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Abstract

This preliminary study investigates
whether, and to what extent, conceptual
combination is conveyed by vision. Work-
ing with noun-noun compounds we show
that, for some cases, the composed visual
vector built with a simple additive model
is effective in approximating the visual
vector representing the complex concept.

1 Introduction

Conceptual combination is the cognitive process
by which two or more existing concepts are com-
bined to form new complex concepts (Wisniewski,
1996; Gagné and Shoben, 1997; Costello and
Keane, 2000). From a linguistic perspective, this
mechanism can be observed in the formation and
lexicalization of compound words (eg. boathouse,
swordfish, headmaster, etc.), a widespread and
very productive linguistic device (Downing, 1977)
that is usually defined in literature as the result
of the composition of two (or more) existing and
free-standing words (Lieber and Štekauer, 2009).
Within both perspectives, scholars agree that the
composition of concepts/words is something more
than a simple addition (Gagné and Spalding, 2006;
Libben, 2014). However, additive models turned
out to be effective in language, where they have
been successfully applied to distributional seman-
tic vectors (Paperno and Baroni, to appear).

Based on these previous findings, the present
work addresses the issue of whether, and to what
extent, conceptual combination can be described
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Figure 1: Can we obtain a clipboard by combining
clip and board with a compositional function f ?

in vision as the result of adding together two sin-
gle concepts. That is, can the visual representa-
tion of clipboard be obtained by using the visual
representations of a clip and a board as shown
in Figure 1? In order to investigate this issue,
we experiment with visual features that are ex-
tracted from images representing concrete and im-
ageable concepts. More precisely, we use noun-
noun compounds for which ratings of imageabil-
ity are available. The rationale for choosing NN-
compounds is that composition should take advan-
tage from dealing with concepts for which clear,
well-defined visual representations are available,
as it is the case of nouns (representing objects). In
particular, we test whether a simple additive model
can be applied to vision in a similar fashion to how
it has been done for language (Mitchell and Lap-
ata, 2010). We show that for some NN-compounds
the visual representation of the whole can be ob-
tained by simply summing up its parts. We also
discuss cases where the model fails and provide
conjectures for more suitable approaches. Since,
to our knowledge, no datasets of images labeled
with NN-compounds are currently available, we
manually build and make available a preliminary
dataset.
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2 Related Works

Recently, there has been a growing interest in
combining information from language and vision.
The reason lies on the fact that many concepts can
be similar in one modality but very different in
the other, and thus capitalizing on both informa-
tion turns out to be very effective in many tasks.
Evidence supporting this intuition has been pro-
vided by several works (Lazaridou et al., 2015;
Johnson et al., 2015; Xiong et al., 2016; Ordonez
et al., 2016) that developed multimodal models
for representing concepts that outperformed both
language-based and vision-based models in differ-
ent tasks. Multimodal representations have been
also used for exploring compositionality in visual
objects (Vendrov et al., 2015), but compositional-
ity was intended as combining two or more objects
in a visual scene (eg., an apple and a banana) and
not as obtaining the representation of a new con-
cept based on two or more existing concepts.

Even though some research in visual composi-
tionality has been carried out for part segmenta-
tion tasks (Wang and Yuille, 2015), we focus on
a rather unexplored avenue. To our knowledge,
the closest work to ours is represented by Nguyen
et al. (2014), who used a compositional model of
distributional semantics for generating adjective-
noun phrases (eg., a red car given the vectors of
red and car) both in language and vision. Accord-
ing to their results, a substantial correlation can
be found between observed and composed repre-
sentations in the visual modality. Moving from
these results, the present study addresses the issue
of whether, and to which extent, a compositional
model can be applied to vision for obtaining noun-
noun combinations, without relying on linguistic
information.

3 Dataset

To test our hypothesis, we used the publicly avail-
able dataset by Juhasz et al. (2014). It contains
629 English compounds for which human ratings
on overall imageability (ie., a variable measuring
the extent to which a compound word evokes a
nonverbal image besides a verbal representation)
are available. We relied on this measure for car-
rying out a first filtering of the data, based on the
assumption that the more imageable a compound,
the clearer and better-defined its visual represen-
tation. As a first step, we selected the most im-
ageable items in the list by retaining only the ones

with an average score of at least 5 points in a scale
ranging from 1 (e.g., whatnot: 1.04) to 7 (e.g.,
watermelon: 6.95). From this subset, including
240 items, one of the authors further selected only
genuine noun-noun combinations, so that items
like outfit or handout were discarded. We then
queried each compound and its constituent nouns
in Google images and we selected only those items
for which every object in the tuple (eg. airplane,
air, and plane) had a relatively good visual rep-
resentation by looking at the top 25 images. This
step, in particular, was aimed at discarding the sur-
prisingly numerous cases for which only noisy im-
ages (ie., representing brands, products, or con-
taining signs) were available.

From the resulting dataset, containing 115
items, we manually selected those that we con-
sidered as compositional in vision. As a crite-
rion, only NN-combinations that can be seen as
resulting from either combining an object with a
background (e.g., airplane: a plane is somehow
superimposed in the air background) or concate-
nating two objects (e.g., clipboard) were selected.
Such a criterion is consistent with our purpose,
that is finding those cases where visual composi-
tion works. The rationale is that there should be
composition when both the constituent concepts
are present in the visual representation of the com-
posed one. Two authors separately carried out the
selection procedure, and the few cases for which
there was disagreement were resolved by discus-
sion. In total, 38 items were selected and included
in what we will heceforth refer to as composi-
tional group. Interestingly, the two visual crite-
ria followed by the annotators turned out to partly
reflect the kind of semantic relation implicitly ty-
ing the two nouns. In particular, most of the se-
lected items hold either a noun2 HAS noun1 (eg.,
clipboard) or a noun2 LOCATED noun1 (eg., cup-
cake) relation according to Levi (1978).

In addition, 12 other compounds (eg., sun-
flower, footstool, rattlesnake, etc.) were ran-
domly selected from the 115-item subset. We will
heceforth refer to this set as the control group,
whereas we will refer to the concatenation of the
two sets (38+12=50 items) as the full group. For
each compound in the full group, we manually
searched images representing it and each of its
constituents nouns in Google images. One good
image, possibly showing the most prototypical
representation of that concept according to the au-
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thors’ experience, was selected. In total, 79 im-
ages for N-constituents plus 50 images for NN-
compounds (129 in total) images were included in
our dataset.1

4 Model

In order to have a clear and interpretable picture of
what we obtain when composing visual features of
nouns, in this preliminary study we experimented
with a simple additive compositional model. Sim-
ple additive models can be seen as weighting mod-
els applying the same weight to both elements in-
volved. That is, when composing waste and bas-
ket, both nouns are considered as playing the same
(visual) role with respect to the overall representa-
tion, ie. wastebasket. Intuitively enough, we ex-
pect this function being effective in approximating
visual representations of complex concepts where
the parts are still visible (eg., clipboard). In con-
trast, we don’t expect good results when the com-
position requires more abstract, subtle interactions
between the nouns (eg., cannonball).

To directly compare vision against language, we
applied the same compositional function to the lin-
guistic vectors (extracted from large corpora of
texts) representing the same dataset. What we ex-
pected from such a comparison is a different and
possibly complementary behavior: since linguistic
vectors encode contexts in which the target word is
very likely to occur, language could be more effec-
tive in modulating abstract interactions (ie., can-
nonball), whereas vision might be possibly better
in composing grounded concepts (ie., clipboard).
As a consequence, we expect language performing
better in the control group, but differently from vi-
sion in the compositional group.

4.1 Visual Features

Each image in the dataset is represented by vi-
sual features extracted by using state-of-the-art
technique based on Convolutional Neural Net-
works (Simonyan and Zisserman, 2014). We used
the VGG-19 model pretrained on the ImageNet
ILSVRC data (Russakovsky et al., 2015). The
model includes multiple convolutional layers fol-
lowed by max pooling and the top of these are
fully connected layers (fc6, fc7, fc8). We used
4096-dimensional visual vectors extracted from
the fc6 layer, which has shown better performance

1The dataset is publicly available and can be downloaded
at https://github.com/shekharRavi/

in image retrieval/matching task (Babenko et al.,
2014) compared to other layers. For experimental
purpose, we used MatConvNet (Vedaldi and Lenc,
2015) toolbox for features extraction.

4.2 Linguistic Features
Each word in the dataset is represented by a
400-dimension vector extracted from a semantic
space2 built with the CBOW architecture imple-
mented in the word2vec toolkit (Mikolov et al.,
2013) and the best-performing parameters in Ba-
roni et al. (2014).

5 Evaluation Measures

To evaluate the compositionality of each NN-
compound, we measure the extent to which the
composed vector is similar to the corresponding
observed one, ie. the vector directly extracted
from either texts or the selected image. Hence,
first of all we use the standard Cosine similar-
ity measure. The higher the similarity, the bet-
ter the composition. It could be the case that the
composed vector is however less similar to the
observed one than it is the closest N-constituent.
Thus, similarity by its own is not informative of
whether the composition function has provided
additional information compared to that conveyed
by the closest single noun. In order to take into
account this issue, we also compute the similar-
ity between the composed vector and both its N-
constituents (N1,N2). We lower the similarity
between the composed and the observed vector
by subtracting the similarity between the observed
vector and the noun that is closest to it (we call
this measure CompInfo, since it is informative
of the effectiveness of the composition). When the
composition operation maps the composed vector
closer to the observed vector compared to its con-
stituents in the semantic space, the composition
provides more information. In particular, when
CompInfo is positive (ie., greater than 0), the
composition is considered to be effective.

To further evaluate the compositionality of the
nominal compound, we test the effectiveness of
the composed vector in the retrieval task. The
reason is to double-check the distictiveness of the
composed vector with respect to all the objects
(ie., 79 N-constituents plus 50 NN-compounds) in

2The corpus used for building the semantic space is a
2.8 billion tokens concatenation of the web-derived ukWac,
a mid-2009 dump of the English Wikipedia, and the British
National Corpus.
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Table 1: Compositionality evaluation in Vision and Language.

Dataset
Avg.Similarity %(CompInfo > 0) Rec@1 Rec@5
Vision Lang Vision Lang Vision Lang Vision Lang

Full 0.6283 0.407 62% 72% 0.34 0.52 0.76 0.88
Compositional 0.6476 0.429 76.31% 76.31% 0.3947 0.57889 0.8158 0.9211

Control 0.5671 0.3377 16.66% 58.33% 0.1667 0.3333 0.5833 0.75

the semantic space. Using the composed vector
as query, we are interested in knowing the rank of
the corresponding observed vector. Since for each
query there is only one correct item in the whole
semantic space, the most informative retrieval
measure is Recall. Hence, we evaluate composi-
tionality by Rec@k. Since we have already scru-
tinized the role of the N-constituents with the pre-
vious measure, in the retrieval of a NN-compound
both its N-constituents are removed from the se-
mantic space. The same evaluation is conducted
for both vision and language, thus providing a way
to directly compare the two modalities.

6 Results

In Table 1, we report average similarity, percent-
ages of cases where CompInfo is positive (ie.,
composition is informative), and both Rec@1 and
Rec@5. As can be seen, all measures are signif-
icantly higher for the compositional group than
for the control group both in visual and linguis-
tic modality. Focusing on vision, the cases in
which composition provides additional informa-
tion compared to the closest N-constituent drops
from 76.3% of the compositional group to 16.6%
of the control group. Interestingly, the same trend
is confirmed by Similarity and Recall measures.
This confirms the intuition that for combinations
involving either superimposition of an object over
a background or object concatenation the com-
position can be obtained with a simple additive
model. It also confirms that a large number of con-
ceptual combinations cannot be composed with a
simple additive model, as shown by the randomly
choosen items of the control group. Evidence for
a real effectiveness of the composition is also pro-
vided by the analysis of the neighbors (ie., the
closest vectors) of the working cases and their con-
stituent nouns. For example, the observed waste-
basket is the closest neighbor of the composed
wastebasket, but it is not even in the top 2 po-
sitions in both waste (hail, sunshine) and basket

(cup, clipboard).
By comparing vision and language, two main

differences emerge. First, the average similarity in
each group is significantly lower in language com-
pared to the visual modality. That is, the com-
posed and the observed vectors are on average
closer in vision than in language3. Second, a dif-
ferent drop in the percentage of working cases can
be observed between the compositional and the
control group in language and vision. Whereas
the percentage of working cases in the composi-
tional group is exactly the same between the two
modalities (76.3%), the performance in the lin-
guistic control group is significantly higher than
in its visual counterpart (ie., 58.3% vs 16.6%).
That is, randomly choosen items are not composi-
tional in vision, but compositional to some extent
in language. Interestingly, the same percentage of
working cases (76.3%) between the two modal-
ities in the compositional group does not result
from the same items. To illustrate, bagpipe turns
out to be compositional in vision but not in lan-
guage, whereas corkscrew is compositional in lan-
guage but not in vision. Consistently with our hy-
pothesis, corkscrew would require more than the
grounded information provided by the visual rep-
resentations of cork and screw. In contrast, sum-
ming together bag and pipe gives something simi-
lar to a bagpipe in vision, but not in language.

7 Conclusions

A simple additive model is effective in gener-
ating composed representations that approximate
the observed representations for NN-combinations
made up by either superimposed or concatenated
objects. On the other hand, the same method can-
not be applied to the full range of NN-compounds,

3One could think that this difference is due to the differ-
ent setting used for the two modalities: the visual vectors
encode one image vs. the linguistic vectors encode all the
contexts in which the word is used. However, this is in not
the case, since we have observed the same behavior (for the
cases where compositionality works in vision) on a previous
study carried out on large image datasets.
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as the results on the control group reveal. This
suggests that new compositional methods (perhaps
capitalizing on both language and vision) are re-
quired to solve this task for all cases. In this light,
we believe our dataset is a good starting point for
any future investigation.
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