended5 as described in the following subsections.

3.1 Describing description languages

In order to allow for the description of an unlim-
ited number of dimensions, XMG should include
a support for user-defined dimensions. This in-
volves (i) being able to formally define the de-
scription language for this dimension and (ii) be-
ing able to interpret formulas of this language to
output valid linguistic structures.

To do this, XMG2 extends XMG by includ-
ing a meta metagrammar compiler (Petitjean,
2014).6 More concretely, the modular architec-
ture of XMG2 makes it possible for contributors to
develop so-called language bricks. A brick is the
formal definition of a description language (that is,
the CFG underlying this language) together with
the implementation of the interpretation procedure
for (abstract syntax trees of) formulas of this lan-
guage. The meta metagrammar compiler can then
compile on-demand sets of language bricks, which
can then be used together to describe various levels
of linguistic structures. In other words, the meta-
grammar compiler is now compiled from language
bricks (hence the arbitrary number of dimensions).

As an illustration, let us consider the following
bricks which are used to describe TAG grammars.7

Language brick for combining descriptions:

Desc ::= Stmt

| Stmt ∧ Desc

| Stmt ∨ Desc

Basically descriptions are made of statements
which can be combined either conjunctively or
disjunctively.

5And at the same time re-implemented in Prolog for the
previous version of XMG was coded in the Oz Programming
Language, which is no longer maintained.

6See https://launchpad.net/xmg-ng.
7For a detailed introduction to the description of TAG

grammars with XMG2, see (Petitjean, 2014).

Language brick for describing tree fragments:

Stmt ::= node id

| node id AVM

| id ⊳ id | id ⊳+ id

| id ≺ id | id ≺+ id

Tree fragments are described using a tree descrip-
tion logic based on dominance (written ⊳) and
precedence (written ≺) relations between node
variables (identifiers).8

Language brick for describing Attribute-Value

Matrices (AVMs):

AVM ::= [Feats]

Feats ::= Feat

| Feat,Feats

Feat ::= id = Value

AVMs are sets of pairs (written Feats here). Each
pair associates a feature (i.e. an identifier) with a
value.

The interpretation of descriptions based on
these bricks requires (i) unification (for interpret-
ing AVMs and node or feature variable unification)
and (ii) tree description solving. Hence the con-
tributor has to write the Prolog code which per-
forms these treatments.9

3.2 Assembling description languages

From the library of language bricks available
within XMG2, metagrammar designers can load
the necessary bricks to describe their target for-
malism. This is done by declaring within a YAML
file, which bricks are to be loaded.

For instance, in order to describe TAG gram-
mars using the above-mentioned bricks, one
would have to write the following YAML file:
mg:

_Stmt: control

control:

_Stmt: dim_syn

dim_syn:

tag: "syn"

_Stmt: syn

syn:

_AVM: avm

avm:

_Expr: feats

feats:

_Value: value

8The + refers to the relation’s transitive closure.
9As described in (Petitjean, 2014), the contributor actu-

ally has to provide a repository where each compilation step
is specified in Prolog.

21

Such a specification indicates that a metagram-
mar (mg) uses statements of type control (that is,
which make use of our language brick for combin-
ing descriptions). This control brick itself uses
statements of type dim_syn. Formulas of this type
are declared using the keyword "syn" and con-
tain statements of type syn. This brick syn itself
uses externally defined AVMs. AVMs are made
of features whose expressions are values. Again,
note that this example is simplified, for instance
nodes here are only decorated with AVMs, while
in XMG2, they are also decorated with properties
such as marks (e.g. ↓ for substitution) or colors
(to guide node identification when solving tree de-
scriptions).

3.3 Using assembled languages to describe

natural language

Once the metagrammar language is fully specified
and the compiler for this language compiled, the
metagrammar designer can write the description
of the target linguistic resource. In our case, such
a resource is a TAG grammar. It is described as
(conjunctive and disjunctive) combinations of tree
fragments. Such fragments are defined as formu-
las of a tree description logic based on dominance
and precedence relations between node variables.

For instance the following tree fragment:

S[cat=s]

N SV[cat=sv]

would be represented in an XMG2 metagram-
matical description as follows:

node S [cat=s]

∧ node N [cat=n]

∧ node SV [cat=sv]

∧ s ⊳ n ∧ s ⊳ sv ∧ n ≺ sv

Note that, like in XMG, tree fragments in
XMG2 are encapsulated within classes. A class
corresponds to the association of a description
(i.e., a combination of statements) with a name
(making it possible to reuse a given description in
various contexts). Unification variables (used to
refer either to a node, a feature, or a value) are de-
clared within classes (and their scope is by default
limited to the class). When classes are combined,
variables denoting the same information need to
be explicitly unified (using the operator =). While
providing the user with flexibility (variable names

can be freely used without any risk of conflict),
this local scope and explicit unification hampers
grammar design as shown by Crabbé et al. (2013).
So XMG2 comes with an alternative handling of
unification which was already present in XMG,
namely node coloring. Each node of the meta-
grammatical description can be colored in either
black, white or red. A black node is a resource and
can be unified with 0 or more white nodes; a white
node is a need and must be unified with a black
node; a red node is saturated and cannot be unified
with any other node. Since metagrammar compi-
lation solves descriptions in order to compute min-
imal tree models, variable denoting nodes are im-
plicitly unified due to dominance constraints but
also the above-mentioned color constraints. Col-
ors are an elegant way to restrict and guide the
ways in which variables can be unified, and so in
which tree fragments can be combined.

In the next section, we will see how such a mod-
ular and expressive description language is being
used to (re)describe the syntax of Arabic.

4 ArabTAG Revisited using XMG2

In this section, we aim to illustrate the flavor of
the new formulation of ArabTAG by focusing on
the modelization of simple verb subcategorization
frames for matrix clauses. In order to make this
presentation more easily accessible, we use a com-
bination of logical and graphical notation rather
than XMG’s concrete syntax.

4.1 Describing verbal predicates in Arabic

with XMG2

In an Arabic matrix clause, the verb and its ar-
guments can mostly be freely reordered.10 Since
ArabTAG made the choice of flat trees for verbal
constituents, the TAG grammar must supply ini-
tial trees for all possible permutations of the argu-
ments. Thanks to the tree description based ap-
proach of XMG, this is easily achieved simply by
not stipulating any precedence constraint among
these arguments.

EpineVerbe(C) is an abstraction that contributes
a fragment of tree description for the verbal spine
of a matrix clause. Since adverbs can be freely
interspersed between arguments, we need to pro-
vide appropriate adjunction points for them. AG

10Words are usually represented in Arabic in a VSO order,
still alternative orders may be used as well with morphologi-
cal constraints on the verb. See e.g. (El Kassas and Kahane,
2004).

22

is an adjunction point allowing an adverb at the
front of the clause. AD is an adjunction point for
inserting an adverb after the verb (or after an argu-
ment as we will see later). Nodes here are colored
(represented by B, W and R for black, white and
red respectively). EpineVerbe is parameterized by
a color C as depicted below:11

EpineVerbe(C) −→

SVC[cat=sv]

AGC[cat=advg]

ADC[cat=advd]

VC
⋄ [cat=v]

MatrixClause contributes the actual verb spine
(which can be seen as a resource) and therefore
instantiates EpineVerbe with the color black:

MatrixClause −→ EpineVerbe(B)

EpineArg is an abstraction used for attaching to
the verbal spine a tree description for an argument
(seen as a need).

EpineArg −→
[AG] ⇐ EpineVerbe(W)
∧ ADR[cat=advd] ∧ AG ⊳ AD

It instantiates EpineVerbe with the color white,
thus forcing it to unify with the actual verb spine.
[AG] ⇐ EpineVerbe(W) additionally imports into
the current scope the variable AG provided by
EpineVerbe, and attaches a new AD adjunction
node for optional insertion of an adverb after the
argument. Note that AG ⊳ AD only specifies that
AG immediately dominates AD, but introduces no
precedence constraint.

SujetCanon instantiates EpineArg and attaches an
SN substitution node below the argument AD sup-
plied by EpineArg:

SujetCanon −→
[AD] ⇐ EpineArg()
∧ SNR

↓[cat=sn,cas=nom]

∧ AD ⊳ SN

A direct object normally appears after the verb.
If it appears before the verb, then it gives rise to
a cleft-construction and requires an object-clitic
marker on the verb (boolean feature oclit):

11In our metagrammatical description of Arabic syntax,
tree fragment names are in French (e.g. EpineVerbe) and so
are syntactic categories (e.g. SV for Syntagme Verbal).

ObjetCanonSN −→
[AD, V] ⇐ EpineArg()
∧ SNR

↓[cat=sn, cas=acc]

∧ AD ⊳ SN
∧ ((V[oclit=−] ∧ V ≺+ SN) ∨

(V[oclit=+] ∧ SN ≺+ V))

The direct object can also be just a clitic:

ObjetCanonClit −→
[V] ⇐ EpineVerbe(W)
∧ V[oclit=+]

ObjetCanon −→ ObjetCanonSN ∨
ObjetCanonClit

The indirect object requires a particle PV (stip-
ulated by the verb) that is realized either as a sepa-
rate preposition or as a morphological affix on the
noun.

ObjetIndCanon −→
[AD, V] ⇐ EpineArg()
∧ SPB[cat=sp]

PR
⋄ SNR

↓[cat=sn, cas=gen]

∧ AD ⊳ SP ∧ V[p=PV]
∧ ((P[phon=ε] ∧ SN[p=PV]) ∨

(P[phon=PV] ∧ SN[p=ε]))

Finally the 3 basic verb families can be obtained
as follows:

Intransitive −→ MatrixClause ∧ SujetCanon
Transitive −→ Intransitive ∧ ObjetCanon
DiTransitive −→ Transitive ∧ ObjetIndCanon

We saw that using a metagrammatical language
based on (i) combinations of reusable tree frag-
ments together with (ii) a tree description logic al-
lowing for expressing (underspecified) dominance
and precedence relations between nodes, makes
it possible to describe the syntax of verbal pred-
icates in Arabic in a concise and modular way.
This metagrammatical description relies on lin-
guistic motivations (e.g., alternative realizations of
grammatical functions, valence, etc.), and can be
easily extended by just adding missing tree frag-
ments and combination rules (in this sense, the
metagrammatical language is monotonic, since no
fragment deletion needs to be expressed, only al-
ternatives).

Note that this metagrammatical description lan-
guage was already available within XMG. The
benefit of using XMG2 will come shortly once the
metagrammar will be extended with additional in-
formation such as morphological descriptions (see
infra). Indeed, XMG2 will be needed to assem-
ble a metagrammatical language that does not only

23

permit the linguist to describe syntactic trees but
other levels of description (e.g. morphological
structures), which could be connected with each
other (via shared unification variables).

4.2 Current state of ArabTAGv2

As mentioned above, the work presented here
is based on an existing TAG for Arabic (Arab-
TAGv1), which is handcrafted (the linguist uses
a specific tool to describe elementary trees, this
tool performs additional consistency checks dur-
ing grammar development and also some predic-
tions on the structures being described). Arab-
TAGv1 contains 380 elementary trees, and was de-
veloped in the context of (Ben Fraj, 2010). 83%
out of these 380 trees (that is, 315 trees) represent
verbal predicates.

Our work is still in its early stage. The re-
design of ArabTAG using a metagrammar started
4 months ago in the context of a PhD co-
supervision. So far, we generated 114 trees from
a description made of 30 classes (that is, 30 tree
fragments or combination rules). The metagram-
mar is about 600 lines long. We focused on ver-
bal predicates and are now working on nominal
phrases. We aim at out-performing the coverage
of ArabTAGv1 within a couple of years, while ex-
tending it with morphological and semantic infor-
mation (which impact syntax, e.g. word order or
agreements).

Arabic exhibits challenging properties includ-
ing its rich morphology (making use, among oth-
ers, of agglutination). We plan to integrate a mor-
phological dimension in our metagrammatical de-
scription following seminal work by Duchier et al.

(2012). The idea is to generate inflected forms
from a morphological meta-description. This
meta-description uses a two-layer representation.
First a constraint-based description of morpholog-
ical information (represented as ordered and po-
tentially empty fields) is defined. Then, surface
transformations (e.g. related to agglutination) are
captured by means of postprocessings (in our case
rewriting rules). The metagrammar compiler for
this morphological meta-description is compiled
from the selection of adequate description lan-
guages from XMG2’s library of language bricks.

4.3 About metagrammar development

While designing ArabTAG with XMG2, we set
up a development environment in order to check
grammar coverage (in particular aiming at re-

ducing both under and over-generation).12 More
concretely, together with the metagrammar which
actually consists of tree templates, we are also
designing proof-of-concept syntactic and mor-
phological lexicons for Arabic, following the 3-
layer lexicon architecture (tree templates, lemmas,
words) of the XTAG project (2001). Each new
syntactic phenomena included in ArabTAG leads
to the extension of a test corpus gathering both
grammatical and ungrammatical sentences (asso-
ciated with the number of expected parses). The
TuLiPA parser (Parmentier et al., 2008) is then run
on the test corpus to check the quality of the gram-
mar, producing logs which can help metagrammar
designer to fix potential bugs in the metagram-
matical description. An extract of these logs is
given in Fig. 1, and an example of derived tree in
Fig. 2.13

Axiom: sv

Anchoring failed on tree

Interrogative 2--ú �æÓ for lexical item

ú �æÓ
Grammar anchoring time: 0.023071728

sec.

@@##Tree combinations before classical

polarity filtering : 16

@@##Tree combinations after classical

polarity filtering : 2

Grammar conversion time: 0.051578702

sec.

Parsing time: 0.044386232 sec.

Sentence " �ú
Î«
�ÐA 	K ú �æÓ úÍ@" parsed.

Forest extraction time: 0.003370246

sec.

Number of derivation trees 1

Parses available (in XML) in

corpus0.xml.

XML production time: 0.418911166 sec.

Total parsing time for sentence

" �ú
Î«
�ÐA 	K ú �æÓ úÍ@" : 0.541318074 sec.

Figure 1: Log file produced during the develop-
ment of ArabTAG (extract)

5 Related Work

To our knowledge, there are very few TAG-based
descriptions of Arabic, the main attempt at such
a description being work by Habash and Rambow
(2004), where a tree-adjoining grammar was ex-
tracted from an Arabic Treebank (namely the Penn

12This development environment consists of Python
scripts.

13Note that the sentence is displayed in the discourse di-
rection (e.g., from left to right), a post-processing could be
applied to display the syntactic tree using the sentence direc-
tion (e.g., from right to left).

24

Figure 2: Derived tree for the sentence �ú
Î«
�ÐA 	K ú �æÓ úÍ@ (’until when did Ali fall asleep ?’)

Arabic TreeBank – PATB). The corpus they used
is the Part 1 v 2.0 of PATB (Maamouri et al., 2003;
Maamouri and Bies, 2004). This extraction in-
volved a reinterpretation of the corpus in depen-
dency structures. The number of elementary trees
generated was very high but they did not necessar-
ily offer a good syntactic coverage. In fact, dur-
ing the process, the authors were able to extract
structures with varying positions of the sentence’s
component (grammatical functions). The resulting
combinations are VSO, SVO and OVS. However
they could not obtain the VOS combination. This
failure is due to the absence of such structures in
the corpus used for extraction. Furthermore, the
resource is redundant because the researchers ma-
nipulated textual forms and not parts-of-speech.
As acknowledged by the authors, this extraction
was not optimal (grammar cleaning was needed).
This somehow advocates for the conjoint use of
description languages (that is, not only automatic
extraction) to control the output grammar struc-
tures.

6 Conclusion and Future Work

In this paper, we showed how to produce a core
TAG for Arabic by using the XMG2 system (Pe-

titjean, 2014). First, a modular metagrammatical
language for TAG is described by assembling lan-
guage bricks and the corresponding metagrammar
compiler automatically built using the XMG2 sys-
tem. Then, this metagrammatical language is used
to describe TAG trees.

This metagrammatical description benefits from
XMG2’s high expressivity (e.g. parameterized
reusable tree fragments, node identification by
means of colors). In particular, we showed how
to describe in a relatively concise and yet eas-
ily extensible way, simple verbal subcategoriza-
tion frames in Arabic. Such a description uses a
verbal spine containing adjunction points to deal
with the various constituent orders in Arabic.

While this work is still in progress, we are con-
sidering several extensions of this approach be-
sides improving ArabTAG’s coverage. Namely,
we plan to integrate morphological and seman-
tic dimensions to ArabTAG borrowing ideas from
(Petitjean et al., 2015).

Acknowledgments

We are grateful to Simon Petitjean and three
anonymous reviewers for useful comments on this
work. This work was partially funded by LIFO.

25

References

Anne Abeillé, Marie Candito, and Alexandra Kinyon.
1999. FTAG: current status and parsing scheme. In
Proceedings of Vextal-99, Venice, Italy.

Fériel Ben Fraj. 2010. Un analyseur syntaxique pour
les textes en langue arabe à base d’un apprentissage
à partir des patrons d’arbres syntaxiques. Ph.D.
thesis, ENSI La Manouba, Tunisia.

Fériel Ben Fraj. 2011. Construction d’une grammaire
d’arbres adjoints pour la langue arabe. In Actes
de la 18e conférence sur le Traitement Automa-
tique des Langues Naturelles, Montpellier, France,
June. Association pour le Traitement Automatique
des Langues.

Benoı̂t Crabbé, Denys Duchier, Claire Gardent, Joseph
Le Roux, and Yannick Parmentier. 2013. XMG :
eXtensible MetaGrammar. Computational Linguis-
tics, 39(3):591–629.

Denys Duchier, Brunelle Magnana Ekoukou, Yan-
nick Parmentier, Simon Petitjean, and Emmanuel
Schang. 2012. Describing Morphologically-rich
Languages using Metagrammars: a Look at Verbs
in Ikota. In Workshop on ”Language technology
for normalisation of less-resourced languages”, 8th
SALTMIL Workshop on Minority Languages and
the 4th workshop on African Language Technology,
pages 55–60, Istanbul, Turkey.

Dina El Kassas and Sylvain Kahane. 2004.
Modélisation de l’ordre des mots en arabe standard.
In Atelier sur le traitement de la langue arabe, JEP-
TALN 2004, page 6. Modélisation de l’ordre des
mots en arabe standard. Journées déroulées du 19
au 23 avril à Fès (Maroc).

Roger Evans and Gerald Gazdar. 1996. DATR: A lan-
guage for lexical knowledge representation. Com-
putational Linguistics, 22(2):167–216.

Claire Gardent. 2008. Integrating a unification-based
semantics in a large scale Lexicalised Tree Ad-
joininig Grammar for French. In Proceedings of the
22nd International Conference on Computational
Linguistics (COLING’08), pages 249–256, Manch-
ester, UK.

Nizar Habash and Owen Rambow. 2004. Extracting a
tree adjoining grammar from the penn arabic tree-
bank. Proceedings of Traitement Automatique du
Langage Naturel (TALN-04), pages 277–284.

Djamel Kouloughli. 1992. La grammaire Arabe pour
tous. Press Pocket.

Mohamed Maamouri and Ann Bies. 2004. Develop-
ing an arabic treebank: Methods, guidelines, pro-
cedures, and tools. In Ali Farghaly and Karine
Megerdoomian, editors, COLING 2004 Compu-
tational Approaches to Arabic Script-based Lan-
guages, pages 2–9, Geneva, Switzerland, August
28th. COLING.

Mohamed Maamouri, Ann Bies, Hubert Jin, and Tim
Buckwalter. 2003. Arabic treebank: Part 1 v 2.0.
LDC Catalog No.: LDC2003T06, ISBN: 1-58563-
261-9, ISLRN: 333-321-196-670-5.

Yannick Parmentier, Laura Kallmeyer, Timm Lichte,
Wolfgang Maier, and Johannes Dellert. 2008.
TuLiPA: A Syntax-Semantics Parsing Environment
for Mildly Context-Sensitive Formalisms. In 9th In-
ternational Workshop on Tree-Adjoining Grammar
and Related Formalisms (TAG+9), pages 121–128,
Tübingen, Germany.

Simon Petitjean, Younes Samih, and Timm Lichte.
2015. Une métagrammaire de l’interface morpho-
sémantique dans les verbes en arabe. In Actes de la
22e conférence sur le Traitement Automatique des
Langues Naturelles, pages 473–479, Caen, France,
June. Association pour le Traitement Automatique
des Langues.

Simon Petitjean. 2014. Génération Modulaire de
Grammaires Formelles. Ph.D. thesis, Université
d’Orléans, France.

James Rogers and K. Vijay-Shanker. 1994. Obtaining
trees from their descriptions: An application to tree-
adjoining grammars. Computational Intelligence,
10:401–421.

Stuart M. Shieber, Hans Uszkoreit, Fernando Pereira,
Jane Robinson, and Mabry Tyson. 1983. The for-
malism and implementation of PATR-II. In Bar-
bara J. Grosz and Mark Stickel, editors, Research
on Interactive Acquisition and Use of Knowledge,
techreport 4, pages 39–79. SRI International, Menlo
Park, CA, November. Final report for SRI Project
1894.

Éric Villemonte De La Clergerie. 2010. Building fac-
torized TAGs with meta-grammars. In The 10th
International Conference on Tree Adjoining Gram-
mars and Related Formalisms - TAG+10, pages
111–118, New Haven, CO, United States, June.

Fei Xia. 2001. Automatic Grammar Generation from
two Different Perspectives. Ph.D. thesis, University
of Pennsylvania.

XTAG Research Group. 2001. A Lexicalized Tree
Adjoining Grammar for English. Technical Report
IRCS-01-03, IRCS, University of Pennsylvania.

26

Proceedings of the 12th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+12), pages 27–37,
Düsseldorf, Germany, June 29 - July 1, 2016.

Interfacing Sentential and Discourse TAG-based Grammars

Laurence Danlos

Université Paris Diderot
ALPAGE

INRIA Paris–Rocquencourt
Institut Universitaire de France

Paris, F-75005, France
laurence.danlos@inria.fr

Aleksandre Maskharashvili Sylvain Pogodalla

INRIA, Villers-lès-Nancy, F-54600, France
Université de Lorraine, CNRS

LORIA, UMR 7503
Vandœuvre-lès-Nancy, F-54500, France

aleksandre.maskharashvili@inria.fr

sylvain.pogodalla@inria.fr

Abstract

Tree-Adjoining Grammars (TAG) have
been used both for syntactic parsing, with
sentential grammars, and for discourse
parsing, with discourse grammars. But the
modeling of discourse connectives (coor-
dinate conjunctions, subordinate conjunc-
tions, adverbs, etc.) in TAG-based for-
malisms for discourse differ from their
modeling in sentential grammars. Because
of this mismatch, an intermediate, not
TAG-related, processing step is required
between the sentential and the discourse
processes, both in parsing and in gener-
ation. We present a method to smoothly
interface sentential and discourse TAG
grammars, without using such an inter-
mediate processing step. This method is
based on Abstract Categorial Grammars
(ACG) and relies on the modularity of the
latter. It also provides the possibility, as in
D-STAG, to build discourse structures that
are direct acyclic graphs (DAG) and not
only trees. All the examples may be run
and tested with the appropriate software.

1 Introduction

It is usually assumed that the internal structure
of a text, typically characterized by discourse or
rhetorical relations, plays an important role in
its overall interpretation. Building this structure
may resort to different techniques such as seg-
menting the discourse into elementary discourse
units and then relating them with appropriate re-
lations (Marcu, 2000; Soricut and Marcu, 2003).
Other techniques use discourse grammars, and a
particular trend relies on tree grammars (Polanyi
and van den Berg, 1996; Gardent, 1997; Schilder,
1997). This trend has been further developed

by integrating the modeling of both clausal syn-
tax and semantics, and discourse syntax and se-
mantics within the framework of Tree-Adjoining
Grammar (TAG, Joshi et al. (1975); Joshi and
Schabes (1997)). This gave rise to the TAG
for Discourse (D-LTAG) formalism (Webber and
Joshi, 1998; Forbes et al., 2003; Webber, 2004;
Forbes-Riley et al., 2006), and to the Discourse
Synchronous TAG (D-STAG) formalism (Danlos,
2009; Danlos, 2011). The latter derives semantic
interpretation using Synchronous Tree-Adjoining
Grammars (STAG, Shieber and Schabes (1990);
Nesson and Shieber (2006); Shieber (2006)).

While one may think that using similar frame-
works for both levels should help to interface
them, it is not as smooth as one can expect. In-
deed, a shared feature of D-LTAG and D-STAG
is that grammatical parsing and discourse parsing
are performed at two different stages. Moreover,
the result of the first stage requires additional, not
TAG-related, processing before being able to enter
the second stage. This intermediary step consists
in discourse relation extraction in D-LTAG and in
dicourse normalization in D-STAG.

The reason for this intermediary step relates to
the mismatch between the syntactic properties and
the discourse properties of discourse markers. For
instance, at the syntactical level, sentences as in
(1) are well-formed.

(1) a. Then, John went to Paris.

b. John then went to Paris.

The discourse marker then, an adverb, is consid-
ered as a modifier, either of the whole clause in
(1a) or of the verb phrase (1b). In TAG, they are
represented as auxiliary trees with S or VP root
nodes (XTAG Research Group, 2001; Abeillé,
2002). Using the elementary trees of Figure 1,
Figure 2 (Figure 4, resp.) shows the TAG analy-
sis of (1a) (of (1b), resp.).

27

NP

Fred

S

NP VP

V

went

PP

Prep

to

NP

NP

Paris

S

Adv

then

S∗

VP

Adv

then

VP∗

Figure 1: Elementary trees of a toy TAG grammar

S

Adv

then

S∗

NP

Fred

S

NP VP

V

went

PP

Prep

to

NP

NP

Paris

Figure 2: TAG analysis of (1a)

S

Adv

then

S

NP

Fred

VP

V

went

PP

Prep

to

NP

Paris

Figure 3: Derived tree for (1a)

NP

Fred

S

NP

VP

Adv

then

VP∗

VP

V

went

PP

Prep

to

NP

NP

Paris

Figure 4: TAG analysis of (1b)

S

NP

Fred

VP

Adv

then

VP

V

went

PP

Prep

to

NP

Paris

Figure 5: Derived tree for (1b)

At the discourse level, it is difficult to interpret
these sentences without referring to preceding sen-
tences. The discourse relation (e.g., Narration) has
two arguments: the discourse unit consisting of the
clause in which the discourse cue appears (the host

clause), and some other discourse unit (it can be a
complex one). D-LTAG and D-STAG propose dif-
ferent models of such adverbials, in particular in
the way the first argument is provided. But in both
accounts, adverbials are fronted (see Figure 6(c)
and Figure 9(a)). Hence sentences with medial
adverbials such as (1b) are excluded without the
intermediary step of discourse relation extraction.

A similar mismatch occurs with subordinate
conjunctions. In a typical TAG analysis, they are
modeled with auxiliary trees because they modify
the matrix clause and are not part of its predicate-
argument structure.1 In D-LTAG, however, they
are modeled with initial trees with two substitu-
tion sites (see Figure 6(a)) for the two discourse
units they are predicating over.

So the question of relating the syntactic mod-
eling and the discourse modeling arises. In par-
ticular, we wish to avoid this relation to rely on
some intermediary step. Indeed, the latter has sev-
eral drawbacks. First, it complicates the model-
ing of connectives that are ambiguous in their syn-
tactic and discourse use, and prevents us from us-
ing standard grammar inference and disambigua-
tion techniques. Second, while most of the syntax-
semantics interfaces, in particular in TAG, aim
at satisfying a compositional assumption (Gardent
and Kallmeyer, 2003; Pogodalla, 2004; Kallmeyer
and Romero, 2008; Nesson and Shieber, 2006),
the syntax-discourse interface seems to escape it.
Third, a better integration of the sentential and of
the discourse components also seems an interest-

1It is not always the case, though. Bernard and Danlos
(2016) propose different elementary trees, depending on the
syntactical, semantic, and discourse properties of the con-
junction.

28

ing feature if we want to better describe the inter-
action between discourse connectives and propo-
sitional attitude predicates (Danlos, 2013; Bernard
and Danlos, 2016).

Finally, when generation instead of parsing is
at stake, this architecture also prevents the re-
versibility of the grammars and requires ad-hoc
post-processing. G-TAG, a TAG-based formalism
dedicated to generation that includes elements of a
discourse grammar, had this requirement (Danlos,
1998; Meunier, 1997; Danlos, 2000).

In this article, we describe how to interface a
sentential and a discourse TAG-based grammar.
We show how to link such two grammars and
their proposed modelings of discourse connec-
tives, overcoming the above mentioned issue. We
use an encoding of TAG into Abstract Catego-
rial Grammar (ACG, de Groote (2001)), a gram-
matical framework based on the simply typed λ-
calculus. As we aim at reusing previous works
such as existing TAG sentential grammars as well
as discourse analysis, our approach relies on two
key features of ACG: the ACG account of the TAG
operations and the ACG-based syntax-semantics
interface for TAG (Pogodalla, 2004; Pogodalla,
2009) on the one hand; and the modular ACG
composition, in order to smoothly integrate the
syntactical and discourse behavior of adverbial
connectives without using a two-step analysis on
the other hand. Note, however, that the operations
we use in the ACG composition are not available

as TAG operations. While the encoding of TAG
into ACG is standard (de Groote, 2002; Pogodalla,
2009), our contribution is to use the interpreting
device of ACG to relate (the ACG encoding of) a
TAG sentential grammar and (the ACG encoding
of) a TAG discourse grammar. The example gram-
mars we use may be run and tested2 on the ACG
development software.3

2 TAG Based Discourse Grammars

As TAG grammars, D-LTAG and D-STAG do not
differ from any other TAG grammar: they define
elementary trees that can be combined using the

2The ACG example files can be downloaded from
http://hal.inria.fr/hal-01328697v3/file/

acg-examples.zip. They also include the semantic
interpretation that generates the expected DAG discourse
structures. But because of lack of space, we cannot present
here the semantic part that builds on the one proposed for
D-STAG (Danlos, 2009; Danlos, 2011) and extends it.

3http://www.loria.fr/equipes/

calligramme/acg/#Software.

operations of substitution and adjunction. How-
ever, if some elementary trees are anchored by lex-
ical items (the discourse markers) as in sentential
grammars, the others are anchored by clauses re-
sulting from the syntactic analysis. Contrary to
sentential grammars that contain a lot of differ-
ent elementary tree families, discourse grammars
have a small set of such families. In this section,
we focus on these elementary trees, anchored by
discourse markers. We show how the structure of
these trees influences the interaction between the
sentential and the discourse grammars, and why
this interaction calls for an intermediary process-
ing step. For an in-depth presentation of these for-
malisms, we refer the reader to (Webber and Joshi,
1998; Forbes et al., 2003; Webber, 2004; Forbes-
Riley et al., 2006) for D-LTAG and to (Danlos,
2009; Danlos, 2011) for D-STAG.

Du

Du↓ although Du↓

(a) D-LTAG initial trees for
subordinate conjunctions

Du

Du∗ and Du↓

(b) D-LTAG auxiliary
trees for coordinating
conjunctions (and and ǫ)

Du

then Du∗

(c) D-LTAG auxiliary
trees for connective
adverbials

Figure 6: D-LTAG elementary tree schemes

D-LTAG D-LTAG proposes three main families
of elementary trees that capture different insights
on discourse structures. Trees for subordinate con-
junctions are modeled using initial trees with two
substitution nodes for each of the arguments as
Figure 6(a) shows. This reflects the predicate-
argument structure of these connectives at the dis-
course level. But this contrasts with the syntac-
tic account of these connectives: because they
are outside the domain of locality of the verbs to
which they can adjoin (at S or VP nodes), they
typically are modeled using auxiliary trees (see
Figure 7).

The second family of connectives is used to ex-
tend or to elaborate on clauses with auxiliary trees
anchored by coordinate conjunctions (or by the
empty connective). The first argument of the con-
nective corresponds to the discourse unit the tree is

29

S

S∗ Punct↓ PP

P

although

S↓

Figure 7: Syntactic modeling of subordinate con-
junctions

adjoined to, and the second, the extending clause,
corresponds to the clause that is substituted at the
substitution node, as Figure 6(b) shows.

The third family also consists of auxiliary trees.
But the latter are associated with a single clause as
Figure 6(c) shows. The second argument comes
from the anaphoric interpretation of the connec-
tives anchoring such trees.

The two-stage process for parsing discourse
proceeds as follows: first, each sentence gets a
TAG analysis (derived and derivation trees) by a
standard TAG. Then, each derivation tree is pro-
cessed in order to identify the possible discourse
connectives and their arguments from a syntactic
point of view. The latter (one or two, depending
on the connective) are added as initial trees with
root Du to the discourse grammar, as well as the
(discourse) elementary tree anchored by the con-
nective. For instance, from the clausal derivation
tree of Figure 8, the two arguments αd

s1 and αd
s2 ,

and the connective βd
s3 are extracted. A similar ex-

traction step takes care of the extraction of clause-
medial adverbial connectives.

D-STAG Contrary to D-LTAG, D-STAG models
all discourse connectives with auxiliary trees that
are adjoined to the discourse unit they extend. The
clause content that serves as second argument of
the connective is substituted within this tree. Fig-
ure 9 shows some of the schemes for the elemen-
tary (auxiliary) trees of a D-STAG. The three inter-
nal Du nodes are available for adjunctions, achiev-
ing different effects on the semantic trees (follow-
ing the principles of synchronous TAG, each dis-
course elementary tree is paired with a semantic
tree). Together with a higher-order type for the se-
mantic trees, this allows D-STAG to structurally
generate DAG discourse structures.4 But as the
focus of this article is on the articulation between
the sentential and the discourse grammar, we do

4Such structures are not easily available with D-LTAG,
and this was a motivation to introduce D-STAG.

αsaw

αshe αdog

βa

βwhile

αeating

αshe βwas αlunch β.

αsaw

αshe αdog

βa

Du↓

s1

Extraction

αd
s1 =

αeating

αshe βwas αlunch β.

Du↓

s2
αd
s2 =

βwhile (see Figure 6(a))βd
s3 =

Figure 8: Discourse elementary tree extraction

not enter the details of the discourse-semantics in-
terface here (see Danlos et al. (2015)).

D-STAG shares with D-LTAG the requirement
of a transformation from the sequence of sentence
analysis with a sentential grammar into a sequence
of clauses and discourse connectives in a “dis-
course normal form”. The reasons are basically
the same as for D-LTAG: discourse connectives
need to be identified in order to anchor their as-
sociated discourse elementary trees, as they differ
from their syntactic elementary trees, and clause-
medial extractions need to be managed at this level
as well.

Medial Adverbial Extraction Looking at the
elementary trees of Figure 9(a) (the problem is
similar for D-LTAG elementary trees), we observe
that the host clause of the adverbial are substi-

tuted into the elementary tree, at the Du ↓ node.
But at the sentential level, it is auxiliary trees an-
chored by the adverbials that adjoin into the host
clause. When the adjunction occurs at the top S

node, we get the same surface form in both cases.
However, whenever the adjunction occurs at the
VP node in the sentential grammar, this is not the
case anymore: the adverbial is not fronted, and
the discourse grammar cannot account for this po-
sition. An intermediary form, such as the dis-
course normal form in D-STAG, or the tree ex-
traction in D-LTAG is then required. In order to
get rid of this intermediary step, we should be

30

Du

Du

Du∗ Punct

.

DC

adv

Du

Du↓

(a) Adverbial connectives

Du

Du

Du∗ (Punct)

,

DC

conj

Du

Du↓

(b) Postposed conjunctions

Du

Du

DC

conj

Du

Du↓

Punct

,

Du∗

(c) Preposed conjunction

Figure 9: D-STAG elementary trees

able to describe an operation that simultaneously
substitutes a clause within the elementary tree of
the discourse connective, and adjoins the auxiliary
tree on the VP node. Figure 10(a) describes such
an operation. The dotted lines would represent a
dominance constraint that the tree to be substituted
at Du ↓ should satisfy. It is also natural then to
use the same approach for fronted discourse ad-
verbials, as in Figure 10(b).

Because the adverb has to adjoin within the tree
that is being substituted, describing such an op-
eration seems not to be possible in TAG nor in
multicomponent TAG (at least in a single step). It
would be possible with D-Tree Substitution Gram-
mars (Rambow et al., 2001), but then the deriva-
tion trees would be different, the synchronous
syntax-semantics interface would have to be rede-
fined, and the reversibility properties (for genera-
tion) would have to be stated. We instead use an
encoding with ACG, where these properties nat-
urally follow the standard encoding of TAG into
ACG.

Du

Du

Du∗ Punct
.

DC

ǫ

Du

VP

adv VP

Du↓

VP

(a)

Du

Du

Du∗ Punct
.

DC

ǫ

Du

S

adv S

Du↓

S

(b)

Figure 10: Auxiliary trees for discourse connec-
tives

3 Abstract Categorial Grammars

ACG derives from type-theoretic grammars.
Rather than a grammatical formalism on its own, it
provides a framework in which several grammat-
ical formalisms may be encoded (de Groote and
Pogodalla, 2004), in particular TAG (de Groote,
2002). The definition of an ACG is based on type-
theory, λ-calculus, and linear logic. In particular,
ACG generates languages of linear λ-terms, which
generalize both string and tree languages.

As key feature, ACG provides the user with a di-
rect control over the parse structures of the gram-
mar, the abstract language. Such structures are
later on interpreted by a morphism, the lexicon, to
get the concrete object language. We use the stan-
dard notations of the typed λ-calculus.

Definition (Types). Let A be a set of atomic types.
The set T (A) of implicative types built upon A is
defined with the following grammar:5

T (A) ::= A|T (A) ⊸ T (A)

Definition (Higher-Order Signatures). A higher-

order signature Σ is a triple Σ = 〈A,C, τ〉 where:

5We use the linear arrow ⊸ of linear logic (Girard, 1987)
for the implication.

31

Λ(ΣD-STAG)

Λ(ΣTAG)

Gdisc.

Λ(Σtrees)
Gderived

Λ(Σstring)
Gyield

Λ(Σlogic)
GTAG sem.

GD-STAG sem.

Figure 11: ACG architecture for a discourse and clause grammar interface

• A is a finite set of atomic types;

• C is a finite set of constants;

• τ : C → T (A) is a function assigning types
to constants.

We note Λ(Σ) the set of typed terms build on Σ.
For t ∈ Λ(Σ) and α ∈ T (A), we denote that t has
type α by t :Σ α (possibly omitting the subscript).

Definition (Lexicon). Let Σ1 = 〈A1, C1, τ1〉 and
Σ2 = 〈A2, C2, τ2〉 be two higher-order signatures.
A lexicon L = 〈F,G〉 from Σ1 to Σ2 is such that:

• F : A1 → T (A2). We also note F :
T (A1) → T (A2) its homomorphic exten-
sion;6

• G : C1 → Λ(Σ2). We also note G :
Λ(Σ1) → Λ(Σ2) its homomorphic exten-
sion;7

• F and G are such that for all c ∈ C1, G(c) is
of type F (τ1(c)) (i.e., G(c) :Σ2

F (τ1(c))).

We also use L instead of F or G.

Definition (Abstract Categorial Grammar and vo-
cabulary). An abstract categorial grammar is a
quadruple G = 〈Σ1,Σ2,L,S〉 where:

• Σ1 = 〈A1, C1, τ1〉 and Σ2 = 〈A2, C2, τ2〉 are
two higher-order signatures. Σ1 (resp. Σ2)
is called the abstract vocabulary (resp. the
object vocabulary) and Λ(Σ1) (resp. Λ(Σ2))
is the set of abstract terms (resp. the set of
object terms).

• L : Σ1 → Σ2 is a lexicon.

• S ∈ T (A1) is the distinguished type of the
grammar.

Given an ACG Gname = 〈Σ1,Σ2,Lname,S〉, we
use the following notational variants for the in-
terpretation β (resp. u) of the type α (resp. of

6Such that F (α ⊸ β) = F (α) ⊸ F (β).
7Such that G(λx.t) = λx.G(t) and G(t u) =

G(t) G(u).

the term t): Gname(α) = β and α:=name β (resp.
Gname(t) = u and t:=name u). The subscript may
be omitted if clear from the context.

Definition (Abstract and Object Languages).
Given an ACG G , the abstract language is defined
by

A(G) = {t ∈ Λ(Σ1) |t :Σ1
S}

The object language is defined by

O(G) = {u ∈ Λ(Σ2) | ∃t ∈ A(G) s.t. u = G (t)}

The process of recovering an abstract structure
from an object term o is called ACG parsing and
consists in finding the inverse image of {o} under
the lexicon (lexicon inversion). In this perspective,
derivation trees of TAG are represented as terms
of an abstract language, while derived trees (and
yields) are represented by terms of some object
languages. It is an object language of trees in the
derived tree case and an object language of strings
in the yield case. The class of second-order ACG

is polynomially parsable with the usual complex-
ity bounds (O(n3) for ACG encoding CFG, O(n6)
for ACG encoding TAG, Kanazawa (2008)).

The lexicon, i.e., the way structures are inter-
preted, plays a crucial role in our proposal in
two different ways. First, two interpretations may
share the same abstract vocabulary, hence map-
ping a single structure into two different ones, typ-
ically a surface form and a semantic form. This
composition, illustrated for instance by Gderived

and GTAG sem. sharing the ΣTAG vocabulary in Fig-
ure 11, allows for the semantic interpretation of

derivation trees. Second, the result of a first in-
terpretation can itself be interpreted by a second
lexicon when the object vocabulary of the first in-
terpretation is the abstract vocabulary of the sec-
ond one. This composition, illustrated for instance
by the Gyield ◦ Gderived composition in Figure 11,
allows for modularity and partial specification of

derivations. This is how we relate the discourse
derivation trees to the clausal derivation trees in
Gdisc..

32

4 Examples

4.1 TAG as ACG

We present the TAG and D-STAG encoding us-
ing examples. This encoding follows (de Groote,
2001; de Groote, 2002; Pogodalla, 2009).

In order to encode a TAG into an ACG, we
use a higher-order signature ΣTAG whose atomic
types include S, VP, NP, SA, VPA. . . where the
X types stand for the categories X of the nodes
where a substitution can occur while the XA types
stand for the categories X of the nodes where an
adjunction can occur. For each elementary tree
γlex. entry, there is a constant Clex. entry whose type
is based on the adjunction and substitution sites as
Table 1 shows. It additionally contains constants
IX : XA that are meant to provide a fake auxiliary
tree on adjunction sites where no adjunction actu-
ally takes place in a TAG derivation. Terms built
on this signature are interpreted by Gderived in the
higher-order signature whose unique atomic type
is τ the type of trees. In this signature, for any
X of arity n belonging to the ranked alphabet de-
scribing the elementary trees of the TAG, we have

a constant Xn :

n times
︷ ︸︸ ︷
τ ⊸ · · · ⊸ τ ⊸ τ . Then Gyield

interprets τ into σ, the type for strings, and Xn as
λx1 · · ·xn.x1 + · · · + xn. For instance, the lexi-
con of Table 1 allows one to interpret two terms of
Λ(ΣTAG) representing a derivation with an adjunc-
tion at the S node (resp. at the VP node) of the
given sentences as the equation (2a) (resp. (2b))
shows.

(2a) Gyield ◦ Gderived(Cwent to C
S
then IVP CFred CParis) =

then + Fred + went + to + Paris

(2b) Gyield ◦ Gderived(Cwent to IS C
VP
then CFred CParis) =

Fred + then + went + to + Paris

4.2 D-STAG as ACG

The ACG encoding of D-STAG follows the above
mentioned principles to encode the derived and the
derivation trees resulting from the D-STAG ele-
mentary trees of Figure 9. As a consequence, we
get the same derivation trees. The main differ-
ences with (Danlos, 2009; Danlos, 2011) lie in the
interpretations:

• Gdisc. implements the interface between the
discourse grammar and the sentential gram-
mar, avoiding the intermediate step of build-

ing a discourse normal form (or the extraction
step in D-LTAG). It is central to our proposal.

• GTAG sem.
8 implements the interpretation of

the discourse structures. It slightly differs
from (Danlos, 2011) in order to allow for a
more unified view on the semantic types and
to deal with the relative scope of quantifiers
and discourse relations.

Sentence-Discourse Interface The higher-
order vocabulary ΣD-STAG includes the usual
atomic types to describe the sentence level (NP,
VP, VPA etc.) and new atomic types to describe
the discourse level: Du, which is the type for dis-
course units, and the corresponding DuA type rep-
resenting adjunction sites. A typical constant in-
troducing a discourse marker such as dS

then has type

DC
∆
= DuA ⊸ DuA ⊸ DuA ⊸ Du ⊸ DuA

that reflects the auxiliary trees of D-STAG (Fig-
ure 9). For comparison, see the encoding of the
CVP

then encoding an auxiliary tree adjoining at a VP

node). We also use a type T for full texts.
The key point to smoothly interface the senten-

tial and the discourse grammar is to have the con-
stant that describes a discourse marker ddm of type
DC at the discourse level interpreted using the cor-

responding auxiliary tree Cdm at the right place,
i.e., as adjoining into the host clause. So, cru-
cially, the interpretation specifies an adjunction of
the auxiliary tree into the tree that is being substi-
tuted (i.e., the argument of Du type that is param-
eter of ddm or, in D-STAG terms, the one plugged
into the Du ↓ node of the auxiliary trees of Fig-
ure 9). This operation mimics the insertion of the
auxiliary tree in Figure 10.

In order to enable this adjunction, we inter-
pret discourse units (with Du type) as missing a
subordinate conjunction, a fronted adverbial, or a
clause-medial adverbial. This corresponds to in-
terpreting the atomic type Du as a second-order
type such as SA ⊸ VPA ⊸ S.9 We actually
rather interpret Du as SA ⊸ (VPA ⊸ VPA) ⊸
S in order to account for clause-medial adverbials
occurring between to other adverbs such as in John

suddenly then passionately kissed her.10 Accord-

8Not discussed here but implemented in the example files.
9Another solution would be to have DC requires a (SA ⊸

VPA ⊸ Du) type as fourth parameter. But the ACG would
not be second-order anymore.

10It should be clear that from a technical point of view,
both fronted and clause-medial missing adverbials could be
dealt with the same way (i.e. with a SA ⊸ VPA ⊸ S or a

33

Constants of ΣTAG Their interpretations by Gderived

CFred : NP
γFred : τ
γFred = NP1 Fred

Cwent to :
SA ⊸ VPA ⊸

NP ⊸ NP ⊸ S
γwent to : (τ ⊸ τ) ⊸ (τ ⊸ τ) ⊸ τ ⊸ τ ⊸ τ
γwent to = λSAsc.S(S2 s (A (VP2 (V1 went) (PP2 (Prep to) c))))

CS
then : SA

γS
then : τ ⊸ τ

γS
then = λx.(S2 (Adv1 then) x)

CVP
then : VPA ⊸ VPA

γVP
then : (τ ⊸ τ) ⊸ τ ⊸ τ

γVP
then = λA x.A (VP2 (Adv1 then) x)

Table 1: Sample ACG lexicon encoding the TAG grammar of Figure 1

ingly, at the discourse level, the type of an in-
transitive verb will be SA ⊸ VPA ⊸ VPA ⊸

NP ⊸ S instead of SA ⊸ VPA ⊸ NP ⊸ S,
allowing to specify the two VPA auxiliary trees
that can adjoin before and after the possible dis-
course marker. This leads us to the interpreta-
tion of Table 2. Note that even though the same
name can occur on both sides of the := symbol,
the atomic types and the constants on the left hand
side belong to ΣD-STAG while the (possibly com-
plex) types and the terms on the right hand side
belong to Λ(ΣTAG).

NPA := NPA NA := NA

VP := VP DuA := SA

VPA := VPA ⊸ VPA T := S
Du := SA ⊸ (VPA ⊸ VPA) ⊸ S NP := NP
S := SA ⊸ (VPA ⊸ VPA) ⊸ S N := N
SA := SA ⊸ SA

IX : XA := λP.P
dFred : NP:= CFred
dwent to : SA ⊸ VPA ⊸ VPA ⊸ S ⊸ S

:= λS a1 a2 s o c m.
Cwent to (S c)(a2(m(a1IVP))) s o

din. anc. : S ⊸ DuA ⊸ Du
:= λs m ds dv.mod (s ds dv) m

danchor : S ⊸ DuA ⊸ Du
:= λs m ds dv.mod (s ds dv) m

dS
then : DuA ⊸ DuA ⊸ DuA ⊸ Du ⊸ DuA

:= λd1 d2 d3 s.cons d1 d2 d3 (s CS
then (λx.x))

dVP
then : DuA ⊸ DuA ⊸ DuA ⊸ Du ⊸ DuA

:= λd1 d2 d3 s.cons d1 d2 d3 (s IS CVP
then)

Table 2: Gdisc. interpretation for the sentence-
discourse interface12

We exemplify our approach on the examples
(3). In D-STAG, the associated discourse rep-

(SA ⊸ SA) ⊸ (VPA ⊸ VPA) ⊸ S type). We leave it for
further work to check the adequacy of the same phenomena
occurring for fronted adverbials and how it compares with
discourse connective modification or multiple connectives.

12
mod and cons are two operators that have no other mean-

ing that juxtaposing TAG derivation trees of elementary dis-
course units. They are interpreted as: mod := λs m.m s
(it performs the actual adjunction on the derived tree) and
cons := λs1 s2 s3 s x.s1(s2(S3 x . (s3 s))) (it builds a de-
rived tree, inserting a period between the derived trees corre-
sponding to the elementary discourse units).

dinitial anchor

C6 dbecause

IDu dS
then

IDu IDu IDu danchor

C8 IDu

IDu danchor

C7 IDu

Figure 12: Discourse derivation trees

resentation is as in Figure 13, and the discourse
derivation trees is the one of Figure 12 where the
Cis correspond to the derivation trees of the brack-
eted discourse units of the examples. In D-STAG,
the discourse derivation tree of course results from
the discourse normal form F6 because F7 then F8

that are the same for (3a) and (3b).
(3) a. [Fred went to the supermarket]6 because

[his fridge is empty]7. Then, [he went to
the movies]8.

b. [Fred went to the supermarket]6 because
[his fridge is empty]7. [He]8 then [went
to the movies]8.

φExpl.

F6 F7

φNarr.

F8

Figure 13: Discourse structure for (3a)

If we define the terms d8 and d′8 as in (4) and (5),
we can compute their interpretations (6)-(11) us-
ing the lexicons of Tables 1 and 2. They show that
both positions for the adverbs are now available
directly from the abstract terms representing dis-
course derivations. Consequently, the two terms
defined in (12) and (13) account for both sentences
of (3). Note that they differ only in the constant
they use for the adverb.

34

S

S∗ . S

Adv

Then

S

NP

Fred

VP

V

went

PP

Prep

to

NP

Det

the

N

movies

(a) Derived tree for d8

S

S∗ . S

NP

Fred

VP

Adv

then

VP

V

went

PP

Prep

to

NP

Det

the

N

movies

(b) Derived tree for d′8

Figure 14: Interpretations as derived trees

d8 = d
S
then IDu IDu IDu (danchor C8 IDu) : DuA(4)

d
′
8 = d

VP
then IDu IDu IDu (danchor C8 IDu) : DuA(5)

5 Related Works

This problem of avoiding an intermediate step
between a sentential and a discourse analysis
has also been addressed within the framework of
Combinatory Categorial Grammar (CCG, Steed-
man (2001); Steedman and Baldridge (2011)) by
Nakatsu and White (2010). They propose a sin-
gle grammar to treat both sentential and discourse
phenomena using Discourse Combinatory Cate-
gorial Grammar (DCCG). This approach intro-
duced “cue threading” where “connectives can be

thought of as percolating from where they take
scope semantically down to the clause in which
they appear” (Nakatsu and White, 2010, p. 19).
Here, the connective at the discourse level takes
scope over its argument, but it is interpreted at
the sentential level as an auxiliary tree adjoining
within the clause.

6 Conclusion

This article shows how to interface TAG-based
sentential and discourse grammars without resort-
ing to a two step process. It relies on the interpre-
tation of abstract terms encoding discourse deriva-
tion trees into terms encoding sentential derivation
trees using ACG. The approach also allows us to
build DAG discourse structures. ACG grammars
have been implemented to compute (and parse) the
surface forms and associate them with the rele-
vant semantic forms. In this article, we only ap-
plied the approach to D-STAG, but it should be
clear that it applies to D-LTAG as well. The ap-
proach is also suitable to model connective mod-
ifications (. . . probably because it rains). Our
future work will concern multiple connectives
(. . . because then he discovered he was broke),
some of them we already account for. It will also
concern the integration of discourse structure con-
straints such as the right frontier principle and the
interaction with pronominal anaphora resolution.

Finally, discourse grammars are highly ambigu-
ous. Hence the ACG we derive from such gram-
mars also are ambiguous. We want to take ad-
vantage of our integrated approach to apply the
disambiguation methods used in syntactic parsing.
Moreover, as the analysis can now be dealt with at
the level of the text, even with polynomial algo-
rithms, the size of the input will be an issue. This
calls for further analysis of discourse structuring,
both in parsing and generation.

Gdisc.(d8) = cons IS IS IS (mod (Cwent to C
S
then IVP CFred (Cthe (Cmovies IN))) IS) : SA(6)

Gderived ◦ Gdisc.(d8) = [see the tree representation in Figure 14(a)](7)

Gyield ◦ Gderived ◦ Gdisc.(d8) = λx.x+ .+ Then + Fred + went + to + the + movies) : σ ⊸ σ(8)

Gdisc.(d
′
8) = cons IS IS IS (mod (Cwent to IS (CVP

then IVP) CFred (Cthe (Cmovies IN))) IS) : SA(9)

Gderived ◦ Gdisc.(d
′
8) = [see the tree representation in Figure 14(b)](10)

Gyield ◦ Gderived ◦ Gdisc.(d
′
8) = λx.x+ .+ Fred + then + went + to + the + movies) : σ ⊸ σ(11)

d3 = din. anc. C6 (dbecause IDu (dS
then IDu IDu IDu (danc. C8 IDu)) IDu (danc. C7 IDu))(12)

d
′
3 = din. anc. C6 (dbecause IDu (dVP

then IDu IDu IDu (danc. C8 IDu)) IDu (danc. C7 IDu))(13)

35

References

Anne Abeillé. 2002. Une grammaire électronique du

français. Sciences du langage. CNRS Éditions.

Timothée Bernard and Laurence Danlos. 2016. Mod-
elling discourse in stag: Subordinate conjunc-
tions and attributing phrases. In David Chiang
and Alexander Koller, editors, Proceedings of the
Twelfth International Workshop on Tree Adjoining
Grammars and Related Framework (TAG+12). HAL
open archive: hal-01329539.

Laurence Danlos, Aleksandre Maskharashvili, and Syl-
vain Pogodalla. 2015. Grammaires phrastiques
et discursives fondées sur les TAG : une approche
de D-STAG avec les ACG. In TALN 2015 -
22e conférence sur le Traitement Automatique des
Langues Naturelles, Actes de TALN 2015, pages
158–169, Caen, France. Association pour le Traite-
ment Automatique des Langues. HAL open archive:
hal-01145994.

Laurence Danlos. 1998. G-TAG : Un formalisme lex-
icalisé pour la génération de textes inspiré de TAG.
Traitement Automatique des Langues, 39(2). HAL
open archive: inria-00098489.

Laurence Danlos. 2000. G-TAG: A lexicalized for-
malism for text generation inspired by Tree Ad-
joining Grammar. In Anne Abeillé and Owen
Rambow, editors, Tree Adjoining Grammars: For-
malisms, Linguistic Analysis, and Processing, vol-
ume 107 of CSLI Lecture Notes, pages 343–370.
CSLI Publications. http://www.linguist.jussieu.fr/
∼danlos/Dossier%20publis/G-TAG-eng’01.pdf.

Laurence Danlos. 2009. D-STAG : un formalisme
d’analyse automatique de discours basé sur les TAG
synchrones. T.A.L., 50(1):111–143. HAL open
archive: inria-00524743.

Laurence Danlos. 2011. D-STAG: a formalism for
discourse analysis based on SDRT and using Syn-
chronous TAG. In Philippe de Groote, Markus
Egg, and Laura Kallmeyer, editors, 14th confer-
ence on Formal Grammar - FG 2009, volume
5591 of LNCS/LNAI, pages 64–84. Springer. DOI:
10.1007/978-3-642-20169-1 5.

Laurence Danlos. 2013. Connecteurs de dis-
cours adverbiaux : Problèmes à l’interface syntaxe-
sémantique. LinguisticæInvestigationes, 36(2):261–
275. HAL open archive: hal-00932184. DOI:
10.1075/li.36.2.05dan.

Philippe de Groote and Sylvain Pogodalla. 2004. On
the expressive power of Abstract Categorial Gram-
mars: Representing context-free formalisms. Jour-
nal of Logic, Language and Information, 13(4):421–
438. HAL open archive: inria-00112956. DOI:
10.1007/s10849-004-2114-x.

Philippe de Groote. 2001. Towards Abstract Catego-
rial Grammars. In Association for Computational

Linguistics, 39th Annual Meeting and 10th Confer-
ence of the European Chapter, Proceedings of the
Conference, pages 148–155. ACL anthology: P01-
1033.

Philippe de Groote. 2002. Tree-Adjoining Gram-
mars as Abstract Categorial Grammars. In Pro-
ceedings of the Sixth International Workshop on
Tree Adjoining Grammars and Related Frameworks
(TAG+6), pages 145–150. Università di Venezia.
URL: http://www.loria.fr/equipes/calligramme/acg/
publications/2002-tag+6.pdf.

Katherine Forbes, Eleni Miltsakaki, Rashmi Prasad,
Anoop Sarkar, Aravind K. Joshi, and Bonnie Lynn
Webber. 2003. D-LTAG system: Discourse parsing
with a Lexicalized Tree-Adjoining Grammar. Jour-
nal of Logic, Language and Information, 12(3):261–
279. Special Issue: Discourse and Information
Structure. DOI: 10.1023/A:1024137719751.

Katherine Forbes-Riley, Bonnie Lynn Webber, and Ar-
avind K. Joshi. 2006. Computing discourse se-
mantics: The predicate-argument semantics of dis-
course connectives in D-LTAG. Journal of Seman-
tics, 23(1):55–106. DOI: 10.1093/jos/ffh032.

Claire Gardent and Laura Kallmeyer. 2003. Semantic
construction in feature-based TAG. In Proceedings
of the 10th Meeting of the European Chapter of the
Association for Computational Linguistics (EACL),
pages 123–130. ACL anthology: E03-1030.

Claire Gardent. 1997. Discourse tree adjoining gram-
mar. CLAUS Report 89, Universit, Saarbr, April.

Jean-Yves Girard. 1987. Linear logic. The-
oretical Computer Science, 50(1):1–102. DOI:
10.1016/0304-3975(87)90045-4.

Aravind K. Joshi and Yves Schabes. 1997. Tree-
adjoining grammars. In Grzegorz Rozenberg and
Arto K. Salomaa, editors, Handbook of formal lan-
guages, volume 3, chapter 2. Springer.

Aravind K. Joshi, Leon S. Levy, and Masako Taka-
hashi. 1975. Tree adjunct grammars. Journal
of Computer and System Sciences, 10(1):136–163.
DOI: 10.1016/S0022-0000(75)80019-5.

Laura Kallmeyer and Maribel Romero. 2008. Scope
and situation binding for LTAG. Research on
Language and Computation, 6(1):3–52. DOI:
10.1007/s11168-008-9046-6.

Makoto Kanazawa. 2008. A prefix-correct earley
recognizer for multiple context-free grammars. In
Proceedings of the Ninth International Workshop on
Tree Adjoining Grammars and Related Formalisms
(TAG+9), pages 49–56, Tuebingen, Germany, June
7–8. http://tagplus9.cs.sfu.ca/papers/Kanazawa.pdf.

Daniel Marcu. 2000. The Theory and Practice of Dis-
course Parsing and Summarization. The MIT Press.

36

Frédéric Meunier. 1997. Implantation du formalisme
de génération G-TAG. Ph.D. thesis, Université Paris
7 — Denis Diderot.

Crystal Nakatsu and Michael White. 2010. Gener-
ating with discourse combinatory categorial gram-
mar. Linguistic Issues in Language Technology,
4. http://journals.linguisticsociety.org/elanguage/
lilt/article/view/1277.html.

Rebecca Nancy Nesson and Stuart M. Shieber. 2006.
Simpler TAG semantics through synchronization.
In Proceedings of the 11th Conference on For-
mal Grammar, Malaga, Spain, 7. CSLI Publica-
tions. http://cslipublications.stanford.edu/FG/2006/
nesson.pdf.

Sylvain Pogodalla. 2004. Computing Semantic Repre-
sentation: Towards ACG Abstract Terms as Deriva-
tion Trees. In Seventh International Workshop on
Tree Adjoining Grammar and Related Formalisms -
TAG+7, pages 64–71, Vancouver, BC, Canada. HAL
open archive: inria-00107768.

Sylvain Pogodalla. 2009. Advances in Abstract Cat-
egorial Grammars: Language Theory and Linguis-
tic Modeling. ESSLLI 2009 Lecture Notes, Part II.
HAL open archive: hal-00749297.

Livia Polanyi and Martin H. van den Berg. 1996.
Discourse structure and discourse interpretation.
In Paul J. E. Dekker and Martin Stokhof, edi-
tors, Proceedings of the Tenth Amsterdam Collo-
quium. ILLC/Department of Philosophy, University
of Amsterdam. http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.56.221.

Owen Rambow, K. Vijay-Shanker, and David Weir.
2001. D-Tree Substitution Grammars. Computa-
tional Linguistics, 27(1):87–121. ACL anthology:
J01-1004. DOI: 10.1162/089120101300346813.

Frank Schilder. 1997. Tree discourse grammar
or how to get attached to a discourse? In In
Proceedings of the Tilburg Conference on For-
mal Semantics (IWCS-1997), pages 261–273.
ftp://ftp.informatik.uni-hamburg.de/pub/unihh/
informatik/WSV/schild97a.ps.gz.

Stuart M. Shieber and Yves Schabes. 1990. Syn-
chronous tree-adjoining grammars. In Proceedings
of the 13th International Conference on Compu-
tational Linguistics, volume 3, pages 253–258,
Helsinki, Finland. http://www.eecs.harvard.
edu/∼shieber/Biblio/Papers/synch-tags.pdf. DOI:
10.3115/991146.991191.

Stuart M. Shieber. 2006. Unifying synchronous tree-
adjoining grammars and tree transducers via bimor-
phisms. In Proceedings of the 11th Conference of
the European Chapter of the Association for Com-
putational Linguistics (EACL-06), pages 377–384,
Trento, Italy, 3–7 April. ACL anthology: E06-1048.

Radu Soricut and Daniel Marcu. 2003. Sentence
level discourse parsing using syntactic and lexi-
cal information. In Marti Hearst and Mari Osten-
dorf, editors, Proceedings of the 2003 Human Lan-
guage Technology Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics (HLT-NAACL 2003), pages 149–156.
ACL anthology: N03-1030.

Mark Steedman and Jason Baldridge. 2011. Combi-
natory categorial grammar. In Robert Borsley and
Kersti Börjars, editors, Non-Transformational Syn-
tax: Formal and Explicit Models of Grammar, chap-
ter 5. Wiley-Blackwell.

Mark Steedman. 2001. The Syntactic Process. MIT
Press.

Bonnie Lynn Webber and Aravind K. Joshi. 1998.
Anchoring a lexicalized tree-adjoining grammar
for discourse. In Manfred Stede, Leo Wanner,
and Eduard Hovy, editors, Proccedings of the
ACL/COLING workshop on Discourse Relations
and Discourse Markers. ACL anthology: W98-
0315.

Bonnie Lynn Webber. 2004. D-LTAG:
extending lexicalized TAG to discourse.
Cognitive Science, 28(5):751–779. DOI:
10.1207/s15516709cog2805 6.

XTAG Research Group. 2001. A Lexicalized Tree
Adjoining Grammar for English. Technical Re-
port IRCS-01-03, IRCS, University of Pennsylva-
nia. ftp://ftp.cis.upenn.edu/pub/xtag/release-2.24.
2001/tech-report.pdf.

37

Proceedings of the 12th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+12), pages 38–47,
Düsseldorf, Germany, June 29 - July 1, 2016.

Modelling Discourse in STAG:
Subordinate Conjunctions and Attributing Phrases

Timothée Bernard

Université Paris Diderot
ALPAGE

timothee.bernard@inria.fr

Laurence Danlos

Université Paris Diderot
ALPAGE, IUF

laurence.danlos@inria.fr

Abstract

We propose a new model in STAG syntax
and semantics for subordinate conjunc-
tions (SubConjs) and attributing phrases
– attitude/reporting verbs (AVs; believe,
say) and attributing prepositional phrase
(APPs; according to). This model is
discourse-oriented, and is based on the ob-
servation that SubConjs and AVs are not
homogeneous categories. Indeed, previ-
ous work has shown that SubConjs can be
divided into two classes according to their
syntactic and semantic properties. Simi-
larly, AVs have two different uses in dis-
course: evidential and intentional. While
evidential AVs and APPs have strong se-
mantic similarities, they do not appear in
the same contexts when SubConjs are at
play. Our proposition aims at representing
these distinctions and capturing these var-
ious discourse-related interactions.

1 Introduction

A text as a whole must exhibit some coherence
that makes it more than just a bag of sentences.
This coherence hinges on the discourse relations

(DRs), that express the articulations between the
different pieces of information of the text. There
is still debate about the number and the nature
of DRs, yet typical DRs include Contrast, Con-

sequence or Explanation (Asher and Lascarides,
2003). In this paper we consider that DRs are two-
place predicates that structure the text at the dis-
course level (1a) but also at the sentence level (1b).
In these two examples, the Consequence relation
is explicit, i.e. lexically signalled, but a DR can
also be implicit, i.e. semantically inferred. This
is for instance the case when therefore is removed

from (1b) to produce (1c).1

(1) a. Fred was ill. Therefore, he stayed home.

b. Fred was ill, he therefore stayed home.

c. Fred was ill, he stayed home.

Therefore is a discourse connective (DC), a
group of lexical elements whose function is to sig-
nal that a DR holds between two spans of text.2

DCs can be of different syntactic categories; we
are specifically concerned here with subordinate
conjunctions (SubConjs). SubConjs are generally
considered a homogeneous category although pre-
vious work such as (Haegeman, 2004) has shown
they can be divided into two classes with distinc-
tive syntactic and semantic properties. Such prop-
erties are the possibility or impossibility of cleft
sentences illustrated in (2) or the difference of
scope observed in (3).

(2) a. It is when he was twenty that Fred went

to Brazil.

b. #It is even though he really wanted to
come that Fred stayed home.

(3) a. He did not come because he was hungry:
he came because he was thirsty.

b. #He did not come even though he still had
work to do: he came even though he was
tired.

In addition to SubConjs, we are interested in
attitude verbs and reporting verbs (AVs) – verbs

1Following the conventions of the PDTB (Prasad et al.,
2007), we refer to the two arguments of DRs as Arg1 and
Arg2 and use italics and bold face respectively to indicate the
spans of text for each argument.

2There exist more complex markers constituting an open
class, referred to as “AltLex” – “alternative lexicalization”
(Prasad et al., 2010).

38

like say or believe, which describe an action or
a state but also report the stance of an agent to-
wards a given semantic proposition – and attribut-
ing prepositional phrases (APPs; e.g. according

to). These have particular interactions with DCs in
general and SubConjs in particular. Some of these
phenomena could probably be correctly analysed
with a purely semantic treatment of at-issueness

inspired from (Potts, 2005) and (Scheffler, 2013).
However, we think a proper treatment of the syn-
tactic aspects as well requires a different formal-
ism. The goal of this work is to model these var-
ious lexical elements in a Synchronous Tree Ad-
joining Grammar (STAG, (Shieber and Schabes,
1990)). Current models so far (see (Nesson and
Shieber, 2006), or (Danlos, 2009) which focuses
specifically on discourse analysis) do not incorpo-
rate most of the properties mentioned in this paper.

The paper is organised as follows. Section 2
presents relevant work related to DCs, AVs and
some of their interactions. Section 3 exposes and
summarises the properties we are aiming for with
our model. Then, Section 4 describes our STAG
proposition. Section 5 discusses this model and
introduce a possible evolution.

2 Relevant Work

2.1 Non-Alignment of Syntactic and

Discourse Arguments

According to a number of authors (see (Dinesh
et al., 2005) for English and (Danlos, 2013) for
French), in a sentence like (4a) the speaker intends
to contrast her belief with the belief of Sabine;
hence the inclusion of Sabine thinks in Arg2. On
the contrary, in (4b) the speaker does not intend to
oppose her belief with the one of Sabine, but rather
Fred’s stay in Peru with his (alleged) absence of
stay in Lima; hence the exclusion of Sabine thinks

from the argument of the DR. In this last case, we
observe that the (semantic/discourse) argument of
the DR is included in but not equal to the propo-
sitional content of the (syntactic) argument of the
DC.3

Such non-alignments of the syntactic and dis-
course arguments (“mismatches” in the following)
often arise with attitude verbs and reporting verbs

(AV): when an AV together with the clause it in-
troduces is an argument of a DC, the AV may (4a)

3Another argument for this distinction is that Sabine
thinks can be felicitously removed from (4b) while it cannot
from (4a).

or may not (4b) be included in the discourse argu-
ment of the corresponding DR. Following (Asher
et al., 2006), we say the AV is intentional in the
first case and evidential in the second. One can
notice that an evidential AV is equivalent to the
expression according to Sabine.

(4) a. Fred went to Peru although Sabine thinks

he never left Europe.

b. Fred went to Peru although Sabine thinks
he has never been to Lima.

It is interesting to note, as highlighted
in (Hunter and Danlos, 2014), that contrarily to
although not all DCs can be found with such mis-
matches. It is the case, for instance, of because, as
illustrated in (5). (Hunter and Danlos, 2014), us-
ing the DR hierarchy of the PDTB, observes that a
DC lexicalising a COMPARISON or an EXPAN-
SION relation can often be found with a mismatch,
whereas it seems impossible for a DC lexicalising
a TEMPORAL or a CONTINGENCY relation.

(5) a. Fred could not come because he was not

in town.

b. #Fred could not come because Sabine
thinks he was not in town.

2.2 Two Types of Adverbial Clauses

An adverbial clause is a subordinate clause that
functions as an adverb. It is the case of after he ate

(temporal meaning) and although he was starving

(concessive meaning) in (6).

(6) a. Fred left after he ate.

b. Fred left although he was starving.

Traditionally, adverbial clauses are considered
a rather homogeneous syntactical category. But a
particular distinction between two types of adver-
bial clauses is proposed by (Haegeman, 2004):

• on the one hand, the central adverbial

clauses (CAC), which add an information
(time, place, etc.) about the eventuality de-
scribed in the matrix clause;

• on the other hand, the peripheral adverbial

clauses (PAC), whose function is to structure
the discourse (expressing a concession, pro-
viding background information, etc.).

39

In (7), while he was a student specifies the date,
and if it is sunny expresses a necessary condition,
of the event in their respective matrix clause; they
both are CACs. In (8), while Sabine has never left

Europe expresses a fact contrasting with, and if it

is sunny justifies the interrogation in, their respec-
tive matrix clause; they both are PACs.

(7) a. Fred went to Brazil while he was a stu-

dent.

b. If it is sunny, I’ll go outside.

(8) a. Fred has been to Brazil whereas Sabine

has never left Europe.

b. If it is sunny, why aren’t you playing out-

side?

Several phenomena are studied in (Haegeman,
2004) – coordination, ellipsis, ambiguity, or phe-
nomena related to scope, prosody, typography, etc.
–, tending to show a greater integration of CACs
into their matrix clause than PACs. Two of these
phenomena are of particular interest for this work:

• “Main clause negation may scope over cen-
tral adverbial clauses, but peripheral adver-
bial clauses cannot fall within the scope of a
negative operator in an associated clause”;

• “in addition to tense, other adverbial opera-
tors may also have scope over central adver-
bial clauses but they do not scope over pe-
ripheral adverbial clauses”.

These two phenomena are illustrated in (9) – for
negation – and (10) – for adverbs. These exam-
ples each present a pair of sentences with parallel
construction: the first contains a CAC and the sec-
ond a PAC. In line with (Haegeman, 2004)’s ob-
servation, the negation scopes over the whole sen-
tence in (9a) while it only scopes over the matrix
clause in (9b). Similarly, the adverb scopes over
the whole sentence in (10a) while it only scopes
over the matrix clause in (10b).

(9) a. Fred didn’t go to Brazil because he

wanted to learn Portuguese (but for an-
other reason).

b. Fred has not been to Brazil whereas
Sabine travels there often.

(10) a. Fred often wake up in the middle of the

night because he is scared.

b. Fred often takes the bus while Sabine

prefers walking.

It should also be noted that a CAC cannot con-
tain an epistemic modal if it is speaker-oriented

(as in (11a) but not in (11c) where may is mainly
“John-oriented”), while a PAC can (see 11b). Ex-
pressed with the terms of (Hunter and Danlos,
2014): the syntactic and discourse arguments of a
conjunction must be aligned in the case of a CAC,
while there can be a mismatch with PACs.

(11) a. #Mary accepted the invitation without
hesitation after John may have accepted
it. [from (Haegeman, 2004)]

b. The ferry will be fairly cheap,
while/whereas the plane may/will proba-
bly be too expensive. [from (Haegeman,
2004)]

c. John is worried because he may be ill.

In this paper, a SubConj introducing a CAC is
called a CConj and a SubConj introducing a PAC
is called a PConj. It is important to keep in mind
that, as illustrated in (7b) and (8b), a same Sub-
Conj, depending on its meaning, can alternatively
introduce a CAC or a PAC.

3 Desired Properties of the Model

Before exposing our STAG model, we list in this
section the properties that we want to include.
First, we want our model to be able to account for
the possibilities (with PConjs) and impossibilities
(with CConjs) of syntax-discourse mismatch pre-
sented in section 2.1. Then, as explained in sec-
tion 2.2, the model should allow V-modifiers of a
matrix clause – such as a negation or an adverb – to
scope over a CAC but not over a PAC. Finally, two
other interesting properties are presented in the
following section, related to the scope of AVs and
the meaning of attributing prepositional phrases
(according to NP, in NP’s opinion).

3.1 Scope of AVs

The scope ambiguity for V-modifiers described
in (Haegeman, 2004) seems to also apply to some
S-modifiers such as AVs. A sentence of the form
Sabine thinks A because B can either mean that
it is because of B that Sabine thinks A (narrow
scope) or that Sabine thinks that A, that B and

40

the A-because-of-B relation (wide scope).4 This
generalises well to other CConjs, however things
seem different for PConjs.

There has been a lot of discussion since
Frege (Frege, 1948) about the semantics of a
PConj such as although. Like a presupposition,
the concessive meaning of although can project
through presupposition holes (negation, epistemic
modals, etc.), but it also projects through pre-

supposition plugs such as AVs. Indeed, al-

though is often cited as a conventional implica-

ture trigger since (Grice, 1975), which are char-
acterised in (Potts, 2005) with 4 properties: non-

cancellability, not at-issueness, scopelessness and
speaker-orientedness. From these properties one
can explain many of the observation in (Haege-
man, 2004).5

It is also interesting to remark that there is a
strong interpretation bias associated with PConjs
like although: for instance, out of context, (12a)
seems intuitively to imply that Fred was actually
sick. Yet, saying that the Arg2 of a Concession is
never at-issue (i.e. that it cannot be targeted by any
operator, like the concessive part of the meaning)
would be taking shortcuts. Indeed, (12a) can be fe-
licitously followed by (12b) even though it negates
Arg2. So in such a case, he was sick is under the
semantic scope of Sabine thinks. That is why we
believe such an utterance is ambiguous: the Arg2
may (wide scope) or may not (narrow scope) be
under the semantic scope of the AV; the latter be-
ing a default reading. Note that we do not relate
this difference to a matter of centrality vs. periph-
erality; in both cases the lexicalised relation is the
same speaker-oriented Concession and is not at-
issue.

(12) a. Sabine thinks Fred came to work

although he was sick.

b. But she is wrong, he had recovered sev-
eral days ago.

4We are here implicitly dealing with the causal because,
which introduces a CAC, whereas there also exists a prag-
matic because as in It has rained because the ground is wet.
Such pragmatic DCs are particular in many ways and even
though we believe they introduce PACs, we won’t consider
them in detail here.

5One reviewer points out that although can be embedded
under negation as in Fred didn’t leave ALTHOUGH Lucy ar-
rived, but because of it. We think that in such a case, the sub-
ordinate clause behaves as a central one and that although can
be satisfactorily modelled with an ambiguity between PConj
and CConj.

c. Although he was sick, Sabine thinks Fred

came to work.

Although we lack space to support this
claim, we believe that those properties about at-
issueness, speaker-orientedness and scope ambi-
guity are shared among PConjs. Even if PConjs
are strongly biased towards the narrow scope read-
ing, we still want our model to be able to handle
both interpretations. Furthermore, the difference
between them is not only a semantic one; only
when the AV has narrow scope can the adverbial
clause be anteposed (with no shift in meaning)
as in (12c) – this applies to PConjs and CConjs
equally.

3.2 Attributing Prepositional Phrases

In the context of this paper, we can consider that
an evidential AV such as Sabine thinks is seman-
tically equivalent to an attributing prepositional
phrases (APP) such as according to Sabine (13a).
It might then come as a surprise that APPs can
felicitously be found with CConjs (13b), which
otherwise do not accept evidential AVs. In fact,
the situation is not symmetrical; with a CConj,
the APP does not scope only over Arg2 but also
over the DR lexicalised by the CConj. (13b) is in-
deed semantically equivalent to (13c). We want
our model to predict the correct semantics for sen-
tences including an APP. Note that APPs are ad-
verbials, and thus can also appear in clause-medial
position (13d).6

(13) a. Fred could not come even though, ac-
cording to Sabine, he was really looking

forward to it.

b. Fred could not come because, according
to Sabine, he was not in town.

c. Fred could not come and, according to
Sabine, it is because he was not in town.

d. Fred could not come even though he was,
according to Sabine, really looking for-

ward to it.

4 Our Proposition in STAG

We now turn to STAG and propose new structures
for AVs and SubConjs, in addition to a slight vari-

6We are aware that not all APPs are equivalent in terms of
acceptability. In particular, some of our examples are more
natural if in X’s opinion is substituted for according to X. For
the sake of simplicity, however, we have chosen to only use
this latter expression.

41

ation of traditional phrase structures. These modi-
fications reflect the properties described in the pre-
vious sections.

4.1 AVs and APPs

AVs – as other bridge verbs – are usually mod-
elled in TAG as anchors of auxiliary trees that ad-
join on the S-node of the clause they introduce
(Joshi, 1987). Auxiliary trees for these verbs are
motivated by long distance extractions as in He is

the man Paul believes [...] Ringo said Yoko loves,
where NP believes/said is similar to according to

NP (see Fig. 1 for a model of APPs). However
this equivalence seems unwarranted for intentional
AVs: such a verb describes the state or action (of
believing, of saying, etc.) that is the argument of
the DR, the introduced clause being a central el-
ement of this eventuality but not the eventuality
in itself. Intentional AVs, contrarily to evidential
ones, do not appear as semantic modifier of the
clause they introduce.

S

S*PP

PP

NP↓[1]TO

to

V

according

t

e ↓[1]〈e, t〉

t*〈t, 〈e, t〉〉

saccording to

saccording to = λp s.evid(s, p)

Figure 1: APP: βaccording to (the commas are omitted
for readability)

Therefore, to take into account the two eviden-
tial and intentional uses of AVs, we propose an ini-
tial TAG pair (Fig. 2) in addition to the auxiliary
one traditionally used (Fig. 3). In our model their
semantics is also slightly different: evidential AVs
use predicates – marked here without apostrophe
unlike intentional predicates – that are “erased”
when in a peripheral DR. This is achieved by in-
troducing rewriting rules of the form:

Contrast(p, think(a, q))→ Contrast(p, q)

Conversely, unnatural mismatches can be avoided
by discarding any analysis displaying an evidential
AV predicate as argument of a central DR:

Explanation(p, think(a, q))→ ⊥

Thanks to these rules, our model will be able to
get the correct semantics and to account for the
possibilities and impossibilities of mismatch.

S[4]

VP

S↓[2]V[3]

thinks

NP↓[1]

t[3,4]

e ↓[1]〈e, t〉

t ↓[2]〈t, 〈e, t〉〉

sthink′

sthink′ = λp s.think ′(s, p)

Figure 2: Intentional AV: αthink

S[4]

VP

S*V[3]

thinks

NP↓[1]

t[3,4]

e ↓[1]〈e, t〉

t*〈t, 〈e, t〉〉

sthink

sthink = λp s.think(s, p)

Figure 3: Evidential AV: βthink

4.2 Subordinate Conjunctions

In the same vein, the difference in syntax and
semantics between CACs and PACs can be ex-
plained with different structures for CConjs and
PConjs as in Fig. 4 and Fig. 5.7 The syntax of
all SubConjs is usually modelled homogeneously,
be it with an auxiliary tree as in TAG (XTAG Re-
search Group, 2001) or with an initial one as in D-
LTAG (Webber, 2004), but this is not the case in
our proposition. Because we model PConjs with
a substitution node even for the left argument in-
stead of the adjunction node of CConjs, we can
assure that any modifier of the left argument (such
as a negation) is only local and cannot scope over
the whole Arg1 ∧ Arg2 ∧ R(Arg1,Arg2) proposi-
tion, while this is possible with CConjs.

Also note that the link [3] for CConjs al-
lows APPs such as according to Sabine in (13b)
to scope over both the Arg2 and the DR. With
PConjs, the APP must adjoin on the right argu-
ment, which a priori would also be possible with
CConjs but is in fact excluded by the semantic rule
for evidentials within a central DR (an APP is con-
sidered as evidential). Not all S-modifiers should
be allowed to adjoin on [3], in particular no AVs;
a feature should then be used to restrict link [3] to
natural adjunctions only.

7The presence of the SBAR-node for CConjs is necessary
because of the possibility of cleft sentences (It is because A
that B), which shows that there exists such a constituent. No
cleft sentences are observed with PConjs.

42

S

SBAR

S[3]

S↓[1]

IN

because

S*

t

〈t, t〉

〈t, 〈t, t〉〉

λp q. t

p ∧ t[3]

q ∧ Explanation(p, q)

t*

t ↓[1]

Figure 4: CConj: βbecause

S[3]

S↓[1]IN

although

S↓[2]

t[3]

t ↓[1]〈t, t〉

t[2]〈t, 〈t, t〉〉

salthough

salthough = λp q.(p ∧ q ∧ Concession(p, q))

Figure 5: PConj: αalthough

4.3 Sentence Structures

Following (Nesson and Shieber, 2006), we con-
sider that sentence structures have two differ-
ent adjunction sites in their semantic tree for V-
modifiers (such as negation and adverbs) and S-
modifiers (such as AVs). Because multiple adjunc-
tions on the same node are allowed and are used
to represent various scope ambiguities, doing so
avoids (unnatural) interpretations of a V-modifier
scoping over a S-modifier. However, CConjs are
sentence modifiers like AVs but, as seen in the
previous sections, they do present scope ambigu-
ity when confronted with verbal modifiers such as
negation. This is why, as illustrated in Fig. 6, we
consider adding to sentence structures another ad-
junction site on the S-node (link [3]) whose se-
mantic counterpart is at the same node as verbal
modifiers’ one. We can use features to restrict the
other S-site (link [2]) to AVs and APPs, and con-
versely to force them to adjoin there.

Fig. 7 shows the derivations trees obtained from
the adjunction of a negation (or any verbal modi-
fier) on the matrix clause of a SubConj. Our model
correctly predicts that the negation can have local
or global scope in the case of a CConj, but only
local scope in the case of a PConj.

S[2,3]

VP

ADJ

absent

V[1]

is

NP

Fred

t[2]

t[1,3]

absent(Fred)

Figure 6: A sentence structure; link [2] is re-
stricted to AVs and APPs, other S-modifiers adjoin
at [3].

αA

βbecause

αB

1

βnot

1 3
αalthough

αBαA

βnot

1

2 1

Figure 7: The derivation trees for ¬A CONJ B with
a CConj (left) or a PConj (right). Because in αA

links [1] and [3] are at the same semantic node, the
left tree is a scope neutral representation yielding
one syntactic tree but two semantic ones depend-
ing on the order of the adjunctions.

5 Discussion

5.1 Standard STAG

Tab. 1 shows the derivation trees for sentences of
the form A CONJ Sabine thinks B as in (4). We
lack space to display all the derived trees cor-
responding to this configuration, however Fig. 8
shows the trees obtained with a PConj and an ev-
idential AV (top-right possibility in Tab. 1). The
syntactic trees do not depend on the use (inten-
tional or evidential) of the AV, whereas the seman-
tic trees do, but only in the substitution of the ev-
idential sthink term for the intentional sthink′ one.
This slight difference, in addition to the seman-
tic rules stated earlier, accounts for the correct se-
mantic of these various interpretations and the ex-
clusion of analyses where an evidential AV is an
argument of a CConj. Remains for PConjs, how-
ever, an ambiguity that only the semantics of the
various elements involved can solve.

Tab. 2 shows the derivation trees for sentences
of the form Sabine thinks A CONJ B, that is with
the AV in sentence-initial position as in (12a).
In this configuration, A CONJ B may be an S-
constituent introduced by the AV; the latter is not
then part of the arguments of the relation lexi-
calised by CONJ and is called here “external”.
Note that in this case and without context, the in-

43

Intentional AV Evidential AV

PConj:

αalthough

αSabine thinks

αB

2

αA

2 1

αalthough

αB

βSabine thinks

2

αA

2 1

CConj:

αA

βbecause

αSabine thinks

αB

2

1

3

Table 1: Derivation trees for sentences of the form
A CONJ Sabine thinks B.

S

S

VP

S

B

V

thinks

NP

Sabine

IN

although

S

A

t

t

e

Sabine

〈e, t〉

t

q

〈t, 〈e, t〉〉

sthink

〈t, t〉

t

p

〈t, 〈t, t〉〉

salthough

Generated formula:
p ∧ think(Sabine, q) ∧ Concession(p, q)

Figure 8: Result of the analyse of A although

Sabine thinks B with an evidential AV.

tentional or evidential status of the AV is undeter-
mined; we have chosen to use the traditional βthinks

pair. As before, this configuration presents ambi-
guities that can only be resolved with the help of
the semantics of the particular DR.

Fig. 9 shows the two syntactic trees obtained
in this configuration with the PConj although, de-
pending on the role of the AV (on the top: inten-
tional or evidential; at the bottom: external). Note
that our model analyses the evidential case with
a syntax-discourse mismatch on Arg1. Indeed, in
the top tree Sabine thinks A is the syntactic argu-
ment of although, whereas if the AV is evidential,
only the propositional content of A constitutes the
Arg1 of Concession. This analysis is supported
by the possibility of anteposition of the subordi-

nate clause in intentional and evidential cases il-
lustrated in (12c): the anteposition of although B

appears natural from the top tree and not from the
bottom one.

Intentional or evidential AV:
S

S

B

IN

although

S

VP

S

A

V

thinks

NP

Sabine

External AV:
S

VP

S

S

B

IN

although

S

A

V

thinks

NP

Sabine

Figure 9: Syntactic derived trees for sentences of
the form Sabine thinks A although B. Note that
with although (a PConj), the tree at the bottom
corresponds to a less likely reading that must be
forced by the context.

Finally, Fig. 10 shows the analyses for A CONJ,

according to Sabine, B. Note how the additional
link [3] in CConjs lead to a correct interpretation
of (13b) where the APP scopes over both the DR
and its Arg2 as stated in section 3.2.

αA

βbecause

αBβaccording to Sabine

3 1

3

αalthough

αB

βaccording to Sabine

2

αA

2 1

Figure 10: The derivation trees for A CONJ, ac-

cording to Sabine, B with a CConj (left) or a PConj
(right).

5.2 Towards Multi-Component TAG

We have proposed the link [3] in CConj
(see Fig. 4) in order to handle modifiers such as
APPs that are inserted between a CConj and the
rest of the introduced clause while scoping over
the DR and the Arg2. However, we previously
mentioned that such modifiers can also be found

44

Intentional AV Evidential AV External AV

PConj:

αalthough

αBαSabine thinks

αA

2

2 1

αalthough

αBαA

βSabine thinks

2

2 1
αalthough

αBαAβSabine thinks

3

2

1

CConj:

αSabine thinks

βbecause

αB

1

αA

2 3

αA

βbecause

αB

1

βSabine thinks

2 3

Table 2: Derivation trees for sentences of the form Sabine thinks A CONJ B.

in middle position with the same meaning as il-
lustrated in (13d). This clearly poses a problem
for our current approach, because an APP in mid-
dle position must adjoin on the right argument and
thus cannot scope over the DR itself. It seems we
can overcome this problem with the help of Multi-
Component Tree Adjoining Grammars (MCTAG)
in a fashion similar to what is done for noun
phrases in (Nesson and Shieber, 2007). We won’t
give here a fully detailed MCTAG proposition, but
rather sketch the main aspects of it.

Our idea is that when an S-constituent is the
syntactic argument (be it left or right) of a Sub-
Conj, its modifiers can have a local scope (i.e.
within this constituent), or, in the case of a
CConj, also a wider scope (which depends on
whether the S-constituent is on the left or right
of the CConj). These scope phenomena could
be dealt with homogeneously by considering a
two-component structure for the S-constituents as
shown in Fig. 11. One component provides the
content of the sentence while the other one – a
vestigial (S*, t*) one – would serve the purpose
of “pluging in” the correct node of the SubConj’s
semantic tree for subsequent adjunctions. Links
[1,2] in Fig. 11 are for local scope and links [3,4]
for (possibly) wider scope. Because of this multi-
component structure, we probably don’t need an
adjunction site for the left argument of CConjs
anymore, as they can be modelled with two sub-
stitution sites as shown in Fig. 12.

With such a model, sentences with a CAC con-
taining a clause-initial APP like (13b) could be
analysed as in Fig. 13. The derivation tree for sen-
tences with clause-medial APP would be almost
identical: the APP would adjoin on the link [3] of
αB instead of the link [4].

S[2,4]

VP

ADJ

absent

V[1,3]

is

NP

Fred

t[2]

t[1]

absent(Fred) S* t*[3,4]

Figure 11: A sketch of MCTAG structure for S-
constituents.

S[1,2]

SBAR

S↓[1]IN

because

S↓[2]

t[2]

〈t, t〉

〈t, 〈t, t〉〉

λp q. t

p ∧ t[1]

q ∧ Explanation(p, q)

t ↓[2]

t ↓[1]

Figure 12: A sketch of MCTAG structure for
CConjs.

6 Conclusion

We have first recalled the notion of syntax-
discourse mismatch and related it to the two in-
tentional and evidential uses of AVs. Then, we
have presented the distinction made in (Haege-
man, 2004) between central and peripheral ad-
verbial clauses. Additional syntactic and seman-
tic phenomena were mentioned, which have moti-
vated our STAG model. This model is enriched
with new structures for AVs and SubConjs that
reflect the distinctions and properties previously
highlighted.

Yet, it is still too constrained regarding the rel-
atively free position of attributing prepositional
phrases. This lead us to consider the Multi-

45

S[1,2]

S↓[2] SBAR

IN

because

S↓[1]
S[2,4]

B

S*

S[2,4]

A

S*

S

according to Sabine S*

t[2]

〈t, t〉

〈t, 〈t, t〉〉

λp q. t

p ∧ t[1]

q ∧ Explanation(p, q)

t ↓[2]

t ↓[1]

t[2]

t[1]

B

t*[3,4]

t[2]

t[1]

A

t*[3,4]

t

λp.evid(Sabine, p) t*

αbecause

αB

βaccording to Sabine

4

αA

2 1

Figure 13: MCTAG analysis of sentences with a CAC containing a clause-initial APP like (13a).

Component TAG formalism, which we believe is
more suitable for modelling fine-grained phenom-
ena in discourse. Only a sketch of an MCTAG
model is given here; we plan on developing these
ideas in the future. Furthermore, projection prop-
erties not mentioned here will probably require us
to refine our proposal, before extending our ap-
proach to the other categories of discourse connec-
tives. Among them, adverbials are the most prob-
lematic; their ability to be integrated inside one
of their argument has lead previous TAG-based
accounts – namely D-LTAG (Webber, 2004) and
D-STAG (Danlos, 2009) – to resort to a complex
parsing process with an intermediate step. While
more recent work has been successful in getting
rid of this additional step in an elegant way (Dan-
los et al., 2016), it requires a substantial change in
formalism (the use of Abstract Categorial Gram-

mars (de Groote, 2001)). Further investigation
with MCTAG may confirm whether such a change
is necessary.

References

N. Asher and A. Lascarides. 2003. Logics of Conver-
sation. Cambridge University Press.

N. Asher, J. Hunter, P. Denis, and B. Reese. 2006.
Evidentiality and intensionality: Two uses of repor-
tative constructions in discourse. In Workshop on
Constraints in Discourse Structure, Maynooth, Ire-
land.

L. Danlos, A. Maskharashvili, and S. Pogodalla. 2016.
Interfacing Sentential and Discourse TAG-based
Grammars. To appear in the proceedings of the 12th

International Workshop on Tree Adjoining Gram-
mars and Related FormalismsTAG+12 (TAG+12),
Düsseldorf, Germany., June.

L. Danlos. 2009. D-STAG: a Formalism for Discourse
Analysis based on SDRT and using Synchronous
TAG. In P. de Groote, editor, Proceedings of FG’09.
INRIA.

L. Danlos. 2013. Connecteurs de discours adverbiaux:
Problèmes à l’interface syntaxe-sémantique. Lin-
guisticae Investigationes, 36(2):261–275, Decem-
ber.

P. de Groote. 2001. Towards Abstract Categorial
Grammars. In Proceedings of the 39th Annual Meet-
ing on Association for Computational Linguistics,
ACL ’01, pages 252–259, Stroudsburg, PA, USA.
ACL.

N. Dinesh, A. Lee, E. Miltsakaki, R. Prasad, A. Joshi,
and B. Webber. 2005. Attribution and the (Non-
)Alignment of Syntactic and Discourse Arguments
of Connectives. In Proceedings of the Workshop on
Frontiers in Corpus Annotations II: Pie in the Sky,
pages 29–36, Ann Arbor, Michigan, June. ACL.

G. Frege. 1948. Sense and Reference. The Philosoph-
ical Review, 57(3):209–230.

H. Grice. 1975. Logic and conversation. In P. Cole and
L. Jerry, editors, Syntax and semantics 3: Speech
acts, pages 41–58. Academic Press, San Diego, CA.

L. Haegeman. 2004. The syntax of adverbial clauses
and its consequences for topicalisation. In M. Co-
ene, G. De Cuyper, and Y. D’Hulst, editors, Current
Studies in Comparative Romance Linguistics, num-
ber 107 in APiL, pages 61–90. Antwerp University.

J. Hunter and L. Danlos. 2014. Because We Say
So. In Proceedings of the EACL 2014 Workshop

46

on Computational Approaches to Causality in Lan-
guage, CAtoCL, pages 1–9, Gothenburg, Sweden,
April. ACL.

A. Joshi. 1987. An introduction to Tree Adjoining
Grammars. Mathematics of Language, 1:87–115.

R. Nesson and S. Shieber. 2006. Simpler TAG seman-
tics through synchronization. In Proceedings of FG
2006, pages 129–142, Malaga, Spain.

R. Nesson and S. Shieber. 2007. Extraction Phenom-
ena in Synchronous TAG Syntax and Semantics. In
Proceedings of the NAACL-HLT 2007/AMTA Work-
shop on Syntax and Structure in Statistical Transla-
tion, SSST ’07, pages 9–16, Stroudsburg, PA, USA.
ACL.

C. Potts. 2005. The logic of conventional implicatures.
Oxford University Press Oxford.

R. Prasad, E. Miltsakaki, N. Dinesh, A. Lee, A. Joshi,
L. Robaldo, and B. Webber. 2007. The Penn
Discourse Treebank 2.0 Annotation Manual. IRCS
Technical Reports Series, December.

R. Prasad, A. Joshi, and B. Webber. 2010. Realization
of Discourse Relations by Other Means: Alternative
Lexicalizations. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics,
pages 1023–1031, Beijing, China, August.

T. Scheffler. 2013. Two-dimensional Semantics.
Clausal Adjuncts and Complements. De Gruyter
Mouton, Berlin/Boston.

S. Shieber and Y. Schabes. 1990. Synchronous Tree-
adjoining Grammars. In Proceedings of the 13th
Conference on Computational Linguistics - Volume
3, COLING ’90, pages 253–258, Stroudsburg, PA,
USA. ACL.

B. Webber. 2004. D-LTAG: extending lexicalized
TAG to discourse. Cognitive Science, 28(5):751–
779, September.

XTAG Research Group. 2001. A Lexicalized Tree
Adjoining Grammar for English. Technical Report
IRCS-01-03, IRCS, University of Pennsylvania.

47

Proceedings of the 12th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+12), pages 48–57,
Düsseldorf, Germany, June 29 - July 1, 2016.

Argument linking in LTAG:
A constraint-based implementation with XMG

Laura Kallmeyer and Timm Lichte and Rainer Osswald and Simon Petitjean

University of Düsseldorf, Germany
{kallmeyer,lichte,osswald,petitjean}@phil.hhu.de

Abstract

This paper develops a first systematic
approach to argument linking in LTAG,
building on typologically oriented work in
Van Valin (2005). While Van Valin’s ar-
gument linking mechanism is procedurally
defined, we propose a constraint-based im-
plementation. The advantage is that we
can separate between the linguistic gen-
eralizations to be captured and algorith-
mic considerations. The implementation is
couched into the metagrammar framework
eXtensible MetaGrammar (XMG).

1 Introduction

The syntax-semantics interface of Lexicalized
Tree Adjoining Grammar (LTAG) builds on the as-
sumptions that (i) the elementary tree of a predi-
cate contains slots for the arguments of the predi-
cate, (ii) this elementary tree is paired with a se-
mantic representation with semantic arguments,
(iii) there is a linking between syntactic argument
slots and semantic arguments that makes sure that
the filling of an argument node in the syntax trig-
gers the insertion of a corresponding semantic rep-
resentation into the linked semantic argument po-
sition. This holds for the unification-based ap-
proach from Kallmeyer and Joshi (2003), Gar-
dent and Kallmeyer (2003) and Kallmeyer and
Romero (2008) using predicate logic, for the ap-
proach based on synchronous TAG (Shieber, 1994;
Nesson and Shieber, 2006; Nesson and Shieber,
2008) and also for the frame-based approach of
Kallmeyer and Osswald (2013). However, none of
these approaches has implemented a theory which
explains why only certain patterns of argument
linking are allowed. In Fig. 1, for instance, the
elementary tree for ate is paired with the upper
frame while the lower frame is not grammatical

S

VP[E= 0]

NP[I= 2]V

ate

NP[I= 1]

0

eating

AGENT 1

THEME 2

0

eating

AGENT 2

THEME 1

Figure 1: Simple linking example

in combination with this tree because of the incor-
rect linking. The AGENT has to be contributed by
the subject while the THEME slot is filled via the
object substitution node.

The principles and constraints underlying link-
ing have been extensively investigated (Levin and
Rappaport Hovav, 2005; Wechsler, 2015). Dowty
(1991), for instance, introduces proto-AGENT and
proto-PATIENT as intermediate roles linking syn-
tax to semantics. Van Valin (2005) presents an
elaborated linking algorithm based on the macro-

roles ACTOR and UNDERGOER and on the actor-

undergoer-hierarchy. This algorithm is not fully
formalized, however, and it is formulated in a
procedural way that mixes constraints which ex-
press linguistic generalizations with algorithmic
aspects. The latter point is problematic insofar
as Van Valin’s linking system is intended to be
used both for language understanding and lan-
guage generation. It is thus desirable for a for-
malization and implementation of the system to
keep the principles and constraints separate from
aspects of processing order.

Based on Van Valin’s proposal, this paper pro-
vides a constraint-based implementation of link-
ing principles that captures the systematic relation
between syntactic arguments and semantic roles.
These constraints restrict the set of possible ele-

48

mentary pairs of tree and semantic representation.
In other words, they act on the level of elementary
structures in the grammar and are therefore part
of the metagrammar, together with syntactic tree
fragments and fragments of semantic representa-
tions. This is the part of the grammar that pro-
vides a systematic constraint-based definition of
the set of elementary trees along with the seman-
tic representations they can be paired with (Crabbé
and Duchier, 2004; Duchier et al., 2004). We will
use the metagrammar compiler XMG (Crabbé et
al., 2013; Lichte and Petitjean, 2015) with frames
as semantic representations (Kallmeyer and Oss-
wald, 2013). Since argument linking is indepen-
dent from the choice of the semantic representa-
tion, our analysis could also be applied to an LTAG
syntax-semantics interface using one of the other
frameworks mentioned above.

2 The syntax-semantics interface

We assume familiarity with the basic notions of
LTAG (Joshi and Schabes, 1997; Abeillé and
Rambow, 2000), enriched with syntactic feature
structures in the usual way (Vijay-Shanker and
Joshi, 1988).

Following Kallmeyer and Osswald (2013), we
pair syntactic trees with frame-semantic represen-
tations, which instantiate a slightly extended vari-
ant of typed feature structure. An example is given
in Fig. 2. We use interface features on the syn-
tactic nodes that are responsible for triggering se-
mantic composition (i.e., frame unification) via
the syntactic feature unifications during substitu-
tion and adjunction. These features here are I (for
“individual”) and E (for “event”), whose values are
variables that also occur in the frames. Upon sub-
stituting the elementary tree of John into the sub-
ject NP slot of the elementary tree of ate, the vari-
ables 1 and 3 get equated, hence triggering the
unification of the frame of John with the AGENT

component of the frame of ate.
In the rest of the paper, we will be focusing on

the properties of single elementary entries of verbs
such as ate.

3 Constraints on elementary entries

Given that in LTAG, the set of composition op-
erations is rather small, the actual domain of lin-
guistic theorizing lies mainly in the way elemen-
tary entries like that of ate in Fig. 2 are designed,
or rather constrained. Hence, constraints pertain-

NP[I= 3]

John

3

[

person
]

S

VP[E= 0]

NP[I= 2]V

ate

NP[I= 1]

0

eating

AGENT 1

THEME 2

NP[I= 4]

pizza

4

[

pizza
]

Figure 2: Sample derivation

ing to the tree structure, the frame-semantic rep-
resentation, and the linking among the two make
up an important part of theories expressed within
this framework. These constraints on elemen-
tary structures constitute what is commonly called
a metagrammar, the general outline of which is
shown in Fig.3.

3.1 Constraints on tree structure

The most explicit and systematic proposal to
constrain the shape and structure of elementary
trees was made in works of Robert Frank (1992;
2002).1 Based on the Fundamental TAG Hypothe-
sis (“Every syntactic dependency is expressed lo-
cally within an elementary tree.”), the inner struc-
ture (Condition on Elementary Tree Minimality)
and the number of non-terminal leaf nodes (θ-
Criterion for TAG) are covered, the latter aspect,
of course, being the more relevant here. The θ-
Criterion for TAG states that there is a bijective
mapping between “θ-roles”, i.e. semantic argu-
ments, and non-terminal leaf nodes. This is met,
for example, in the tree of ate based on the shown
eating frame. Yet there is no particular constrain-
ing on what this mapping might look like. In other
words, it is unclear how to prevent the deficient
linking pattern in Fig. 1 from coming into exis-
tence. This is exactly the gap that our contribution
is supposed to fill.

One important remaining issue is the status of
the θ-Criterion for TAG when dealing with se-
mantic frames. In its original formulation, the
θ-Criterion requires the numbers of syntactic and
semantic arguments to be equal, whereas modi-
fiers are neglected. However, in a frame, there is
no principled distinction between arguments and
modifiers anymore – both get represented as or-
dinary functional attributes. Hence, combining

1But see also Abeillé and Rambow (2000).

49

the θ-Criterion, as is, with frame semantics would
have the unwanted effect that modifiers are repre-
sented as nonterminal leaves just like arguments.
This is unwanted because it would increase the
number and size of elementary trees massively,
though not ad infinitum due to the functional na-
ture of frame attributes (therefore being reminis-
cent of the treatment of optional arguments). Pos-
sible remedies could be to apply the θ-Criterion
to descriptions of lexical frames where modifiers
have not yet entered, or to insert a mediating va-
lency layer that helps to abstract away from the full
set of semantic roles (cf. Lichte, 2015). However,
this discussion touches the issue of argument-
modifier distinction more generally, and therefore
should be treated elsewhere.

3.2 Constraints on frame structure

Following Kallmeyer and Osswald (2013), we for-
malize semantic frames as typed feature struc-
tures with base labels and relations. The frame
constraints used in this paper are basically Horn
clauses built from atomic attribute-value descrip-
tions of the form P : a and P

.
=Q, where P and Q

are (possibly empty) feature paths and a is a type
(including ⊤ and ⊥). For example, the constraint
that eating involves an ACTOR and a THEME but no
PATH can be formalized in this logic as follows:

eating ⇒ ACTOR :⊤ ∧ THEME :⊤
eating ∧ PATH :⊤ ⇒ ⊥

3.3 Constraints on argument linking

The linking constraints in the metagrammar ba-
sically combine tree constraints with frame con-
straints. For instance, regarding the elementary
entry of ate in Fig. 2, one such constraint could be
paraphrased as “in an active sentence, the AGENT is
realized as the subject, and the THEME is realized
as the object”. We will learn about a systematic
and typologically oriented linking theory in Sec-
tion 5, which will be the starting point for our im-
plementation in Section 6. The overall structure of
the metagrammar, together with the metagrammar
compiler, is shown in Fig. 3.

4 eXtensible MetaGrammar

The framework of eXtensible MetaGrammar
(XMG, Crabbé et al., 2013) provides description
languages and dedicated compilers for generating
a wide range of linguistic resources.2 Descriptions

2https://sourcesup.cru.fr/xmg/

tree

constraints

frame

constraints

linking

constraints

metagrammar compiler

language-specific

elementary constructions

universal +

language-specific

Figure 3: Metagrammar components

are organized into classes, alluding to the class
concept in object-oriented programming. Simi-
larly, classes have encapsulated name spaces and
inheritance relations may hold between them. The
crucial elements of a class are dimensions. They
can be equipped with specific description lan-
guages and are compiled independently, thereby
enabling the grammar writer to treat the levels of
linguistic information separately.

As our focus is on argument linking, the follow-
ing three class dimensions, which contain the three
different sorts of constraints mentioned in Fig. 3,
are most relevant to us: <syn> holds tree con-
straints that express dominance and precedence re-
lations among nodes. Moreover, the nodes may
carry (untyped) feature structures. <frame>

holds frame descriptions, i.e. descriptions of typed
feature structures. Feature structure constraints,
on the other hand, are specified globally outside
classes. Finally, <iface> is an interface dimen-
sion where (non-typed) feature structures are used
to share information between other dimensions
and classes. This dimension will obviously serve
as a place for expressing linking constraints. The
general structure of a class then looks as follows:
class classname

import someOtherClass[]

export ?someVariable

declare ?someVariable

{
<syn>{ ... };
<frame>{ ... };
<iface> { ... }

}

Note that import, export, and declare be-
have similarly to the corresponding constructs in
object-oriented programming. The operator ; ex-

50

presses the conjunction of contents. One can also
express disjunction with the operator |.

The description language used inside <frame>
is a simple recursive bracket notation with the fol-
lowing ingredients:
?variable1 [

type1, type2 , ... ,

feature2:?variable2,

feature3:?variable3[...]

]

Variables here correspond to the boxed variables
in Fig. 1 and 2 and are optional as well. Also
note that there can be more than one atomic type
specified (making up conjunctive types). Fea-
tures and their values are separated with the colon
(:), and values can be either variables, or feature
structures. See Lichte and Petitjean (2015) for
a detailed definition. The descriptions inside the
<iface> dimension look very similar, the main
difference being that the feature-value separator is
the equal sign (=) for historical reasons. As far as
the description language in <syn> is concerned,
we will ignore it for now and use graphical repre-
sentations in the further presentation.

As mentioned before, feature structure con-
straints (and type constraints), which hold
globally for all frame structures inside the classes,
are specified externally (see, again, Lichte and
Petitjean, 2015). They are constructed in the fol-
lowing way, building on the description language
from (Kallmeyer and Osswald, 2013) as sketched
in Section 3.2:

Constraint ::= Description -> Description

Description ::= type ... type |
feature ... feature:type |
feature ... feature = feature ... feature

-> is the implication operator, feature ...

feature stands for a path in the feature
structure, and feature ... feature =

feature ... feature for a path equation.
The atomic types which can be used in the con-
straints are defined by the user. To this set are
added the predefined types + and −, standing for
⊤ (the most generic type) and ⊥ (the “false” type).

Note that constraints are treated differently in
the compiler: type constraints (with only types on
the left-hand side) are precompiled into a type hi-
erarchy, that is, the constraints on types are used
to compute the set of valid conjunctive types. The
result is a maximal model of the type constraints,
meaning that all combinations of atomic types
which are not explicitly prohibited are authorized.

The remaining set of constraints is checked at run-
time.

Based on a set of constraints, XMG compiles
full models (i.e., trees and frames such as in
Fig. 2), which then enter into parsing. Hence, un-
der this perspective, the metagrammar constraints
act as lexical constraints proper. Note, however,
that metagrammar constraints could also be used
in parsing more directly (de la Clergerie, 2013).

5 Argument linking in Van Valin (2005)

In this section, we describe the core general-
izations on argument linking proposed in Van
Valin (2005), which will serve as a basis for
our constraint-based implementation of argument
linking in elementary trees. The basic idea is to as-
sign the macroroles ACTOR (AC) and UNDERGOER

(UG) to certain semantic arguments, which are
then syntactically realized in a specific way that
depends on the language and the voice type ex-
pressed in the elementary tree, among others. For
the purposes of this paper, we put aside the link-
ing of a possible third, non-macrorole argument,
which is typically realized with oblique case or by
a prepositional phrase.

The relation between semantic roles and macro-
roles is captured in the actor-undergoer hierar-

chy shown in Fig. 4. Since our approach employs
frame-semantic representations, we do not make
use of the positional encoding in logical structures
sketched in the top line of the figure but build di-
rectly on the associated semantic roles. Depend-
ing on its semantic role, an event participant ob-
tains a higher or a lower rank with respect to
the hierarchy. For example, Fig. 4 implies that
a STIMULUS argument gets assigned a lower rank
than an EXPERIENCER argument. (Note that rank 1
is considered the highest rank while rank 4 is the
lowest rank.)

The relation between the actor-undergoer hier-
archy and the macrorole assignment is then as fol-
lows: If a rank 1 argument is present, it is the actor.
If a rank 4 argument is present, it is the undergoer.
A rank 2 argument is the actor if there is no rank
1 argument. A rank 2 argument is the undergoer if
there is a rank 1 argument and no rank 3 or rank 4
undergoer. A rank 3 argument is the undergoer if it
is not the actor and if there is no rank 4 argument.
A rank 3 argument cannot be an actor unless it is
at the same time a rank 1 argument. In this latter
case, it counts as rank 1 in our constraints.

51

UNDERGOERACTOR

Arg. of
DO

1st arg. of
do′(x, . . .)

1st arg.
of P(x,y)

2nd arg.
of P(x,y)

Arg. of
stat. P(x)

AGENT EFFECTOR
MOVER
ST-MOVER
L-EMITTER
S-EMITTER
PERFORMER
CONSUMER
CREATOR
OBSERVER
USER

LOCATION
PERCEIVER
COGNIZER
WANTER
JUDGER
POSSESSOR
EXPERIENCER
EMOTER
ATTRIBUTANT
IDENTIFIED
VARIABLE

THEME
STIMULUS
CONTENT
DESIRE
JUDGMENT
POSSESSED
SENSATION
TARGET
ATTRIBUTE
IDENTITY
VALUE
PERFORMANCE
CONSUMED
CREATION
IMPLEMENT

PATIENT
ENTITY

rank 1 rank 2 rank 3 rank 4

Figure 4: Actor-undergoer hierarchy with seman-
tic roles; adapted from Van Valin (2005, p. 58)

Macrorole assignment is only one of the steps of
the linking algorithm laid out in Van Valin (2005);
the subsequent step is concerned with the morpho-
syntactic realization of arguments based on the
assigned marcroroles. This step is dependent on
the language type and it is also sensitive to voice-
modulation, among others. In the case of English,
for instance, if a transitive verb is anchored to an
active-voice elementary tree, which can be seen
as the default anchoring, then the highest ranking
argument, i.e. the actor, is realized as the privi-

leged syntactic argument, i.e. in subject position,
while the undergoer is realized as the direct ob-
ject. In passive voice, on the other hand, the
undergoer becomes the privileged syntactic argu-
ment while the actor may be optionally realized
by a by-clause. The general observation is that
in languages with an accusative syntactic system
such as German and English, the highest ranking
argument is by default realized as the privileged
syntactic argument. In particular, the macrorole
assignment does not matter for intransitive verbs
(since there is only one argument); the single argu-
ment becomes the privileged syntactic argument,
which receives nominative case in German (1-b).

(1) a. Der
the.NOM

Junge
boy[AC].NOM

zerbrach
broke

den
the.ACC

Teller.
plate[UG].ACC

b. Der
the.NOM

Teller
plate[UG].NOM

zerbrach.
broke

In ergative languages, by contrast, the lowest argu-

ment with respect to the hierarchy is by default se-
lected as the privileged syntactic argument, which
appears in the absolutive case. If the language is
syntactically accusative but morphologically erga-
tive then the highest ranking argument becomes
the privileged syntactic argument while the lowest
ranking argument receives absolutive case. This is
illustrated in the following Warlpiri examples (Van
Valin, 2005, p. 109; taken from Hale 1973): the
actor in (2-a) and the undergoer in (2-b) both re-
ceive absolutive case.

(2) a. Ngaju-∅
1SG[AC]-ABS

ka-rna
PRES-1SG

purla-mi.
shout-NPAST

‘I am shouting.’
b. Ngaju-rlu

1SG[AC]-ERG

ka-rna-∅
PRES-1SG-3SG

wawiri-∅
kangaroo[UG]-ABS

pura-mi.
cook-NPAST

‘I am cooking the kangaroo.’

As mentioned at the beginning of this section,
the linking rules just sketched capture only the
very core of Van Valin’s system, namely the case
of intransitive and simple transitive verbs where
all arguments are macrorole arguments. In addi-
tion, the lexicon may contain verbs with two argu-
ments of which only one is a macrorole argument,
which means that the other argument is realized
by an oblique case or a prepositional phrase ac-
cording to certain rules. Similarly, there are rules,
which are partly language-specific, for assigning
dative, instrumental or another oblique case to the
non-macrorole argument of verbs with three argu-
ments. Moreover, these verbs often permit vari-
able undergoer choice, which is then reflected in
alternations such as the dative and the locative al-
ternation. Finally, languages differ with respect
to whether the privileged syntactic argument of a
construction is restricted to macrorole arguments
(as in German or Italian), or whether also non-
macrorole arguments can serve as the privileged
syntactic argument (as, e.g., in Icelandic). While
the implementation presented in the following is
restricted to the basic linking of macroroles de-
scribed above, the long-term goal is to succes-
sively extend the implementation towards a full
coverage of Van Valin’s linking system.

52

6 Constraint-based implementation of

Van Valin (2005)

6.1 Universal constraints on semantic frames

As a first element of our linking system, we de-
fine universal constraints on semantic roles and on
macroroles. Macroroles are taken to be attributes
in our semantic frames, just like semantic roles.

A selection of these constraints is given in
Fig. 5. The constraints are notated with the
XMG syntax. They correspond to formulas in the
frame logic introduced in Kallmeyer and Osswald
(2013), the last constraint in Fig. 5 for instance
corresponds to change-of-state ⇒ PATIENT

.
=

RESULT PATIENT in this logic. The first two con-
straints express the fact that rank 1 arguments (=
EFFECTOR) are actors while rank 4 arguments are
undergoers. The next two constraints are two of
many constraints on hierarchical relations between
roles. The roles listed in Fig. 4 under a specific
rank, for instance rank 2, are hierarchically or-
dered. The last three constraints in this list are
constraints for lifting semantic roles from the re-
cursive structure of an event to a higher level. Take
for instance the frame at the top of Fig. 6 for a
smashing event, which is analyzed as a causation
involving an activity as the causing event. The
5th constraint in Fig. 5 tells us that in a causa-

tion event, the EFFECTOR of the embedded CAUSE

is also the EFFECTOR of the entire causation.
To support these constraints, XMG’s frame di-

mension has been extended, compared to Lichte
and Petitjean (2015), such that it allows not only
single attributes but also sequences of attributes on
the left-hand sides of the φ1->φ2 implications.

The example in Fig. 6 shows how these con-
straints enrich the frame structure by adding new
attributes to it. At the top, we have the frame rep-
resenting lexical semantics of smash. A smashing
event is a causation where an effector performs
some activity and, as a result of this, a patient
changes its state into the state of being smashed.
The second frame in Fig. 6 shows the enriched
frame we obtain when applying the constraints
from Fig. 5 to this first frame.

6.2 Semantic argument classes

The universal constraints introduced so far take
care of the fact that rank 1 arguments are actors
and rank 4 arguments are undergoers. But for rank
2 and rank 3 arguments, macrorole assignment is
more complicated. In the following, we introduce

0

causation

CAUSE

[

activity

EFFECTOR 1

]

EFFECT

change-of-state

PATIENT 2

RESULT

[

smashed-state
]

Applying the constraints from Fig. 5 yields

0

causation

EFFECTOR 1

ACTOR 1

PATIENT 2

UNDERGOER 2

CAUSE

activity

EFFECTOR 1

ACTOR 1

EFFECT

change-of-state

PATIENT 2

UNDERGOER 2

RESULT

smashed-state

PATIENT 2

UNDERGOER 2

Figure 6: Frame for smashing

XMG classes for these arguments and for the dif-
ferent ways of linking them to the macroroles. In
contrast to the universal constraints, these classes
describe possible frame fragments, i.e., they are
used as being existentially quantified whenever
they are integrated into some class that gets com-
piled in the MG. Fig. 7 gives the classes for the
arguments with a disjunction of the possible se-
mantic roles. In all the XMG classes given in this
section, ?e and ?x are XMG variables that are al-
ways exported.

Concerning macrorole assignment, we have to
make sure that for combinations of these argu-
ments, macroroles are assigned in accordance with
the constraints stated above. To this end, we use
interface features. Interface features are a spe-
cial dimension in our XMG classes, the <iface>
dimension. They form an untyped non-recursive
feature structure. When combining two classes,
the interface features have to unify. In other words,
their values (where specified) have to be equal.
For our purposes, we need the following link-
ing interface features: A feature highest-rank
that gives the highest rank in the combination of
arguments, and boolean features und-lower2

and und-lower3 that indicate whether there
is an undergoer of rank lower than 2 (resp. 3).

53

constraint explanation
effector:+ -> effector=actor if an effector exists, then it is the actor

patient:+ -> patient=undergoer a patient is always an undergoer

mover:+ -> mover=effector a mover is always an effector

emoter:+ -> emoter=experiencer an emoter is always an experiencer

cause effector:+ ->

cause effector=effector

if the cause of a causation has an effector, then
this is also the effector of the entire causation

effect patient:+ ->

effect patient=patient

if the effect of a causation has a patient, this is
also the patient of the causation event

change-of-state ->

patient=result patient

the patient of a change-of-state is the patient of
the embedded result state

Figure 5: Universal constraints for semantic roles and macroroles

class argRank1

<frame>{?e[event, effector:?x] |

?e[event, mover:?x] |

?e[event, st-mover:?x] | ...}

class argRank2

<frame>{?e[event, location:?x] |

?e[event, perceiver:?x] | ...}

class argRank3

<frame>{?e[event, theme:?x] |

?e[event, stimulus:?x] | ...}

class argRank4

<frame>{?e[event, patient:?x] |

?e[event, entity:?x] }

Figure 7: XMG classes for rank i arguments

These features are needed for macrorole assign-
ment. In addition, we also need the following in-
terface features for linking the resulting semantic
frame with a syntactic tree: features ranki that
give the frame node of the argument with rank i,
if it is present, and features highest-arg and
lowest-arg where highest-arg gives the
frame node of the argument with the highest rank
while lowest-arg gives the one with the low-
est rank provided there exists a higher ranked ar-
gument.

As a further step of factorizing possible argu-
ment realizations in the metagrammar, for each
rank, we then introduce new classes for argu-
ments of this rank a) being an actor, b) be-
ing an undergoer, c) without macrorole and d)
not realized (if applicable). Fig. 8 gives these
classes for rank 2, where all four cases are pos-
sible. For each possibility, the interface features
are set accordingly. For instance, if a rank 2
argument is an undergoer (see the second class
in Fig. 8), there has to be a higher argument

class Rank2_actor

import argRank2[]

<frame>{?e[event, actor:?x]};
<iface>{[highest-rank=r2,highest-arg=?x,

rank2=?x]}

class Rank2_undergoer

import argRank2[]

<frame>{?e[event,undergoer:?x]};
<iface>{[highest-rank=r1,rank2=?x,

und-lower2=false,lowest-arg=?x]}

class Rank2_no_macrorole

import argRank2[]

<iface>{[highest-rank=r1,
und-lower2=true,rank2=?x]}

class Rank2_no_arg

<frame>{?e[event]}

Figure 8: Rank-specific XMG classes for the dif-
ferent macrorole assignments: classes for rank 2

(highest-rank=r1) and there cannot be any
other lower undergoer (und-lower2=false,
und-lower3=false).

The classes for rank 3 arguments are given in
Fig. 9. Such an argument can either be the un-
dergoer (no rank 4 argument is present) or with-
out macrorole (there is a rank 4 argument) or not
realized. In the latter case, captured in the class
class Rank3 no arg, the interface features
state that either there is no undergoer lower than
rank 2, which allows for combinations with the
first two rank 2 classes in Fig. 8. Or there is a rank
4 undergoer. In this case, a rank 2 undergoer is ex-
cluded via the assignment und-lower2=true.

Finally, for each rank i, we have a class Ranki
that is just a disjunction of the different possibili-
ties captured in the Ranki ... classes, and, fur-
thermore, there is a general class event that com-

54

class Rank3_undergoer

import argRank3[]

{<frame>{?e0[event, undergoer:?x]};
<iface>{[und-lower3=false,

und-lower2=true, rank3=?x,

lowest-rank=r3, lowest-arg=?x]}}

class Rank3_no_macrorole

import argRank3[]

{<iface>{[und-lower3=true, rank3=?x]}}

class Rank3_no_arg

<frame>{?e[event]};
{<iface>{[und-lower2=false]} |

<iface>{[und-lower2=true,
und-lower3=true]}}

Figure 9: Classes for different macrorole assign-
ments for arguments of rank 3

bines these Ranki classes (see Fig. 10).

class Rank2

{?arg=Rank2_actor[] |

?arg=Rank2_no_arg[] |

?arg=Rank2_undergoer[] |

?arg=Rank2_no_macrorole[]};
?e=?arg.?e

class event

import Rank1[] Rank2[] Rank3[] Rank4[]

Figure 10: XMG classes Rank2 and event

XMG compiles the class event into all pos-
sible semantic role combinations while comput-
ing the correct macrorole assignments, creating
thereby all possible event frames.

6.3 Linking syntax and semantics

The part of the MG described in the previous two
sections is language-independent. Depending on
the language, the arguments with the highest and
the lowest rank are realized differently in the syn-
tax (see section 5). In the following, we will only
introduce the XMG classes for syntax-semantics
linking for English.

Recall that the interface feature
highest-arg gives the argument with the
highest rank and that lowest-arg gives the
one with the lowest, provided there is a higher
one. Besides these two, we also use the interface
features ranki for linking.

A simplified version of the syntactic XMG
classes implemented for English is given in
Fig. 11. The two classes for subject and object
combine into the class n0Vn1 for transitive verbs.
Note that in our actual implementation, Subject
if further decomposed and, furthermore, a range of

class Subject

<syn>{ S

VP[I=?e]

V[VOICE=?Voice]

NP[I=?arg1]

};
{{?Voice=active;
<iface>{[highest-arg=?arg1]}} |

{?Voice=passive;
<iface>{[lowest-arg=?arg1]}}}

class Object

<syn>{ VP[I=?e]

NP[I=?arg2]V };
{<iface>{[rank2=?arg2]} |

<iface>{[rank3=?arg2]} |

<iface>{[rank4=?arg2]}}

class n0Vn1

import Subject[] Object[] event[]

Figure 11: Language-specific XMG classes for
English (simplified)

additional boolean interface features is used in or-
der to constrain the combinations of arguments of
different ranks in the two syntactic argument slots.
The Subject class expresses that in active sen-
tences, the highest-arg fills the subject slot
while in passive sentences, this slot is filled by
the lowest-arg. Further boolean interface fea-
tures check that in these cases, highest-arg
and lowest-arg are actually given.

When limiting the semantic argument classes
argRanki to just one single semantic role, the
XMG compiler yields 16 different frames when
compiling the class event (each argument rank
can be present or absent and the rank combination
determines the macrorole assignments) and a to-
tal of 25 tree frame pairs when compiling n0Vn1,
which corresponds to the correct 25 linking pat-
terns that we expect here: In active sentences, ei-
ther a) the subject is of rank 1, then there are 3
possible object ranks and the other two ranks can
be each present or absent in the frame or b) the
subject is of rank 2, then the object has rank 3
or 4 and the rank among {3, 4} that is not ob-
ject can be present or not in the frame or c) the
subject has rank 3 and the object rank 4. In pas-
sive sentences, either a) the subject is of rank 4,
then the object can be 3 or 2 and the remaining
two ranks can be present or absent in the frame,
or b) the subject is of rank 3, the object of rank 2
and rank 1 is present or absent in the frame. Fur-

55

thermore, a rank 2 argument requires a rank 3 ar-
gument that could, however, be promoted to the
rank 1. The implementation yields a total of 23
linking patterns. Note that this simplified imple-
mentation of n0Vn1 leaves out a lot of possibil-
ities for argument realizations. It considers only
the case of canonical subject and object positions
and does not take the possibility into account that
the highest argument in passive constructions can
be realized as a by-PP. All these other cases would
of course lead to more tree frame pairs.

Our analysis allows for tree frame pairs where
only some of the arguments listed in the frame
have corresponding syntactic slots. In other
words, we implement a relaxation of the θ-
criterion for LTAG mentioned in section 3 that re-
quires that each syntactic argument slot in the el-
ementary tree of a predicate corresponds to a se-
mantic argument slot in the frame but not nec-
essarily vice versa. To what extend the stronger
version of the θ-criterion, requiring a bijection be-
tween syntactic and semantic arguments, should
be applied, is an open question (see section 7).

6.4 Lexical insertion

When combining a lexical item, for instance
smashed paired with the frame from Fig. 6, with
an unanchored class such as n0Vn1, the two event
frames unify. Due to our relaxed implementation
of the θ-criterion, this unification can enrich the
lexical frame with further semantic roles and there
might even be roles coming from the lexical ele-
ment that do not have a corresponding syntactic
argument slot. Sometimes this might be desired.
The semantics of walk for instance does not nec-
essarily contain a GOAL component. Such a com-
ponent can however be added by a directed-motion
construction as in (3).

(3) John walked into the house.

One way to prevent additional roles from being
added is to constrain the frame via the interface
features. We have implemented this for the ex-
ample of smash to the effect that when anchoring
our n0Vn1 class with the lemma smash, we ob-
tain only the elementary tree frame pair where we
have active voice, the EFFECTOR linked to the sub-
ject and the PATIENT linked to the object.

7 Conclusion

We proposed a constraint-based formulation of the
principles underlying the linking algorithm from
Van Valin (2005), instead of a procedural speci-
fication. The advantage is not only that we can
separate between the linguistic generalizations to
be captured and algorithmic considerations. There
is also a straightforward way to implement this
with XMG and, within this metagrammar frame-
work, to connect it with existing implementations
of LTAG, allowing for a neat separation between
language-specific and language-independent link-
ing constraints. From a less technical perspective,
the presented work can be seen as the first attempt
to fill an important gap in the theory of the shape
of elementary entries that Frank’s θ-Criterion left
open.

Acknowledgments

We thank the three anonymous reviewers for help-
ful comments. The work presented in this paper
was financed by the Deutsche Forschungsgemein-
schaft (DFG) within the CRC 991.

References

Anne Abeillé and Owen Rambow. 2000. Tree Ad-
joining Grammar: An Overview. In Anne Abeillé
and Owen Rambow, editors, Tree Adjoining Gram-
mars: Formalisms, Linguistic Analysis and Process-
ing, pages 1–68. CSLI.

Benoit Crabbé and Denys Duchier. 2004. Metagram-
mar Redux. In International Workshop on Con-
straint Solving and Language Processing, Copen-
hagen.

Benoit Crabbé, Denys Duchier, Claire Gardent, Joseph
Le Roux, and Yannick Parmentier. 2013. XMG:
eXtensible MetaGrammar. Computational Linguis-
tics, 39(3):1–66.

Éric Villemonte de la Clergerie. 2013. Exploring
beam-based shift-reduce dependency parsing with
DyALog: Results from the SPMRL 2013 shared
task. In 4th Workshop on Statistical Parsing of Mor-
phologically Rich Languages (SPMRL’2013), Seat-
tle.

David Dowty. 1991. Thematic proto-roles and argu-
ment selection. Language, 67(3):547–619.

D. Duchier, J. Le Roux, and Y. Parmentier. 2004. The
Metagrammar Compiler: an NLP application with
a Multi-Paradigm Architecture. In Proceedings of
the 2nd international Mozart-Oz Conference MOZ
2004, Lecture Notes in Computer Science, Vol. 3389,
Springer, Charleroi, Belgium.

56

Robert Frank. 1992. Syntactic Locality and Tree Ad-
joining Grammar: Grammatical, Acquisition and
Processing Perspectives. Ph.D. thesis, University of
Pennsylvania.

Robert Frank. 2002. Phrase Structure Composi-
tion and Syntactic Dependencies. MIT Press, Cam-
bridge, Mass.

Claire Gardent and Laura Kallmeyer. 2003. Seman-
tic Construction in FTAG. In Proceedings of EACL
2003, pages 123–130, Budapest.

Aravind K. Joshi and Yves Schabes. 1997. Tree-
Adjoning Grammars. In G. Rozenberg and A. Salo-
maa, editors, Handbook of Formal Languages, pages
69–123. Springer, Berlin.

Laura Kallmeyer and Aravind K. Joshi. 2003. Factor-
ing Predicate Argument and Scope Semantics: Un-
derspecified Semantics with LTAG. Research on
Language and Computation, 1(1–2):3–58.

Laura Kallmeyer and Rainer Osswald. 2013. Syntax-
driven semantic frame composition in Lexicalized
Tree Adjoining Grammar. Journal of Language
Modelling, 1:267–330.

Laura Kallmeyer and Maribel Romero. 2008. Scope
and situation binding in LTAG using semantic uni-
fication. Research on Language and Computation,
6(1):3–52.

Beth Levin and Malka Rappaport Hovav. 2005. Ar-
gument Realization. Cambridge University Press,
Cambridge.

Timm Lichte and Simon Petitjean. 2015. Implement-
ing semantic frames as typed feature structures with
XMG. Journal of Language Modelling, 3(1):185–
228.

Timm Lichte. 2015. Syntax und Valenz. Zur Mod-
ellierung kohärenter und elliptischer Strukturen mit
Baumadjunktionsgrammatiken. Number 1 in Empir-
ically Oriented Theoretical Morphology and Syntax.
Language Science Press, Berlin.

Rebecca Nesson and Stuart M. Shieber. 2006. Simpler
TAG semantics through synchronization. In Pro-
ceedings of the 11th Conference on Formal Gram-
mar, Malaga, Spain, 29–30 July.

Rebecca Nesson and Stuart M. Shieber. 2008. Syn-
chronous vector tag for syntax and semantics: Con-
trol verbs, relative clauses, and inverse linking. In
Proceedings of the Ninth International Workshop on
Tree Adjoining Grammars and Related Formalisms
(TAG+ 9), Tübingen, Germany.

Stuart M. Shieber. 1994. Restricting the weak-
generative capacity of synchronous Tree-Adjoining
Grammars. Computational Intelligence, 10(4):271–
385.

Robert D. Van Valin, Jr. 2005. Exploring the Syntax-
Semantics Interface. Cambridge University Press.

K. Vijay-Shanker and Aravind K. Joshi. 1988. Feature
structures based tree adjoining grammar. In Pro-
ceedings of COLING, pages 714–719, Budapest.

Stephen Wechsler. 2015. Word Meaning and Syntax.
Oxford Surveys in Syntax and Morphology. Oxford
University Press, Oxford.

57

Proceedings of the 12th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+12), pages 58–66,
Düsseldorf, Germany, June 29 - July 1, 2016.

Verbal fields in Hungarian simple sentences and
infinitival clausal complements

Kata Balogh

DFG Collaborative Research Centre 991
Heinrich-Heine-Universität Düsseldorf

Katalin.Balogh@hhu.de

The paper presents an analysis of Hungarian
sentence articulation driven by discourse-semantic
functions such as topic and focus, hence the in-
formation structure of the utterance. In this pa-
per extensions of the standard LTAG framework
are proposed to represent the information structure
driven positions in simple sentences. The elemen-
tary trees are generated by the meta-grammar, us-
ing the XMG tool for grammar writing. The ver-
bal fields will also be investigated in complex sen-
tences with infinitival clausal complements. I will
discuss challenging phenomena, such as scram-
bling of the different verbal fields, and verbal mod-
ifier climbing.

1 Introduction

The core topic of this paper is the analysis of
the verbal fields in Hungarian simple sentences
and infinitival clausal complements. Hungarian is
challenging for computational linguistic applica-
tions, given its flexible word order and discourse
configurational type, where syntactic positions are
not driven by grammatical functions, but rather by
discourse-semantic functions such as topic and fo-

cus. In this paper I propose an analysis in Lexical-
ized Tree-Adjoining Grammar [LTAG; (Joshi and
Schabes, 1997)] with an extension to the represen-
tation of information structure, the driving device
for sentence articulation in Hungarian. The ele-
mentary trees are generated by the meta-grammar,
using the eXtensible MetaGrammar tool [XMG;
(Crabbé et al., 2013)].

Next to simple sentences, the paper also
presents the proposal of an analysis of complex
sentences with infinitival clausal components. The
analysis of Hungarian infinitival clauses faces a
list of interesting issues, regardless of the given
framework. In the analysis we need to capture
the fact that the embedded infinitival clause has

its own verbal fields and that the arguments of the
matrix verb and the embedded infinitival can be
mixed. The analysis of infinitival clausal comple-
ments is challenging for standard LTAG, since it
cannot handle discontinuity and scrambling phe-
nomena (Becker and Rambow, 1990; Becker et al.,
1991), caused by the mixing of the arguments in
different verbal fields. This paper proposes some
modifications in order to capture these phenom-
ena: (i) using multi-component TAG [MCTAG]
(Weir, 1988; Nesson et al., 2010), and (ii) extend-
ing the feature sets to represent stress-positions.

1.1 LTAG in a nutshell

Tree-Adjoining Grammar (TAG) is a tree-
rewriting formalism, where the elementary struc-
tures are trees. A TAG is a set of elementary trees

with two combinatorial operations: substitution

and adjunction. The set of elementary trees is the
union of a finite set of initial trees and auxiliary

trees. A derivation in TAG starts with an initial
tree (α) and proceeds by using either of the two
operations. By substitution a non-terminal leaf
node is replaced by an initial tree (β), while by
adjunction an internal node is replaced by an aux-
iliary tree (γ).

α: Y

XZ

β: Z γ: X

X∗

substitute β to α: Y

XZ

adjoin γ to α: Y

X

X

Z

Figure 1: Substitution and adjunction

In a Lexicalized TAG [LTAG] each elementary
tree contains at least one lexical element, its lexi-

cal anchor (⋄). To increase the expressive power

58

of the formalism, adjunction constraints are ad-
ditionally introduced to restrict whether adjunc-
tion is mandatory and/or which trees can be ad-
joined at a given node. In particular for natu-
ral language analyses another extension of TAG is
proposed, using feature structures as non-terminal
nodes. Among the reasons for a Feature-based
TAG [F-TAG] two important ones are generaliz-
ing agreement and case marking via underspecifi-
cation. A great advantage of F-TAG with respect
to grammar writing is the result of smaller gram-
mars that are easier to maintain, as well as the pos-
sibility of modeling adjunction constraints. The
shape of the elementary trees is driven by linguis-
tic principles (Abeillé and Rambow, 2000; Frank,
2002), reflecting the syntactic/semantic properties
of linguistic objects. Syntactic design principles
determine, for example, that subcategorization is
expressed locally within the elementary tree of the
predicate. In the grammar architecture tree fami-

lies are defined, sets of tree templates representing
a subcategorization frame and collecting all syn-
tactic configurations the subcategorization frame
can be realized in.

2 Verbal fields in simple sentences

With respect to information structure, Hungarian
sentence structure distinguishes two fields: the
postverbal and the preverbal field (see e.g. É.
Kiss, 2005). The postverbal field by default hosts
the ‘argument positions’ the order of which is free:
the word order variations do not signal grammat-
ical roles and are associated with the same se-
mantic content. The preverbal field hosts the so-
called ‘functional projections’, the order of which
is fixed. Sentence initially we find the topic(s), fol-
lowed by quantifier(s) and the narrow focus, which
is placed in the immediate preverbal position:1

Topic* < Quantifier* < Focus < Verb [...]

A designated syntactic position immediately
preceding the verb is important in Hungarian for
several reasons. This position hosts narrow fo-
cus, sentential negation, the verbal modifier (ver-
bal particles, bare nouns, infinitives etc.), partially
in complementary distribution. In ‘neutral sen-
tences’ – utterances without narrow focus or sen-
tential negation –, the immediate preverbal posi-
tion is occupied by the verbal modifier (VM) as il-

1Next to topic, focus and quantifiers, the preverbal field
also hosts sentential negation, optative operators (bárcsak ‘if
only’) and interrogative operators.

lustrated in (1a). When the sentence contains sen-
tential negation (1b) or narrow focus (1c) the VM
stands postverbally.

(1) a. Pim
Pim

meg-hívta
VM-invited

Marit.
Mary.acc

‘Pim invited Mary.’

b. Pim
Pim

nem
neg

hívta
invited

meg
VM

Marit.
Mary.acc

‘Pim did not invite Mary.’

c. Pim
Pim

MARIT

Mary.acc
hívta
invited

meg.
VM

‘It is Mary whom Pim invited.’

The verbal modifier is in complementary distri-
bution with both the narrow focus and the senten-
tial negation. However, narrow focus and negation
can co-occur; see (2).

(2) Pim
Pim

MARIT

Mary.acc
nem
neg

hívta
invited

meg.
VM

‘It is Mary whom Pim did not invite.’

The position of the VM depends on whether
narrow focus or sentential negation is present in
the sentence. The narrow focus and sentential
negation must stand in the immediate preverbal
position, forcing the VM to appear postverbally.

2.1 Functional positions

In Hungarian, sentence articulation is driven by
discourse semantics rather than by grammatical
function. Instead of defining structural positions
for grammatical functions (e.g. subject) we need
to define structural positions for topic and focus.
Accordingly, the elementary trees in a given tree
family need to encode the possible topic/focus
structures. In the following, I will illustrate the
system via the transitive tree family with two
NP arguments. Both arguments can be either in
postverbal position, in topic position and in fo-
cus position. Hence, the tree family of transi-
tive verbs must contain the elementary trees for all
structures: VP-NP-NP, NPtop-VP-NP, NPfoc-VP-
NP, NPtop-NPtop-VP, NPtop-NPfoc-VP. Instead of
merely listing the structures, the XMG tool is used
to generate the set of elementary trees, so that
generalizations on positions can also be expressed
(see section 3).

2.2 Representing information structure

The representation of information structure comes
on a par with the elementary tree, following the
proposals by (Kallmeyer and Romero, 2008) and

59

(Kallmeyer and Osswald, 2012). Each elementary
tree is linked to a frame-based semantic represen-
tation. The syntactic operations (substitution and
adjunction) trigger the unification of the semantic
representations, thereby deriving the meaning rep-
resentation of the sentence. Next to the meaning
representation, the representation of the informa-
tion structure is proposed, mediated by the meta-
variables on the nodes.

The notion of information structure [InfS] cov-
ers a wide range of phenomena such as topic, com-
ment, focus, background, given, new, contrast etc.
The central aim in the current analysis is to rep-
resent InfS in a way that we can derive the basic
focus structures: sentence focus, predicate focus

and narrow focus. These structures are nicely re-
flected in the Hungarian sentence articulation by
the structural distinction of the topic of the sen-
tence and the comment, which we take as the focus

domain. The focus domain is either as a whole the
focus of the sentence (predicate focus) or it con-
tains narrow focus.

(3) a. Q: What happened?

A: Meg-hívta
VM-invited

Pim
Pim

Marit.
Mary.acc

‘[Pim invited Mary.]F ’→ sentence focus

b. Q: What did Pim do?

A: Pim
Pim

meg-hívta
VM-invited

Marit.
Mary.acc

‘Pim [invited Mary.]F ’→ predicate focus

c. Q: Whom did Pim invite?

A: Pim
Pim

MARIT

Mary.acc
hívta
invited

meg.
VM

A′: MARIT

Mary.acc
hívta
invited

meg
VM

Pim.
Pim

‘Pim invited [Mary]F .’ → narrow focus

In the elementary tree of the predicate, the fea-
ture INFS indicates the positions related to infor-
mation structure. The values topic and focus in-
dicate the positions for the sentence topic and the
narrow focus respectively, while the value pred in-
dicates the syntactic predicate.

Each elementary tree is linked to a representa-
tion of the information structure, uniformly given
as an attribute-value matrix. The attributes TOP

(topic) and FOC-DOM (focus domain) represent
the topic–comment distinction. The focus domain
can be further divided into FOC (indicating narrow
focus) and NON-FOC (non-focus part of the fo-

cus domain).2 The background part in the focus–

background distinction can be derived as the uni-
fication of the NON-FOC and the TOP values.

VP[P= 0]
[infs=pred]

NP↓[I=
2]

[acc]NP↓[I=
1]

[nom]V

hívta

VM

meg

[

info-struct

FOC-DOM 0

]

Figure 2: Elementary tree of meg-hívta for sentence focus

Figure 2 illustrates the elementary tree of the
verb meg-hívta (‘invited’) for structures with sen-
tence focus (3a). The resulting InfS representa-
tion signals the whole predication (P= 0) being the
focus-domain, and since it is not divided further, it
represents sentence focus.

VP[P= 0]
[infs=top]

VP[P= 3]
[infs=pred]

NP↓[I=
2]

[acc]V

hívta

VM

meg

NP↓[I=
1]

[nom]

info-struct

TOP 1

FOC-DOM 3

Figure 3: Elementary tree of meg-hívta for predicate focus

Figure 3 shows the elementary tree for predi-
cate focus structure (3b). The InfS representation
signals the syntactic predicate (P= 3) as the focus-
domain, while the element occupying the topic po-
sition (I= 1) is represented as the sentence topic.

info-struct

TOP 1

FOC-DOM 3

[

FOC 2

NON-FOC 4

]

VP[P= 0]
[infs=top]

VP[P= 3]
[infs=foc]

VP[P= 4]
[infs=pred]

VM

meg

V

hívta

NP↓[I=
2]

[acc]

NP↓[I=
1]

[nom]

Figure 4: Elementary tree of hívta meg for narrow focus

Figure 4 illustrates the elementary tree of the
verb for a construction containing both a topic and

2The notions of focus domain and non-focus are inspired
by (Van Valin Jr., 2005).

60

a narrow focus (3c-A). The focus domain is di-
vided into the narrow focus (FOC) and the non-
focus, that contributes to the background.

The different information structures can be fur-
ther mapped to the information status of the given
elements, in terms of givenness. The representa-
tions of different topic/focus structures and their
relation to the discourse is under investigation and
will be presented in a later stage of the analysis.

3 Topic and focus positions

As already noted above, the tree families of the
verbs must contain all possible structures reflect-
ing the information structure of the utterance. The
arguments of the verbs can occupy three structural
positions, resulting in various structures. For ex-
ample, transitive verbs must have two argument
slots, each with three possibilities. Instead of
merely listing these structures, the XMG tool is
used to generate the set of elementary trees, so that
generalizations can also be expressed.

3.1 XMG in a nutshell

An LTAG grammar is a set of elementary trees
which contain most linguistic information. How-
ever, this set contains identical tree fragments,
leading to multiple structure sharing. The XMG
tool provides the elementary trees for a given
grammar, such that it factors out redundant parts
of a given tree set by identifying identical tree
fragments in the set of elementary trees. An ad-
ditional abstraction level is introduced, the meta-

grammar, where generalizations can be expressed.
The meta-grammar is a declarative system that
combines re-usable tree fragments – classes – by
conjunction and disjunction.
Class ::= Name → Content

Content ::=

Descr | Name |

Content ∧ Content | Content ∨ Content

Descr ::=

ni → nj | ni →
+ nj | ni →

∗ nj | ni ≺ nj |

ni ≺
+ nj | ni ≺

∗ nj | ni[f1 : v1, ..., fn : vn] |

ni(c1 : cv1, ..., cfn : cvn) | Descr ∧ Descr

The content of a class can be either a simple
tree fragment or a conjunction / disjunction of
two tree fragments. In the description of a tree
fragment the dominance→ and precedence ≺ re-
lations of the nodes are given, where →+ and
≺+ stand for their transitive closure and →∗ and
≺∗ for their transitive, reflexive closure. At each
node we refer to the features associated with it

by ni[f1 : v1, ..., fn : vn] and each node can be
marked for substitution, footnode, anchor, etc. by
ni(c1 : cv1, ..., cfn : cvn).

class CanSubj

declare ?S ?VP ?NP

{<syn>{

node ?S (color=black) [cat=s] ;

node ?NP (color=black,mark=subst) [cat=np] ;

node ?VP (color=white) [cat=vp] ;

?S -> ?NP ; ?S -> ?VP ; ?NP » ?VP } }

Figure 5: Tree description of the class of canonical subject
in English

Tree fragments can be combined by conjunction
and disjunction resulting in tree templates, e.g.:

Subject → CanSubject ∨ WhNpSubject

Object → CanObject ∨ WhNpObject

In the combination of the tree fragments nodes
get unified. Node equations are carried out by
node polarization: annotating the nodes with col-
ors (e.g. color = black), which declare implic-
itly how a given node can be unified with others.
This method is based on a color matrix, according
to which (i) a black node can unify with zero, one
or more white nodes, producing a black node, (ii)
a white node must be unified with a black node
producing a black node, and (iii) a red node can-
not be unified with any other node. The resulting
tree fragment is a satisfying model only if it does
not contain any white nodes.

3.2 Implementation using XMG

The class of transitive verbs must contain the
verbal projection and two arguments, the subject
(Subj) and the object (Obj).

Trans → VProj ∧ Subj ∧ Obj

Both arguments have three possible positions:
postverbal (ArgPos), topic (TopPos) or focus
(FocPos) position and get the appropriate case
marking.

Subj → (ArgPos ∨ TopPos ∨ FocPos) ∧ Nom

Obj → (ArgPos ∨ TopPos ∨ FocPos) ∧ Acc

NP case marking is generalized via the classes
Nom, Acc, . . . as:

Nom → n[cat:np,top:[case:nom]]

Acc → n[cat:np,top:[case:acc]]

The core is the class of the verb projection,
VProj, that must be either one of the three tree
fragments:

VProj → VProj1 ∨ VProj2 ∨ VProj3

The above fragments are defined according to
whether there is a verbal modifier present, and in

61

which order it appears relative to the verb. Consid-
ering the VM-V order as default (non-inversion),
the INV feature determines whether inversion is
present (values yes / no). In case the sentence con-
tains no VM, the INV feature is irrelevant / not ap-
plicable (value na).

VProj1: VProj2: VProj3:

VP[

inv = na
infs = pred

]

V⋄

VP[

inv = no
infs = pred

]

V⋄≺VM⋄

VP[

inv = yes
infs = pred

]

VM⋄≺V⋄

Figure 6: Tree fragments for verb projection

For the argument position the class ArgPos is
defined. As illustrated in section 2, in the post-
verbal field the order of the arguments is free. At
the VP node the feature INFS represents the infor-
mation structural function of the constituent, with
value pred representing the syntactic predicate.

VP[infs=pred]

NP↓[case=X]≺∗V⋄

Figure 7: Tree fragment for argument position

The class of the verb projection combines with
one or more argument positions, where the order
of the arguments are free. This latter is made pos-
sible by the reflexive, transitive closure (≺∗) of the
precedence relation between the V node and the
argument NP node. The case marking of the argu-
ment is underspecified.

By the above fragments we can generate the el-
ementary trees for deriving all possible argument
orders in the post-verbal field for a given predi-
cate. For example, the tree family of a transitive
verb will contain the structures (among others) for
cases in which both arguments are postverbal:

VP[infs=pred]

NP↓[case=acc]NP↓[case=nom]V⋄

VP[infs=pred]

NP↓[case=nom]NP↓[case=acc]V⋄

In the pre-verbal field we have fixed structural
positions for the topic and focus.3 The classes for
these positions are defined respectively as:

3In Hungarian, (distributive) quantifiers have a designated
position, too, between the topic(s) and the focus. Regarding

TopPos: VP[infs=topic]

VP[inv=no|na]
[infs=topic|focus|pred]≺NP↓[case=X]

FocPos: VP[infs=focus]

VP[inv=yes|na]
[infs=pred]≺NP↓[case=X]

Figure 8: Tree fragments for topic and positions

According to the hierarchical order of the pre-
verbal positions, a topic can be followed by an-
other topic, the focus or the predicate, while focus
can only be followed by the predicate. These or-
dering constraints are captured by the bottom fea-
tures of the respective VP footnotes, while the top
features of these nodes constrain the VM-V inver-
sion. Focus induces inversion (inv=yes|na), while
topics do not (inv=no|na). For both, a combina-
tion with a non-VM verb is of course possible.

The tree fragments above define the post-verbal
position and the two functional positions (topic,
focus) in a uniform way, capturing the general-
izations behind them. Using the above tree frag-
ments the meta-grammar generates the elemen-
tary trees, by which the grammar can derive all
possible structures in simple sentences, possibly
containing topic and focus positions. The non-
grammatical structures – e.g. topic following fo-
cus, focus without VM-V inversion etc. – are ruled
out correctly.

4 Infinitival embedded clauses

In this section I propose an analysis of infinitival
complements and the structure and relation of the
verbal fields of the matrix verb and the infinitival
embedded verb. In Hungarian two types of con-
trol verbs can be distinguished: the ones that take
main stress (e.g. fél ‘is afraid’) versus the ones that
avoid main stress (e.g. akar ‘want’), referred to as
‘stress-bearing verbs’ and ‘stress-avoiding verbs’
respectively. These two verb classes differ in syn-
tactic behavior with respect to the placement of
the verbal modifier of the embedded infinitive. In
Hungarian the main stress falls on the leftmost ele-
ment of the phonological phrase, hence, in neutral
sentences the main stress falls on the VM.

the space limitations, the analysis of quantifiers is not dis-
cussed in this paper.

62

Example (4a) illustrates the stress-avoiding verb
(akar ‘want’), which induces the climbing of the
VM of the infinitival verb.

(4) a. Pim
Pim

el
VM

akarja
wants

(el-∗)olvasni
(VM-)read.inf

a
the

levelet.
book.acc

‘Pim wants to read the letter.’

b. Pim
Pim

(el∗)
(VM)

fél
afraid

el-olvasni
VM-read.inf

a
the

levelet.
book.acc

‘Pim is afraid to read the letter.’

The VM el- is the modifier of the infinitival
olvasni, but it must appear in the pre-verbal po-
sition of the matrix verb. In this way the VM el-

receives the main stress instead of the matrix verb.
In (4b) the VM of the infinitival stays in its own
pre-verbal position, VM climbing is no grammati-
cal. Koopman & Szabolcsi (2000) classifies differ-
ent verb types as (i) the group of auxiliaries: that
do not bear main accent and induce VM-climbing,
(ii) non-auxiliaries 1: that bear main accent and do
not induce VM-climbing and (iii) non-auxiliaries

2 with mixed behavior.
In case of clausal complements we have multi-

ple verbal fields, belonging to both the finite and
the infinite verbs.

(5) [preV1] V1 [postV1] [preV2] V2 [postV2]

(6) András
Andrew

meg-tanította
VM-taught

a
the

diákokat
students.acc

a
the

mondatot
sentence.acc

csak
only

LFG-ben
LFG.in

elemezni.
analyze.inf

‘Andrew taught the students to analyze the sen-
tence only in LFG.’

(from (Szécsényi, 2009))

Syntactically interesting cases are the sentences
in which arguments of the embedded verb are top-
icalized or focused. Szécseényi’s (2009) example
above provides evidence of the existence of the
separate pre-verbal field of the embedded infini-
tive, hosting the focus expression csak LFG-ben

‘only in LFG’. However, broader data suggest that
the preferred position of a focused or topicalized
argument of the infinitive is in the pre-verbal field
of the matrix verb (see examples (7) and (8)).

In the following examples the embedded infini-
tive is el-olvasni ‘VM-read.inf’, containing a ver-
bal modifier, while the matrix verb does not have a
VM. Topics preferably stand in the preverbal field
of the matrix verb (7b, 8b), however, it is also
grammatical in the preverbal field of the embed-
ded verb (7a, 8a). Focused constituents stand in
the preverbal field of the matrix verb (7c, 8c). Next

to these preferred positions, the sentence articula-
tion is also sensitive to the type of the matrix verb
(auxiliary vs. non-auxiliary), providing different
structures.

(7) a. ?Pim
Pim

fél
afraid

[a
the

levelet]T

letter.acc
el-olvasni.
VM-read.inf

b. Pim
Pim

[a
the

levelet]T

letter.acc
fél
afraid

el-olvasni.
VM-read.inf

‘Pim is afraid to read the letter.’

c. Pim
Pim

[a
the

LEVELET]F

letter.acc
fél
afraid

el-olvasni.
VM-read.inf

‘It is the letter, that Pim is afraid to read. ’

(8) a. ?Pim
Pim

el
VM

akarja
wants

[a
the

levelet]T

letter.acc
olvasni.
read.inf

b. Pim
Pim

[a
the

levelet]T

letter.acc
el
VM

akarja
wants

olvasni.
read.inf

‘Pim wants to read the letter.’

c. Pim
Pim

[a
the

LEVELET]F

letter.acc
akarja
wants

el-olvasni.
VM-read.inf

‘It is the letter, that Pim wants to read. ’

4.1 Proposal: from LTAG to TL-MCTAG

Closely related to scrambling, the position of the
verbal modifier of the embedded verb in stress
avoiding versus stress bearing control verbs poses
interesting questions to the analysis.4

The structures reflecting the verbal fields of the
control verbs and the infinitives can both be gener-
ated along the lines of the analysis of simple sen-
tences. See, e.g., the elementary tree of el-olvasni

‘to read’ with a topicalized argument:

VP[infs=top]

VP[inv=na]
[infs=pred]

V

olvasni

VM

el-

NP↓[case=acc]

The core of the problem with an LTAG anal-
ysis here is caused by scrambling of the argu-
ments and the verbal modifier in the different ver-
bal fields of the matrix verb and the embedded
verb. Using the standard LTAG formalisms it is
not possible to capture VM-climbing (4a), since
it proposes elementary trees for sentence embed-
ding, such that sentential complements being rep-
resented as a footnode (S∗), and the elementary

4Hungarian infinitival clauses pose several more interest-
ing issue to deal with, for example the verb-object agree-
ment between the matrix verb and the object of the infinitive.
For more issues around infinitival clauses in Hungarian see
(Koopman and Szabolcsi, 2000) and (Szécsényi, 2009).

63

tree of the matrix verb (akar ‘wants’) being ad-
joined into the elementary tree of the embedded
verb. The standard LTAG analysis derives straight-
forwardly the structures, in which the matrix verbs
and its arguments are not split. This involves sen-
tences with a stress-bearing control verb with dif-
ferent possible topic/focus structures, e.g.

(9) a. PimT

Pim
fél
like.mod

el-olvasni
VM-read.inf

a
the

levelet.
letter.acc

‘Pim is afraid to read the letter.’

b. A
the

leveletT

letter.acc
PimF

Pim
fél
like.mod

el-olvasni.
VM-read.inf

‘It is Pim, who is afraid to read the letter.’

VP[...]
[infs=top]

NP↓[nom]

NP

Pim

VP[...]
[infs=pred]

V

fél

VP∗

VP[...]
[infs=pred]

VM

el-

V

olvasni

NP↓[acc]

NP

a levelet

VP[...]
[infs=top]

NP↓[nom]

NP

Pim

VP[...]
[infs=pred]

V

fél

VP∗

VP[...]
[infs=top]

NP↓[acc]

NP

a levelet

VP[...]
[infs=pred]

VM

el-

V

olvasni

Figure 9: Standard LTAG analysis of (9a) and (9b)

The analysis in Figure 9 correctly derives the
structures for stress-bearing verbs (4b), how-
ever this structure is not grammatical for stress-
avoiding verbs as akar ‘want’.

(10) *Pim
Pim

akarja
wants

el-olvasni
VM-read.inf

a
the

levelet.
letter.acc

This structure should be ruled out for stress-
avoiding verbs, but must be derived for stress-
bearing verbs. Furthermore, Hungarian has a num-
ber of control verbs compatible with both VM-
climbing and VM in situ structures. For such verbs
it should be possible to derive both structures .

(11) a. Pim
Pim

szeretne
like.mod

el-olvasni
VM-read.inf

egy
a

levelet.
letter.acc

‘Pim would like to read a book.’

b. Pim
Pim

el
VM

szeretne
like.mod

olvasni
read.inf

egy
the

levelet.
letter.acc

‘Pim would like to read a book.’

In cases of VM-climbing (4a,11b), the tree
of the matrix verb (akar) should split into more
pieces when adjoined to the tree of the embed-
ded verb (el-olvasni). This core problem for the
standard LTAG analysis also arises when the argu-
ments of the two verbs are mixed in the pre-verbal
field of the matrix verb. As shown before, the pre-
ferred position of the topicalized or focused argu-
ment of the infinitive is in the pre-verbal field of
the finite verb, hence arguments of different verbs
can mix. See, for example, the sentence in which
the object of the infinitive is focused and the sub-
ject of the finite verb is topicalized.

(12) Pim
Pim

a
the

LEVELETF

letter.acc
fél
afraid

el-olvasni.
VM-read.inf

‘It is the letter, what Pim is afraid to read.’

The problems of the analysis discussed above
are due to the fact that standard LTAG cannot cap-
ture discontinuity (scrambling, extraposition etc.)
in general (Becker and Rambow, 1990; Becker
et al., 1991). In order to overcome the problems
of our analysis, the use of Multicomponent TAG
[MCTAG] is proposed. MCTAG is a modified
TAG formalism, that allows elementary structures
as set of trees. For natural language grammars
the tree-local MCTAG [TL-MCTAG] (Weir, 1988;
Nesson et al., 2010) is considered, which comes
with the restriction that all trees in the set have to
attach to the same elementary tree. TL-MCTAG
is strongly equivalent to standard LTAG, thus by
using this formalism we can overcome the prob-
lems of scrambling and VM-climbing without los-
ing any of the attractive formal and computational
properties of LTAG.

The first necessary modification of our origi-
nal analysis is the position of the VM. In order to
make VM-climbing possible, we need more struc-
ture below the given VP node, hence the previ-
ously proposed flat structure must be revised.

VP[infs=pred]

VM

el-

VP

V

olvasni

NP↓[acc]

Figure 10: VM-V structure revised

Evidently, the structures with a topical-
ized/focused argument must be revised accord-

64

ingly. Such a structure allows adjunction at the
VP node right above the V, thereby allowing the
VM-V verbal complex to split. This is one of the
necessary conditions for capturing VM-climbing.
However, this is merely the first step. The prob-
lem of the discontinuity of the finite verbs and its
(topicalized) argument is still unresolved. Obvi-
ously, we need to deal with cases, where both the
finite verbs and the embedded infinitive come with
a split structure regarding the arguments and the
verbal modifier. The solution is provided by TL-
MCTAG, taking the elementary structures of the
matrix verbs (akar, fél) as sets of trees.

{ VP[infs=top]

NP↓[nom] VP

,
VP[infs=pred]

V⋄ VP∗

}

Figure 11: Elementary tree set for control verbs

Through this modification of the analysis we
can derive the correct VM-climbing structure of
stress avoiding verbs by allowing the first tree
in the tree set to adjoin at the root VP node of
the infinitival tree, and the second tree at the in-
ner VP node right above the V. However, with
these elementary tree sets we also derive the non-
grammatical structures for both stress-bearing and
stress avoiding verbs. The difference between
these two verb classes relies on their relation with
the prosodical structure of the sentence, that moti-
vates the extension of the analysis by features rep-
resenting stress positions. In Hungarian, the main
stress falls on the left edge of the phonological
phrase, hence in the default VM-V order the VM
bears the main stress, while the V is unstressed.
This is reflected in the elementary trees of verbs,
e.g.:

VP[sp=+,infs=pred]

VM

el-

VP[sp=−]

V

olvasni

NP↓[case=acc]

Figure 12: Features for stress positions

Stress-bearing verbs (fél ‘is afraid’) are marked
for a stress position ([sp=+]) and thereby can only
be adjoined at the root VP node of the tree of the
infinitive. Adjoining at the inner VP node is ruled

out by a feature clash between the footnode of fél

and the target node.

{
VP[infs=top]

NP↓[case=nom] VP[sp=+]

,

VP[sp=+]
[...]

V

fél

VP∗[...]
[sp=+]

}

Stress-avoiding verbs (akar ‘want’) are marked
for a non-stress position ([sp=–]) and hereby the
second tree in the set can only be adjoined at the
inner VP node of the tree of the infinitive.

{
VP[infs=top]

NP↓[case=nom] VP[sp=+]

,

VP[sp=−]
[...]

V

akar

VP∗[...]
[sp=−]

}

Verbs allowing for both structures come with a
SP feature with an underspecified value, and thus
can be equally derived in both structures.

5 Conclusion

This paper proposes an analysis of the verbal fields
in Hungarian sentences articulation. I discussed
several issues for an LTAG analysis of the in-
formation structure driven syntactic positions in
simple sentences and in infinitival clausal com-
plements. As information structure is the main
device driving sentence articulation, an exten-
sion is proposed for representing different topic–
focus structures. The elementary trees – reflect-
ing the possible structures – are generated by the
meta-grammar, using the eXtensible MetaGram-
mar tool. As shown in the paper, the flexible word
order in Hungarian simple sentences is relatively
easy to capture, generating all possible structures,
while expressing the important generalizations on
the functional positions.

Next to the analysis of the verbal fields in sim-
ple sentences, the paper proposed an analysis of
complex sentences with infinitival clausal com-
ponents. The analysis of Hungarian infinitival
clauses faces a list of interesting issues. It is es-
pecially challenging for standard LTAG, since it
cannot handle discontinuity and scrambling phe-
nomena, caused here by the mixing of the argu-
ments and the verbal modifier of different verbs.
The proposed analysis shows that the challenges
can be overcome by using TL-MCTAG extended
with features to represent stress positions.

65

References

Anne Abeillé and Owen Rambow. 2000. Tree Ad-
joning Grammar: An overview. In Anne Abeillé
and Owen Rambow, editors, Tree Adjoning Gram-
mars: Formalisms, Linguistic Analyses and Process-
ing, pages 1–68. CSLI Publications, Stanford.

Tilman Becker and Owen Rambow. 1990. Formal as-
pects of long distance scrambling. Unpublished Pa-
per.

Tilman Becker, Aravind K. Joshi, and Owen Rambow.
1991. Long-distance scrambling and tree adjoining
grammars. In Proceedings of the 5th meeting of the
European Chapter of the Association for Computa-
tional Linguistics (EACL), Berlin, Germany.

Benoit Crabbé, Denys Duchier, Claire Gardent, Joseph
Le Roux, and Yannick Parmentier. 2013. XMG:
eXtensible MetaGrammar. Computational Linguis-
tics, 39(3).

Katalin É. Kiss. 2005. The Syntax of Hungarian.
Cambridge University Press.

Robert Frank. 2002. Phrase Structure Composi-
tion and Syntactic Dependencies. MIT Press, Cam-
bridge, MA.

Aravind K. Joshi and Yves Schabes. 1997. Tree-
Adjoning Grammars. In G. Rozenberg and A. Salo-
maa, editors, Handbook of Formal Languages, pages
69–123. Springer, Berlin.

Laura Kallmeyer and Rainer Osswald. 2012. An
analysis of directed motion expressions with lexi-
calized tree adjoining grammars and frame seman-
tics. In L. Ong and R. de Queiroz, editors, WoL-
LIC 2012, Lecture Notes in Computer Science LNCS
7456, pages 34–55. Springer.

Laura Kallmeyer and Maribel Romero. 2008. Scope
and situation binding in LTAG using semantic uni-
fication. Research on Language and Computation,
6(1):3–52.

Hilda Koopman and Anna Szabolcsi. 2000. Verbal
Complexes. MIT Press.

Rebecca Nesson, Stuart M. Shieber, and Giorgio Satta.
2010. Complexity, parsing, and factorization of
tree-local multicomponent tree-adjoining grammar.
Computational Linguistics, 36(3):443–480.

Krisztina Szécsényi. 2009. An LF-driven Theory of
Scrambling in Hungarian Infinitival Constructions.
Ph.D. thesis, Szeged University, Hungary.

Robert Van Valin Jr. 2005. Exploring the syntax-
semantics interface. Cambridge University Press.

David J. Weir. 1988. Characterizing Mildly Context-
Sensitive Grammar Formalisms. Ph.D. thesis, Uni-
versity of Pennsylvania.

66

Proceedings of the 12th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+12), pages 67–76,
Düsseldorf, Germany, June 29 - July 1, 2016.

Modelling the ziji Blocking Effect and Constraining Bound Variable
Derivations in MC-TAG with Delayed Locality

Dennis Ryan Storoshenko

University of Calgary
Craigie Hall C205, 2500 University Dr NW

Calgary, AB, Canada
dstorosh@ucalgary.ca

Abstract

MC-TAG derivations using delayed local-
ity (i.e. non set-local composition) have
been used to model long distance binding
in natural language. In this paper, I ex-
plore the possibility within Synchronous
TAG that tree sets composing via delayed
locality may have many possible syntac-
tic derivations for a single semantic form.
Using the Mandarin (Chinese) anaphor ziji

as a test case, I show that the blocking
effect which is described in other gener-
ative frameworks as a constraint on covert
movement can be modelled as arising from
constraints across possible derivation fam-
ilies for a given tree set. Further ob-
serving the interaction of ziji with other
bound variables in the language, I propose
that anti-locality effects in variable bind-
ing arise when a more specialized bound
variable is available. This has conse-
quences for the definition of a typology of
bound variables.

1 Variable Binding in STAG

Variable binding in Synchronous TAG (STAG) has
been modelled as a phenomenon which exploits
delayed locality. Building on the definition of
delayed-local derivations presented in Chiang and
Scheffler (2008), bound variables can be modelled
as multi-component sets (MCSs) in both the syn-
tax and semantics. As formulated in Storoshenko
and Han (2015), Figure 2 shows that the bound
variable obligatorily composes non-locally, with
the α components substituting into the argument
position of the predicate selecting the variable,
while the β components compose directly with the
antecedent. This is most crucial on the seman-
tics side, where the variable’s auxiliary tree com-

poses with the “scope part” of a STAG general-
ized quantifier, as in Figure 3. The bound vari-
able carries a function from 〈e,t〉 to 〈e,t〉 which ac-
complishes the variable binding, in a form similar
to Büring’s (2005) Binder Index Evaluation Rule.
On the syntax side, the β component acts as solely
an agreement check. The English bound variable
pronoun her is lexically specified for third person
feminine ϕ-features; in this case there is no gen-
der specification on a student, so the combination
goes through. For nominals with inherent gender
specification, for example every boy, the result-
ing feature clash would block the derivation. In
this way, agreement is treated as a purely syntactic
phenomenon, with no manifestation in the seman-
tics. As written, these trees could compose into a
sentence such as A student loves her father.

〈
αlove

αfather

αher

αa student

βher

α′love

α′father

α′her

β′a student

β′her

α′a student

〉

Figure 1: Derivation trees for A student loves her

father

Following the derivation trees in Figure 1, de-
layed locality is observed in the composition of
the members of the her MCS, while the only other
MCS present has composed tree-locally1 . Chi-
ang and Scheffler define a delay as the set of
derivation tree nodes including the members of the
MCS, and all nodes on a path between members
of the MCS, but excluding the common dominat-
ing node. Storoshenko and Han extend this notion
into a measure for the size of a delay by taking the
cardinality of that set. The derivations in Figure 1
will have a delay (d) value of four for the pronoun.

1Though the DP anchored by father could also be repre-
sented as a MCS.

67

〈
{
αher: DP

D

her

βher: DP*[3sgF]
} {

α′her: e

xh

β′her: 〈e, t〉

〈e, t〉*〈〈e, t〉〈e, t〉〉

λPλz.[λxh.P (z)](z)

}
〉

Figure 2: Tree sets for bound variable pronoun her

〈αa student: 1 DP[3sg]

NP

N

student

D

a

{ α′a student: e

xs

β′a student: t

1 〈e, t〉

t*λxs

〈〈e, t〉t〉

t

t

P (y)

t

student(y)

∃y

λP

}
〉

Figure 3: Sample Quantifier Tree Set

Beyond referring to the delay as a whole, they fur-
ther define the length l of a delayed local MCS
combination as d − n, where n is the number of
MCS members. Thus, for the bound variable pro-
noun in the derivation trees of Figure 1, l=2. The
reason for applying this characterization of a de-
lay becomes clear when considering the quantifier
tree sets. As defined, even a tree-local MCS com-
bination will have a trivial delay consisting only of
its own derivation tree nodes, yielding a d value of
two, though the l value for this MCS combination
will be zero. This is a more intuitive match with a
singleton tree combination on the syntax side, as it
is not immediately obvious at a glance that the two
derivations are in fact isomorphic. With deriva-
tional isomorphism defined based on the equiva-
lency of l values for any given lexical item’s com-
binations on both sides of the STAG derivation, as
well as respecting all linked nodes, the quantifier’s
combination can be said to be maximally isomor-
phic (borrowing the term from Storoshenko and
Han (2015)), as l=0 in both cases. It is this notion
of “maximal” isomorphism that I will assume to
underlie all further claims of isomorphism.

2 Ziji and The Blocking Effect

The key data modelled in this paper all derive from
the behaviour of the Mandarin (Chinese) anaphor
ziji, described extensively in the literature since
Cole et al. (1990). In brief, there are five differ-
ent phenomena which need to be accounted for.
The first is the fact that ziji can allow both local
and long-distance antecedents, as shown in (1).

(1) Zhangsani

Zhangsan
renwei
think

[Lisij
Lisi

zhidao
know

[Wangwuk

Wangwu
xihuan
like

zijii/j/k .]]
self

‘Zhangsan thinks that Lisi knows that
Wangwu likes self.’

In this respect, ziji is not dissimilar to its Korean
cognate caki, which is discussed in Storoshenko
and Han (2015). Where the two diverge is in the
manifestation of the so-called blocking effect il-
lustrated in (2):

(2) Zhangsani

Zhangsan
renwei
think

[woj

I
zhidao
know

[Wangwuk

Wangwu
xihuan
like

ziji∗i/∗j/k .]]
self

‘Zhangsan thinks that I know that
Wangwu likes self.’

In this sentence where the subject of the middle
clause is a first person pronoun, ziji is restricted
not only to a third person antecedent, but only to
the most local one. Descriptively, the presence
of an intervening antecedent with mismatched ϕ-
features blocks the anaphor from binding by the
highest subject, even though that subject is also
third person. However, the situation is different in
the local domain:

(3) Zhangsani

Zhangsan
yiwei
thought

[woj

I
hui
will

ba
BA

nik
you

dai
take

hui
back

ziji∗i/j/k
self’s

de
DE

jia.]
home

‘Zhangsan thought I will take you back to
self’s house.’

68

As seen in (3), ziji is not inherently restricted to
third person antecedents (unlike caki and the En-
glish her from above). In the local domain, ziji

may be bound by either the first or the second
person antecedent. This is a more general prop-
erty of ziji, which can be bound by an antecedent
of any ϕ-feature value, within the constraints of
the blocking effect. For example, a version of (1)
where all clauses had first person subjects would
equally be grammatical. Finally, there is the obser-
vation that even when the blocking condition is re-
spected, ziji may not take a non-local non-subject
antecedent:

(4) Zhangsani

Zhangsan
gaosu
tell

Lisij
Lisi

[Wangwuk

Wangwu
piping-le
criticize-ASP

zijii/∗j/k .]
self

‘Zhangsan told Lisi that Wangwu criti-
cized self.’

Again unlike Korean, the anaphor may not take
Lisi as a potential antecedent. However, even
though Lisi is not considered a possible an-
tecedent, a first person pronoun in that position in-
duces a blocking effect, even though this was not
observed in the local domain. Based on these data,
the five different properties of ziji which need to be
modelled are enumerated again below:

1. Local and long distance antecedents are pos-
sible

2. ϕ-feature mismatch in a c-command chain
induces blocking across clauses

3. Any antecedent may be viable in the lowest
clause

4. The anaphor can in principle take any ϕ-
feature valued antecedent

5. Higher clause antecedents must be subjects

Sohng’s (2004) analysis of ziji follows the tradi-
tion of the original Cole et al. analysis in making
use of covert movement to capture all of the rel-
evant facts, accounting for the various differences
between Korean caki and Mandarin ziji as being
the result of the difference in ϕ-features between
the two. While the formal mechanisms here will of
course be different, STAG not having any notion
of covert movement to fall back on, the final anal-
ysis will draw on Sohng’s key insight. The intri-
cate pattern of data observed will be here be mod-
elled as an interplay between the mechanisms used
to capture agreement and a set of well-formedness
constraints on STAG derivations.

3 Modelling Core Cases

Above, I showed the agreement checking mecha-
nism that has been previously proposed for bound
variables in STAG: a feature value on the degen-
erate DP node which combines in the syntax with
the variable’s antecedent. However, this is not the
only agreement-checking mechanism which has
been proposed in the TAG literature. Working in
LTAG, Kallmeyer and Romero (2007) provide an
account for reflexive pronouns where agreement
is checked via a degenerate T′ node, part of the
MCS for the reflexive. The intuition here is that by
having agreement check with the functional pro-
jection of the verb, a tree-local derivation for the
reflexive is ensured. My proposal is simple: the
unique ϕ-feature deficiency of ziji versus caki is
derived by adding this additional degenerate node
to the syntax side of the bound variable’s MCS, as
in Figure 4.

Based on these MCS definitions, it is clear
where the notion of delay length will become rel-
evant, as there are asymmetric sets on the syntax
and semantic sides. Ultimately, the semantics will
define the minimum l value for any given deriva-
tion, as the delay needed for semantic composi-
tion will be directly determined by the intended
meaning of the sentence: α′ziji will substitute
at the appropriate argument position while β′ziji
will adjoin to the scope part of the desired an-
tecedent2 Between the two MCSs in Figure 4, I as-
sume the following symmetric compositions: αziji
and α′ziji will need to substitute at linked nodes,
while βzijiDP∗ and β′ziji will also be required to
adjoin into the tree sets of the antecedent. With
no matched component to force a fully isomor-
phic derivation via a linked node, βzijiT∗ is essen-
tially free to attach at any node with a matching
label, constrained only by the ϕ-feature value. I
will begin with the assumption that both adjoin-
ing sites must have no incompatible features, with
the α variables valued via unification with features
at the adjoining sites. However, to capture all the
facts within a single account, it will emerge that
the equivalence of the two feature unifications is
relaxed under certain structural relationships be-
tween the two agreeing members of the ziji MCS.
Moving forward, I will not be presenting any in-
formation on the semantic derivations, choosing
to focus exclusively on the syntax. Full STAG

2Proper names are assumed to also have generalized quan-
tifier scope parts to provide the necessary binding.

69

〈
{
αzijiDP DP

D

ziji

βzijiDP∗ DP*[φ = α] βzijiT ′∗ T′*[φ = α]
} {

α′ziji: e

xa

β′ziji: 〈e, t〉

〈e, t〉*〈〈e, t〉〈e, t〉〉

λPλz.[λxa.P (z)](z)

}
〉

Figure 4: Tree Sets for ziji

derivations in the syntax and semantics for many
of the predicates used here can be found in existing
work, and no changes in the mechanics of deriving
variable binding are being proposed in this paper.

For the sake of illustration, one syntactic pred-
icate tree appears in Figure 5. Predicates such as
renwei “think” and zhidao “know” will be simpler
transitive verbs, still recursive on C′, with all of
these able to either recursively join to each other,
or a CP-rooted embedded clause such as xihuan

“like” or piping “criticize” having a DP terminal
node at the object position which will be the sub-
stitution site for αziji. The ditransitive gaosu “tell”
is represented using a standard VP-shell structure.
The only crucial detail to note is that in a ditransi-
tive predicate, the T′ node is c-commanded by the
subject, but not the indirect object.

C′

TP

T′

vP

v′

VP

V′

C′*V

tj

Indirect Object DP↓

gaosuj

DP

ti

T

Subject DPi↓

C

Figure 5: Sample Embedding Predicate gaosu

“tell”

The three readings for (1) will emerge from the
DPs into which βzijiDP∗ and its associated seman-
tic tree adjoin. Multiplying this out by the three
clauses each with their own T′ nodes yields nine
possible derivation trees, three for each reading.
These are given in full in Figure 6, though all fur-
ther examples will be summarized as in Table 1.
In these tables, the l value for the semantic combi-

nation of ziji will correspond to the cell matching
the predicate of which ziji is an argument with the
intended antecedent for that reading; the leftmost
column in all cases.

Table 1: Tabular representation of Figure 6

T′* at: xihuan zhidao renwei
DP* at: Wangwu δ1: l=1 δ2: l=2 δ3: l=3

Lisi/Wo δ4: l=2 δ5: l=2 δ6: l=3
Zhangsan δ7: l=3 δ8: l=3 δ9: l=3

Based on this table, it is immediately clear that
not all possible derivations are licit. For the situa-
tion where Wangwu is the antecedent, placing the
βzijiT ′∗ in any clause higher than the one contain-
ing αziji will create a longer delay in the syntax
than the semantics, making δ2 and δ3 not (maxi-
mally) isomorphic STAG derivations. Conversely,
when Zhangsan is the antecedent, all placements
of βzijiT ′ yield a formally isomorphic derivation,
under the terms defined above. I label this set
of isomorphic derivations as a derivational fam-
ily: a set of isomorphic derivations (as defined by
sharing equal l values for all MCS compositions)
which yield identical semantic outputs. Remov-
ing spurious derivations yields the final set of pos-
sible derivations for (1) in Table 2. The lowest
antecedent is derived via a singleton derivation,
while the other two are represented with deriva-
tional families.

Table 2: Isomorphic Derivations for (1)

T′* at: xihuan zhidao renwei
DP* at: Wangwu δ1: l=1

Lisi δ4: l=2 δ5: l=2
Zhangsan δ7: l=3 δ8: l=3 δ9: l=3

Taking these same values for the blocking ef-
fect example in (2) yields the derivations in Table
3. However, two of the isomorphic derivations, δ4

70

δ1 xihuan

βzijiT ′αzijizhidao

renwei

Zhangsan

Lisi/Wo

Wangwu

βzijiDP

δ2 xihuan

αzijizhidao

βzijiT ′renwei

Zhangsan

Lisi/Wo

Wangwu

βzijiDP

δ3 xihuan

αzijizhidao

renwei

βzijiT ′Zhangsan

Lisi/Wo

Wangwu

βzijiDP

δ4 xihuan

βzijiT ′αzijizhidao

renwei

Zhangsan

Lisi/Wo

βzijiDP

Wangwu

δ5 xihuan

αzijizhidao

βzijiT ′renwei

Zhangsan

Lisi/Wo

βzijiDP

Wangwu

δ6 xihuan

αzijizhidao

renwei

βzijiT ′Zhangsan

Lisi/Wo

βzijiDP

Wangwu

δ7 xihuan

βzijiT ′αzijizhidao

renwei

Zhangsan

βzijiDP

Lisi/Wo

Wangwu

δ8 xihuan

αzijizhidao

βzijiT ′renwei

Zhangsan

βzijiDP

Lisi/Wo

Wangwu

δ9 xihuan

αzijizhidao

renwei

βzijiT ′Zhangsan

βzijiDP

Lisi/Wo

Wangwu

Figure 6: Derivation Trees for (1) and (2)

and δ8 (indicated in bold in the table), will result
in a feature clash as the βziji components will ad-
join at locations with different ϕ feature values.

Table 3: Isomorphic Derivations for (2)

T′* at: xihuan zhidao renwei
DP*: at Wangwu δ1: l=1

Wo δ4: l=2 δ5: l=2
Zhangsan δ7: l=3 δ8: l=3 δ9: l=3

This clash is what I propose to be at the root of
the blocking effect. Following on the definition
of a derivational family, I propose the Fully
Functional Family (FFF) constraint:

(5) FULLY FUNCTIONAL FAMILY (FFF): If
one member of a derivational family vio-
lates a syntactic constraint, all members of
the family are rendered infelicitous.

Applying this constraint to the set of derivations in
Table 3, only the derivation belonging to the most
local antecedent survives.

(3) presents a more complex situation. Here, the
lowest clause is a ditransitive, while ziji is further
embedded inside of a possessive DP structure. The
partial derivation for this this example is presented
in Figure 7. With three possible antecedents and

dai hui

jia

αziji

yiwei

Zhangsan

niwo

Figure 7: Partial Derivation Tree for (3)

two clauses, here there are six possible derivations,
presented in Table 4. Non-isomorphic derivations
have already been removed, and those creating a
feature clash are again bolded.

Table 4: Isomorphic Derivations for (3)

T′* at: dai hui yiwei
DP* at: Ni δ1: l=2

Wo δ3: l=2
Zhangsan δ5: l=3 δ6: l=3

Recall that the possible antecedents here were
ni and wo. The correct prediction is made for
Zhangsan, whose derivational family is elimi-
nated by virtue of the FFF, and for wo, where
the first person subject values T′ in the only iso-
morphic derivation. Note that a hypothetical δ4
would exist, where βzijiT ′∗ attaches to the higher
clause with a third person subject. However, that
derivation is not isomorphic, and does not survive
into the (singleton) family, avoiding the feature

71

clash. A similar δ2 would exist, but is also non-
isomorphic. The unexpected result here is that δ1
yields a feature clash, and yet the reading is gram-
matical.

Refining the definition of how a feature clash
results resolves this issue. The distinction to make
here is in the relationship of the elements in the fi-
nal derived syntax tree; I assume the higher clause
to be a transitive verb auxiliary tree recursive on
C′, while the embedded clause is a CP-rooted
ditransitive-like structure. In δ5, βzijiDP∗ is ad-
joined to the subject in the higher clause, at a po-
sition c-commanding βzijiT ′∗ adjoined to the T′

node of the lower clause. This c-command rela-
tionship, I claim, is required for the feature clash to
be triggered. Looking at δ1, an opposite relation-
ship occurs, where βzijiT ′∗ dominates βzijiDP∗.
Here, the features do not enter into the necessary
configuration to be checked, and δ1 is not actu-
ally a clash. To fully implement this would re-
quire a revision to the original ziji trees such that
it is not a formal part of the MCS that the two fea-
ture unifications must match: βzijiDP∗ would re-
ceive a value for its α, while βzijiT ′∗ would have
a distinct value β for its ϕ features, and the con-
straint described here would be that if βzijiDP∗ c-
commands βzijiT ′∗, then α = β.

This c-command relationship comes into play
when it comes to discussing (4) and the closely-
related (6):

(6) Zhangsani

Zhangsan
gaosu
tell

woj

I
Wangwuk

Wangwu
piping-le
criticize-ASP

ziji∗i/∗j/k .
self

‘Zhangsan told me that Wangwu criticized
self.’

Recall that (4) indicated that the non-subject is
not a possible antecedent, but having ziji bound
by Zhangsan was still possible. (6) has the same
structure, but replaces the indirect object with a
first person pronoun. Note that even though it is
not considered a viable antecedent, it still induces
a blocking effect. The partial derivation tree for
(4) and (6) is as in Figure 8. Again, with three po-
tential antecedents, and two clauses, there are six
possible derivations to consider. Table 5 presents
only the isomorphic families for (6).

In this case, the lowest antecedent is correctly
predicted to be fine, and the first person indirect
object is ruled out because in δ3 βzijiDP∗ will
c-command βzijiT ′∗ with mismatched ϕ-features.

piping

αzijigaosu

wo/LisiZhangsan

Wangwu

Figure 8: Partial Derivation Tree for (4) and (6)

Table 5: Isomorphic Derivations for (6)

T′* at: piping gaosu
DP* at: Wangwu δ1: l=2

Wo δ3: l=2 δ4: l=2
Zhangsan δ5: l=2 δ6: l=2

With one derivation ruled out, FFF will block all
derivations in the same family. What is not im-
mediately obvious is how δ5 and δ6 are also ruled
out. To fully lay out the issue, I also present the
derivations for (4) in Table 6. In this case, the data
conform with the prediction for Zhangsan, who is
a viable antecedent, but there is no obvious rea-
son that Lisi is ruled out. Given that δ3 is well-
formed and satisfies the c-command requirement
for feature checking, δ4 should be examined for
the cause of the unacceptability. The intuition here
is that as (4) most clearly shows the subject ori-
entation of ziji, that effect should fall out from the
one derivation where βzijiT ′∗ ends up in a position
to dominate βzijiDP∗. However, fully ruling out
this relationship would block exactly the config-
uration in the unexpectedly grammatical δ1 from
(3). So, just the right constraint which predicts
the grammaticality of (3) and (4) with the reported
readings, and possibly offer some insight into the
so-far unexplained blocking effect in (6) needs to
be found.

Looking at (3) and (4), the most obvious dif-
ference is that the first case dealt with a single-
ton family, while the unavailable Lisi reading of
(4) has two isomorphic derivations. An additional
structural constraint on the two degenerate nodes
of the syntactic ziji set obtains the correct result:
βzijiT ′∗ may only dominate βzijiDP∗ if there is no
other isomorphic derivation where the c-command
relationship which enables feature checking ob-
tains. Framing the constraint in this way allows an
escape hatch for ziji to have different properties in
the most local domain, as the lowest clause attach-
ment of βzijiT ′∗ will always reduce any derivation
with local binding of ziji to a singleton derivation
family, and any higher antecedent will always have

72

Table 6: Isomorphic Derivations for (4)

T* at: piping gaosu
DP* at: Wangwu δ1: l=2

Lisi δ3: l=2 δ4: l=2
Zhangsan δ5: l=2 δ6: l=2

a larger family of isomorphic derivations. This
constraint isolates exactly the derivations where
subject orientation and blocking appear to be sus-
pended. Applying this constraint to the derivations
in Table 6, δ4 will be ruled out, which in turn elim-
inates the derivational family associated with the
antecedent Lisi, following the FFF.

There is an additional consequence for (6). Fol-
lowing this new well-formedness constraint on the
combination of the βziji components, δ4 in Table
5 is also blocked. This leads to another situation
which has so far not been seen: one in which all
members of an isomorphic family of derivations
are separately ill-formed. My final proposal is that
this triggers another constraint between deriva-
tions: the Poisoned Path Principle, or PPP.

(7) POISONED PATH PRINCIPLE: If one iso-
morphic family consists entirely of ill-
formed derivations, no other family of the
same or greater l value is licit.

This principle captures the distinction between
(4) and (6) where the same derivations are licit in
one case but not the other. The distinction lies not
in those derivations, but in the status of another
family of derivations with the same l value. In (4),
it is actually the well-formedness of δ3 which al-
lows the δ5/δ6 family to survive.

This set of constraints yields the desirable result
of capturing the distinction between (4) and (6),
but other analytic options are available. Indeed,
(Huang et al., 2009) describe the distinctions be-
tween local and long-distance ziji as so intractable
that they suggest treating the two as distinct forms
with different properties. A reviewer points out
that following such a path would allow for a sim-
pler characterization of subject orientation in the
long distance domain as falling out from a require-
ment that βzijiDP∗ must c-command βzijiT ′∗. It
is also suggested that the blocking effect in (6) can
be captured by adding another component to the
ziji MCS which will check for agreement at some
position in the predicate tree where the indirect ob-
ject’s ϕ features are checked. While this certainly

has a precedent in the literature (Kallmeyer and
Romero use a similar device to check for agree-
ment with an indirect object), its use in this context
would be hard to stipulate. Assuming that all three
of βzijiDP∗, βzijiT ′∗, and the proposed βzijiV ′∗

would have to match in ϕ features, then a clash
would result if both βzijiT ′∗ and βzijiV ′∗ adjoined
at the highest clause in the derivation of the un-
grammatical matrix subject reading of (6). Recall-
ing that Storoshenko and Han (2015) uses a min-
imum l value to force long distance binding, then
a dedicated tree set for long distance ziji would
need a minimum l based on the distance between
βzijiDP∗ and αziji in the derivation tree, but the
position of βzijiV ′∗ does not change the l value.
As such, there is no way to force βzijiV ′∗ to at-
tach to the higher clause rather than the lower one
(which could potentially avoid the clash) short of
writing in a stipulation that βzijiV ′∗ and βzijiT ′∗

must have a relative l of zero with respect to each
other (tree local) and a relative l of one with re-
spect to βzijiDP∗ (in the same clause as the sub-
ject), all within an overall l of two for the whole
MCS (the anaphor is in an embedded clause). This
is just to say that no treatment of these data will be
devoid of stipulations somewhere in the account;
it is left to further debate which are more likely.
Furthermore, the local domain is no less complex,
as (3) has a close counterpart in which subject ori-
entation does obtain in the local domain:

(8) Wangwui

Wangwu
shuo
say

Zhangsanj

Zhangsan
zengsong
give

gei
to

Lisik
Lisi

yipian
one

guanyu
about

zijii/j/∗k
self

de
DE

wenzhang.
article

‘Wangwu says that Zhangsan gave an ar-
ticle about self to Lisi.’

Unlike in (3), the lower clause indirect object of
(8) cannot be an antecedent. So, just as a distinct
long-distance account would require some deriva-
tional stipulations, a dedicated local treatment of
ziji would need to be sensitive to the distinction
between a “true” ditransitive as in (8) and the so-
called ba-construction of (3).

In closing this discussion of the core analysis,
it’s worth pointing out that all of the cases dis-
cussed under the initially proposed analysis do
scale to longer sentences than those used here.
Looking at the core blocking example (2), it’s
clear to see how any reading where the antecedent
c-commands a ϕ-feature mismatched element will
incur a feature mismatch in one of its isomor-

73

phic derivations. Similarly, even though the con-
straints obviate blocking in the lowest clause, any
clause higher with a mismatched antecedent will
be blocked. In the case of (6), a mismatched non-
subject at any embedding level will have no viable
derivations: all attachments of βzijiT ′ in lower
clauses will incur feature mismatches because
they are c-commanded by the antecedent, while at-
tachments to the local clause or higher will all be
ruled out because βzijiT ′ will c-command its own
antecedent DP within a family where other iso-
morphic derivations are available. By the PPP, this
will block all antecedents in the same or higher
clauses. Conversely, in (4), only derivations where
βzijiT ′ attaches to a position c-commanding a
matched non-subject in an embedding clause will
be ruled out, while the lower attachments will be
felicitous derivations. While the FFF is triggered
to rule out the non-subject antecedent, the exis-
tence of some well-formed derivations will obvi-
ate application of the PPP, allowing other longer
derivation families to go through.

4 Interaction with Other Forms

When blocking occurs, and a bound variable use
of ziji is impossible, Mandarin is similar to English
in that it allows third person pronouns to act as
bound variables:

(9) Mei-ge
every-CL

reni

man
dou
all

renwei
think

[woj

I
piping-le
criticize-ASP

tai/∗j .]
he
‘Every man thought that I criticized him.’

I assume that bound variable ta will have tree sets
similar to English. Lacking the extra T′* compo-
nent, no blocking effect obtains, and the derivation
goes through. However, in the local domain, ta

may not be used:

(10) * Mei-ge
every-CL

ren
man

dou
all

piping-le
criticize-ASP

tai.
he

‘Every man criticized himself.’

Even though there should be nothing formally
constraining the use of ta in (10), native speakers
report ziji to be preferable in this context3. Ta is
also dispreferred in a non-blocking version of (9):

3The bimorphemic taziji is also acceptable, though re-
stricted only to local uses similar to English himself. A re-
viewer correctly points out that the example could be ruled
out by Condition B of the standard binding theory; the same
does not however apply to the bound ta in (11), which sug-
gests more than just Condition B would be at play. Further-
more, the only implementations of Condition B for TAG that

(11) Mei-ge
every-CL

reni

man
dou
all

renwei
think

taj
she

piping-le
criticize-ASP

ta.?i/∗j/k
he
‘Every man thought that she criticized
him.’

For the long distance bound variable reading in
(11), ziji is the clear choice, even though it would
be ambiguous between a local or long distance
reading. While it would be simple to character-
ize ta as an anti-local bound variable, examining
the full set of data suggests this to be an overstate-
ment. It is not merely that ta cannot be used as a
bound variable locally, the facts are that ta is only
ever used when no other form is available. One
could make the same claim about bound variable
uses of the English third person pronouns, which
are not used in local reflexive contexts. Keeping in
mind that TAG accounts of English reflexive pro-
nouns have treated them as tree-local derivations
(see for example Kallmeyer and Romero (2007)
and and Frank (2008), among others), one could
imagine a derivational economy account restrict-
ing uses of her: a derivation that yields the same
meaning without resorting to delayed locality is
available. Similarly, while isomorphic derivations
using either ta or ziji will have identical l values
in (10) and (11), the ambiguity introduced by the
fact ta also has a non-bound referential use may
block its use: the obligatorily bound ziji wins out.
Given that this paper argues for constraints over
sets of derivations, it is not unreasonable to pro-
pose that the same types of comparisons come into
play when selecting the optimal expression of a
desired meaning.

This reasoning calls for a re-examination the ty-
pological conclusions reached in Storoshenko and
Han (2015), where three types of bound variable
are defined: ones similar to ziji or caki which can
be used locally or long distance, ones restricted
to non-local uses formalized as an l value greater
than one, and finally ones restricted only to the
most local use where l=1. Firstly, that the present
paper explains the nonexistence of any bound vari-
ables with minimum l values of two or greater.
These would be hyper-anti-local bound variables
whose antecedents need to be two or more clauses

I am aware of (Champollion, 2008; Nesson, 2009) each make
different assumptions about the semantics of binding than are
made in this paper. Defining the full set of Chomskyan bind-
ing conditions in this particular version of STAG remains
a matter for further research, though see Storoshenko et al.
(2008) for discussion of Condition A as epiphenomenal.

74

removed. As seen here, this would amount to rul-
ing out entire families of derivations with smaller l
values, which would trigger the PPP. The account
for why non-subjects are not antecedents and yet
induce blocking with a feature mismatch is cap-
tured by exactly the derivational constraint which
would rule out such a bound variable. However,
one may wonder whether the anti-local category
exists at all, or should rather just be re-cast as an
epiphenomenon falling out from the fact that bet-
ter local derivations are available?

Still, there is no compelling reason to eliminate
the category of bound variable where l=1. While
it could be the case that apparent local bound
variables may warrant closer examination to see
whether a tree-local derivation is available, there
may be other cases where a certain MCS is forced
to make use of delayed locality, but is constrained
to using only as much as possible for a felicitous
composition. One possibility for such a case out-
side the realm of binding would be subextraction
in wh-movement:

(12) Whati did you take a picture of ti?

While it has been compellingly argued that wh-
extraction should be treated as tree-local move-
ment (Frank, 2002), such an analysis is untenable
for (12), as the trace is in a different lexical pro-
jection than the wh-word’s landing site. Treating
this wh-movement as a MCS consisting of the wh-
word and its trace would need a derivation with an
l value of one, but the use of such a MCS would
need to be held to that value, or else numerous sub-
jacency violations would become possible. This
analysis is held over for future work.

5 On Trans-Derivational Constraints

The analysis presented in this paper relies cru-
cially on a set of trans-derivational constraints
(TDCs) which run the risk of extending the gen-
erative capacity of the grammar. Here, I ad-
dress this concern by comparing the present anal-
ysis with that presented in Freedman (2012). In
that paper, two constraints are presented, along
with a proof that a TAG with restricted TDCs is
no more expressive than one without those con-
straints. The first constraint Freedman proposes is
the DERIVATIONAL COMPLEXITY CONSTRAINT

ON SEMANTIC INTERPRETATION or DCCSI: “A
derivation d producing meaning m is ruled out if
another shorter derivation d′ also produces m.”

The maximal isomorphism constraint I have as-
sumed to act as an initial filter on possible deriva-
tions has essentially this effect, militating against
derivations with identical semantic outputs but
larger l values in the syntactic derivation. This
seems to be a reasonable comparison class for
derivations where an uneven syntactic and seman-
tic MCS pairing is allowed to combine using de-
layed locality. The FFF proposed above uses a
subset of the same comparison class, the fam-
ily of maximally isomorphic derivations. The
second constraint Freedman proposes is a means
of limiting the comparison class for TDCs. His
LOCALITY CONSTRAINT ON COMPETITION dic-
tates that any two derivation trees may only be
compared if the are identical save for the daughters
of one node, which may be either excised or re-
placed. The comparisons within families required
by the FFF are similarly restricted in that they are
identical in all measures save for the position in
the tree of the βzijiT ′ component. Applying the
constraint symmetrically to the pair δ4 and δ5 in
Table 2, each derivation differs from the other by
the daughters of one node. Moving on to the PPP,
there is a similar constraint on comparison classes
when looking at the whole families being com-
pared. Examining the relevant derivations in Table
5, the δ3/δ5 and δ4/δ6 pairs differ only by the po-
sitions of αziji. While TDCs are definitely tools
to be used sparingly, restricting these constraints
to applying within families or at most between ad-
jacent families (allowing the PPP to apply transi-
tively) provides similar restrictions as those dis-
cussed by Freedman.

6 Conclusion

In this paper I have presented a model of the be-
haviour of the Mandarin long distance anaphor
ziji. By combining two well-formedness con-
straints on the relationship between elements in
the ziji MCS with two more global constraints on
derivation families, the blocking effect and certain
asymmetries between local and long distance do-
mains are captured. Furthermore, while the more
global constraints provide motivation for the ex-
isting claim that hyper-anti-local bound variables
should not exist, the existence of trans-derivational
constraints poses a new question of whether anti-
local bound variables are a bona fide category, or
merely epiphenomenal.

75

Acknowledgments

I would like to the TAG+ reviewers for their com-
ments and suggestions, all which have improved
the quality of this paper, and also the audiences
at Yale University and the University of Delaware
who heard preliminary versions of the work con-
tained here. This work was started at Yale un-
der SSHRC Postdoc Fellowship 756-2010-067,
and has been completed under a Faculty Start-Up
Grant from the University of Calgary. My thanks
also to Peng Han for providing some new data and
confirming judgements. All errors are my own.

References

Daniel Büring. 2005. Binding Theory. Cambridge,
UK: Cambridge University Press.

Lucas Champollion. 2008. Binding theory in LTAG.
In Claire Gardent and Anoop Sarkar, editors, Pro-
ceedings of the 9th International Workshop on
Tree Adjoining Grammars and Related Formalisms,
pages 1–8.

David Chiang and Tatjana Scheffler. 2008. Flexi-
ble composition and delayed tree-locality. In Claire
Gardent and Anoop Sarkar, editors, Proceedings of
the 9th International Workshop on Tree Adjoining
Grammars and Related Formalisms, pages 17–24.

Peter Cole, Gabriella Hermon, and Li-May Sung.
1990. Principles and parameters of long-distance re-
flexives. Linguistic Inquiry, 21(1):1–22.

Robert Frank. 2002. Phrase Structure Composition
and Syntactic Dependencies. Cambridge, MA: MIT
Press.

Robert Frank. 2008. Reflexives and TAG seman-
tics. In Claire Gardent and Anoop Sarkar, editors,
Proceedings of the 9th International Workshop on
Tree Adjoining Grammars and Related Formalisms,
pages 97–104.

Michael Freedman. 2012. Scope economy and TAG
locality. In Proceedings of the 11th International
Workshop on Tree Adjoining Grammars and Related
Formalisms, pages 223–231.

James C.T. Huang, Yen-hui Audrey Li, and Yafei Li.
2009. The Syntax of Chinese. Cambridge University
Press.

Laura Kallmeyer and Maribel Romero. 2007. Reflex-
ives and reciprocals in LTAG. In Jeroen Geertzen,
Elias Thijsse, Harry Bunt, and Amanda Schiffrin,
editors, Proceedings of the Seventh International
Workshop on Computational Semantics, pages 271–
282.

Rebecca Nesson. 2009. Synchronous and Multicom-
ponent Tree-Adjoining Grammars: Complexity, Al-
gorithms, and Linguistic Applications. Ph.D. thesis,
Harvard University.

Hong-Ki Sohng. 2004. A minimalist analysis of X0

reflexivization in Chinese and Korean. Studies in
Generative Grammar, 14(3):375–396.

Dennis Ryan Storoshenko and Chung-hye Han. 2015.
Using Synchronous Tree Adjoining Grammar to de-
rive the typology of bound variable pronouns. Jour-
nal of Logic and Computation, 25(2):371–403.

Dennis Ryan Storoshenko, Chung-hye Han, and David
Potter. 2008. Reflexivity in English: An STAG
analysis. In Claire Gardent and Anoop Sarkar, ed-
itors, Proceedings of the 9th International Work-
shop on Tree Adjoining Grammars and Related For-
malisms, pages 149–157.

76

Proceedings of the 12th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+12), pages 77–84,
Düsseldorf, Germany, June 29 - July 1, 2016.

Node-Based Induction of Tree-Substitution Grammars

Rose Sloan

Yale University
rose.sloan@yale.edu

Abstract

Because PCFGs are, as their name sug-
gests, context-free, they cannot encode
many dependencies that occur in natural
language, such as the dependencies be-
tween determiners and nouns, allowing
them to overgenerate phrases like those

cat. One formalism that is able to cap-
ture many dependencies that PCFGs can-
not is that of probabilistic tree-substitution
grammars (PTSGs). Because PTSGs al-
low larger subtrees to be used as gram-
mar rules, they can better model natural
language but are also more difficult to in-
duce from a corpus. In this paper, I will
show how PTSGs can be used to rep-
resent dependencies between determiners
and nouns and present a novel method for
inducing a PTSG from a parsed corpus.

1 Introduction

PCFGs are ill equipped to handle the case of sim-
ple noun phrases consisting of a determiner fol-
lowed by a noun, as the grammaticality of these
phrases is dependent on what types of nouns the
determiner in question can precede. For exam-
ple, while the can precede any noun, determiners
like a and another can only occur with singular
count nouns, while those can only precede plural
nouns, and determiners like more can precede ei-
ther plural nouns or mass nouns but not singular
count nouns. Thus, the noun phrases a book, more

coffee, and those cards are grammatical, whereas
a cards, more book, and those coffee are not.

Representing these sorts of noun phrases with
a PCFG is difficult. Consider the following toy
corpus:

(1) a. NP

DT

a

N

NN

cat

b. NP

DT

those

N

NNS

dogs

A CFG representing this corpus would need to
contain the rules NP → DT N, DT → those, N
→ NN, and NN→ cat. While these are all reason-
able rules, combining them gives us the following
tree:

(2) NP

DT

those

N

NN

cat

Thus, such a grammar would generate the bla-
tantly ungrammatical noun phrase those cat. Fur-
thermore, even to assign it a low probability, we
would need a low probability for at least one of
the rules that generated it, which would reduce the
probability of at least one of the trees in (1). While
we could perhaps mitigate this problem by remov-
ing the nodes labeled N and splitting the DT label
into a set of labels corresponding to specific types
of DTs, such a solution would overlook some gen-
eralizations (including, say, that the could precede
any noun). Instead, we look for a formalism that
represents these dependencies more naturally.

One such formalism is tree-substitution gram-
mars (TSGs). Whereas CFG rules can be seen as
one-level subtrees of the parse trees they generate,
TSG rules can be any subtrees of these parse trees.
A leaf node of a TSG rule whose label is not a
lexical item is known as a substitution node, and
parse trees can be built by replacing a substitution

77

node with a rule whose root has the same label as
the substitution node.

Because TSGs allow for larger rules than CFGs,
they can handle dependencies that CFGs do not.
Consider, once again, the toy corpus presented in
(1). While it is impossible to represent it using
a CFG that does not overgenerate ungrammatical
noun phrases, we could represent it with a TSG
containing the following rules:

(3) a. NP

DT

a

N

NN

b. NN

cat

c. NP

DT

those

N

NNS

d. NNS

dogs

(3a) and (3b) can be combined to get (1a), and
(3c) and (3d) can be combined to get (1b). It is no
longer possible to generate (2), as the rule that pro-
duces those has a substitution node labeled NNS
and thus can only accept plural nouns. (Similarly,
the rule that produces a requires a singular count
noun). Thus, TSGs allow us to accurately capture
the dependencies between noun types and deter-
miners.

While PTSGs present a more accurate model of
natural language than PCFGs, they are also harder
to induce from a corpus. Given a parse tree for a
sentence, one can determine what CFG rules must
have generated it simply by looking at each non-
terminal node and its children. Then, given an
entire treebank of parse trees, one can simply ex-
tract all the necessary CFG rules to produce that
treebank and then get a PCFG by estimating the
probability of each rule using one of a variety of
techniques, the simplest of which involve simply
counting the number of times each rule is used in
producing the context. However, given a parse tree
generated from a PTSG, it is less clear which rules
formed it, as it is unknown which of the tree’s in-
ternal nodes were substitution nodes in its deriva-
tion and which ones were already internal nodes in
elementary trees. Furthermore, while some of the
subtrees of the completed parse trees, such as the
rules presented in (3), contain linguistically rele-
vant information, others, such as many CFG rules
or rules that simply memorize each full tree in the
corpus, are not specific enough or overly specific
and, as such, should have low probability or not be
present in a PTSG at all.

In this paper, I will present a novel approach
for inducing a PTSG from a parsed corpus, focus-
ing specifically on PTSGs that model noun phrases

such as the one in (3). This approach focuses
on determining which nodes in the training set
are substitution nodes. It does so by repeatedly
sampling grammars from the training set. It then
parses the data set with these grammars and uses
the results of the parses to update the probability
of trees’ internal nodes being substitution nodes.
This approach is simpler to understand and imple-
ment than other node-based approaches and does
not require complex prior distributions.

2 Previous Approaches

Many previous approaches to TSG induction are
data-oriented parsing (DOP) approaches that at-
tempt to create grammars that include every pos-
sible rule that could have generated a corpus (Bod
and Scha, 1996). In the most straightforward case,
this means that the rules that comprise the tree-
substitution grammar are simply all subtrees of all
the trees in the training set. Unsurprisingly, these
approaches lead to very large grammars, and in
many cases, it is even necessary to transform each
tree into some implicit representation (such as rep-
resenting larger rules in terms of smaller rules in-
stead of fully storing the trees) in order to store the
grammar or at least to use it for parsing. Other ap-
proaches to data-oriented parsing try to limit the
size of the grammar to some extent. For exam-
ple, one approach, known as double-DOP, creates
a grammar by taking every pair of parse trees from
the training set and adding the largest subtree in-
cluded in both trees (Sangati and Zuidema, 2011).
This grammar is then interpolated with a CFG to
create a grammar that can fully represent the train-
ing set and that includes all larger “productive”
rules.

A number of more recent approaches, includ-
ing the one presented in this paper, attempt not to
find all TSG rules that could represent a corpus
but to represent the corpus using the optimal dis-
tribution of TSG rules. One such approach called
fragment grammars looks at TSGs from a gener-
ative perspective as a Bayesian model of the rel-
ative probability of productivity (forming novel
phrases) and reuse (reusing previously constructed
fragments) (O’Donnell et al., 2009). The math-
ematical model used to generate the grammar is
a generalization of a Pitman-Yor Adaptor Gram-
mar, a PCFG-based model that weakens the inde-
pendence assumptions by introducing a vector of
adaptor functions that map one probability distri-

78

bution over trees to another (Johnson et al., 2006).
In Pitman-Yor Adaptor Grammars specifically (as
opposed to adaptor grammars in general), these
adaptor functions are based loosely on a Chinese
restaurant process so that the distribution gener-
ated by the grammar reflects the outputs of a “rich
get richer”-based process. Fragment grammars
use these mathematical underpinnings within the
PTSG framework, incorporating a “grow-child-or-
not” term into the generative model, allowing it
to assign and optimize the weights of elementary
trees.

Similarly, approaches presented by Cohn et al.
and by Post and Gildea use priors based on a
Dirichlet process to obtain a grammar (Cohn et
al., 2009; Post and Gildea, 2009). These ap-
proaches use Gibbs sampling to induce the gram-
mar, and, like my approach, they focus on de-
termining which nodes are substitution nodes, al-
though the sampling methods I present are differ-
ent.

3 Algorithm

3.1 Concept

Like the fragment grammars approach, my al-
gorithm of node-based induction for inducing a
PTSG attempts to find an optimal subset of sub-
trees. However, instead of explicitly representing
probability distributions over grammars, I instead
assign a probability to each internal node of each
parse tree in the corpus, corresponding to the prob-
ability that the node is a substitution node. (For
simplicity of notation, throughout this section, I
will refer to this probability for node n as p(n) or
simply as node n’s probability.) It is these proba-
bilities that are optimized over the course of many
iterations of training. Specifically, during each it-
eration, an intermediate PTSG is used to parse the
training set, and the probability of each node is
recalculated based on the probabilities of the dif-
ferent parses it generates.

Initially, the probability is set to the same value
for every node in the training set. After trying
values in the range [0.35, 0.9], I experimentally
determined an initial probability of 0.55 for each
node is most likely to result in a grammar that per-
forms well on the test set. This is likely because
this value imposes a slight prior against simply
memorizing the training set. However, because the
weighting of the different parses later in the algo-
rithm tends to mitigate most of the bias introduced

from the initial node probabilities, small changes
in this initialization parameter have little effect on
the final result.

3.2 Sampling and Parsing

To complete one iteration of training, we start by
inducing a PTSG by randomly sampling from the
parsed training set. Specifically, we decompose
each tree, randomly choosing whether or not each
internal node is a substitution node based on its
probability at the start of the iteration (so that node
n has probability p(n) of being a substitution node
in the decomposed tree). The set of trees result-
ing from this decomposition become our set of el-
ementary trees, and we set the probability of each
elementary tree using a relative frequency estimate
(that is, simply letting the probability be the num-
ber of times that tree appears in the set of decom-
posed trees divided by the total number of trees
with the same root node).

Once we have induced this PTSG, we then use
it to parse each tree in the training set. In order
to make parsing more efficient, any rules contain-
ing lexical items that do not appear in the phrase
being parsed are removed before parsing with a
standard CKY algorithm (Schabes et al., 1988).
Doing so, we get all possible parses for the tree
with our grammar, and we can then get an inter-
mediate probability (pint) for each node by exam-
ining the probabilities of the parses in which node
n is a substitution node. This intermediate proba-
bility corresponds to the probability that the node
is a substitution node when using this particular
intermediate grammar. Furthermore, we assign a
weight to each parse to prioritize parses in which
some but not all of the nodes are substitution nodes
(to discourage the model from doing something
similar to simply inducing a PCFG or from memo-
rizing entire trees). Specifically, in order to weight
a parse more favorably the closer it is to having
about half the internal nodes be substitution nodes,
the weight of a parse is

(
t
s

)
(t choose s) where s is

the number of substitution nodes in a parse and t is
the total number of internal nodes (i.e. the number
of potential substitution nodes). Then, if p(x) is
the probability of a parse, w(x) is the weight of a
parse, S is the set of all parses in which n is a sub-
stitution node, and T is the set of all parses for the
tree that n appears in, we can compute pint using
the following formula:

79

pint(n) =

∑

x∈S w(x)p(x)
∑

x∈T w(x)p(x)

3.3 An Example

Consider the following tree from a hypothetical
training set:

(4) NP

DT

a

N

NN

cat

Let us assume that our intermediate grammar pro-
duced parses with the following three sets of el-
ementary trees with probabilities p1, p2, and p3
respectively:

(5) a. NP

DT N

NN

DT

a

NN

cat

b. NP

DT

a

N

NN

NN

cat

c. NP

DT

a

N

NN

cat

The parses in (2a) and (2b) both have weights of
(
3
1

)
=

(
3
2

)
= 3, as (5a) has 2 substitution nodes

and (5b) has 1. However, the parse in (5c) only has
weight

(
3
0

)
= 1, as it has no substitution nodes.

Then, we can compute pint for the node labeled
DT, which is only a substitution node in (5a), as:

pint =
3p1

3p1 + 3p2 + p3

3.4 Updating Probabilities

Once we have calculated pint(n), we adjust the
probability of node n by taking a weighted average
of this intermediate probability and the probabil-
ity from the start of the round, using the following
formula:

pnew(n) = 0.6pold(n) + 0.4pint(n)

The higher pint is weighted, the faster the node
probabilities converge, but when pint is weighted
higher, each randomly selected grammar has a
larger impact on the final grammar and thus could
result in a final grammar that performs poorly on
the test set. The precise weighting above was de-
termined experimentally by running the algorithm
a number of times with different weights to pro-
vide an optimal balance between allowing each
round to significantly affect the node probabilities
while still weighting pint little enough so that a
round in which the intermediate PTSG is chosen
suboptimally will not derail the training process.

3.5 Getting the Final Grammar

We compute a convergence metric by examining
how close our intermediate probabilities are to the
node probabilities at the start of a round. We
can say that node n has “converged” if the dif-
ference between pold(n) and pint(n) is less than
0.05. The convergence metric then is the number
of “converged” nodes divided by the total num-
ber of internal nodes in all trees in the training set.
If this number is over 0.95, training comes to an
end and the node probabilities set at the end of the
last round of training are used to sample the final
grammar.

Once the node probabilities have been finalized,
we decompose the training set 100 times using the
same method we used in training. Then, the set of
decomposed trees becomes the set of rules of our
final PTSG, and, as before, probabilities are set
using relative frequency estimates. Then, once we
have determined the rules and probabilities for the
final PTSG, we parse each rule in this PTSG using
the other rules of the PTSG. If there is a parse for
the rule made up of smaller rules and if the prob-
ability of this parse is greater than the probability
of the larger rule, the rule is determined to be su-
perfluous. Superfluous rules are removed from the
grammar, and the probabilities are renormalized.

Finally, in order to account for unknown words,
for each part of speech appearing in the training
set, a tree with height 1 with a root labeled with the
part of speech tag and with one leaf node labeled
“unk” (short for “unknown”) is added to the gram-
mar. The probability of these rules is set according
to the number of types and tokens for the part of

80

speech so that a part of speech with many distinct
lexical items, such as count nouns, has a relatively
high probability of unknown words compared to a
part of speech with relatively few distinct lexical
items, such as determiners. Specifically, the prob-
ability of the rule POS → unk was set to:

types(POS)

types(POS) + tokens(POS)

After adding these rules, the probabilities of all
other rules whose roots are part of speech tags are
renormalized.

4 Methods

4.1 Data Selection

The trees used for training and test sets are taken
from the Adam portion of the Pearl-Sprouse cor-
pus, a parsed version of the child-directed portions
of the Brown subcorpus from CHILDES (Pearl
and Sprouse, 2012; Brown, 1973; MacWhinney,
2000). Only noun phrases are examined, as they
can be parsed quickly and are a structure for which
a PTSG should be able provide an accurate model.
Additionally, in order to allow the algorithm to
distinguish between mass and count nouns, the
NN label (the POS tag for singular nouns) corre-
sponding to any mass noun is manually replaced
by an NNM label. Similarly, to allow the algo-
rithm to have rules applicable to all nouns, a node
labeled simply N is inserted immediately above
any node labeled NN, NNM, or NNS (the POS tag
for plural nouns).

Furthermore, as the algorithm makes use of
a CKY parser, any tree in the corpus which is
not binary branching is modified to become right-
branching. If an inserted node’s children are both
labeled N, it is labeled with N, so that the algo-
rithm would treat compound nouns the same way
as other nouns, and similarly, if the first child is
labeled JJ (the POS tag for adjectives) and the sec-
ond is labeled N, the inserted node is labeled N, as
adjective-noun pairs distribute similarly to nouns
in this dataset. All other inserted nodes are labeled
by concatenating the labels of their children.

4000 noun phrases are then extracted from this
modified corpus. None of these noun phrases in-
clude smaller internal noun phrases, so as to allow
the algorithm to focus on dependencies between
determiners and nouns, and all of them include at
least one node labeled N (so as to eliminate single
pronouns from the data set). They are also selected

so that at least 30% of them contain mass nouns.
3200 of these nouns are randomly chosen to be
the training set. The remaining 800 become the
test set. Furthermore, every lexical item in the test
set that does not appear in the training set was re-
placed with the word “unk” so that it can be prop-
erly parsed by the induced grammar.

4.2 Tests Run

The first baseline the induced grammar is tested
against was a PCFG. The rules of the grammar
are taken from all the PCFG productions in the
training, and the probabilities are set using rela-
tive frequency estimates. Furthermore, rules going
from each part of speech to “unk” are added with
probabilities set the same way as they were in the
PTSG so that trees with unseen lexical items can
be parsed.

The second baseline is a PTSG whose rules are
simply the full trees in the training set. The proba-
bility of each rule is set using a relative frequency
estimate, so the probability of a given tree is sim-
ply the number of times the tree appears in the
training set divided by the total number of trees
in the training set.

The third baseline is a PTSG obtained by ran-
domly sampling from the training set, specifi-
cally by decomposing each tree 100 times and set-
ting the probabilities using relative frequency es-
timates, just as at the end of the induction algo-
rithm. However, instead of using the trained prob-
abilities, while sampling, the probability of each
node being a substitution node is simply set to its
initial probability of 0.55. To make this more com-
parable to the induced grammar, rules going from
each POS tag to “unk” are added with their prob-
abilities equal to their probabilities in the induced
PTSG, and all other rules’ probabilities are renor-
malized.

Lastly, Sangati and Zuidema’s code for double-
DOP is run on the training set to obtain their set
of fragments and CFG rules with counts. Using
these counts, probabilities for each rule are ob-
tained using relative frequency estimates. Then
the same rules for unknown lexical items with
the same probabilities as in the induced grammar
were added, and the probabilities are renormal-
ized. Other previous approaches were not tested
because of the difficulty of finding a working im-
plementation of them.

Finally, to avoid zero probabilities, especially

81

Method Training Test Grammar Size
Node-Based -25263 -6770 1359
PCFG -30905 -7091 990
Full Trees -22280 -6814 1572
Sampling -30135 -7266 1721
Double-DOP -28882 -7032 2404

Table 1: Log probabilities of training and test sets
on different grammars

for the full trees baseline, when computing the
probability of a tree in the test set with the PTSGs
obtained through node-based induction, sampling,
and taking full trees, we also parse it with the
PCFG induced for the first baseline. (This is
not necessary for double-DOP, as the algorithm
for double-DOP already incorporates all possible
CFG rules.) The probability of the tree is then cal-
culated to be a weighted average of the two proba-
bilities, with the PCFG weighted at 0.05, while the
PTSG is weighted at 0.95. Any trees in the test set
that cannot be parsed with the PCFG are removed
from the test set and ignored.

5 Results

Table 1 shows the results for how node-based in-
duction compares to the baselines with a training
set of size 3200 and a test set of size 793. (Initially,
the test set was of size 800, but 9 noun phrases
were removed because they contained structures
unseen in the training set and thus could not be
parsed by any of the grammars.) The numbers pro-
vided here are obtained by summing the log prob-
abilities of the best parses for each tree in the data
set. (In every case except for the PCFG baseline,
these probabilities are also computed by taking
a weighted average of the probability of the best
parse with the chosen model and the best parse
with a PCFG, as explained in the methods section).
Thus, larger (i.e. less negative) numbers corre-
spond to higher probabilities and therefore better
results.

These results demonstrate that, apart from sim-
ply memorizing the training set (and grossly over-
fitting), the PTSG induced by node-based induc-
tion assigns the highest probability to the train-
ing set. Additionally, when tested on an unseen
test set, node-based induction outperforms each of
the baselines. It is also worth noting that when
sampling randomly without first training the sub-
stitution node probabilities, the resulting grammar

performs nearly as badly as a PCFG on the train-
ing set and worse than all other grammars on the
test, thus demonstrating that the optimization of
the substitution node probabilities is in fact what
allows node-based induction to produce a well-
performing grammar. It is also worth noting that
node-based induction produces the smallest gram-
mar except for the PCFG, making it faster to parse
with.

In order to determine how well the induce PTSG
models the distribution of nouns and determin-
ers, all 1442 noun phrases of the format “deter-
miner noun” were extracted from the training set
and, for each determiner that appeared more than
5 times, the probability distribution over different
types of nouns occurring with that determiner was
computed. These distributions are shown in table
2. Then, 1442 noun phrases of the form “deter-
miner noun” were generated using the PTSG in-
duced with node-based induction, and the same
distributions were computed, shown in table 3.
The same was done for the PCFG. Then, the
Kullback-Leibler divergence was computed be-
tween the distributions generated from each of the
PTSG induced through node-based induction and
the PCFG and the true distribution from the train-
ing corpus, using add-one smoothing to avoid zero
probabilities. These values are shown in table 4.

Determiner Count Noun Mass Noun Plural Noun
a 0.983 0.015 0.002
an 0.952 0.048 0.000
another 0.714 0.286 0.000
any 0.048 0.714 0.238
no 0.571 0.286 0.143
some 0.000 0.913 0.087
that 0.857 0.143 0.000
the 0.712 0.230 0.058
this 0.960 0.040 0.000

Table 2: Probability distributions of noun types
cooccurring with common determiners in the
training set

These results show that, while the distribu-
tions produced by the node-based PTSG are not
as strongly skewed as the empirical distributions,
where many of the probabilities are over 0.9, they
do reflect dependencies between determiners and
noun types. (This may also reflect that, even in the
empirical distributions, none of the probabilities
are 1, reflecting the presence of noun phrases like

82

Determiner Count Mass Plural
a 0.82 0.15 0.03
an 0.71 0.18 0.11
any 0.32 0.53 0.16
some 0.18 0.79 0.03
that 0.85 0.10 0.05
the 0.74 0.21 0.05
this 0.86 0.03 0.10

Table 3: Probability distributions of noun types
cooccurring with common determiners in noun
phrases generated by the PTSG

Determiner Node-Based PCFG
a 0.13 0.40
an 0.11 0.80
any 0.16 0.52
some 0.18 1.03
that 0.03 0.09
the 0.00 0.03
this 0.05 0.33

Table 4: K-L divergences of noun phrases gener-
ated by the node-based PTSG and the PCFG com-
pared to the empirical distribution

another coffee where a noun that would normally
be a mass noun serves as a coffee.) Furthermore,
the K-L divergences are much smaller than those
generated by the PCFG, a formalism that cannot
encode these dependencies.

Furthermore, qualitatively speaking, many of
the elementary trees that appear in the grammar
induced by node-based induction make linguistic
sense, such as those below:

(6) a. NP

DT

a

N

NN

b. NP

CD

two

N

NNS

c. NP

DT

some

N

NNM

(6a) represents that a only appears before count
nouns. (6b) represents that two appears before plu-
ral nouns. (6c) represents that some generally ap-
pears before mass nouns. Furthermore, to account
for the fact that some can also appear before plural
nouns (which are rarer in the data set than mass
nouns) and even count nouns in limited grammati-
cal contexts (as in sentences like some person will

like this), there is another elementary tree in the
grammar identical to (6c) but without the NNM

node (so that N is a substitution node). However,
this tree’s probability is an order of magnitude
lower than the tree in (6c), indicating that some

appears primarily but not exclusively before mass
nouns. Other rules indicate that the induced gram-
mar learns several common compound nouns, in-
cluding cookie dough, rubber band, and trash can,
as single rules (instead of requiring each of the
nouns to individually be substituted into a N →
N N rule, as would be the case in a CFG).

6 Conclusion

In this paper, I have presented a novel approach for
induction of probabilistic tree substitution gram-
mars, which represents the probability distribu-
tion over possible tree-substitution grammars by
assigning probabilities to potential substitution
nodes and determines the optimal probabilities
through repeated sampling and parsing. This ap-
proach is able to produce grammars that accurately
represent dependencies between determiners and
nouns, including, for example, elementary trees
that require a to appear before a count noun. Fur-
thermore, these grammars produce higher proba-
bility parses than standard PCFGs when tested on
an unseen test set and also outperform a purely
sampling-based approach where the probabilities
assigned to the substitution nodes are not opti-
mized.

Here, I have shown that tree-substitution gram-
mars induced through node-based induction can
more accurately represent the probabilities of po-
tential parses for non-recursive noun phrases than
traditional PCFG-based approaches or grammars
induced from DOP-based approaches. We have
not yet run experiments testing this algorithm on
structures beyond noun phrases, but future work
could adapt this algorithm to work with larger
grammatical structures, including full sentences,
and it could then be used to induce grammars
that more accurately model language and generate
more accurate parses.

References

Rens Bod and Remko Scha. 1996. Data-oriented lan-
guage processing: An overview. Computing Re-
search Repository.

Roger Brown. 1973. A first language: The early
stages. Harvard U. Press.

83

Trevor Cohn, Sharon Goldwater, and Phil Blun-
som. 2009. Inducing compact but accurate tree-
substitution grammars. In Proceedings of Human
Language Technologies: The 2009 Annual Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics, pages 548–556.
Association for Computational Linguistics.

Mark Johnson, Thomas L. Griffiths, and Sharon Gold-
water. 2006. Adaptor grammars: A framework for
specifying compositional nonparametric bayesian
models. In Advances in neural information process-
ing systems, pages 641–648.

Brian MacWhinney. 2000. The CHILDES project: The
database, volume 2. Psychology Press.

Timothy J. O’Donnell, Noah D. Goodman, and
Joshua B. Tenenbaum. 2009. Fragment gram-
mars: Exploring computation and reuse in language.
Technical Report MIT-CSAIL-TR-2009-013, Mas-
sachusetts Institute of Technology.

Lisa Pearl and Jon Sprouse. 2012. Computational
models of acquisition for islands. Experimental syn-
tax and island effects, pages 109–131.

Matt Post and Daniel Gildea. 2009. Bayesian learning
of a tree substitution grammar. In Proceedings of the
ACL-IJCNLP 2009 Conference Short Papers, pages
45–48.

Federico Sangati and Willem Zuidema. 2011. Ac-
curate parsing with compact tree-substitution gram-
mars: Double-DOP. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, pages 84–95. Association for Computa-
tional Linguistics.

Yves Schabes, Anne Abeille, and Aravind K. Joshi.
1988. Parsing strategies with ‘lexicalized’ gram-
mars: Application to tree adjoining grammars. In
Proceedings of the 12th Conference on Computa-
tional Linguistics - Volume 2, pages 578–583.

84

Proceedings of the 12th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+12), pages 85–92,
Düsseldorf, Germany, June 29 - July 1, 2016.

Revisiting Supertagging and Parsing: How to Use Supertags in
Transition-Based Parsing

Wonchang Chung

Dept. of Computer Science
Columbia University
New York, NY, USA
wc2550@columbia.edu

Siddhesh Suhas Mhatre

Dept. of Computer Science
Columbia University
New York, NY, USA
sm4083@columbia.edu

Alexis Nasr

LIF
Université Aix Marseille

Marseille, France
Alexis.Nasr@lif.univ-mrs.fr

Owen Rambow

CCLS
Columbia University
New York, NY, USA

rambow@ccls.columbia.edu

Srinivas Bangalore

Interactions, Inc.
New Providence, NJ, USA

sbangalore@interactions.com

Abstract

We discuss the use of supertags derived
from a TAG in transition-based parsing.
We show some initial experimental results
which suggest that using a representation
of a supertag in terms of its structural and
linguistic dimensions outperforms the use
of atomic supertags.

1 Introduction

The notion of supertagging was introduced by
Bangalore and Joshi (1999). A supertag is the
name of an elementary tree assigned to a word
in a TAG derivation of the sentence. A supertag
therefore encodes not only the part of speech, but
also the syntactic properties of the word. They
proposed a two-step approach to parsing: a su-
pertagger determines the supertag for each word
in a sentence, and a deterministic and rule-based
“lightweight dependency analyzer” then derives
the structure from the supertags.

The MICA parser (Bangalore et al., 2009) uses
a supertagger and a subsequent chart parser which
takes the 10-best supertags for each word as in-
put. MICA uses a probabilistic context free gram-
mar which is lexicalized on the supertags, but
not on words. The MICA parser is fast, and
has good performance. Nasr and Rambow (2006)
showed that the MICA approach outperforms the
lightweight dependency analyzer of Bangalore
and Joshi (1999). To our knowledge, MICA is the
only TAG parser trained on the Penn Treebank that
uses supertagging; it is freely available.1

The MICA parser has several drawbacks: while
it is fast, the time complexity is O(n3). Further-

1urlhttp://mica.lif.univ-mrs.fr

more, the system is complex as the chart parser it-
self is compiled using the SYNTAX system (Boul-
lier and Deschamp, 1988), making further devel-
opment difficult. Finally, it is unclear how to
include recent advances in lexical representation
(word embeddings) and machine learning (deep
learning).

This paper presents a new parser based on TAG,
which uses supertagging and a distinct parsing
step. Unlike MICA, the parsing is based on
the transition-based parser of Nivre et al. (2004).
While there has been some work using supertags
with transition-based parsing (Ouchi et al., 2014),
this is the only work (to our knowledge) which
specifically refers to TAG grammar.

Bangalore et al. (2009) train a version of MALT
with gold and predicted supertags. MALT can ex-
ploit the gold supertags, but not the predicted su-
pertags (they do not improve over not using them).
The problem with using supertags in transition-
based parsing is that exploiting n-best supertag in-
put is difficult, and given the large number of su-
pertags, supertagging is hard and the 1-best su-
pertag is not good enough to allow for a good parse
to be constructed. In this paper, we present ini-
tial investigations to address this problem. We de-
compose the supertag into linguistic dimensions,
which provides for a generalization of the notion
of supertag.

2 Corpus and Grammar

We use the grammar and the corpus extracted by
Chen (2001). This grammar was engineered in
such a way that the derivation trees are meaningful
deep-syntactic representations. This grammar was
also used in the MICA parser (Bangalore et al.,
2009). It has 4725 elementary trees extracted from

85

the training set of the WSJ portion of the Penn
Treebank (Sections 01-22). Every sentence in the
corpus is given a derivation. Sentences in the de-
velopment set (Section 00) and the test set (Sec-
tion 23) may contain elementary trees that have
not been seen in the training corpus.

We automatically analyzed the elementary trees
that make up the extracted TAG, assigning each
tree a vector of 20 dimensions. These dimensions
fall into three categories:

• Dimensions that describe the phrase structure
of the elementary tree. We concentrate on as-
pects that we think will be important for pars-
ing.

• Interpretations of the tree. These are lin-
guistic dimensions which abstract from the
phrase structure of the tree.

• Linguistic transformations on the tree. These
are syntactic variations that the tree encodes,
such as wh-movement.

This approach of breaking down a supertag into
components is inspired by the hypertags of Kinyon
(2000). Our set of dimensions is shown in Fig-
ure 1.

3 Supertagging

The supertagger architecture is very simple:
supertags are predicted independently of each
other. The prediction is performed using an on-
line passive-agressive algorithm (Crammer et al.,
2006). We used the implementation of the Python
Scikit-Learn library.2

The classifier uses a total of 26 features: the
word to be supertagged, its part-of-speech tag as
well as the 6 preceding and following words and
part-of-speech tags. To vectorize the feature data,
the one-hot encoding method was used.

Training was performed on the training set of
the WSJ portion of the Penn Treebank (950,028
tokens) and the evaluation on the development set
(40,461 tokens). In order to reduce the amount of
memory used for training, the sparse matrix con-
structor was used. The peak amount of memory
used for training task was less than 50GB, and the
processing time was less than 1 hour in wall-clock
time on our machines.

2http://scikit-learn.org/stable/

modules/generated/sklearn.linear_model.

PassiveAggressiveClassifier.html

Figure 2: Learning curve of the supertagger

The supertagger accuracy is 87.88% on the de-
velopment set, a bit lower than the results obtained
on this data by Bangalore et al. (2005), which was
88.53%. The learning curve is shown in Figure 2.

4 Parsing

4.1 Background

The parser used in this study, named SUTRA (for
Supertag- and Transition-based Parser), is a stan-
dard transition based parser (Nivre et al., 2004).
Giving a thorough descriptions of transition based
parsers is not the aim of this paper; we will just
briefly describe below the basic ideas behind tran-
sition based parsing to allow the reader to follow
the rest of the paper.

Transition-based parsers are based on two fun-
damental objects: configurations and transitions

A configuration (s, b,D) describes the state of
the parsing process at a given time. b is a buffer
that contains the words of the sentence to parse
not yet processed. The leftmost word of the buffer
is noted b0. b0 can be taken from the buffer and
pushed on the stack s. D is a set containing de-
pendencies that have been built to this point by the
parser. The parser tries to build a dependency be-
tween the word that is on the top of the stack (s0)
and the next word in the buffer (b0). Two types
of attachements are considered, left attachements
that have as a governor word b0 and as a dependent
s0 and right attachements that have s0 as governor
and b0 as dependent. The initial configuration of
the parser is ([], [w1 . . . wn], ∅): the stack is empty,
the buffer contains all the words of the sentence
to parse and the dependency set is empty. A fi-

86

Dimension Description

Dimensions describing the phrase structure of the elementary tree
root The label of the root node of the tree

lfront A list of substitution nodes to the left of the lexical anchor; each node is listed with its
category, its node type (substitution or co-head), and its deep-syntactic argument label

rfront Same as lfront, but for the substitution nodes to the right of the lexical anchor
adjnodes A list of nodes at which adjunction can occur

substnodes A list of all substitution nodes of the tree
coanc Does this tree have a co-anchor?
modif For modifier auxiliary trees, the cateory of its root node (and thus of its foot node)

dir The direction in which a modifier auxiliary tree adjoins
Dimensions interpreting the elementary tree

predaux Is the tree a predicative auxiliary tree (i.e., a tree used for matrix clauses)?
pred Is this tree a nominal, adjectival, or prepositional tree which projects a predicative structure,

i.e., takes a subject (even if not realized)?
appo Is this tree an apposition?
comp Does this tree have a complementizer (which is a co-head in this grammar), and if yes, on

what side of the anchor?
dsubcat Deep subcategorization frame for the anchor, listed in order of argument number (i.e., not

necessarily surface order), with substitution node category and strongly governed category,
if any

ssubcat Surface subcategorization frame for the anchor, listed in order of argument number (i.e., not
necessarily surface order), with substitution node category and strongly governed category,
if any

particle Does this tree contain a particle (POS tag RP)?
Dimensions describing linguistic transformations on the elementary tree

voice Voice for verbal trees
wh Is there a wh-moved dependent?
rel Is the tree a relative clause?

esubj Is the subject of the tree empty?
datshift For ditransitive trees, did dative shift happen?

Figure 1: Description of tree dimensions

nal configuration is a configuration for which the
buffer is empty.

A transition operates on a configuration ci to
produce a configuration ci+1. In our implemen-
tation, three types of transitions are defined:

Left Arc builds a dependency (b0, l, s0) (a transi-
tion that has b0 as a governor, s0 as a depen-
dent and l as a label). This transition adds the
new dependency to D and pops the stack.

Right Arc builds a dependency (s0, l, b0). This
transition adds the new dependency to D and
replaces b0 with s0.

Shift does not create a new dependency, it just re-
move b0 from the buffer and pushes it on the
stack.

The parser is a greedy deterministic parser.
Given a configuration, it predicts the most likely
transition to make. A new configuration is pro-
duced and the process iterates until a final config-
uration is reached. The dependency structure pro-
duced is the set D.

The heart of the parser is the classifier that pre-
dicts which transition to make given a configura-
tion. The number of possible configurations being
very large, we decompose a configuration into a
feature vector. During training, the classifier asso-
ciates a score to each feature. At decoding time,
the classifier adds the scores of the features cor-
responding to the current configuration in order
to select the most likely transition. The classi-
fier used in this work is a simple averaged percep-

87

tron (Freund and Schapire, 1999).
The feature templates used by the classifier are

of three sorts:
Word features describe different aspects of the

words that are present either on the stack of the
parser or in the buffer. They are of the form
(s|b)(0|1|2|3)(f|l|c|p|m) where:

• s|b indicates whether the word described is
in the stack or the buffer

• 0|1|2|3 indicates the position of the word
in the stack or the buffer (s0 is the top stack
word and b0 is the first word in the buffer).

• f|l|c|p|m indicates whether we are refer-
ring to the form of the word (f), its lemma
(l), its coarse part of speech (c), its part of
speech (p) or its morphological features (m).

Distance features indicate the distance in the
string between two words. They are of the form
d X Y where X and Y correspond to words either
on the stack or in the buffer. The only feature of
this category that is used is d s0 b0.

Structural features describe some aspects of
the dependency structure built so far by the parser.
They are of three sorts:

• l X which indicate the syntactic function
(role label) of the leftmost dependent (if any)
of word X. Two features of this category are
defined: r s0r and r b0r.

• r X which indicate the syntactic function
(role label) of the rightmost dependent (if
any) of word X. Two features of this category
are defined: l s0r and l b0r.

• n Xwhich indicate the number of dependents
of word X. Two features of this category are
defined: n s0 and n b0.

Configuration features describe some aspects
of the current configuration of the parser. They are
of four sorts:

• sh indicates the height of the stack

• bh indicates the number of elements in the
buffer

• dh indicates the number of dependencies
built so far

• tn with n=1,2,3,4, indicates the nth pre-
ceding transition that led to the current con-
figuration

Each feature template can be used indepen-
dently or in combination with others, in which
case a weight is computed for a combination of
their values.

4.2 Parser 1: Baseline Parser without

Supertags

We start by describing our baseline parser, which
is SUTRA without any supertag features at all.

Table 4 shows the set of feature templates
(called a feature model) used for our baseline
parser. (All of the tables related to the machine
learning features are at the end of the paper.) Fea-
ture templates 1 to 18 are simple feature templates,
those ranging from 19 to 29 are combination of
two simple feature templates.

The performance of the baseline parser is shown
in Table 1 in the first row, with separate results for
labeled attachment score (LAS) and unlabeled at-
tachment score (UAS). Since we are not using su-
pertags in this experiment, the results are the same
for gold and predicted supertags.

For the sake of comparison, we also give results
for a MALT parser trained on our corpus (2nd line
in Table 1; the results are taken from (Bangalore et
al., 2009)). Our baseline results are directly com-
parable to those for MALT without supertags, as
both are transition-based parsers which do not use
supertags. We see that our results are a little worse,
which we attribute to differences in the machine
learning, and differences in the feature set used.
However, for the sake of the experiments in this
paper, we take our results as meaning that we have
replicated the previous results.

4.3 Parser 2: Using Supertags

We now use supertags. In the first experiment,
we simply add the supertags as labels in our
parser by means of the following word feature
templates: (s|b)(0|1|2|3)(s), where the
first two components of the templates (s|b) and
(0|1|2|3) keep the same meaning as before
and s refers to the supertag of the word. The fea-
ture model of Parser 2 adds to the feature model of
the baseline Parser the feature templates shown in
Table 5. These templates correspond to templates
of the baseline parser in which part of speech tags
are remplaced by supertag tags.

88

Gold Stags Predicted Stags
Parser UAS LAS Stag acc. UAS LAS
Baseline Words, POS tags — — — 87.65 85.23

MALT Words, POS tags — — — 88.9 86.9

P2 Words, POS tags, stags 97.02 96.00 87.88 89.83 87.75

MALT-Stag Words, POS tags, stags 97.20 96.90 88.52 88.50 86.80

MICA Stags only 97.60 97.30 88.52 87.60 85.80

P3 Words, POS tags, stags, stag dimensions 97.46 96.51 87.88 89.96 87.86

Table 1: Results for different configurations.

The results of P2 are displayed in Table 1 in row
3. As one can see, when feeding the parser with
gold supertags, the results accuracy of the parser
jumps to 96.97 UAS and 95.99 LAS. Supertags
carry much more syntactic information than just
POS tags that the parser can make use of in order
to predict the syntactic structure of the sentence.
When supertags are predicted with the supertag-
ger of section 3, the accuracy dips to 89.86 UAS
and 87.75 LAS, respectively. This represents an
absolute increase of 2.24 points of UAS and 2.52
points of LAS with respect to the baseline parser.
We also compare P2 to MALT using supertags,
shown in row 4. We see that our parser outper-
forms MALT with stags by a small margin when
using predicted supertags (but not gold supertags).
Part of the difference in the predicted supertags is
due to the use of gold POS tags in our experiments,
so we conclude that we are again replicating the
previous result.

We also provide the results for MICA (row 5).
We see that for gold supertags, MICA provides
the best overall results, but not for predicted su-
pertags. This is because MICA in fact only uses
supertags.

4.4 Parser 3: Using Dimensions of Supertags

We now perform experiments to see whether the
individual dimensions of the supertags can help
in parsing. The motivation is that if a supertag
is incorrectly predicted, some of the dimensions
may still be correct (for example, the predicted su-
pertag has a transitive verb instead of an intran-
sitive verb, but the subject is empty in both su-
pertags).

In order to be able to exploit the su-
pertag dimensions in the parser, we add
the following word feature templates:
(s|b)(0|1|2|3)(A|B|...|T|U) where,
as before, the first two components of the tem-

plates (s|b) and (0|1|2|3) keep the same
signification and the letters A to U refer to one
dimension of the vector representation of su-
pertags. The correspondence is given in Table 3.
The feature model of parser 3 is the union of the
feature model of P2 and the features of Table 6.

We observe that we cannot use all dimensions of
the linguistic vector representation of the supertag,
because the combinations would result in a com-
binatorial explosion in the number of features for
machine learning. In order to gain a better under-
standing of which dimensions of the decomposed
supertags are useful for parsing, we performed ab-
lation studies, first on the dimensions, and then on
the machine learning features. We discuss them in
turn.

In the first study we removed each dimension
of the supertag (eg. dsubcat, ssubcat, . . .) in turn
and computed the parsing accuracy. For this abla-
tion study, we use a feature model that comprises
simple features derived from supertags and non-
supertags. Specifically, this model comprises the
following features: features 1 through 18 from Ta-
ble 4, plus s0x, s1x, b0x, and b1x, where x is a
variable denoting the dimensions (represented as
in Table 3). We use this model because it is a sim-
ple model. The results are shown for gold and pre-
dicted stags in Table 2.

For the gold experiments (first two columns),
we see that mainly the dimensions that describe
the phrase structure are useful for parsing: all of
these dimensions except for coanc help, and all
the most useful dimensions are of this type. This
is because in a TAG grammar, the phrase struc-
ture encodes exactly how trees can combine in the
parse, so that this is the information needed for a
correct parse. In addition, we have several of the
dimensions relating to transformations that help a
bit. When we look at the predicted supertags, we

89

see that seven of the eleven dimensions that are
useful for the gold condition are still useful, most
of them structural. However, we also expect to
see a shift, as some dimensions are harder to pre-
dict with sufficient accuracy. In particular, we see
that rfront no longer helps. We hypothesize that
this is because there is a large number of possible
values for this dimension (more than for lfront, be-
cause of the syntax of English), and that an error
immediately reduces the usefulness of this dimen-
sion. Perhaps as a result, the dsubcat dimension
is useful in the predicted condition. The dsubcat
dimension abstracts over actual phrase structure,
and therefore has a smaller set of possible values,
while still providing some of the same information
that the dsubcat dimension provides (what depen-
dents this head expects).

Now we turn to the second ablation study, in
which we concentrate on specific features rather
than dimensions. To pick out those individual fea-
tures (eg. s0A, s1B, . . .) in the feature model
of the remaining supertag dimensions (eg. dsub-
cat, ssubcat, . . .) that cause a decrease in perfor-
mance, we performed another level of feature ab-
lation. We use the same feature model we used in
the first ablation study. For each supertag dimen-
sion that remained after the first ablation study,
we removed each corresponding machine learning
feature one by one in and computed the parsing
accuracy. For example, if we consider supertag di-
mension dsubcat (represented as A), then we per-
formed experiments where we removed the feature
s0A in the feature model, followed by s1A and so
on, every time observing the effects on the pars-
ing accuracy. This was done for every remaining
supertag dimension. Again, at the end of this set
of experiments we eliminated those features from
our feature model that cause a decrease in parsing
performance when included. Because of the large
number of results, we do not present them in de-
tail.

Till now we had considered only the supertag
dimensions in our model independently. Our last
set of experiments comprises combining some of
these features from the feature model. Here, we
used our intuition to propose certain combina-
tions. One set of features we combined were the
ones corresponding to the dimensions ’lfront’ and
’rfront’. These correspond to ordered list of fron-
tier nodes to the left and right of the main lexi-
cal anchor respectively. We merge both lfront or

rfront with the root of the elements on top of the
stack and buffer. These features were then com-
bined with the ’dir’ dimension which gave encour-
aging results. We tried 8 different combinations in
this manner and got the best results for the follow-
ing feature model which is shown in Table 6. This
set of features also includes those features that cor-
respond to non-supertag features that gave us the
best performance.

The results of P3 are displayed in the last line of
Table 1. As one can see the decomposed represen-
tation of the supertag has a beneficial impact for
both the gold and predicted supertag conditions.
The error reduction for gold supertags (UAS) is
15%; for predicted, the error reduction is much
smaller (1%). We think this smaller error reduc-
tion may be due to the fact that in our feature en-
gineering, which was guided by our intuition, we
did not take into account the accuracy of different
dimensions, assuming implicitly the case in which
the dimensions are correctly predicted. Our new
results are better than the best published parsing
results so far on this corpus, as far as we know.

5 Conclusion

We have presented work in progress, that shows
that supertagging can be useful for transition-
based parsing. Our initial experiments suggest that
considering the dimensions of the supertag can
help further.

A major problem is devising machine learning
features for the parser from the dimensions, given
the very large number of possibilities due to the
combinatorics of the combined features. In future
work, we plan to use deep learning to obviate the
need for feature engineering. This will also en-
tail using word embeddings, which we will also
use for supertagging. We will look to the rich lit-
erature on supertagging and parsing in CCG for
guidance. In addition, we will also start using pre-
dicted POS tags in our experiments.

References

Srinivas Bangalore and Aravind Joshi. 1999. Su-
pertagging: An approach to almost parsing. Com-
putational Linguistics, 25(2):237–266.

Srinivas Bangalore, Patrick Haffner, and Gaël Emami.
2005. Factoring global inference by enriching lo-
cal representations. Technical report, AT&T Labs –
Reserach.

90

Gold Predicted
Dim. LAS UAS LAS UAS
predaux +.07 +.05 +.04 0
rel +.07 +.06 -.06 -.05

particle +.05 +.05 0 -.05

coanc +.04 +.02 0 -.07

ssubcat +.04 +.03 0 -.01
wh +.02 +.02 +.05 +.02
comp +.01 +.01 -.01 -.05

dsubcat +.01 +.02 -.07 -.09

pred 0 0 +.06 +.03
none 94.87 95.83 83.15 85.43
datshift -.01 -.01 +.07 +.03
voice -.02 -.02 -.03 -.07

esubj -.03 -.02 -.03 -.06

appo -.04 -.04 +.02 0
substnodes -.04 -.02 0 -.01
adjnodes -.04 -.04 -.17 -.19

modif -.07 -.10 -.09 -.11

lfront -.07 -.06 -.05 -.07

rfront -.16 -.15 +.02 -.02
root -.32 -.32 -.09 -.12

dir -.90 -.88 -.40 -.43

Table 2: Ablation study for supertag linguistic fea-
tures, with gold standard supertags and predicted
supertags. Each row lists one feature which was
removed in turn. The resulting difference in per-
formance is shown (labeled and unlabeled depen-
dency accuracy without punctuation), first for gold
supertags, then for predicted supertags. If a re-
sult gets worse upon removal of a feature (nega-
tive value), then that dimension is important. We
show the retained dimensions by boldfacing their
resulting change in accuracy.

Srinivas Bangalore, Pierre Boullier, Alexis Nasr, Owen
Rambow, and Benoı̂t Sagot. 2009. MICA: A prob-
abilistic dependency parser based on tree insertion
grammars. In NAACL HLT 2009 (Short Papers).

Pierre Boullier and Philippe Deschamp.
1988. Le système SYNTAXTM – manuel
d’utilisation et de mise en œuvre sous UNIXTM.
http://syntax.gforge.inria.fr/syntax3.8-manual.pdf.

John Chen. 2001. Towards Efficient Statistical Parsing
Using Lexicalized Grammatical Information. Ph.D.
thesis, University of Delaware.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
Shalev-Shwartz, and Yoram Singer. 2006. On-
line Passive-Aggressive Algorithms. Journal of Ma-
chine Learning Research, 7:551–585.

Yoav Freund and Robert E Schapire. 1999. Large
margin classification using the perceptron algorithm.
Machine learning, 37(3):277–296.

Alexandra Kinyon. 2000. Hypertags. In Proceedings
of the 18th International Conference on Computa-
tional Linguistics (COLING 2000).

Alexis Nasr and Owen Rambow. 2006. Parsing
with lexicalized probabilistic recursive transition
networks. In Finite-State Methods and Natural Lan-
guage Processing, Springer Verlag Lecture Notes in
Commputer Science.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2004.
Memory-based dependency parsing. In HLT-
NAACL 2004 Workshop: Eighth Conference
on Computational Natural Language Learning
(CoNLL-2004), pages 49–56, Boston, Mas-
sachusetts, USA.

Hiroki Ouchi, Kevin Duh, and Yuji Matsumoto. 2014.
Improving dependency parsers with supertags. In
Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Lin-
guistics, volume 2: Short Papers, pages 154–158,
Gothenburg, Sweden, April. Association for Com-
putational Linguistics.

91

A dsubcat B ssubcat C voice
D comp E datshift F root
G lfront H rfront
J adjnodes K substnodes L rel
M particle N coanc O modif
P dir Q pred R esubj
S wh T appo U predaux

Table 3: List of supertag dimensions used, with
short name used in the tables of machine learning
features

1 s0c

2 s0f

3 s0p

4 s1p

5 b0c

6 b0f

7 b0p

8 b1c

9 b1f

10 b1p

11 b2p

12 b3p

13 l s0r

14 r s0r

15 l b0r

16 r b0r

17 n s0

18 n b0

19 s0c b0c

20 s0f b0f

21 s0p b0p

22 b0c b0f

23 b0p b0f

24 b0p l b0r

25 s1c b1c

26 s1p b1p

27 b1c b2c

28 b1p b2p

29 s0c b0c b0f

30 s0c s0f b0c

31 s0p b0p b0f

32 s0p b0p b1p

33 s0p l s0r r s0r

34 s0p s0f b0p

35 s0c b0c d s0 b0

36 s0p b0p d s0 b0

37 s1p s0p b0p

38 b0p b1p b2p

39 b1c b2c b3c

40 b1p b2p b3p

41 b1c b1f b2c b3c

42 b1p b1f b2p b3p

43 b1c b1f b2c b2f b3c

44 b1p b1f b2p b2f b3p

Table 4: Baseline feature model

45 s0s

46 s1s

47 b0s

48 b1s

49 b2s

50 b3s

51 b0s b0f

52 b0s l b0r

53 b1s b2s

54 s0s b0s

55 s1s b1s

56 s0s b0s b0f

57 s0s b0s b1s

58 s0s b0s d s0 b0

59 s0s l s0r r s0r

60 s0s s0f b0s

61 s0s s1s b0s

62 b0s b1s b2s

63 b1s b2s b3s

64 b1s b1f b2s b3s

65 b1s b1f b2s b2f b3s

Table 5: Parser 2 feature model (in addition to the
features shown in Table 4).

38 s0A

39 b1A

40 s0B

41 b1B

42 s0C

43 b0C

44 b0D

45 s1E

46 s1F

47 b0F

48 b1F

49 b0G

50 s0H

51 s1H

52 b0H

53 b1H

55 b0I

56 b1I

57 s0J

58 b0J

59 s0K

60 b1K

61 s0M

62 b0M

63 s0O

64 b1O

65 s0P

66 s1P

67 b0P

68 b1P

69 s0Q

70 s1Q

71 b0R

72 b0S

73 s0U

72 s0H b0F

73 s0F b0G

74 b0H b1F

75 b0F b1G

76 s0H s1F

77 s0F s1G

78 s0H b0F s0P

79 s0F b0G b0P

80 b0H b1F b0P

81 b0F b1G b1P

82 s0H s1F s0P

83 s0F s1G b1P

84 s1H s0F b0G

85 s0H b0F b1F

86 s0H b0F d s0 b0

87 s0F b0G d s0 b0

88 s0H b0F s0P d s0 b0

89 s0F b0G b0P d s0 b0

Table 6: Parser 3 feature model (in addition to the
features shown in Table 4 and Table 5).

92

Proceedings of the 12th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+12), pages 93–102,
Düsseldorf, Germany, June 29 - July 1, 2016.

An Alternate View on Strong Lexicalization in TAG

Aniello De Santo1 Alëna Aksënova1

Department of Linguistics
Stony Brook University

1{aniello.desanto,alena.aksenova}@stonybrook.edu
2mail@thomasgraf.net

Thomas Graf 2

Abstract

TAGs were recently shown not to be
closed under strong lexicalization but to
be strongly lexicalizable by context-free
tree grammars of rank 2. This paper
presents an alternative lexicalization pro-
cedure that builds on an earlier gener-
alization of TAGs to multi-dimensional
trees. A previous theorem that every Tree
Substitution grammar is strongly lexical-
ized by a corresponding TAG is lifted to
higher dimensions to show that for ev-
ery d-dimensional TAG there exists a (d+
1)-dimensional TAG that strongly lexi-
calizes it. A similar lifting reveals that
d-dimensional TAGs are not closed un-
der strong lexicalization, so for arbitrary
TAGs an increase in dimensionality is an
unavoidable consequence of strong lexi-
calization.

1 Introduction

The lexicalization properties of different grammar
formalisms have been a topic of interest for a long
time. A grammar is lexicalized if the atoms from
which compound structures are assembled each
contain a pronounced lexical item. In the case of
TAGs, this means that no elementary trees may
contain only non-terminal symbols or the empty
string. Lexicalized grammars have the advantage
of being finitely ambiguous — no string of fi-
nite length can have an infinite number of possi-
ble analyses. Not only does this guarantee that
recognition is decidable, parsing is also simplified
in practice (Schabes et al., 1988): the hypothesis
space of the parser at any given point is signifi-
cantly reduced because elementary trees that can-
not be introduced by one of the symbols in the in-
put string never need to be considered. As a result,

many parsing algorithms assume that the grammar
is lexicalized or at least can be lexicalized in an au-
tomatic fashion (cf. Kallmeyer (2010)).

In particular for parsing, though, the issue is
not just whether a grammar can be lexicalized but
whether the lexicalization procedure preserves es-
sential properties of the grammar. While a recog-
nizer only needs to determine the well-formedness
of strings, a parser has to assign them structures
licensed by the grammar. One thus has to distin-
guish between two types of lexicalization: weak

lexicalization produces a weakly equivalent lex-
icalized grammar, whereas strong lexicalization

yields a lexicalized grammars that also generates
the same structural descriptions. Recent work
showed that TAGs I) can be weakly lexicalized
(Fujiyoshi, 2004), II) are not closed under strong
lexicalization (Kuhlmann and Satta, 2012) and III)
are strongly lexicalized by context-free tree gram-
mars of rank 2 (Maletti and Engelfriet, 2012).

This paper offers a different perspective on
strong lexicalization of TAGs that stays close to
the basic intuition of TAGs as a mechanism for
rewriting nodes by objects that are more complex
than strings. The main advantage is that this al-
lows us to preserve the basic insights of previous
proofs on TAG lexicalization. We adopt Roger’s
formalism of multi-dimensional trees (Sec. 2.2
and 2.3), with TAGs as the special case where
trees are limited to 3 dimensions (Rogers, 1998a;
Rogers, 1998b; Rogers, 2003a; Rogers, 2003b).
With TAGs lifted to arbitrary dimensions, we es-
tablish three central results:

1. Every d-dimensional TAG is a (d + 1)-
dimensional Tree Substitution Grammar
(TSG; Sec. 3.1)

2. Every d-dimensional TSG is strongly lexical-
ized by some d-dimensional TAG (Sec. 3.2;
cf. Schabes (1990)).

93

A↓

A

A

A

A

A*

A

A

A*

Figure 1: Substitution and adjunction

3. The class of d-dimensional TAGs is not
closed under strong lexicalization (Sec. 3.3;
cf. Kuhlmann and Satta (2012)).

This entails as a corollary that an increase in di-
mensionality is unavoidable in the strong lexical-
ization of (at least some) d-dimensional TAGs.

2 Preliminaries

In order to appreciate the results of Sec. 3.1–3.3,
the reader has to be familiar with a few core con-
cepts: the relation between adjunction and substi-
tution (2.1), the view of TAGs as a formalism over
3-dimensional trees (2.2), and their generalization
to trees of higher dimensionality (2.3).

2.1 Adjunction and Substitution

We assume familiarity on the reader’s part with the
TAG formalism as defined in Joshi (1985). A TAG
is specified by two finite sets I and A of initial and
auxiliary trees, respectively. Their union is the set
E of elementary trees. Every auxiliary tree con-
tains exactly one node that is marked as a foot
node (indicated by ∗ in our figures). Initial trees
must not contain any foot nodes. Elementary trees
are then combined by the operations of adjunction
and substitution, illustrated in Fig. 1.

The distinction between adjunction and substi-
tution plays an important role in this paper. Both
operations replace nodes by trees. Tree substitu-

tion can only replace leaf nodes, and the tree being
substituted may not contain a foot node. Tree ad-

junction, on the other hand, may rewrite any non-
terminal node by any tree that contains exactly one
foot node (i.e. by an auxiliary tree). Usually, it is
also required that the label of the rewritten node
is identical to the labels of the root (and the foot
node, if it exists) of the substituted tree. Nodes
are furthermore annotated with features to indicate
whether adjunction and substitution are mandatory
or optional as well as which trees may rewrite a
given node.

Substitution can be regarded as adjunction of a
foot-less tree at a leaf node. We thus use a more
general definition of adjunction. Given a tree t, let
t ↾ r be the subtree of t rooted in node r. Further-
more, t[n←− u] replaces a node n of t with tree u.
If n does not exist, then t[n←− u] = t. Now adjunc-
tion of u into t at node n is defined as t

n
⇐= u :=

t[n←− u[f ←− t ↾ n]], where f is the foot node of
u. Substitution is the special case where f does
not exist so that t[n←− u[f ←− t ↾ n]] = t[n←− u].
As long as nodes are correctly annotated with fea-
tures to ensure that n is a leaf iff u does not contain
a foot node and that labels are correctly matched,
this generalized notion of adjunction behaves ex-
actly as the combination of standard adjunction
and substitution. We can now define a tree substi-

tution grammar as a restricted TAG where all licit
instances of adjunction only rewrite leaf nodes —
this characterization will play an essential role in
Sec. 3.1.

2.2 TAGs as 3-Dimensional Grammar

Formalisms

The history of how a TAG G generates a specific
tree can be recorded as a derivation tree. Each
node in the derivation tree is labeled with the name
of an elementary tree and an edge 〈t,a,u〉 from t

to u with label a indicates t
a
⇐= u. The label of

the root node must be the name of an initial tree.
Now suppose that each node in the derivation tree
is replaced by the tree it denotes, and each edge
〈t,a,u〉 is instead replaced by a collection of un-
labeled edges that go from each node of u to the
node in t at address a. The result can be regarded
as a 3-dimensional tree such as the one in Fig. 2,
with the first dimension corresponding to prece-
dence, the second one to dominance, and the third
one to adjunction.

Rogers (1998b) shows that TAGs are equivalent
to context-free grammars over such 3-dimensional
trees. Each elementary tree is no longer a standard
2-dimensional tree but instead has a 3-dimensional
root node that is the mother of all nodes in the 2-
dimensional tree. Just like a context-free grammar
may combine 2-dimensional trees t and u if t con-
tains a leaf with the same label as the root node of
u, a TAG may combine 3-dimensional trees t and
u if t contains a leaf in the third dimension whose
label matches the 3-dimensional root of u. (Note
that the feature annotations regulating adjunction
are not considered part of node labels here.)

94

SNAβ :

a dS

b cε

SNAα :

a dS

b cS*NA

β

α

1 S •

SNA

a dS

b cε

S

a dS

b cS*NA

Figure 2: A standard TAG, one of its derivations, and the corresponding 3-dimensional tree

SNA

b S{u,v}

e S*NA
•S

(u)

SNA

c S{v}

d S*NA
•S

(v)

S{u}

ε
•S

(i)

SNA

b S{w}

e S*NA
•S

•S

(w)

SNA

c S

d S*NA

S{w}

ε
•S

•S

(i′)

Figure 3: Example of 3- and 4-dimensional TAGs

2.3 Generalization to Multi-Dimensional

Trees

Rogers (2003a; 2003b) explores how TAGs can be
made more powerful by increasing the dimension-
ality of elementary trees. Let us illustrate the idea
with a simple example first, which is also depicted
in Fig. 3.

Consider a TAG with I := {i} and A := {u,v}

such that the only valid adjunction steps are i
ai⇐= u,

u
au⇐= u, u

au⇐= v, and v
av⇐= v for some fixed ad-

dresses ai,au,av. In Fig. 3, the node at ai is labeled
S{u}, the one at au has label S{u,v}, and av refers to
the node with label S{v}.

This TAG allows derivations of the form iu∗v∗.
It is impossible for any TAG to allow only deriva-
tions of the form iunvn (n ≥ 0) so that the number
of u-trees matches the number of v-trees. How-
ever, a TAG with 4-dimensional trees has suffi-
cient power to generate exactly those derivations.

First we lift i to the 4-dimensional tree i′ by
adding a single node in the fourth dimension that
is the mother of all nodes in the 3-dimensional
tree. Then we build a 4-dimensional auxiliary tree
w that contains both u and v. Consider the com-
plex 3-dimensional tree t obtained from u and v

by identifying the 3-dimensional root of v with the

node at address au in u. Just as was done for i we
add a new root to t in the fourth dimension that
is the 4-dimensional mother of all nodes in t, thus
creating the 4-dimensional tree w. We also make
the node at address av the 3-dimensional foot node
of w (indicated by underlining) and add features so
that w can optionally adjoin into another instance
of w at address au. The result is a 4-dimensional
TAG that only licenses derivations of the form iw∗,
which produce standard TAG derivations of the
form iunvn, n ≥ 1 (see Fig. 4). This example can
be lifted to arbitrary dimensions to show that each
new dimension adds more power to TAGs.

With the general intuition well-established, we
now turn to the formal definition of higher-
dimensional TAGs. A detailed axiomatization of
multi-dimensional trees has already been provided
by Rogers (2003a), so we limit the discussion to
the bare essentials.

Let Σ be some fixed alphabet. For the sake of
simplicity, we assume that Σ directly encodes ad-
junction constraints. A 2-dimensional tree is an
ordered tree as usually defined, with nodes labeled
by symbols drawn from Σ. The tree is footed iff
it contains a foot node in the second dimension.
A d-dimensional local structure l over Σ (d ≥ 3)
consists of a Σ-labeled d-root r and a (d − 1)-
dimensional tree t over Σ such that r immediately
dominates every node n of t along the d-th dimen-
sion. The notion of (d − 1)-dimensional tree will
be clarified in the next paragraph. We also call
t := ydd−1(l) the (d − 1)-yield of the local struc-
ture, and we say that r is a d-dimensional mother

of a (d −1)-dimensional tree. Lower-dimensional
yields are obtained by iterated application of the
yield operator: ydn(l) = ydn(ydn+1(· · ·ydd(l))),
2 ≤ n < d. We sometimes omit the dimension of
the yield if it is clear from context.

The set of d-dimensional trees (d ≥ 3) is defined
in a recursive fashion. First, every d-dimensional
local structure is a d-dimensional tree. Then t

is a d-dimensional tree iff I) its root r and all

95

S{w}

ε
•S

•S

SNA

b S{w}

e S*NA
•S

SNA

c S

d S*NA

SNA

b S{w}

e S*NA
•S

SNA

c S

d S*NA

S

ε
•S

SNA

b S

e S*NA

SNA

b S

e S*NA

SNA

c S

d S*NA

SNA

c S

d S*NA

Figure 4: A complex 4-dimensional tree and the 3-dimensional tree obtained from it

96

the nodes immediately dominated by r along the
d-th dimension jointly form a d-dimensional lo-
cal structure, and II) every node that is immedi-
ately dominated by r in the d-th dimension and
that is itself a d-dimensional mother must be the
root of a d-dimensional tree. A d-dimensional
tree is footed iff one of its nodes is marked as a
(d − 1)-dimensional foot node. Note that no d-
dimensional tree may contain more than one foot
node for dimension (d − 1). Starting out with the
standard definition of 2-dimensional trees it is thus
possible to construct 3-dimensional local struc-
tures, which can be combined into 3-dimensional
trees, from which one can build 4-dimensional lo-
cal structures, and so on. The examples in Fig. 2
and 4 highlight that d-dimensional trees are indeed
trees in the sense that every point is reachable from
the d-dimensional root by exactly one path along
dimension d.

Whenever the (d − 1)-dimensional yield of
some local d-dimensional structure contains a
node that is a mother along the d-th dimension of
some (d−1)-dimensional tree, this encodes an in-
stance of d-dimensional adjunction (in the gener-
alized sense of Sec. 2.1 with substitution as a spe-
cial case of adjunction). Consider a d-dimensional
tree in which some node n is a d-dimensional
mother of a (d − 1)-dimensional tree u. Then the
output of this d-dimensional adjunction is com-
puted as follows. First, n becomes the (d − 1)-
dimensional mother of the (d − 2)-dimensional v

tree whose mother is the root of u. Note that if
some nodes of v are (d − 1)-dimensional moth-
ers, this relation is preserved. Second, if n is al-
ready a (d −1)-dimensional mother of some (d −
2)-dimensional tree w and u contains a (d − 1)-
dimensional foot node f , then f becomes the new
mother of w. In all other cases, adjunction is unde-
fined. The reader may consult Fig. 4 for a concrete
example of 4-dimensional adjunction.

We are now in a position to fully define d-
dimensional TAGs. An elementary d-dimensional
tree (d-tree) is a d-dimensional local structure. It
is an initial d-tree if it is not footed, and an aux-

iliary d-tree otherwise. Given two elementary d-

dimensional trees u and v, we write u
d a
⇐= v to in-

dicate that v may adjoin into u at node address a.
This is tantamount to stating that the grammar al-
lows for d-dimensional trees where the node at ad-
dress a in ydd−1(u) is the d-dimensional mother
of ydd−1(v). A d-dimensional TAG (d-TAG) Gd

S •

S •

SNA

a dS

b cε

S •

S

a dS

b cS*NA

Figure 5: The 3-dimensional adjunction from
Fig. 2 is replaced by 4-dimensional substitution

consists of a finite set of elementary d-trees. A
d-dimensional TSG (d-TSG) is the special case of
a d-TAG where it holds for every tree that a node
is a d-dimensional mother iff it is not a (d − 1)-
dimensional mother.

3 Strong Lexicalization of d-TAGs

3.1 d-TAGs are (d+1)-TSGs

The advantage of d-TAGs is that proofs for stan-
dard TAGs can be generalized to arbitrary dimen-
sion with little modification. The proof that TSGs
are strongly lexicalized by TAGs will be suitably
modified in the next section, thereby establishing
that d-TSGs are strongly lexicalized by d-TAGs.
This directly implies that (d + 1)-TAGs strongly
lexicalize d-TAGs thanks to a basic fact we show
now: every d-TAG is a (d +1)-TSG.

We first observe that a given d-TAG Gd can be
easily converted to a (d +1)-TAG Gd+1. Let e be
some elementary d-tree of Gd . We construct an
equivalent (d+1)-tree e′ such that ydd(e′) = e. To
this end, let e′ be a (d+1)-dimensional local struc-
ture with root r and yield e such that the label of
r is identical to the root label of e. Each node in
ydd−1(e′) may (or must) be adjoined to in dimen-
sion d + 1 iff the corresponding node in ydd−1(e)
may (or must) be adjoined to in dimension d.

An example of the construction was already
shown in Fig. 3: the 3-dimensional tree i is con-
verted into a 4-dimensional structure i′ by adding
a new root node S and edges linking the new root
to the nodes in i. Since there is a direct link be-
tween the 4-dimensional root node and each node
in the 3-dimensional tree, every node that was part
of i is now a leaf node in i′.

The conversion of interior nodes to leaves is
the essential aspect of the construction: all nodes
of e′ that can be adjoined to are d-dimensional
leaves. This holds because e is a d-dimensional
local structure, so the only node of e that is not a
leaf in dimension d is its root r, which cannot be

97

adjoined to. Clearly every node of e that can be a
mother in dimension (d + 1) must be a node that
can be adjoined to, and consequently it is neces-
sarily a leaf in dimension d. By definition, then,
Gd+1 is a (d +1)-TSG.

A concrete example is given in Fig. 5, where
the 3-dimensional trees α and β from Fig. 2 have
been lifted to 4-dimensional structures via the ad-
dition of 4-dimensional root nodes. As a result, the
node of 3-dimensional β that α was adjoined to in
Fig. 5 is now a leaf node of 4-dimensional β , and
the instance of adjunction in the third dimension is
replaced by substitution in the fourth dimension.

Proposition 1. For every d-TAG Gd there exists
a (d +1)-TSG Gd+1 such that the d-tree language
generated by G is the d-yield of the (d + 1)-tree
language generated by Gd+1.

3.2 d-TAGs Strongly Lexicalize d-TSGs

It has been known for a long time that TAGs
strongly lexicalize TSGs (Schabes, 1990; Joshi
and Schabes, 1997; Kuhlmann and Satta, 2012).
In this section we show that the corresponding
proof can be lifted to multidimensional structures.

Proposition 2. For each finitely ambiguous d-
dimensional TSG that does not generate the empty
string and contains only useful trees, there is
a strongly equivalent d-dimensional Lexicalized
TAG.

Let us first consider the general idea behind
the construction from Schabes (1990) for normal
TSGs, i.e. 3-TAGs where adjunction is only al-
lowed at leaf nodes. Given such a 3-TSG G, we
can build a lexicalized 3-TAG Gl that generates
the same tree language as G. The basic idea is
that G can be bifurcated into a recursive part and a
non-recursive part. The recursive part contains all
elementary trees u such that there is at least one 3-
dimensional tree generated by G in which a node
of u dominates another instance of u in the third
dimension. The non-recursive part consists of all
other elementary 3-trees, which form the set Il of

S •

S

T T

S S
(α)

S •

S

a
(β)

Figure 6: Non-lexicalized 3-dimensional TSG

initial trees of the lexicalized 3-TAG Gl . The set
Al of auxiliary trees of Gl is then created by tak-
ing the recursive part of G and computing its clo-
sure under 3-dimensional adjunction of trees from
Il (which is only allowed to target leaf nodes since
no t ∈ Il contains a foot node). Both Il and Al

are guaranteed to be finite, so Gl is indeed a 3-
TAG. Schabes proves, in our generalized termi-
nology, that G and Gl generate 3-dimensional tree
languages with the same 2-dimensional yield.

We now show that Schabes’ lexicalization al-
gorithm can be directly lifted to work on d-TAGs
such that every d-TSG is strongly lexicalized by
some d-TAG. As an illustrative example, we refer
to the 3-TSG depicted in Fig. 6 and the equivalent,
lexicalized 3-TAG in Fig. 7.

We start out with some well-known concepts
from graph theory that are needed in the construc-
tion of the graph from which the auxiliary trees are
computed. Given a Σ-labeled graph G := 〈N,B〉
with set N of nodes and set B ⊆ N × Σ × N of
branches, a path on G is a sequence 〈n1, . . . ,nk〉 ∈
Nk such that for all 1 ≤ i < k, 〈ni,σ ,ni+1〉 ∈ B

for some σ ∈ Σ (we use the term branches in-
stead of the more common “edges” to avoid con-
fusion between E as the set of edges and E as the
set of elementary trees of some TAG). If further-
more n1 = nk, then the path is a cycle. A subgraph
of G is a graph H = (N′,B′) such that N′ ⊆ N,
B′ ⊆ B, and 〈n1,σ ,n2〉 ∈ B′ implies n1,n2 ∈ N′.
The graph composition (also, lexicographic prod-

uct (Harary, 1972)) G1 ·G2 of graphs G1 := 〈N1,B1〉
and G2 := 〈N2,B2〉 is a graph such that: I) the node
set of G1 ·G2 is the cartesian product N1 ×N2, and
II) any two nodes (u,v) and (x,y) are connected by
a σ -labeled edge in G1 ·G2 iff either 〈u,σ ,x〉 ∈ B1

or u = x and 〈u,σ ,y〉 ∈ B2.

Now let us consider a d-dimensional finitely
ambiguous d-TSG Gd with set I of initial trees
such that the string yield of the language gener-
ated by Gd does not include the empty string. We
also assume that for every initial tree i ∈ I there is
at least one well-formed derivation that contains i.
Recall that a d-TSG does not have any auxiliary
trees by definition, wherefore all elementary trees
of Gd are useful initial trees. A lexicalized d-TAG
Gd

lex is then built from the d-TSG Gd in four steps.

Step 1: Determine Recursion. In order to
distinguish between recursive and non-recursive
trees, we build a directed graph G = (N,B) where
N is the set of nodes labeled by the names of the

98

S •

S

T T

S*NA S

(α1)

S
a

S •

S

T T

S S*NA

(α2)

S
a

S •

S

a

(β)

Figure 7: The lexicalized 3-dimensional TAG

trees in I, and B⊆N×Add×N is a set of branches
labeled by tree addresses a ∈ Add. Let us con-
sider t1, t2 ∈ I, and let u be the node at address a

in ydd−1(t1). Then B contains an edge 〈t1,a, t2〉 iff

t1
d u
⇐= t2 is licensed by the grammar. A tree t ∈ I is

recursive iff t in Gd belongs to a cycle of G . We
use R to denote the set of all recursive initial trees,
whereas NR := I − R is the set of non-recursive
trees.

Step 2: Construct the set Ilex of initial trees.

We use T (NR) to denote the closure of NR un-
der adjunction. Since all members of NR are non-
recursive, T (NR) is finite. The set Ilex of initial
trees for the lexicalized d-TAG Glex is the max-
imal subset of T (NR) that only contains d-trees
whose root is labeled by the start category S. As
the empty string is not generated by Gd , the initial
trees of Glex have at least one terminal symbol on
the frontier. In the example in Fig. 6, β is the only
initial tree of the new grammar.

Step 3: Compute Cycles. A cycle of G is mini-

mal iff it contains no proper subgraph that is also a
cycle. Let C be a set of minimal cycles of G such
that the closure of C under graph composition is
the set of all cycles in G . The members of C are
referred to as base cycles.

Step 4: Construct the set of auxiliary trees.

Each base cycle ci ∈ C is decomposed as a tree
as follows: I) every node of the cycle is expanded
as the tree whose name labels the node; II) sub-
stitution of a tree into another is performed at the
addresses labeling the edge connecting the corre-
sponding nodes; III)the edge leading to recursion
is cut from the graph and the tree node whose ad-
dress labeled that edge is labeled as the foot node.
A null adjunction constraint (NA) is also put on the
foot nodes to disallow recursive adjunction within
the auxiliary trees. The set of auxiliary trees for

Gd
lex is initialized to the empty set A. Then, sub-

stitution is exhaustively applied to the nodes in the
yield of any of the base cycle trees — except for
the unique node marked as a foot node — through
the elements of the set of initial trees. The re-
sulting set of trees is the set of auxiliary trees of
the lexicalized d-dimensional TAG Gd

lex. This con-
cludes the construction of Gd

lex.
Figure 7 shows the final lexicalized 3-

dimensional grammar. The set of initial trees con-
tains tree β , whereas α1 and α2 belong to the set
of auxiliary trees. The resulting d-TAG Gd

lex gen-
erates exactly the same set of trees as the original,
finitely ambiguous d-TSG Gd .

We can now see how previous results directly
imply that d-dimensional TAGs strongly lexicalize
d-dimensional TSGs. Furthermore, in the previ-
ous section we discussed how d-TAGs are equiv-
alent to (d + 1)-TSGs. This jointly implies that
(d +1)-TAGs strongly lexicalize d-TAGs.

Proposition 3. For each finitely ambiguous d-
dimensional TAG that does not generate the empty
string and contains only useful trees, there is a
strongly equivalent (d + 1)-dimensional Lexical-
ized TAG.

3.3 d-TAGs are Not Closed Under Strong

Lexicalization

In the previous sections we have shown that each
d-TSG has a strongly equivalent d + 1-TAG, and
that d-TAGs are strongly lexicalized by (d + 1)-
TAGs. These results have been obtained by lift-
ing previous proofs for TAGs to d-dimensional
TAGs. However, one might wonder if the ex-
tension of TAGs to multidimensional structures is
enough to assure lexicalization. In other words,
are d-dimensional TAGs closed under strong lexi-
calization?

99

(α) SNA –

•S

SNA

SOA

TNA

SOA

TNA

– – SNA

(β) SNA –
•S

SNA

aNA

– – SNA

(γ) SOA – ε

Figure 8: Parenthetical encoding for the 4-
dimensional version of the non lexicalized gram-
mar in Fig. 6

(α1) SNA –

•S

SNA

SNA

TNA

SOA

TNA

–
•S

SNA

aNA

– – SNA
– – SNA

(α2) SNA –

•S

SNA

SOA

TNA

SNA

TNA

–
•S

SNA

aNA

– – SNA

– – SNA

(β) SNA –
•S

SNA

aNA

– – SNA

(γ) SOA – ε

Figure 9: Parenthetical encoding for a 4-
dimensional lexicalized grammar

Diligent readers may have already anticipated
that the answer is negative. As before, it suf-
fices to lift an existing proof from the literature
to higher dimensions, in this case Kuhlmann and
Satta’s (2012) result that TAGs are not closed un-
der strong lexicalization. This entails that the in-
crease in dimensionality from d to d + 1 brought
about by the strong lexicalization procedure can-
not be avoided in the general case.

Kuhlmann and Satta start out with the observa-
tion that adjunction may be regarded as context-
free rewriting on the path of trees. They build a
counterexample grammar to show that a lexical-
ized TAG cannot generate the same trees as the
non-lexicalized, original TAG. They then pro-
vide a proof based on the intuition that, while
a non-lexicalized grammar can potentially extend
the length of the shortest path from the tree root
node to any terminal node ad infinitum, the length
of such paths is finitely bounded for the corre-
sponding lexicalized grammar. This property also

holds for d-TAGs, where recursive adjunction of
d-trees that do not contain any lexical nodes can
increase the length of paths without bounds.

Kuhlmann and Satta’s proof rests on two ba-
sic concepts. The first one is their parentheti-

cal notation, which represents trees as string paths
and thus highlights how adjunction operates on the
path from the root node to a foot node (the spine

of a tree). The second is a function called excess,
which is used to measure the distance between a
root node and a terminal node on a tree path.

The parenthetical encoding of TAGs can be
adopted for multidimensional trees without prob-
lems. Consider some arbitrary d-dimensional tree
T d . Every leaf node of T d is reachable from its
d-dimensional root following the branches encod-
ing the d-dimensional dominance relation. This
unique path from the root node to a frontier
node along the d-th dimension is the spine of
the d-dimensional structure (cf. Rogers (2003a)).
The parenthetical notation simply encodes the d-
dimensional spine of d-trees: every internal node
n along the d-th dimension is represented by a
pair of matching brackets, e.g. “S-(” and “)-S”).
These brackets surround the parenthetical encod-
ing of the d-dimensional subtree rooted in n. A
tree encoded in this notation is called a spinal tree.
Examples are given in Fig. 8 and 9.

Since d-dimensional trees can be described in
the same fashion as 2-dimensional ones via the
parenthetical notation, the notion of excess re-
mains untouched. For every terminal node v, the
excess of v is the mismatch of left parentheses over
right parentheses in the sequence of nodes in the
path from the d-dimensional root node to v. This is
done by subtracting the number of all right paren-
thesis from the number of all left parenthesis that
occur along the path from the root to v. For exam-
ple, the excess of a in α2 of Fig. 9 is 2. The excess

of the whole spinal tree is always 0.

Let us now return to the 3-TAG given in Fig. 6.
It can be lifted to a 4-dimensional TSG as de-
scribed in the Sec. 2.3. Figure 8 shows a paren-
thetical rewriting of the 4-dimensional trees in the
grammar, while Fig. 9 shows the rewriting of a
possible lexicalized d-dimensional grammar, ob-
tained via the procedure in Schabes (1990). Let us
call the non-lexicalized parenthetical encoding G1,
and the hypothetical lexicalized version Glex

1 . If
Glex

1 is a correct lexicalization of G1, it should gen-
erate exactly the same 4-dimensional trees. But

100

TAGs can be generalized
to d-TAGs

Rogers (2003a)

1) (d +1)-TAG
slex
−−−→ d-TAG

2) d-TAGs are not closed un-
der strong lexicalization

This paper

CFTGs(2)
slex
−−−→ TAGs

Maletti & Engelfriet (2012)

TAGs
slex
−−−→ CFGs/TSGs

Schabes (1990)

TAGs are not closed under
strong lexicalization

Kuhlmann & Satta (2012)

Figure 10: Summary of relevant existing results

the notion of excess reveals that this is not the case.
In G1, adjunction of α into another instance of α

can take place an arbitrary number of times. As
a result, when β finally adjoins into α , an un-
bounded number of left brackets may occur be-
tween the root of the tree and leaf node a of β ,
wherefore there is no upper bound on the excess
of trees generated by G1. For Glex

1 , on the other
hand, every tree must contain a lexical node with
excess at most 2. Hence G1 and Glex

1 cannot gen-
erate the same language of d-trees.

While this simple example does not preclude
that some other grammar strongly lexicalizes G1,
this is in fact impossible. Kuhlmann and Satta
prove that the potential variation in the excess of a
lexical node in an elementary tree is bounded by a
constant tied to the grammar, while the excess of
a lexical node in a non-lexicalized grammar is po-
tentially infinite. Like so many other facts about
3-TAGs, this one carries over to d-TAGs, too, and
consequently d-TAGs turn out not to be closed un-
der strong lexicalization either.

4 Conclusion

The generalization of TAGs to higher-dimensional
trees first proposed in Rogers (2003a) is very use-
ful in increasing the power of TAGs while pre-
serving the mechanics of their structure-building
operations. This paper has exploited this fact to
lift a variety of previously known results about
TAGs to higher dimensions, culminating in the re-
alization that TAGs are strongly lexicalized by 4-
dimensional TAGs and, more generally, that ev-
ery d-TAG is strongly lexicalized by some (d +
1)-TAG. A major advantage of lexicalization is

that it simplifies the parsing problem. At the
same time, increasing the dimensionality of TAGs
makes parsing harder, which can be gleaned from
the fact that 4-dimensional TAGs can generate
the 8-language anbncndnen f ngnhn, whereas stan-
dard (3-dimensional) TAGs are restricted to the 4-
language anbncndn. An interesting question for fu-
ture research will be whether the simplifications of
lexicalization can offset the parsing disadvantages
of higher dimensions.

Acknowledgments

We are very grateful to the three anonymous re-
viewers, whose comments led to several improve-
ments in the presentation of the material.

References

Akio Fujiyoshi. 2004. Epsilon-free grammars and
lexicalized grammars that generate the class of the
mildly contextsensitive languages. In Proceedings
of the 7th International Workshop on Tree Adjoining
Grammar and Related Formalisms, pages 16–23.

Frank Harary. 1972. Graph Theory. Addison-Wesley,
Reading, MA.

Aravind K. Joshi and Y. Schabes. 1997. Tree-
adjoining grammars. In Grzegorz Rosenberg and
Arto Salomaa, editors, Handbook of Formal Lan-
guages, pages 69–123. Springer, Berlin.

Aravind K. Joshi. 1985. Tree-adjoining grammars:
How much context sensitivity is required to provide
reasonable structural descriptions? In David Dowty,
Lauri Karttunen, and Arnold Zwicky, editors, Nat-
ural Language Parsing, pages 206–250. Cambridge
University Press, Cambridge.

101

Laura Kallmeyer. 2010. Parsing Beyond Context-Free
Grammars. Springer, Berlin.

Marco Kuhlmann and Giorgio Satta. 2012. Tree-
adjoining grammars are not closed under strong lexi-
calization. Computational Linguistics, 38:617–629.

Andreas Maletti and Joost Engelfriet. 2012. Strong
lexicalization of tree adjoining grammars. In Pro-
ceedings of the 50th Annual Meeting of the Associ-
ation for Computational Linguistics: Long Papers -
Volume 1, ACL ’12, pages 506–515.

James Rogers. 1998a. A descriptive characteriza-
tion of tree-adjoining languages. In Proceedings
of the 17th International Conference on Computa-
tional Linguistics (COLING’98) and the 36th An-
nual Meeting of the Association for Computational
Linguistics (ACL’98), pages 1117–1121.

James Rogers. 1998b. On defining TALs with logical
constraints. In Anne Abeillé, Tilman Becker, Owen
Rambow, Giorgio Satta, and K. Vijay-Shanker, edi-
tors, Fourth International Workshop on Tree Adjoin-
ing Grammars and Related Frameworks (TAG+4),
pages 151–154.

James Rogers. 2003a. Syntactic structures as multi-
dimensional trees. Research on Language and Com-
putation, 1:265–305.

James Rogers. 2003b. wMSO theories as grammar for-
malisms. Theoretical Computer Science, 293:291–
320.

Yves Schabes, Anne Abeillé, and Aravind K. Joshi.
1988. Parsing strategies with ‘lexicalized’ gram-
mars: Application to tree adjoining grammars.
Technical Report MS-CIS-88-65, Department of
Computer & Information Science, University of
Pennsylvania, Philadelphia, PA.

Yves Schabes. 1990. Mathematical and Computa-
tional Aspects of Lexicalized Grammars. Ph.D. the-
sis, Philadelphia, PA, USA.

102

Proceedings of the 12th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+12), pages 103–111,
Düsseldorf, Germany, June 29 - July 1, 2016.

Hyperedge Replacement and Nonprojective Dependency Structures

Daniel Bauer and Owen Rambow

Columbia University
New York, NY 10027, USA

{bauer,rambow}@cs.columbia.edu

Abstract

Synchronous Hyperedge Replacement
Graph Grammars (SHRG) can be used
to translate between strings and graphs.
In this paper, we study the capacity of
these grammars to create non-projective
dependency graphs. As an example, we
use languages that contain cross serial
dependencies. Lexicalized hyperedge
replacement grammars can derive string
languages (as path graphs) that contain an
arbitrary number of these dependencies
so that their derivation trees reflect the
correct dependency graphs. We find that,
in contrast, string-to-graph SHRG that
derive dependency structures on the graph
side are limited to derivations permitted
by the string side. We show that, as a re-
sult, string-to-graph SHRG cannot capture
languages with an unlimited degree of
crossing dependencies. This observation
has practical implications for the use of
SHRG in semantic parsing.

1 Introduction

Hyperedge Replacement Grammars (HRG) are a
type of context free graph grammar. Their de-
rived objects are hypergraphs instead of strings. A
synchronous extension, Synchronous Hyperedge
Replacement Grammars (SHRG) can be used to
translate between strings and graphs. To construct
a graph for a sentence, one simply parses the in-
put using the string side of the grammar and then
interprets the derivations with the graph side to as-
semble a derived graph.

SHRG has recently drawn attention in Natural
Language Processing as a tool for semantic con-
struction. For example, Jones et al. (2012) pro-
pose to use SHRG for semantics based machine

translation, and Peng et al. (2015) describe an ap-
proach to learning SHRG rules that translate sen-
tences into Abstract Meaning Representation (Ba-
narescu et al., 2013).

Not much work has been done, however, on
understanding the limits of syntactic and seman-
tic structures that can be modeled using HRG and
SHRG. In this paper, we examine syntactic depen-
dency structures generated by these formalisms,
specifially whether they can create correct depen-
dency trees for non-projective phenomena. We fo-
cus on non-projectivity caused by copy language
like constructions, specifically cross-serial depen-
dencies in Dutch. Figure 1 shows a (classical) ex-
ample sentence containing such dependencies and
a dependency graph.

This paper looks at dependency structures from
two perspectives. We first review HRGs that de-
rive string languages as path graphs. The set of
these languages is known to be the same as the lan-
guages generated by linear context free rewriting
systems (Weir, 1992). We consider HRG gram-
mars of this type that are lexicalized (each rule
contains exactly one terminal edge), so we can
view their derivation trees as dependency struc-
tures. We provide an example string-generating
HRG that can analyze the sentence in Figure 1
with the correct dependency structure and can gen-
erate strings with an unlimited number of crossing
dependencies of the same type.

Under the second perspective, we view the de-

rived graphs of synchronous string-to-HRG gram-
mars as dependency structures. These grammars
can generate labeled dependency graphs in a more
flexible way, including labeled dependency edges,
local reordering of dependencies (allowing a more
semantically oriented analysis of prepositional
phrases and conjunctions), structures with arbi-
trary node degree, and reentrancies. We present
a grammar to analyze the string/graph pair in Fig-

103

... omdat Wim Jan Marie de kinderen zag helpen leren zwemmen .

... because Wim Jan Marie the children saw help teach swim .

ccomp xcomp xcomp

subj
nsubj

dobj

dobj

det

punc

Figure 1: Example sentence illustrating cross-serial dependencies in Dutch. English translation: “be-

cause Wim saw Jan help Marie teach the children to swim.”

ure 1, that derives the correct labeled dependency
structure, but whose derivation does not resemble
syntactic dependencies. Using this example, we
observe an important limitation of string-to-graph
SHRG: With nonterminal hyperedges of bounded
type (number of incident vertices), we cannot an-
alyze cross-serial dependencies with an unlimited
number of crossing edges. Specifically, for a given
dependency edge covering a span of words, the
number of nodes outside the span that can have
a dependent or parent inside the span is limited.
This is because, on the input side, the grammar is a
plain string CFG. In a string CFG derivation, each
node must correspond to a connected subspan of
the input. Because of this constraint on the deriva-
tion, the dependency subgraphs constructed by the
HRG must maintain a reference to all words that
have a long distance dependent elsewhere in the
string. These references are passed on through the
derivation in the external nodes of each graph rhs
of the SHRG rules. External nodes are special ver-
tices at which graph fragments are connected to
the surrounding graph.

To avoid this problem, instead of a plain string
CFG one can use other formalisms that produce
context free derivation trees, such as the string-
generating HRGs we discuss in this paper or
LTAG.

Semantic representations, such as Abstract
Meaning Representation, resemble dependency
structures. Therefore, while we do not discuss
semantic graphs to skirt the issue of reentrancy,
non-projective linguistic phenomena that appear
in syntactic dependency structure are also relevant
when translating strings into semantic represen-
tations. We believe that our observations are not
only of theoretical interest, but affect practical ap-
plications of SHRG in semantic parsing.

The paper proceeds as follows: Section 2 pro-

vides a formalization of Hyperedge Replacement
Grammars and introduces necessary terminology.
In section 3, we discuss string generating HRGs
and illustrate how they can be used to correctly
analyze cross-serial dependencies in an exam-
ple. Section 4 examines string-to-graph SHRGs
and observes their limitations in generating cross-
serial dependencies. In section 5, we analyze this
limitation in more detail, demonstrating a relation-
ship between the order of a grammar (the max-
imum hyperedge type) and the maximum number
of edges crossing another edge. Section 6 provides
an overview of related work. Finally, we conclude
and summarize our findings in section 7.

2 Hyperedge Replacement Graph

Grammars

A directed, edge-labeled hypergraph is a tuple
H = 〈V,E, ℓ〉, where V is a finite set of ver-
tices, E ⊆ V + is a finite set of hyperedges, each
of which connects a number of vertices, and ℓ is
a labeling function with domain E. The number
of vertices connected by a hyperedge is called its
type.

A hyperedge replacement grammar (HRG,
Drewes et al. (1997)) is a tuple G = 〈N,Σ, P, S〉
where N is a ranked, finite set of nonterminal
labels, Σ is a finite set of terminal labels such
that Σ ∩ N = ∅, S ∈ N is the designated
start symbol, and P is a finite set of rules. Each
rule r ∈ P is of the form (A → R,X), where
A ∈ N , R = 〈V,E, ℓ〉 is a hypergraph with
ℓ : E → N ∪ T , and X ∈ V ∗ is a list of exter-

nal nodes. We call the number of vertices |V | in a
rule rhs the width of the rule. The maximum type
of any nonterminal hyperedge in the grammar is
called the order of the grammar.1

1We choose the term order instead of rank. Both terms

104

R1: S →
N2

zag .

4 V4

R2: V4 →
N2 N2 helpen

0 1 2 3

4 V4

R3: V4 →
N2 leren V2

0 1 2 3 R4: V4 →
zwemmen

0 1

R5: N2 →
Wim

0 1 R6: N2 →
Jan

0 1

R7: N2 →
Marie

0 1 R8: N2 →
DT2 kinderen

0 1 R9: DT2 →
de

0 1

Figure 2: A ‘string-generating’ lexicalized hyperedge replacement grammar for Dutch cross serial de-
pendencies. The grammar can derive the sentence in figure 1. The derivation tree for this sentence
represents the correct dependency structure.

Given a partially derived graph H we can
use a rule (A → R,X) to rewrite a hyper-
edge e = (v1, · · · , vk) if e has label A and
k = length(X). In this operation, e is removed
from H , a copy of R is inserted into H and the
external nodes X = (u1, · · · , uk) of the copy of
R are fused with the nodes connected by e, such
that ui is identified with vi for i = 1, . . . , k.

When showing rules in diagrams, such as Fig-
ure 2, we draw external nodes as black circles and
number them with an index to make their order ex-
plicit. Nonterminal hyperedges are drawn as undi-
rected edges whose incident vertices are ordered
left-to-right.

The relation H ⇒G H ′ holds if hypergraph H ′

can be derived from hypergraph H in a single step
using the rules in G. Similarly H ⇒∗

G H ′ holds if
H ′ can be derived from H in a finite number of
steps. The hypergraph language of a grammar G
is the (possibly infinite) set of hypergraphs that
can be derived from the start symbol S. L(G) =

⋃

(S → H,〈〉) ∈ P

{H ⇒∗
G H ′|H ′ has only terminals }

We will show examples for HRG derivations be-
low.

HRG derivations are context-free in the sense
that the applicability of each production depends
on the nonterminal label and type of the replaced
edge only. We can therefore represent derivations
as trees, as for other context free formalisms. Con-
text freeness also allows us to extend the formal-
ism to a synchronous formalism, for example to

are used in the literature. We use the word rank to refer to the
maximum number of nonterminals in a rule right hand side.

translate strings into trees, as we do in section 4.
We can view the resulting string and graph lan-
guages as two interpretations of the same set of
possible derivation trees described by a regular
tree grammar (Koller and Kuhlmann, 2011).

3 HRG Derivations as Dependency

Structures

We first discuss the case in which HRG is used
to derive a sentence and examine the dependency
structure induced by the derivation tree. Hyper-
edge Replacement Grammars can derive string
languages as path graphs in which edges are la-
beled with tokens. For example, consider the path
graph for the sentence in Figure 1.
Wim Jan Marie dekinderen zag helpen leren zwemmen

Engelfriet and Heyker (1991) show that the
string languages generated by HRG in this way
are equivalent to the output languages of Deter-
ministic Tree Walking Transducers (DTWT). Weir
(1992) shows that these languages are equivalent
to the languages generated by linear context free
rewriting systems (LCFRS) and that the LCFRS
languages with fan-out k are the same as the HRG
string languages with order 2k.

The analysis of cross-serial dependencies has
been studied in a number of ‘mildly context sen-
sitive’ grammar formalisms. For example, Ram-
bow and Joshi (1997) show an analysis in LTAG.
Because the string languages generated by these
formalisms are equivalent to languages of LCFRS
with fan-out 2, we know that we must be able to
write an HRG of order 4 that can capture cross-

105

serial dependencies.
Figure 2 shows such a string generating HRG

that can derive the example in Figure 1. Each rule
rhs consists of one or more internally connected
spans of strings paths of labeled edges. The ex-
ternal nodes of each rhs graph mark the beginning
and end of each span. The nonterminal labels of
other rules specify how these spans are combined
and connected to the surrounding string. For illus-
tration, consider the first two steps of a derivation
in this grammar. Rule 1 introduces the verb ‘zag’
and its subject. Rule 2 inserts ‘helpen’ to the right
of ‘zag’ and its subject and direct object to the
right of the subject of ‘zag’. This creates cross-
ing dependencies between the subjects and their
predicates in the derivation.

R1
N2

zag .

R2
N2 N2

helpen
0 1 2 3

4 V4

The partially derived graph now contains a span
of nouns and a span of verbs. The nonterminal
hyperedge labeled V4 indicates where to append
new nouns and where to add new verbs. Note that
rule 2 (or an identical rule for a different verb) can
be re-applied to generate cross-serial dependen-
cies with an arbitrary number of crossings. It is
easy to see that grammars of this type correspond
to LCFRS almost directly.

Using the grammar in Figure 2, there is a sin-
gle derivation tree for the example sentence in Fig-
ure 1.

R1,zag

R2,helpen

R3,leren

R4,zwemmenR8,kinderen

R9,de

R7,MarieR6,Jan

R5,Wim

This derivation tree represents the correct syntac-
tic dependency structure for the sentence. This
is not the case for all lexicalized ‘mildly context
sensitive’ grammar formalisms, even if it is pos-
sible to write grammars for languages that con-
tain cross-serial dependencies. In TAG, long dis-
tance dependencies are achieved using adjunction.

Both dependents are introduced by the same aux-
iliary tree, stretching the host tree apart. An LTAG
derivation for the example sentence would start
with an elementary tree for ‘zwemmen’ and then
adjoin ‘leren’. The resulting dependency structure
is therefore inverted.

4 Deriving Dependency Graphs with

Synchronous String-to-Graph

Grammars

We now consider grammars whose derived graphs
represent the dependency structure of a sentence.
The goal is to write a synchronous context-free
string-to-graph grammar that translates sentences
into their dependency graphs. If the string side of
the grammar is a plain string CFG, as we assume
here, the derivation cannot reflect non-projective
dependencies directly. Instead, we must use the
graph side of the grammar to assemble a depen-
dency structure.

This approach has several potential advantages
in applications. In the string-generating HRG dis-
cussed in the previous section, the degree of a node
in the dependency structure is limited by the rank
of the grammar. Using a graph grammar to derive
the graph, we can add an arbitrary number of de-
pendents to a node, even if the rules contributing
these dependency edges are nested in the deriva-
tion. This is especially important for more seman-
tically inspired representations where all seman-
tic arguments should become direct dependents
of a node (for example, deep subjects). We can
also make the resulting graphs reentrant. In ad-
dition, because HRGs produce labeled graphs, we
can add dependency labels. Finally, even though
the example grammar in Figure 3 is lexicalized on
the string side, lexicalization is no longer required
to build a dependency structure. Unfortunately,
‘decoupling’ the derivation from the dependency
structure in this way can be problematic, as we
will see.

Figure 3 shows a synchronous hyperedge re-
placement grammar that can translate the sen-
tence from Figure 1 into its dependency graph.
A synchronous hyperedge replacement grammar

(SHRG) is a synchronous context free grammar
in which at least one of the right hand sides
uses hypergraph fragments. The two sides of
the grammar are synchronized in a strong sense.
Both rhs of each grammar rule contain exactly the
same instances of nonterminals and the instances

106

R1: S → 〈 V1 zwemmen |
zwemmen

V
1

〉 R2: V1 → 〈 V1 leren |
leren

xcom
p

V
1

〉

R3: V1 → 〈 V2 helpen |
helpen

xcom
p

2V2

〉 R4: V2 → 〈 N3 zag |
zag

ccom
p

0 1

3 N3

〉

R5: N3 → 〈 Wim N2 | n
su

b
j

W
im

0 1 2

3
N2

〉 R6: N2 → 〈 Jan N2 | n
su

b
j

Ja
n

N2
0 〉1

R7: N2 → 〈 Marie N1 |

d
o

b
j

M
a

rie

N
1

0 1 〉 R8: N1 → 〈 DT1 kinderen |
dobj kinderen

D
T
1

〉

R9: DT1 → 〈 de |
det de

〉

Figure 3: A synchronous string-to-graph grammar for Dutch cross-serial dependencies. The grammar
can derive the sentence/dependency graph pair in in Figure 1, but the derivation tree does not reflect
syntactic dependencies.

are related by a bijective synchronization relation
(in case of ambiguity we make the bijection ex-
plicit by indexing nonterminals when representing
grammars). In a SHRG, each nonterminal label
can only be used to label hyperedges of the same
type. For example, V2 is only used for hyperedges
of type 2. As a result, all derivations for the string
side of the grammar are also valid derivations for
graphs.

In the grammar in Figure 3, vertices represent
nodes in the dependency structure (words). Be-
cause HRGs derive edge labeled graphs but no ver-
tex labels, we use a unary hyperedge (a hyperedge
with one incident vertex) to label each node. For
example, the only node in the rhs of rule 1 has the
label ‘zwemmen’.

Nonterminal hyperedges are used to ‘pass on’
vertices that we need to attach a dependent to at
a later point in the derivation. External nodes
define how these nodes are connected to the
surrounding derived graph. To illustrate this, a
derivation using the grammar in Figure 3 could
start with rule 1, then replace the nonterminal
V1 with the rhs of rule 2. We then substitute the
new nonterminal V1 introduced by rule 2 with
rule 3. At this point, the partially derived string

is ‘V2 helpen leren zwemmen’ and the partially
derived graph is

helpen

xcom
p leren

xcom
p zwemmen

2
V2

.

The nonterminal V2 passes on a reference to two
nodes in the graph, one for ‘helpen’ and one for
‘leren’. This allows subsequent rules in the deriva-
tion to attach subjects and objects to these nodes,
as well as the parent node (‘zag’) to ‘helpen’.

To derive the string/graph pair in Figure 1, the
rules of this grammar are simply applied in order
(rule 1 ⇒ rule 2 ⇒ · · · ⇒ rule 9). Clearly, the
resulting derivation is just a chain and bears no re-
semblance to the syntactic dependency structure.

While the grammar can derive our example sen-
tence, it does not permit us to derive dependency
structures with an arbitrary number of crossing de-
pendencies. This is because the nonterminal edges
need to keep track of all possible sites at which
long distance dependents can be attached at a later
point in the derivation. To add more crossing

107

Figure 4: Sketch of the derivation tree of a syn-
chronous hyperedge replacement grammar, show-
ing two dependency edges (u,w) and (v, x), and
u < v < w < x.The graph fragment associated
with the rule at node α needs to contain nodes u,w
and v. v must be an external node.

dependencies we therefore need to create special
rules with nonterminal hyperedges of a larger type,
as well as the corresponding rules with a larger
number of external nodes. Because any grammar
has a finite number of rules and a fixed order, we
cannot use this type of SHRG grammar to model
languages that permit an arbitrary degree of cross-
ing edges in a graph. While the graph grammar
can keep track of long-distance dependencies, the
string grammar is still context free, so any non-
local information needs to be encoded in the non-
terminals. The penalty we pay for being able to
remember a limited set of dependents through the
derivation is that we need a refined alphabet of
nonterminals (V1, V2, V3, · · · ; instead of just V).

5 Edge Degree and Hyperedge Type

In section 4 we demonstrate that we need an ever-
increasing hyperedge type if we want to model
languages in which a dependency edge can be
crossed by an arbitrary number of other depen-
dency edges. So far, we have only illustrated this
point with an example. In this section we will
demonstrate that no such grammar can exist.

It is clear that the problem is not with gener-
ating the tree language itself. We could easily
extend the string-generating grammar from sec-
tion 3, whose derivation trees reflect the correct
dependency structure, by adding a second graph
rhs that derives an image of the derivation tree
(potentially with dependency labels). Instead, the
problem appears to be that we force grammar rules
to be applied according to the string derivation.

Specifically, the partially derived string associated
with each node in the derivation needs to be a con-
tiguous subspan. This prevents us from assem-
bling dependencies locally.

To make this intuition more formal, we demon-
strate that there is a relationship between number
of crossing dependencies and the the minimum
hyperedge type required in the SHRG. We first
look at a single pair of crossing dependency edges
and then generalize the argument to multiple edges
crossing into the span of an edge. For illustration,
we provide a sketch of a SHRG derivation tree in
Figure 4.

Assume we are given a sentence
s = (w0, w1, · · · , wn−1), and a corre-
sponding dependency graph G = 〈V,E, ℓ〉 where
V = {0, 1, · · · , n− 1}. We define the range of a
dependency edge (u, v) to be the interval [u, v] if
v > u or else [v, u]. For each dependency edge
(u, v) the number of crossing dependencies is the
number of dependency nodes properly outside
its range, that share a dependency edge with any
node properly inside its range. The degree of
crossing dependencies of a dependency graph is
the maximum number of crossing dependencies
for any of its edges.

Given a SHRG derivation tree for s and G, each
terminal dependency edge (u,w) ∈ E must be
produced by the rule associated with some deriva-
tion node β (see Figure 4). Without loss of gen-
erality, assume that u < w. String token s[u] is
produced by the rule associated with some deriva-
tion node τu and s[w] is produced by the rule of
some derivation node τw. On the graph side, τu
and τw must contain the nodes u and w because
they generate the unary hyperedges labeling these
vertices. There must be some common ancestor α
of β, τu, and τw that contains both u and w. u and
w must be connected in α by a nonterminal hyper-
edge, because otherwise there would be no way to
generate the terminal edge (u,w) in β (note that
it is possible that α and β are the same node in
which case the rule of this node does not contain a
nonterminal edge).

Now consider another pair of nodes v and x

such that u < v < w < x and there is a de-
pendency edge (v, x) ∈ E or (x, v) ∈ E. s[v] is
generated by τv and s[x] is generated by τx. As be-
fore, there must be a common ancestor γ of τv and
τx, in which v and x are connected by a nontermi-
nal hyperedge. Because u < v < w < x either

108

α is an ancestor of γ or γ is an ancestor of α. For
illustration, we assume the second case. The case
where α dominates γ is analogous.

Since the graph fragments of all derivation
nodes on the path from γ to τv must contain a ver-
tex that maps to v, α must contain such a vertex.
This vertex needs to be an external node of the rule
attached to α because otherwise v could not be in-
troduced by γ.

We can extend the argument to an arbitrary
number of crossing dependency edges. As be-
fore, let (u,w) be a dependency edge and α be the
derivation node whose graph fragment first intro-
duces the nonterminal edge between u and w. For
all dependency edges (x, y) or (y, x) for which
y is in the range of (u,w) and x is outside of
the range of (u,w) (either x < u < y < w or
u < y < w < x) there must be some path in
the derivation tree that leads through α. All graph
fragments on this path contain a vertex mapped to
y. As a result, the graph fragment in α needs to
contain one external node for each x that has a de-
pendency edge to some node y inside the range
(u,w). In other words, α needs to contain as many
external nodes as there are nodes outside the range
(u,w) that share a dependency edge with a node
inside the range (u,w).

Because every HRG has a fixed order (the max-
imum type of any nonterminal hyperedge), no
SHRG that generates languages with an arbitrary
number of cross-serial dependencies can exist. It
is known that the hypergraph languages HRLk

that can be generated by HRGs of order k form an
infinite hierarchy, i.e. HRL1 (HRL2 (· · ·
(Drewes et al., 1997). Therefore, the string-to-
graph grammars required to generate cross-serial
dependencies up to edge degree k are strictly more
expressive than those that can only generate edge
degree k − 1.

6 Related Work

While the theory of graph grammars dates back to
the 70s (Nagl, 1979; Drewes et al., 1997), their
use in Natural Language Processing is more re-
cent. Fischer (2003) use string generating HRG
to model discontinuous constituents in German.
Jones et al. (2012) introduce SHRG and demon-
strate an application to construct intermediate
semantic representations in machine translation.
Peng et al. (2015) automatically extract SHRG
rules from corpora annotated with graph based

meaning representations (Abstract Meaning Rep-
resentation), using Markov Chain Monte Carlo
techniques. They report competitive results on
string-to-graph parsing. Braune et al. (2014) em-
pirically compare SHRG to cascades of tree trans-
ducers as devices to translate English strings into
reentrant semantic graphs. In agreement with the
result we show more formally in this paper, they
observe that, to generate graphs that contain a
larger number of long-distance dependencies, a
larger grammar with more nonterminals is needed,
because the derivations of the grammar are limited
to string CFG derivations.

Synchronous context free string-graph gram-
mars have also been studied in the framework
of Interpreted Regular Tree Grammar (Koller and
Kuhlmann, 2011) using S-Graph algebras (Koller,
2015). In the TAG community, HRGs have been
discussed by Pitsch (2000), who shows a construc-
tion to convert TAGs into HRGs. Finally, Joshi
and Rambow (2003) discuss a version of TAG in
which the derived trees are dependency trees, sim-
ilar to the SHRG approach we present here.

To use string-generating HRG in practice we
need a HRG parser. Chiang et al. (2013) present
an efficient graph parsing algorithm. However,
their implementation assumes that graph frag-
ments are connected, which is not true for the
grammar in section 3. On the other hand, since
string-generation HRGs are similar to LCFRS, any
LCFRS parser could be used. The relationship be-
tween the two parsing problems merits further in-
vestigation. Seifert and Fischer (2004) describe a
parsing algorithm specificaly for string-generating
HRGs.

Formal properties of dependency structures
generated by lexicalized formalisms have been
studied in detail by Kuhlmann (2010). He
proposes measures for different types of non-
projectivity in dependency structures, including
edge degree (which is related to the degree of
crossing dependencies we use in this paper), and
block degree. A qualitative measure of depen-
dency structures is well nestedness, which indi-
cates whether there is an overlap between subtrees
that do not stand in a dominance relation to each
other. In future work, we would like to investigate
how these measures relate to dependency struc-
tures generated by HRG derivations and SHRG
derived graphs.

109

7 Conclusion

In this paper we investigated the capability of hy-
peredge replacement graph grammars (HRG) and
synchronous string-to-graph grammar (SHRG) to
generate dependency structures for non-projective
phenomena. Using Dutch cross-serial dependen-
cies as an example, we compared two different ap-
proaches: string-generating HRGs whose deriva-
tion trees can be interpreted as dependency struc-
tures, and string-to-graph SHRGs, whose can cre-
ate dependency structures as their derived graphs.

We provided an example grammar for each
case. The derivation tree of the HRG adequately
reflected syntactic dependencies and the example
grammar could in principle generate an arbitrary
number of crossing dependencies. However, these
derivation trees are unlabeled and cannot be ex-
tended to represent deeper semantic relationships
(e.g semantic argument structure and coreference).
For the string-to-graph SHRG, we saw that the de-
rived graph of our grammar represented the correct
dependencies for the example sentence, while the
derivation tree did not.

The main observation of this paper is that,
unlike the string-generating HRG, the string-to-
graph SHRG was only able to generate a limited
number of crossing dependencies. With each ad-
ditional crossing edge in the example, we needed
to add a new rule with a higher hyperedge type,
increasing the order of the grammar. We argued
that the reason for this is that the synchronous
derivation for the input string and output graph
is constrained to be a valid string CFG deriva-
tion. Analyzing this observation more formally,
we showed a relationship between the order of the
grammar and the maximum permitted number of
edges crossing into the span of another edge.

An important conclusion is that, unless the cor-
rect syntactic dependencies are already local in
the derivation, HRGs cannot derive dependency
graphs with an arbitrary number of cross-serial
dependencies. We take this to be a strong ar-
gument for using lexicalized formalisms in syn-
chronous grammars for syntactic and semantic
analysis, that can process at least a limited degree
of non-projectivity, such as LTAG.

In future work, we are aiming to develop a lex-
icalized, synchronous string-to-graph formalisms
of this kind. We would also like to relate our
results to other measures of non-projectivity dis-
cussed in the literature. Finally, we hope to expand

the results of this paper to other non-projective
phenomena and to semantic graphs.

References

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Linguistic Annotation Work-
shop.

Fabiene Braune, Daniel Bauer, and Kevin Knight.
2014. Mapping between english strings and reen-
trant semantic graphs. In Proceedings of LREC,
Reykjavik, Iceland.

David Chiang, Jacob Andreas, Daniel Bauer, Karl-
Mortiz Hermann, Bevan Jones, and Kevin Knight.
2013. Parsing graphs with hyperedge replacement
grammars. In Proceedings of ACL, Sofia, Bulgaria.

Frank Drewes, Annegret Habel, and Hans-Jörg Kre-
owski. 1997. Hyperedge replacement graph gram-
mars. In Grzegorz Rozenberg, editor, Handbook of
Graph Grammars and Computing by Graph Trans-
formation, pages 95–162. World Scientific.

Joost Engelfriet and Linda Heyker. 1991. The string
generating power of context-free hypergraph gram-
mars. Journal of Computer and System Sciences,
43(2):328–360.

Ingrid Fischer. 2003. Modeling discontinuous con-
stituents with hypergraph grammars. In Interna-
tional Workshop on Applications of Graph Transfor-
mations with Industrial Relevance (AGTIVE), pages
163–169.

Bevan Jones, Jacob Andreas, Daniel Bauer, Karl-
Moritz Hermann, and Kevin Knight. 2012.
Semantics-based machine translation with hyper-
edge replacement grammars. In Proceedings of
COLING, Mumbai, India. First authorship shared.

Aravind Joshi and Owen Rambow. 2003. A formal-
ism for dependency grammar based on tree adjoin-
ing grammar. Proceedings of the Conference on
Meaning-Text Theory, pages 207–216.

Alexander Koller and Marco Kuhlmann. 2011. A gen-
eralized view on parsing and translation. In Pro-
ceedings of the 12th International Conference on
Parsing Technologies, pages 2–13. Association for
Computational Linguistics.

Alexander Koller. 2015. Semantic construction with
graph grammars. In Proceedings of the 11th Inter-
national Conference on Computational Semantics
(IWCS), pages 228–238.

Marco Kuhlmann. 2010. Dependency Structures and
Lexicalized Grammars: An Algebraic Approach,
volume 6270. Springer.

110

Manfred Nagl. 1979. A tutorial and bibliographical
survey on graph grammars. In Proceedings of the
International Workshop on Graph-Grammars and
Their Application to Computer Science and Biology,
pages 70–126, London, UK, UK. Springer-Verlag.

Xiaochang Peng, Linfeng Song, and Daniel Gildea.
2015. A synchronous hyperedge replacement gram-
mar based approach for amr parsing. In Proceedings
of CONLL.

Gisela Pitsch. 2000. Hyperedge replacement and tree
adjunction. In Anne Abeillè and Owen Rambow,
editors, Tree Adjoining Grammars. CSLI.

Owen Rambow and Aravind Joshi. 1997. A formal
look at dependency grammars and phrase-structure
grammars, with special consideration of word-order
phenomena. In Leo Wanner, editor, Recent Trends
in Meaning-Text Theory, pages 167–190. John Ben-
jamins, Amsterdam and Philadelphia.

Sebastian Seifert and Ingrid Fischer. 2004. Pars-
ing string generating hypergraph grammars. In
International Conference on Graph Transforma-
tions(ICGT), pages 352–367.

David J. Weir. 1992. Linear context-free rewriting
systems and deterministic tree-walking transducers.
In Proceedings of ACL, pages 136–143, Newark,
Delaware, USA, June. Association for Computa-
tional Linguistics.

111

Proceedings of the 12th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+12), pages 112–120,
Düsseldorf, Germany, June 29 - July 1, 2016.

Parasitic Gaps and the Heterogeneity of Dependency Formation in STAG

Dennis Ryan Storoshenko

Department of Linguistics, Languages and Cultures
The University of Calgary

dstorosh@ucalgary.ca

Robert Frank

Department of Linguistics
Yale University

bob.frank@yale.edu

Abstract

This paper presents an account of par-
asitic gaps in Synchronous TAG, mak-
ing use of the more flexible semantic
derivations that derive from the proposal
in Frank and Storoshenko (2012) to add
separate scope components to all predi-
cates. We model parasitic gaps as deriving
from a TAG analog of sidewards move-
ment (Nunes, 2004), where the licensing
wh-phrase combines first with the domain
containing the parasitic gap, which then
combines with the main clause domain
via tree-local multi-component combina-
tion. Such tree-local derivations are pos-
sible only because of the manipulations
of scope available in the semantics. The
phenomenon explored here not only shows
the continued role of the syntax in con-
straining syntactic dependencies, but also
demonstrates the potential for derivations
which are syntactically well-formed, but
are rendered impossible due to the im-
proper binding of the parasitic gap vari-
able.

1 Overt and Covert Dependencies in

TAG

Frank and Storoshenko (2012) propose a new
conception of the semantic side of a syn-
chronous TAG. Following proposals beginning
with Kallmeyer and Joshi (1999), where the repre-
sentation of quantifiers in TAG consists of a multi-
component set including both a scope component
and a variable component, Frank and Storoshenko
advocate a similar division for the trees headed
by lexical predicates. Specifically, they propose
that the semantics of each lexical head includes a
predicate component, in which each of the predi-

〈
TP

T′

VP 3

DPi↓ 1V

criticized

T

DP↓ 2

{
t 2 3

〈e,t〉 3

t

〈e,t〉

t*λx′

1 e↓

λy′

2 e↓

t

e

y′

〈e,t〉

e

x′

〈e,〈e,t〉〉

criticize

}
〉

〈 NP

PP

DP↓ 1P

at

NP*

{
t 1

〈e,t〉

t*λz′

1 e↓

〈e,t〉

〈e,t〉

e

z′

〈e,〈e,t〉〉

at

∧〈e,t〉

}
〉

Figure 1: STAG elementary tree pairs following
Frank and Storoshenko (2012).

cate’s arguments is saturated by a variable, and a
scope component, in which each of the variables
introduced in the predicate component is lambda
bound and the operator is saturated by a substitu-
tion node. It is substitution into the scope com-
ponent, then, which accomplishes the saturation
of the arguments of the predicate. Examples of
such representations for the transitive verb criti-

cize and the preposition at are given in Figure 1.
The inclusion of a quantifier-like scope compo-
nent in the elementary semantic object associated
with a lexical predicate has a number of salutary
consequences. It predicts, for instance, that lex-
ical predicates can themselves introduce quantifi-
cational force over their arguments. We see this in
cases of passivization, where the suppressed sub-
ject is existentially quantified. That such a subject
must be present in the semantics is supported by
its capacity to control into purpose clauses:

(1) The boat was sunk [PRO to collect the insur-
ance]

In a number of languages, including ASL (Petro-
nio, 1995), Gun-djeyhmi, and Warlpiri (Evans,

112

1995), affixes on the verb can impose collective
or distributive interpretations over certain argu-
ments, suggesting the presence of a quantifier in
the scope component that quantifies over that argu-
ment. In English, a similar phenomenon is found
with “stubbornly distributive predicates”: a plural
subject of such a predicate must receive a distribu-
tive interpretation, so that (2) can only mean that
each of the boxes is large, and not that the collec-
tion of boxes is large.

(2) The boxes are large.

Again, this interpretational requirement can be
represented through the presence of a universal
quantifier in the scope component of predicates
like large which takes the semantics of the subject
to delimit its domain of quantification.

What motivated Frank and Storoshenko to make
this proposal, however, was the fact that the scope-
predicate conception of semantic tree sets allows
for tree-local MCTAG derivations of cases of sco-
pal interpretations such as (3), in which the quan-
tifier scopes out of an adjunct.

(3) Donald criticized three groups from every
state. (∀ > 3, 3 > ∀)

Such examples had been taken by Nesson and
Shieber (2008) to motivate the adoption of more
powerful regimens of TAG derivation. Without
the separate scope component, the tree local intro-
duction of a quantifier every state into from’s el-
ementary tree would leave the quantifier stranded
inside of the modifier’s semantics. With the re-
vised representation, however, the quantifier can
be tree-locally adjoined into the scope component.
The two components of the preposition can then
adjoin into the scope component of the quantifier
three groups, with the location of the adjoining
determining the relative scope of the two quanti-
fiers. To complete the derivation, the two compo-
nents of the object quantifier can adjoin into the
scope component of criticized, which we assume
will combine with its own predicate component.

Given the increased derivational flexibility of-
fered by this new conception of semantic elemen-
tary trees, one might wonder whether it under-
mines previous work in TAG that derives locality
in movement from constraints on how trees can
combine. Starting with Kroch and Joshi (1985)
and continuing to Frank (2002) and beyond, it has
been argued that the impossibility of extraction
from syntactic islands such as (4) derives from the

nature of elementary trees coupled with the way in
which TAG derivations proceed.

(4) *Which state did Donald criticize the man
who was from t?

Roughly speaking, this example is blocked be-
cause there is no way for the wh-phrase which

state to end up at the front of the clause if it is
inserted into the elementary tree representing the
relative clause of which it is an argument. Could
the flexibility afforded by scope-predicate seman-
tic trees somehow undermine these results?

An easy, but ultimately less than satisfying, re-
sponse to this question asserts that such flexibil-
ity doesn’t arise for overt syntactic movement be-
cause there is no compelling motivation for the
split of syntactic elementary trees on par with that
which has been proposed for semantic elementary
trees. Yet, even if such a split were in fact de-
sirable for the syntax, it turns out that examples
like (4) would still be blocked. To derive (4) in
a massively multi-component syntax, which state

could be inserted into an upper component asso-
ciated with the relative clause. At the next step
in the derivation, where the relative clause is at-
tached to the elementary tree associated with the
nominal man, the lower component of the relative
must attach directly to the lower component of the
nominal, since that is its surface position. By tree-
locality, this would force the higher component
of the relative, containing the wh-phrase which

state, into the DP structure as opposed to a puta-
tive higher component of the DP, leaving it unable
to reach the left peripheral position of the clause.
Similar arguments can be constructed for the other
“strong islands” that have been shown to derive
from the TAG derivation. In short, the creation of
overt syntactic dependencies are more constrained
than their covert counterparts because the fact that
the derivation needs to produce the correct order-
ing of phonological material constrains the deriva-
tion to involve the lower components.

In the remainder of this paper, we will examine
another class of syntactic dependencies, involv-
ing parasitic gaps, which have not be widely ex-
plored in the TAG literature (but cf. Frank (1991)).
These gaps are interesting because while they are
licensed by an overt syntactic dependency, the par-
asitic gap does not, we claim, involve the dis-
placement of any element in the syntax (cf. Chom-
sky (1982)), and is instead modulated through de-
pendencies formed on the semantic side of the

113

derivation. As a result, parasitic gaps permit
greater derivational flexibility than the dependen-
cies found in usual cases of overt wh-movement.

2 Parasitic Gaps

Parasitic Gap (PG) constructions are broadly de-
fined as a set of sentences in which one trace or
gap left behind by an A′ extraction is only licit
when another such gap exists in the sentence (En-
gdahl, 1983). An example of this appears in (5):

(5) Which papers did Bill file without
Carl reading p?

In this example, extraction from the object posi-
tion of file is independently well-formed, though
it is not possible to extract the object of reading in
the adjunct clause on its own.

(6) *? Which papers did Bill file the grades
without Carl reading p?

PGs can also occur inside infinitival adjuncts, as in
(7), where the arguments of the matrix and adjunct
clauses are identified.

(7) Which papers did Carl file without
reading p?

As has been widely discussed, PGs are able to be
able to occur in other (strong) island contexts, such
subject islands, so long as there is an additional,
independently well-formed instance of extraction.

(8) a. Which boy did [Mary’s talking to

p] bother ?

b. What car did [the attempt to repair

p] ultimately break ?

There are three main analytical puzzles posed
by PGs. First, how does a single wh-phrase bind
multiple gaps? Second, how is the appearance
of the PG dependent on the occurrence of an-
other? Finally, how does the existence of one well-
formed filler-gap dependency license another one
that crosses an island boundary. In the follow-
ing sections, we present an analysis of PG con-
structions in STAG, that provides an solution to
both of these puzzles. We demonstrate that the
distribution of well-formed parasitic gaps is deter-
minable by a combination of syntactic factors and
constraints on the semantic derivation of the PG
which are only made possible once the scope trees
introduced in the previous section are used. In do-
ing so, we also show that our analysis accounts
for a number of previously observed properties of
PGs.

3 An Analysis of PGs

Before proceeding with the analysis of PGs, we
will first sketch our assumptions concerning the
analysis of of wh-movement. The elementary tree
sets required are given in Figure 2. We represent
local wh-extraction in the matrix clause as a tree-
internal movement on the syntax side. We assume
a syntactic constraint on the moved substitution
site at the specifier of CP requiring a wh-phrase.
However, there is no semantic consequence asso-
ciated with this movement: the semantic compo-
nents of the matrix clause are as expected under
the split scope tree analysis: arguments are substi-
tuted into a scope component that includes lambda
operators that bind variables in the argument posi-
tion of the predicate.1 The semantic effect of wh-
extraction derives from the tree set associated with
the wh-phrase, which has the same basic form as a
generalized quantifier. For the proper names, we
are using simple type e intepretations in the in-
terests of space, though nothing crucially hinges
on avoiding a GQ analysis of these nominals as
well. To derive a simple case of clause-bound wh-
movement, such as Which papers did Bill file?,
on the syntax side of the derivation, the DP Bill

will substitute into the specifier of TP subject po-
sition, and the wh-phrase which papers will sub-
stitute into the specifier of CP. The semantic side
will proceed as is standard for sentences involving
quantifiers: the wh-phrase’s tree set will substitute
and adjoin into the scope component of the file set,
while the e-type tree associated with Bill will sub-
stitute into the higher substitution site. This will
yield a two part derived tree set, which combines
together at the conclusion of the derivation.

To derive a PG-containing sentence, such as
(5), we will make use of a synchronous multi-
component tree set for the adjunct clause shown on
the bottom of Figure 2. This tree set has two com-
plications relative to the split-scope adjunct rep-
resented shown above in Figure 1. On the syntax
side, because this sentence involves extraction, the
object position of the verb in the adjunct clause is
filled by a trace. However, because the antecedent
for this trace is not within this elementary tree,
we represent the antecedent via a “degenerate” DP
tree, into which the filler of this gap will ultimately

1Note that the VP-adjoined adverbial modifier is con-

strained via link 3 to take a scope position above the ab-
stractor for the object, but below the subject. We return to the
reason for this assumption below.

114

〈
CP

C′

TP

T′

VP 3

DP

ti

V

file

T

DP↓ 2

C

did

1 DPi↓
{

t 1 2

〈e,t〉

t 3

〈e,t〉

t*λx′′

1 e↓

λy′′

2 e↓

t

e

y′′

〈e,t〉

e

x′′

〈e〈e,t〉〉

λxλy.file(y, x)

} 〉
〈 DP

NP

N

papers

D

which

{ t

t*t

x〈e,t〉

paper

Whx e

x

}
〉

〈 DP

Bill

e

bill′

〉 〈 DP

Carl

e

carl′

〉

〈
{

DPi↓ 4 VP

CP

TP

T′

VP

DP

ti

V

reading

T

DP↓ 5

C

without

VP*

} {
t 4 5

〈e,t〉

t

〈e,t〉

t*λx′

4 e↓

λy′

5 e↓

t

t

t

e

y′

〈e,t〉

e

x′

〈e〈e,t〉〉

λxλy.read(y, x)

¬

∧t* e

x′

} 〉

Figure 2: Elementary trees for (5)

substitute. On the semantic side, we follow the
assumption made in the previous paragraph con-
cerning the semantics of wh-movement, namely
that it is not encoded in the tree of the predicate
taking the wh-argument. In this case, however, the
antecedent of the gap is not present in the same
syntactic elementary tree, and consequently is not
syntactically local. We take this to be an indica-
tion that this extraction can only be licensed in
the context of another licensing gap. We encode
that requirement semantically, by introducing an
additional e-type variable in the semantic tree set,
which will need to combine in the same domain as
the adjunct.

To derive (5), we follow an analysis that is
reminiscent of the sideward movement analysis in
Hornstein and Nunes (2002) and Nunes (2004).
Under this analysis, the wh-phrase originates in
the adjunct (island) clause, moves to the argument
position of the matrix predicate, and then on to the
canonical position for wh-phrases, specifier of CP.
This analysis directly accounts for the first of the
PG puzzles mentioned above: a single wh-phrase
can bind multiple gaps, since that phrase moves
through both gap positions. Under the TAG ver-
sion of this idea, we begin by combining the with-

out reading adjunct tree set with both of its ar-

guments: the Carl DP, which substitutes into the
subject position, and the wh-phrase which papers,
which substitutes into the degenerate DP compo-
nent. In the semantics, the unique e component
of Carl will substitute into the higher substitution
site of the scope tree; the components of the wh-
phrase will combine tree-locally into the same ad-
junct scope tree, the scope component adjoining
to the root of the adjunct’s scope tree, and the e
component substituting into the lower substitution
position. The derived tree set is shown in Figure 3.

This derived MCS now combines tree-locally
with the matrix predicate’s elementary tree, not
only modifying the predicate, but also filling the
argument position of the moved DP in the syn-
tax, and saturating its e-type substitution node in
the semantics. This semantic combination is fully
tree-local with all components of the adjunct com-
bining into the scope tree for the matrix predi-
cate, bringing along the binder of the wh-variable.
Following the constraint that the two t-recursive
components of the adjunct MCS must combine at
the interior t node of the matrix clause scope tree,
there is only one possible result where all variables
are properly bound, shown in Figure 4.

As noted above, our analysis is similar to the
sideward movement analysis in Minimalism, treat-

115

〈
{ DPi

NP

N

papers

D

which

VP

CP

TP

T′

VP

DP

ti

V

reading

T

DP

Carl

C

without

VP*

} { t

t

〈e,t〉

t

〈e,t〉

t*λx′

e

x

λy′

e

carl′

t

x〈e,t〉

paper

Whx

t

t

t

e

y′

〈e,t〉

e

x′

〈e〈e,t〉〉

λxλy.read(y, x)

¬

∧t* e

x′

} 〉

Figure 3: Derived tree set for adjunct clause in (5)

did file

without reading

which papersCarl

Bill

t

〈e,t〉

t

t

〈e,t〉

t

〈e,t〉

t

t

t

e

y′

〈e,t〉

e

x′

〈e〈e,t〉〉

λxλy.read(y, x)

¬

∧t

〈e,t〉

t

e

y′′

〈e,t〉

e

x′′

〈e〈e,t〉〉

λxλy.file(y, x)

λx′′

e

x′

λx′

e

x

λy′

e

carl’

t

x〈e,t〉

paper

Whx

λy′′

e

bill’

Figure 4: Derivation tree and derived semantic tree for (5)

ing the wh-phrase as combining directly with the
adjunct, with the degenerate DP node in our syn-
tactic MCS for the adjunct simulating the move-
ment. However, the semantic form is quite simple,
with the extra variable going from the adjunct to
the matrix clause in reminiscent of the treatment of
control into embedded clauses proposed by Nes-
son (2009), where one clause’s elementary tree
provides the arguments for another. Adopting this
mechanism allows us to dispense with the need
to posit null operators and the operation of chain
composition, as proposed in Chomsky (1986) and
widely assumed in more recent work on the topic.
This flexibility is derived largely from the treat-
ment of wh-dependencies as inherently quantifica-
tional, with no semantic effect on the predicates
within which extraction takes place.

It is interesting to note that Nesson’s treatment
of control, which can be thought of as the inspira-
tion for this this treatment of PGs, does not gen-
eralize to cases of adjunct control, as in examples
like (7). The problem concerns the directionality
of the derivation: if the adjunct adjoins into the
matrix clause, the adjunct elementary tree set can
provide arguments for the matrix, as it does in our
PG analysis. However, the reverse cannot hap-
pen: the matrix clause cannot provide arguments
which substitute into the adjunct.2 To analyze ad-
junct control, then, we are forced to depart from an
analysis where the two dependencies run in oppo-
site directions, with control from the matrix into

2This might be possible if we relax constraints on TAG
derivations, to permit flexible composition (Joshi et al., 2008;
Chiang and Scheffler, 2008). We put this possibility aside
here.

116

the adjunct for the subject but movement of the
wh-object from the adjunct into the matrix clause.
We see two possible resolutions of this conflict.
On one of these, we would treat adjunct control in
a manner similar to parasitic gaps, with the puta-
tive controller forming part of the adjunct clause’s
tree set. This would in essence involve an adop-
tion of sidewards movement for adjunct control,
as proposed by Hornstein (1999). Alternatively,
we could embrace a semantic treatment of adjunct
control. By taking the adverbial modifier’s inter-
pretation to be of type 〈e,t〉, with abstraction over
the subject argument, combining such a predicate
with the matrix VP, also of type 〈e,t〉, via predicate
modification, we get the effect of subject control,
as both predicates with be asserted to hold of the
same entity.3 We will not choose among these op-
tions in the remainder of the paper.

Before closing this section, we note that the
present analysis accounts for another constraint on
PG constructions, specifically their limitation to
argument wh-words:

(9) a. * Why did you leave when Bill
walked in p?

b. ?* with whom did you drive to school
before going to the concert p??

While the sentence in (9a) may be understood as
asking for the reason leaving at the time of Bill’s
arrival, there is no way to interpret it as including
a PG, where the same reason would also hold for
Bill’s walking in. The same applies in (9b), where
the question can ask about companions on the way
to school, but not both going to the school and the
concert. The contrast here follows because the ad-
verbial clause tree set will not have the degener-
ate DP node into which the adjunct wh-phrase can
substitute, as the position for such an adjunct is
not licensed by the thematic structure of the verb
in the adverbial.

4 Locality in Parasitic Gaps

The multi-component analysis set forth in the pre-
vious section allows extraction from an adjunct
in a way that is not possible with non-multi-
component TAG. Indeed, the impossibility of such
extraction had been used to provide support for the
TAG treatment of extraction, as it derives island

3Nissenbaum (1998) makes use of predicate modification
in his semantic treatment of adjunct parasitic gaps, but uses it
to ensure identity of the binders of the licensing gap and PG.

constraints (Kroch, 1987; Frank, 2002). By grant-
ing ourselves this additional flexibility, we might
worry that those results would fall away. Note,
however, that there are substantial constraints on
the use of such an island-violating derivation. First
of all, the syntactic tree set containing the degener-
ate DP node will be constrained to substitute into
an A′-position, as it is the host of a wh-phrase,
meaning that it will be possible only in the pres-
ence of an instance of extraction. Furthermore, un-
der the assumption that all multi-component com-
bination is tree-local, we will ensure that the para-
sitic gap dependency is local to the licensing de-
pendency. That is, the parasitic gap-containing
adjunct must combine tree-locally with the clause
inside of which the licensing extraction holds, in
order for the substitution of the wh-phrase and ad-
junction of the modifier to take place in a tree-local
fashion.

Note that this analysis does not prevent us from
deriving examples in which the parasitic gap oc-
curs within an embedded clause in the adjunct.

(10) Which papers did Bill file [without
believing that Carl had read p]?

To do so, we need only adjoin a C′-recursive tree
headed by the verb believe into the adjunct tree,
thereby “stretching” the PG dependency across the
clausal boundary. If the PG is contained within
an island (within the adjunct), no such derivation
is possible. And indeed it has been known since
Kayne (1983) that such instances of PGs are im-
possible:

(11) a. * Which papers did Bill file with-
out Carl meeting [the guy who wrote

p?] (Complex NP)

b. * Which papers should we read be-
fore [talking about p] becomes dif-
ficult ? (Subject Island)

Our analysis predicts this pattern exactly.
There is however a kind of case that poses a po-

tential difficulty for our analysis. This involves an
example like (12), where an additional clause in-
tervenes between the licensing gap and the surface
position of the wh-phrase.

(12) Which papers did you predict that I
would file without reading p?

This example is ambiguous, with readings possi-
ble where without is modifying either predict or
reject, and the PG is licensed in both cases. These

117

readings can be easily diagnosed by the controller
of the adjunct clause: when it is you, attachment is
high, and when it is I, attachment is low.4

Using the standard TAG analysis of successive
cyclic wh-movement, the lower reading can be de-
rived straightforwardly. As before, the adjunct-
wh complex (corresponding to the lexical mate-
rial which papers and without reading) is adjoined
to the embedded clause’s elementary tree (headed
by file), as does the matrix clause (represented by
the trees in Figure 5), at C′, thereby displacing the
wh-phrase from its position at the edge of the em-
bedded clause.

〈
C′

TP

T′

VP

C′*V

predict

T

5 DP↓

C
{

t 5

〈e,t〉

t*λz′

5 e↓

t

〈e,t〉

t*〈t,〈e,t〉〉

λpλz.predict(z, p)

e

z′

} 〉

Figure 5: Elementary trees for predict (low attach-
ment of adjunct)

Deriving the lower attachment of (12) is con-
siderably less straightforward. Doing so using the
same set of trees would require a non-local deriva-
tion: While the adjunct would need to be adjoined
into the matrix clause’s tree set, the wh-phrase,
and associated variable in the semantics would
need to composed into the embedded clause’s tree
set. In order to avoid such non-locality, we make
use of the derivation of wh-extraction proposed
in Kroch (1989) and Frank and Kroch (1995)
to analyze cases of ‘long movement’ out of wh-
islands. Specifically, we assume the alternative
multi-component sets for the embedding predicate
predict, shown in Figure 6. On the syntactic side,
the tree is extended to a full CP (as opposed to C′),
including a substitution site for the wh-phrase.

An immediate concern is that this substitution
node appears to violate TAG version of the theta
criterion (Frank, 2002), according to which all
substitution nodes must be part of a chain that re-
ceives a θ-role. However, we note the exceptional
nature of this position, as defined by the links in
the tree. Unlike the case in Figure 2, where the ad-

4We note that either of the treatments of control sketched
above correctly capture this correlation between locus of at-
tachment and controller.

junct is not required to fill the CP specifier (though
it is able to do so), here the links are constructed
such that it must do so (cf. the co-indexation of the
specifier of CP and the VP). This means that the
phrase substituting here must come from an ad-
junct in which it will already have received a role.
Further constraints on the usage of this tree set are
seen on the semantic side: the scope part of pre-

dict has been extended to provide a substitution
site for the variable associated with the new DP,
though instead of binding an argument of predict,
the binder binds a type e tree in the new seman-
tic MCS. On both the syntactic and semantic sides
of the derivation, tree local combination into the
file tree will complete the derivation. Because the
predict tree set has an extra DP node and an extra
variable, it will saturate an argument position in
the clause it embeds, it guarantees a licensing gap
for the PG it supports. As with the earlier cases,
we see all variable dependencies moving in paral-
lel through the derivation. The adjunct passes both
the controlling subject and the wh-phrase through
to the matrix clause via adjoining, and when the
matrix clause adjoins into the embedded clause, it
passes the wh-dependency on again.

As we already noted above, multi-component
tree sets like the one in Figure 6 were first pro-
posed in the analysis of extractions from (weak)
wh-islands, and were taken to be the only path
for such a derivation in a language like English
where the lower CP could not host multiple wh-
phrases in its specifier(s). If this is correct, our cur-
rent analysis makes the prediction that instances
of long movement will only permit the high at-
tachment of the PG-containing adjunct. Frank and
Kroch (1994) argued that this was correct for ex-
traction out of DP, on the basis of examples like
(13a), and we believe that it is also the case for
extraction from (some) wh-islands:5

(13) a. Which building did the mayori report
on [Trump’sj renovation of] [after

5Frank (1991) reaches a different conclusion concerning
extraction from wh-islands, on the basis of examples like the
following:

(1) Which cari did Billj understand how the mechanick had
fixed [without PROj/k dismantling p]

This example appears to permit the lower attachment inter-
pretation to a considerably greater degree than (13b). We do
not at present have an explanation for why the presence of an
argument as opposed to adjunct wh-phrase in the embedded
specifier of CP should lead to this difference. We leave this
for future work.

118

〈
{ CP

C′

TP

T′

VP 6

CP*V

predict

T

5 DP↓

C

6 DPi↓

DP

ti

}
{

t 5 6

〈e,t〉

t

〈e,t〉

t*λx′

6 e↓

λz′

5 e↓

t

〈e,t〉

t*〈t,〈e,t〉〉

λpλz.predict(z, p)

e

z′

e

x′

} 〉

Figure 6: Elementary trees for predict (high attachment of adjunct)

PROi/∗j previously abandoning p]?

b. Which cari did Billj understand whok
had fixed [without PROj/∗k disman-
tling p]

Such contrasts provide support for the treatment of
high attachment we have provided, as well as for
the analysis of PGs that we have presented.

5 Anti-C-Command and Beyond

We turn finally to another property that has been
attributed to parasitic gap constructions. In the
original paper on the topic, Engdahl contrasts
cases like (7) with the anomalous (14).

(14) * Which article got filed before Carl
read p?

Engdahl argues that the crucial distinction be-
tween these cases concerns the fact that the li-
censing gap in the well-formed case does not c-
command the parasitic gap, whereas it does so in
the ill-formed case. This anti-command condi-
tion has been widely assumed to be a restriction
on parasitic gaps. Our present analysis captures
this quite simply by forcing the adjunct’s seman-
tic content to adjoin into the matrix clause’s scope
tree at a position which can bind objects, but not
subjects. Rather than building anti-c-command
into the syntax, here we are deriving the same re-
sult from the semantics.

We also note that our approach captures another
contrast relating to the use of PG constructions
noted by Phillips (2006):

(15) a. Which car did the attempt to fix

p ultimately destroy ?

b. * Which platform did the reporter
that criticized p ultimately endorse

?

In neither case does the licensing gap c-command
the PG, and yet there is a clear and strong contrast
in judgments. While space prohibits a full anal-
ysis, the prior discussion provides the necessary
insights. Though an STAG analysis of nominal-
izations is well outside the scope of this paper, it
is plausible that to fix should be assimilable to the
kind of infinitival adjunct present in (7). In con-
trast, in the case of the relative clause, our account
is going to mirror the account for (4) where local-
ity of the composition of the relative clause will be
key. Of course, here we are dealing with a covert
contrast not derived from overt movement, so the
better analogy is to note that just as the relative
clause is a scope island (versus the control case),
the relative clause here remains a legitimate island
for the parasitic gap.

In closing the paper with these examples, we
note that parasitic gap constructions provide an
ideal example of the theoretical possibilities af-
forded by STAG. The pairing of synchronized
derivations does nothing to weaken the power of
existing semantic constraints on a derivation, but
does make it possible to allow semantics an equal
opportunity to rule out syntactically well-formed
derivations. This is a welcome result as it opens
up new analyses for cases where seemingly well-
formed syntactic derivations are ruled out based
on a semantic contrast.

Acknowledgments

We thank Mark Steedman and the anonymous
TAG+ reviewers for their helpful comments which
helped us significantly in the development of this
analysis.

119

References

Emmon Bach, Eloise Jelinek, Angelika Kratzer, and
Barbara H. Partee, editors. 1995. Quantification in
Natural Languages. Springer.

David Chiang and Tatjana Scheffler. 2008. Flexi-
ble composition and delayed tree-locality. In Pro-
ceedings of the Ninth International Workshop on
Tree Adjoining Grammars and Related Formalisms
(TAG+9), pages 17–24, Tübingen.

Noam Chomsky. 1982. Some Concepts and Conse-
quences of the Theory of Government and Binding.
MIT Press, Cambridge, MA.

Noam Chomsky. 1986. Barriers. MIT Press, Cam-
bridge, MA.

Elisabet Engdahl. 1983. Parasitic gaps. Linguistics
and Philosophy, 6:5–34.

Nick Evans. 1995. A-quantifiers and scope in Mayali.
In Bach et al. (Bach et al., 1995), pages 207–270.

Robert Frank and Anthony Kroch. 1994. Nominal
structures and structural recursion. Computational
Intelligence, 10(4):453–470.

Robert Frank and Anthony Kroch. 1995. Generalized
transformations and the theory of grammar. Studia
Linguistica, 49(2):103–151.

Robert Frank and Dennis Ryan Storoshenko. 2012.
The shape of elementary trees and scope possibil-
ities in STAG. In Proceedings of the 11th Interna-
tional Workshop on Tree Adjoinining Grammars and
Related Formalisms (TAG+11), Paris.

Robert Frank. 1991. Parasitic gaps and locality condi-
tions. In Proceedings of the 27th Regional Meeting
of the Chicago Linguistics Society, pages 167–181.
University of Chicago.

Robert Frank. 2002. Phrase Structure Composition
and Syntactic Dependencies. Cambridge, MA: MIT
Press.

Norbert Hornstein and Jario Nunes. 2002. On asym-
metries between parastici gap and across-the-board
constructions. Syntax, 5(1):26–54.

Norbert Hornstein. 1999. Movement and control. Lin-
guistic Inquiry, 30(1):69–96.

Aravind K. Joshi, Laura Kallmeyer, and Maribel
Romero. 2008. Flexible composition in LTAG:
Quantifier scope and inverse linking. In Harry Bunt
and Reinhard Muskens, editors, Computing Mean-
ing, volume 3, pages 233–256. Springer, Dordrecht.

Laura Kallmeyer and Aravind K. Joshi. 1999. Fac-
toring predicate argument and scope semantics: Un-
derspecified semantics with LTAG. In Paul Dekker,
editor, Proceedings of the 12th Amsterdam Collo-
quium, pages 169–174, Amsterdam. Institute for
Logic, Language and Computation.

Richard S. Kayne. 1983. Connectedness. Linguistic
Inquiry, 14(2):223–249.

Anthony Kroch and Aravind K. Joshi. 1985. The lin-
guistic relevance of tree adjoining grammar. Techni-
cal Report MS-CS-85-16, Department of Computer
and Information Sciences, University of Pennsylva-
nia.

Anthony Kroch. 1987. Unbounded dependencies and
subjacency in a tree adjoining grammar. In Alexis
Manaster-Ramer, editor, The Mathematics of Lan-
guage, pages 143–172. John Benjamins, Amster-
dam.

Anthony Kroch. 1989. Asymmetries in long distance
extraction in a tree adjoining grammar. In Mark
Baltin and Anthony Kroch, editors, Alternative Con-
ceptions of Phrase Structure, pages 66–98. Univer-
sity of Chicago Press, Chicago, IL.

Rebecca Nesson and Stuart Shieber. 2008. Syn-
chronous vector tree adjoining grammars for syntax
and semantics: Control verbs, relative clauses, and
inverse linking. In Proceedings of the Ninth Interna-
tional Workshop on Tree Adjoining Grammars and
Related Formalisms, pages 73–80.

Rebecca Nesson. 2009. Synchronous and Multicom-
ponent Tree-Adjoining Grammars: Complexity, Al-
gorithms, and Linguistic Applications. Ph.D. thesis,
Harvard University.

Jon Nissenbaum. 1998. Derived predicates and the
interpretation of parasitic gaps. In Kimary Shahin,
Susan Blake, and Eun-Sook Kim, editors, Proceed-
ings of the 17th West Coast Conference on Formal
Linguistics, pages 507–521. Stanford: CSLI.

Jairo Nunes. 2004. Linearization of Chains and Side-
ward Movement. MIT Press, Cambridge, MA.

Karen Petronio. 1995. Bare noun phrases, verbs and
quantification in ASL. In Bach et al. (Bach et al.,
1995), pages 603–618.

Colin Phillips. 2006. The real-time status of island
phenomena. Language, 82(4):795–823.

120

Author Index

Aksënova, Alëna, 93

Balogh, Kata, 58
Bangalore, Srinivas, 85
Bauer, Daniel, 103
Ben Fraj, Fériel, 18
Ben Khelil, Chérifa, 18
Bernard, Timothée, 38

Chiraz, Zribi, 18
Chung, Wonchang, 85

Danlos, Laurence, 27, 38
De Santo, Aniello, 93
Duchier, Denys, 18

Frank, Robert, 112

Graf, Thomas, 93

Kallmeyer, Laura, 48

Lichte, Timm, 48

Maskharashvili, Aleksandre, 27
Mhatre, Siddhesh Suhas, 85

Nasr, Alexis, 85

Oswald, Rainer, 48

Parmentier, Yannick, 18
Petitjean, Simon, 48
Pogodalla, Sylvain, 27

Rambow, Owen, 85, 103

Sloan, Rose, 77
Stahler, Edward P., 1
Storoshenko, Dennis Ryan, 67, 112

Torr, John, 1

121

	Program
	Coordination in Minimalist Grammars: Excorporation and the Across the Board (Head) Movement
	ArabTAG: from a Handcrafted to a Semi-automatically Generated TAG
	Interfacing Sentential and Discourse TAG-based Grammars
	Modelling Discourse in STAG: Subordinate Conjunctions and Attributing Phrases
	Argument linking in LTAG: A constraint-based implementation with XMG
	Verbal fields in Hungarian simple sentences and infinitival clausal complements
	Modelling the ziji Blocking Effect and Constraining Bound Variable Derivations in MC-TAG with Delayed Locality
	Node-based Induction of Tree-Substitution Grammars
	Revisiting Supertagging and Parsing: How to Use Supertags in Transition-Based Parsing
	An Alternate View on Strong Lexicalization in TAG
	Hyperedge Replacement and Nonprojective Dependency Structures
	Parasitic Gaps and the Heterogeneity of Dependency Formation in STAG

